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Abstract 12 

Reducing dependence on chemical pesticides is considered as an essential challenge for 13 

sustainable crop production. The use of microbial biocontrol agents (MBCAs) is a key 14 

component of sustainable pest management. Numerous antagonistic microorganisms are 15 

known to suppress plant diseases, but their practical application and commercialization 16 

are still limited in part due to poor reliability of their efficacy in the field. Although 17 

promising MBCAs achieve remarkable disease control in the laboratory or greenhouse, 18 

field control is often unsatisfactory. Thus, for MBCAs to be integrated into crop 19 

production, their field performance must be improved to provide the cost-effectiveness 20 

and efficacy required by growers. In this review, we highlight recent approaches to 21 

enhance the field performance of MBCAs.  22 
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Introduction 26 

Crop pests (diseases, insects, and weeds) cause estimated losses of 40% of annual 27 

global crop yields despite the annual application of about 3 billion tons of chemical 28 

pesticides worldwide (Messing and Brodeur 2018). Chemical pesticides have certainly 29 

contributed to increased crop productivity since the mid-1900s, but overuse and 30 

dependence on pesticides has led to environmental concerns and a prevalence of 31 

pesticide-resistant pests. The discovery and commercialization of new synthetic 32 

pesticides is increasingly more difficult and costly; more than 140,000 compounds 33 

might be screened to develop one new commercially acceptable pesticide after 10 years 34 

of work and more than US$250 million (Glare et al. 2012). Therefore, the development 35 

of alternative pest control measures has become an urgent priority for sustainable crop 36 

production and reduction of pesticide use to a bare minimum. 37 

Integrated pest management (IPM) is now accepted practice to reduce dependency on 38 

chemical control. A key component of IPM is biocontrol using beneficial 39 

microorganisms. Growing interest in the exploitation of microbial biocontrol agents 40 

(MBCAs) to control of crop pests is evidenced by the vast number of books, reviews, 41 

and articles on this topic (Ab Rahman et al. 2018; Bardin et al. 2015; Bonaterra et al. 42 

2012; Ehlers 2011; Hyakumachi et al. 2014; Maheshwari 2013; Massart et al. 2015; 43 

Narayanasamy 2013; Nicot 2011; Parnell et al. 2016; Sharma et al. 2009). Moreover, 44 

many large global companies have demonstrated a strong interest in developing 45 

microbial biocontrol products (MBPs) by acquiring small biopesticide companies and 46 

signing licensing agreements to distribute and sell MBPs developed by smaller 47 

companies (Pelaez and Mizukawa 2017). In 2012, the global biopesticide market was 48 

growing at a 15.6% compounded annual growth rate (Glare et al. 2012); 10 MBCAs 49 
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were registered between 1996 and 2000 in the European Union (EU) (Droby et al. 2016), 50 

and 27 microbial fungicide products were newly approved in the last 15 years 51 

(European Commission 2019). 52 

Although demand for MBPs is increasing, developing a practical product is not easy 53 

for a variety of reasons.  Field performance of the MBP must be on par with existing 54 

chemical pesticides, but most of the MBCAs isolated from natural environments tend to 55 

be milder-acting and less stable than chemical pesticides in the field, and consequently, 56 

lack reliability. In addition, they require careful handling during preservation and 57 

transportation compared with chemicals. All these drawbacks must be overcome for 58 

maximal adoption of MBPs in crop production. 59 

Here, we review the most relevant scientific works concerning augmentative 60 

biocontrol of plant diseases from the last decade. We discuss challenges for enhancing 61 

performance of the biocontrol agents and suggest possible avenues to overcome these 62 

challenges and develop practical MBPs. 63 

 64 

Improvement of abiotic stress tolerance of MBCAs 65 

MBCAs are exposed to diverse abiotic stresses such as drought, UV radiation, ambient 66 

pH, and temperature changes after they are applied to soil or plants. These stresses may 67 

negatively influence the persistence and performance of MBCAs; therefore, in addition 68 

to biocontrol activity, environmental stress tolerance is a necessary attribute for 69 

antagonistic microorganisms used as biocontrol agents. From this aspect, the 70 

improvement of MBCA abiotic stress tolerance would help assure the desired biocontrol 71 

performance in harsh conditions. Generally, two strategies have been used to improve 72 

