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Efficient HPC libraries often expose multiple tunable parameters, algorithmic implementations, or a combi-

nation of them, to provide optimized routines. The optimal parameters and algorithmic choices may depend

on input properties such as the shapes of the matrices involved in the operation. Traditionally, these parame-

ters are manually tuned or set by auto-tuners. In emerging applications such as deep learning, this approach

is not effective across the wide range of inputs and architectures used in practice. In this work, we ana-

lyze different machine learning techniques and predictive models to accelerate the convolution operator and

GEMM. Moreover, we address the problem of dataset generation, and we study the performance, accuracy,

and generalization ability of the models. Our insights allow us to improve the performance of computationally

expensive deep learning primitives on high-end GPUs as well as low-power embedded GPU architectures on

three different libraries. Experimental results show significant improvement in the target applications from

50% up to 300% compared to auto-tuned and high-optimized vendor-based heuristics by using simple decision

tree- and MLP-based models.

*Corresponding authors and main contributors.

This work is partially supported by UNIBZ-RTD-CALL2018-IN2087 Project and INdAM–GNCS Project 2020-NoRMA.

Marco Cianfriglia was partially supported by H2020-ICT-2015-687689 Project within HiPEAC industrial internship ini-

tiative in dividiti Limited.

Authors’ addresses: P. Sylos Labini, B. Carpentieri, and F. Vella, Free University of Bozen-Bolzano - Faculty of Computer Sci-

ence, piazza Domenicani, 3, 39100, Bozen-Bolzano, Italy; emails: {paolo.syloslabini, bruno.carpentieri, flavio.vella}@unibz.it;

M. Cianfriglia, National Research Council of Italy (CNR) - Institute for Applied Computing (IAC) “M. Picone”, Via dei Taurini

19, 00185 Rome, Italy; D. Perri and O. Gervasi, Università degli Studi di Perugia - Dipartimento di Matematica e Informatica,

Via Vanvitelli, 1, 06123 Perugia, Italy; emails: damiano.perri@unifi.it, osvaldo.gervasi@unipg.it; G. Fursin, Ctuning founda-

tion, 5, rue Camille Desmoulins, 94230 Cachan, France; email: grigori.fursin@ctuning.org; A. Lokhmotov, dividiti Limited,

ideaSpace West, 3 Charles Babbage Road, Cambridge, CB3 0GT, United Kingdom; email: anton@dividiti.com; C. Nugteren,

TomTom, De Ruijterkade 154, 1011 AC Amsterdam, Netherlands; email: mail@cedricnugteren.nl; F. Zollo, Università Ca’

Foscari Venezia, Via Torino 155, 30170, Venezia Mestre, Italy; email: fabiana.zollo@unive.it.

Author current address: D. Perri, Università degli studi di Firenze - Dipartimento di Matematica e Informatica ‘Ulisse Dini’,

Viale Morgagni, 67/a, 50134 Firenze, Italy.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2020 Copyright held by the owner/author(s).

1544-3566/2020/01-ART16

https://doi.org/10.1145/3434402

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 1, Article 16. Publication date: January 2021.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3434402


16:2 P. Sylos Labini et al.

CCS Concepts: • General and reference → Performance; • Computer systems organization → Parallel

architectures; • Computing methodologies → Modeling methodologies; • Software and its engineering

→ Software libraries and repositories;

Additional Key Words and Phrases: GPU computing, predictive models, neural networks, performance opti-

mization, supervised classification, tuning

ACM Reference format:

Paolo Sylos Labini, Marco Cianfriglia, Damiano Perri, Osvaldo Gervasi, Grigori Fursin, Anton Lokhmotov,

Cedric Nugteren, Bruno Carpentieri, Fabiana Zollo, and Flavio Vella. 2020. On the Anatomy of Predictive

Models for Accelerating GPU Convolution Kernels and Beyond. ACM Trans. Archit. Code Optim. 18, 1, Article

16 (January 2021), 24 pages.

https://doi.org/10.1145/3434402

1 INTRODUCTION AND CHALLENGES

Scientific High-Performance Computing (HPC) applications are built on top of monolithic parallel
routines that are often customized for a specific target architecture. With the advent of data-driven
applications such as deep learning and graph analytics, the traditional library design has lost per-
formance portability mainly because of the unpredictable size and structure of the data on the
wide range of hardware available. The convolution operator, the core of a Convolutional Neural
Network (CNN), is a notable example of how hard it is to determine the optimal method and im-
plementation for a given input or layer [32]. Furthermore, CNN can be implemented in different
ways by using direct convolution [75], Generic Matrix Multiplication (GEMM) [66], Winograd min-
imal filtering algorithm [35], or Fast Fourier Transformation (FFT) [51]. Regardless of the method
adopted, the performance of each implementation can vary greatly even among the layers of a sin-
gle CNN. For example, by using Winograd algorithm the number of multiplications passes from 36
to 16 for (4 × 4) and (3 × 3) filters. Winograd-based convolution can reduce the computational time
by up to 4× [40]. However, the improvement obtained shows a discrepancy from the theory due
to several implementation variables [61]. Another example would be in the context of Automated
Machine Learning (AutoML) [70]. Here, the architecture of the Dynamic Neural Network (DNN) is
not known a priori, and as a consequence from an engineering perspective, the performance is not
predictable. Also GEMM, which is a widely used building block in convolution implementations,
requires specific optimizations to scale-up over different input dimensions [24]. Several BLAS im-
plementations for GEMM provide fast performance on a target architecture by assuming a fixed
data size, layouts and structure (e.g., square matrices) [30, 46, 68]. However, such user-transparent
implementations are selected by hand-written heuristics based on simple decision rules that are
not able to generalize the wide range of data used in practice. For example, Nvidia heuristics selects
the best algorithm (relative speed-up 0.97–1.0) in the 33% of the instances from DeepBench [43],
as shown in Figure 1(a). On the contrary, changing the dataset, the performance decreases. The
heuristics correctly chooses the best GEMM implementation in the 10% of the matrices only (see
Figure 1(b)).

With the variety of parallel architectures available on the market ranging from traditional par-
allel processors to accelerators (e.g., GPUs) and system on chips (SoCs), several standards have
been established to enable portability for heterogeneous architectures (i.e., OpenCL [59] and
OpenACC [69]). However, developing generic and performance-portable code has become ex-
tremely challenging, especially from an algorithmic point of view. Auto-tuning techniques have
partially mitigated the performance portability problem by adapting, for example, the underlying
memory hierarchies and loop unrolling to a specific architecture. Within this context, a plethora
of hardware-oblivious solutions have been developed [1, 26, 44, 53, 56]. However, auto-tuners seek
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Fig. 1. Relative performance of Nvidia Heuristics against the possible best Nvidia GEMM algorithm on two
different datasets, DeepBench (a) and AntonNet (b). The heuristic selects the best algorithm in the interval
[0.97, 1.0]. SO (Speed-up over the Oracle) is a metric that considers the possible best performance of an ideal
estimator (oracle) against the predictive model (see Section 3.3 for details).

the best configuration by assuming a specific instance as input. Thus, they can hardly achieve the
best performance across all possible inputs. For example, GEMM routines are often per-default

tuned for squared matrices [44