MBCA stress tolerance. 73 
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The first strategy is stress preconditioning of MBCAs. Microorganisms that survive a 74 

given stress often gain tolerance to that stress or other stresses via cross-protection 75 

(Wesch et al. 2009). By using this adaptive capability, MBCAs can be preconditioned 76 

against various stresses by exposing them to a sublethal (mild) stress during mass 77 

cultivation (Cañamás et al. 2009; Cheng et al. 2016; Daranas et al. 2018; Liu et al. 2012; 78 

Puopolo et al. 2015; Sartori et al. 2010; Wang et al. 2018). For example, Puopolo et al. 79 

(2015) demonstrated that UV resistance is elevated in Lysobacter capsici cultivated at 80 

15°C exhibits compared with those grown at their optimal growth temperature of 25°C. 81 

In another example, Daranas et al. (2018) reported that preconditioning of Lactobacillus 82 

plantarum by incubation in a hyperosmotic and acidic broth enhanced desiccation 83 

tolerance. 84 

The second strategy to improve stress tolerance is incorporating anti-stress 85 

protectants into MBCA cells. Survival of microorganisms under a variety of abiotic 86 

stresses is correlated with the intracellular accumulation of certain protectants (Potts 87 

1994); microbes can take up high levels of exogenously applied protectants, which 88 

accumulate in the cytoplasm and enhance tolerance to abiotic stresses (Streeter 2003). 89 

Intracellular accumulation of protectants such as trehalose, glucose, and glycine betaine 90 

by their addition to culture media help biocontrol yeasts tolerate high/low temperature 91 

and oxidative stresses (Li and Tian 2006; Sui and Liu 2014; Sui et al. 2012). 92 

 93 

Genetic engineering of MBCAs 94 

Although only a few genetically modified microorganisms are commercially available 95 

as plant protection products, this approach may provide a powerful alternative to the 96 

development of chemical pesticides. Identifying genes associated with biocontrol 97 
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mechanisms might enhance the expression of biocontrol traits, and/or the genes could 98 

be integrated into a single MBCA. Increased biocontrol performance by genetic 99 

engineering can be achieved by enhancing the antagonistic ability or aggressiveness of 100 

MBCAs against pathogens (e.g., by production of antimicrobial compounds) and by 101 

enhancing the colonization ability of the MBCAs. 102 

Biocontrol efficacy has already been improved by increasing the ability of MBCAs 103 

to produce antimicrobial substances such as antibiotics, hydrolytic enzymes, and 104 

bacteriocins (Bilal et al. 2017; Jing et al. 2018; Kowsari et al. 2014; Liu et al. 2016; Sun 105 

et al. 2017; Tang et al. 2019; Yang et al. 2017; Zembek et al. 2011; Zhou et al. 2014). 106 

For example, Jing et al. (2018) constructed a retS mutant of Pseudomonas protegens Pf-107 

5 that produced higher levels of the antifungal metabolite 2,4-diacetylphloroglucinol 108 

and were significantly superior to the parent strain in suppressing Rhizoctonia solani. 109 

The introduction of foreign genes for antibiotic and hydrolytic enzyme biosynthesis has 110 

also increased biocontrol performance. A recombinant strain of Pseudomonas 111 

fluorescens that was constructed by the introduction of a seven-gene operon from 112 

Pseudomonas synxantha for the biosynthesis of phenazine-1-carboxylic acid suppressed 113 

take-all disease in wheat to a greater extent than the wild-type strain, which produces an 114 

antifungal cyclic lipopeptide (Yang et al. 2017). Similarly, the introduction of foreign 115 

genes that encode antifungal chitinase and glucanase into Streptomyces strains 116 

strengthens their biocontrol of fungal diseases (Li et al. 2015; Wu et al. 2013a, b, 117 

2015a). 118 

Colonization by biocontrol bacteria can be improved by manipulation of genes 119 

associated with the signaling pathways that operate during colonization, such as those 120 

for motility, chemotaxis, and biofilm formation. Barahona et al. (2011) reported that a 121 
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hypermotile kinB, sadB, wspR mutant of P. fluorescens was superior to the wild-type 122 

strain in colonizing the rhizosphere and controlling Fusarium oxysporum and 123 

Phytophthora cactorum. Flagellar motility and biofilm formation in Bacillus species are 124 

regulated by a two-component signal transduction system, DegU-DegS, and the DegQ 125 

protein enhances phosphorylation of DegU by DegS and consequently influences 126 

flagellar motility and biofilm formation. Xu et al. (2018) constructed a recombinant 127 

Bacillus velezensis strain in which degQ was replaced with a xylose-inducible degQ. 128 

They then showed that biofilm formation by this recombinant strain was induced in the 129 

presence of xylose, which is a typical carbohydrate secreted by plant roots. This strain 130 

colonized cucumber and tomato roots at significantly higher levels than the wild-type 131 

strain did, and their efficacy against cucumber Fusarium wilt and tomato bacterial wilt 132 

was also higher. 133 

 134 

Nutrient provisioning and organic amendments 135 

The persistence of MBCAs introduced into the field is a critical factor strongly 136 

associated with biocontrol performance. Supplementation with appropriate nutrients that 137 

are preferentially utilized by MBCAs, such as chitin, chitosan, L-arabinose, D-glucose, 138 

pectin, sucrose, mannitol, nicotine, riboflavin, glycine, and Tween 80 (Cabrefiga et al. 139 

2011; Gramisci et al. 2018; Kang 2011; Kim et al. 2008; Postma et al. 2009; Ma et al. 140 

2018a; Wu et al. 2015b; Yandigeri et al. 2015; Zhang et al. 2017a), support the growth 141 

of MBCAs in the rhizosphere and phyllosphere and enhance biocontrol. In an 142 

interesting study by Tomada et al. (2016), pea broth supplementation enhanced the 143 

efficacy of L. capsici against Plasmopara viticola by fostering cell movement on 144 

grapevine leaves. They found that pea broth triggered cell motility associated with the 145 
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biogenesis of type IV pili in the bacteria, which then facilitated leaf colonization. In this 146 

context, careful comparison of the nutrient preferences of both the MBCAs and the 147 

pathogens is essential during the screening of candidate nutrients because provisioning 148 

of inappropriate nutrients might increase the pathogen aggressiveness and disease 149 

incidence. Indeed, Gramisci et al. (2018) found that provisioning with the several 150 

compounds that were utilized by both biocontrol yeasts (Vishniacozyma victoriae or 151 

Pichia membranifaciens) and the pathogens (Botrytis cinerea or Penicillium expansum) 152 

decreased biocontrol. 153 

Nutrient provisioning to strengthen the aggressiveness of MBCAs against pathogens 154 

is another approach to improving biocontrol. The biocontrol activity of bacteria was 155 

improved by providing nutrients that stimulated the production of antimicrobial 156 

compounds and hydrolytic enzymes at the target sites (Kang 2011; Wu et al. 2015b; 157 

Yandigeri et al. 2015). For instance, provisioning with pectin increased the production 158 

of the cyclic lipopeptide surfactin by Bacillus amyloliquefaciens in the tobacco 159 

rhizosphere and improved biocontrol of bacterial wilt (Wu et al. 2015b). 160 

Combining MBCAs with organic amendments (OAs) as a nutrient base might also be 161 

a practical way to stabilize and/or enhance the disease control by MBCAs. The use of 162 

certain OAs as MBCA carriers can also provide safe niches for MBCAs (Bonanomi et 163 

al. 2018). These features of OAs improve the persistence of MBCAs in hostile 164 

environments. There have been many examples of the successful combination of 165 

bacterial and fungal biocontrol agents with OAs such as composts, manures, and 166 

organic wastes (Ding et al. 2013; Gava and Pinto 2016; Huang et al. 2011, 2012; Ling et 167 

al. 2012; Ma et al. 2018b; Rao et al. 2017; Ren et al. 2012; Sotoyama et al. 2017; Zhang 168 

et al. 2017b). For consistent results with these combinations, OAs should have uniform 169 
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quality, because the chemical compositions and properties of OAs vary greatly with 170 

their origin and/or maturity level. Bonanomi et al. (2018) proposed the use of 13C cross-171 

polarized magic angle spinning nuclear magnetic resonance-based nutritional profiling 172 

to aid in the preliminary identification of OA chemical properties. 173 

 174 

Combined application of multiple MBCAs 175 

Combining two or more MBCAs can have possible synergistic biocontrol effects. Our 176 

co-inoculation of two antagonistic rhizobacteria, namely Mitsuaria sp. TWR114 and 177 

Ralstonia sp. TCR112, protected tomato plants from bacterial wilt for at least 4 weeks, 178 

whereas protection by the individual strains ended within 2 weeks (Marian et al. 2019). 179 

Similarly, synergistic action against mostly soil-borne pathogens has been obtained with 180 

various combinations of bacterial–bacterial, bacterial–fungal and fungal–fungal 181 

combinations of BCAs such as Pseudomonas + Bacillus, Pseudomonas + Trichoderma, 182 

Serratia + Trichoderma and Glomus + Trichoderma (Chemeltorit et al. 2017; Grosch et 183 

al. 2012; Jambhulkar et al. 2018; Kavino and Manoranjitha 2018; Manjukarunambika et 184 

al. 2013; Sennoi et al. 2013). As evidenced by these reports, certain combinations of 185 

MBCAs have the potential to generate a substantial synergistic effect. However, 186 

according to the literature review by Xu et al. (2011), 98% of past biocontrol studies 187 

using MBCA mixtures found only slight or no improvement in biocontrol efficacy. This 188 

lack may mainly be due to competition for spatial and nutritional niches and/or mutual 189 

antagonism among the selected microorganisms. Therefore, careful investigation of 190 

colonization site and nutrient utilization patterns of each MBCA and any antagonistic 191 

interactions among MBCAs are important to identify compatible combinations that 192 

produce the desired effectiveness. Additionally, unfavorable natural incompatibility 193 
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among MBCAs can be overcome by adjusting the inoculum ratio in mixed biocontrol 194 

preparations. Singh et al. (1999) reported that the suppressive effect of a combination of 195 

Paenibacillus and Streptomyces isolates against cucumber Fusarium wilt varied with 196 

inoculum ratio: i.e., ratios of 1:1, 3:2, and 4:1 produced significantly higher efficacy 197 

than individual isolates, whereas the suppressive effects of 2:3 and 1:4 ratios were 198 

similar to that of the Paenibacillus isolate alone. We also reported that the combined 199 

application of Mitsuaria and nonpathogenic Ralstonia isolates at a 2:1 ratio produced 200 

the best suppression of tomato bacterial wilt among all the ratios tested (Marian et al. 201 

2019). The reason for these effects of inoculum mixture ratios is not fully understood, 202 

but does highlight the need for an in-depth understanding of the various interactions 203 

between MBCAs, plants, and pathogens to develop a product with more reliable, 204 

effective mixtures of MBCAs. 205 

 206 

Formulation procedures 207 

Product formulation has been recognized as the key to the commercial success of 208 

MBCAs because they can affect many aspects of MBCA shelf life and field 209 

performance (Fravel 2005). Although the details of the formulation process are often 210 

company secrets and thus not generally accessible, many reports have addressed 211 

formulation optimization (Aeron et al. 2011; Angeli et al. 2017; Bejarano et al. 2017; 212 

Crozier et al. 2015; Segarra et al. 2015; Wei et al. 2015; Wiyono et al. 2008; Yang et al. 213 

2011). Most MBCAs have been commercialized as wettable powders, liquids, or 214 

granular formulations. Wettable powder formulations are the main form of biocontrol 215 

pesticides because of their easy handling, lower storage and transportation costs, and 216 

lower risk of contamination with undesirable microorganisms. Therefore, a great deal of 217 
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effort has been devoted to the technological improvement of commonly used drying 218 

methods, such as air-drying (Schisler et al. 2016), spray-drying (Meng et al. 2015), 219 

fluidized bed-drying (Carbó et al. 2017), freeze-drying (Zhan et al. 2012), and vacuum-220 

drying (Melin et al. 2011). Low-temperature low-humidity drying (LTLHD) and fluid-221 

bed spray-drying (FBSD) have also recently been investigated as alternative drying 222 

methods (Gotor-Vila et al. 2017a; Umashankar et al. 2018). Both methods use lower air 223 

temperatures for drying (50°C for LTLHD and 65°C for FBSD) compared with spray 224 

drying (100−200°C), thus facilitating the drying of heat-sensitive microorganisms such 225 

as Gram-negative bacteria and yeasts. Moreover, these drying methods enable a 226 

reduction of the drying time compared with conventional drying methods and thus cost 227 

less. Gotor-Vila et al. (2017a, b) examined the shelf life and biocontrol efficacy of B. 228 

amyloliquefaciens, subjected to liquid formulation,  freeze-drying, and FBSD, and 229 

demonstrated the superiority of FBSD over the other methods. Generally, desiccation 230 

stress in the dry formulation process often causes serious damage to microbial cells, and 231 

thus decreases the viability of microorganisms, particularly non-sporulating bacteria 232 

(Berninger et al. 2018; Nocker et al. 2012). In this context, stress adaptation of 233 

microbial cells and the external addition of protectants during cultivation or before 234 

drying are feasible approaches to overcome this drawback of dry formulations. For 235 

example, osmoadaptation using NaCl and glycine betaine supplementation of the 236 

growth medium increased the survival of Pantoea agglomerans during freeze-drying 237 

and storage (Pusey and Wend 2012). The addition of fructose and trehalose before air-238 

drying also improves the viability of several P. fluorescens strains (Schisler et al. 2016). 239 

Encapsulation of MBCAs as beads or capsules is another promising formulation 240 

approach to improve stability and stress resistance (John et al. 2011; Locatelli et al. 241 
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2018; Ma et al. 2015). Encapsulation within a polymer matrix improves the resistance 242 

of microbial cells to abiotic stress factors such as dryness and temperature and extends 243 

the shelf life of the bead/capsule formulation without reducing the metabolic activity of 244 

active microbial ingredients (Vemmer and Patel 2013). Alginate is the preferred 245 

material for most encapsulations because it is nontoxic, biodegradable, and slowly 246 

releases the MBCAs into the soil. Although its high cost has markedly limited its 247 

commercial application, it is now relatively cheap (US$2/kg for a Chinese product), 248 

making encapsulation more feasible (Bashan 2016). Furthermore, blending alginate 249 

with other low-cost materials such as gelatin was demonstrated to be a feasible way to 250 

prepare uniform, rounded shape, and well-dispersed micron microcapsules of Bacillus 251 

subtilis via emulsification/internal gelation (Tu et al. 2015). Ma et al. (2015) reported 252 

that maltodextrin could be used for microencapsulation of biocontrol Bacillus strain as 253 

an alternative to alginate. 254 

Three basic methods are used to formulate microbial cells in beads or capsules: 255 

physical processes such as spray-drying, spray-chilling/cooling, extrusion, or fluid bed 256 

spray coating; chemical processes such as co-crystallization, molecular inclusion, or 257 

interfacial polymerization; and also physiochemical processes such as coacervation, and 258 

gelation/inverse gelation (Schoebitz et al. 2013). Most encapsulation methods for 259 

MBCAs are based on the ionic gelation method due to its biocompatibility (Vemmer 260 

and Patel 2013). However, one of the biggest disadvantages of this method is that the 261 

beads are often porous to cells (Schoebitz et al. 2013). The addition of filler materials 262 

such as starch, kaolin, chitin, bentonite, or perlite to the formulations can produce more 263 

stable beads containing a high concentration of bacterial cells by improving bead 264 

mechanical strength (Li et al. 2016; Liffourrena and Lucchesi 2018; Schoebitz et al. 265 
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2013; Zohar-Perez et al. 2003). Many encapsulation devices are designed to produce 266 

beads in the laboratory and at a very small scale, so innovative encapsulation equipment 267 

that can produce large amounts of inoculum must also be designed (Schoebitz et al. 268 

2013). Very recently, Strobel et al. (2018) successfully developed a novel and highly 269 

scalable single-step process that encapsulates Gram-negative bacteria in a cross-linked 270 

alginate matrix by spray-drying a mixture of bacterial suspension, alginate, insoluble 271 

CaHPO4, and succinic acid that is atomized at the nozzle. As the droplets dry into 272 

microcapsules, vaporization of the volatile base reduces the pH, which dissolves 273 

CaHPO4 and releases calcium ions, which cross-link the alginate. Another useful 274 

commercially available high-performance device for bead generation is based on a 275 

laminar jet break-up extrusion technique such as the jet-cutting technique developed by 276 

GeniaLab Biotechnologie (http://www.genialab.com/). 277 

Multiple microorganisms have also been encapsulated together to achieve synergistic 278 

effects (De Jaeger et al. 2011; Loján et al. 2017) or with nutrients to preserve their 279 

viability and promote their proliferation (Kim et al. 2012). Encapsulation may, therefore, 280 

represent an innovative technology that can perhaps be fine-tuned to develop more 281 

efficient MBCA formulations.  282 

http://www.genialab.com/
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Conclusion and future prospects 283 

Reducing the dependency on chemical pesticides is a key issue for the sustainability of 284 

global crop production. Toward this goal, various countries, particularly in Europe, are 285 

promoting the use of MBCAs against crop diseases and insect pests as an alternative or 286 

supplement to chemical pesticides. Thus, the market for MBCAs in these countries has 287 

been rapidly growing. However, many other countries are lagging in the implementation 288 

of MBCAs. For example, in Japan, the proportion of biofungicide sales to total 289 

fungicide sales has remained low (ca. 0.6%–0.7%) over the last 17 years (Japan Plant 290 

Protection Association 2005, 2017). This lack of growth in the Japanese biopesticide 291 

market may be because the efficacy of MBCAs often does not meet expectations, and 292 

thus farmers and pesticide companies do not place much confidence in MBPs. However, 293 

biocontrol using beneficial microorganisms will undoubtedly become a more important 294 

tool for sustainable pest management worldwide. To develop stable, augmentative 295 

biocontrol measures and accelerate the commercialization of MBCAs as practical MBPs, 296 

further improving MBCA field performance, usability and cost are significant 297 

challenges that must be met. As noted in this review, these challenges can certainly be 298 

overcome by contriving methods of mass cultivation, formulation, and application of 299 

MBCAs based on the insights gained through current research into the physiology, 300 

metabolism, and genomics of these microorganisms and into the plant–microbe and 301 

microbe–microbe interactions. Although we did not discuss screening strategies to 302 

identify MBCAs, it is very important to select candidate strains from microbial 303 

assemblages that have the potential to survive in competitive microbial communities at 304 

the target sites. In this regard, studying plant microbiomes using advanced omic 305 

technologies will help in selecting the most suitable microbial assemblages among the 306 
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complex microflora of the rhizosphere, phyllosphere, or endosphere. Because plant-307 

associated bacteria play an important role in the disease resistance of resistant cultivars 308 

(Kwak et al. 2018), combining MBCAs with plant cultivars that are genetically 309 

compatible with the MBCAs may be a new approach for sustainable disease 310 

management. As we discussed here, field performance and usability also need to be 311 

improved and addressed from various perspectives.  312 
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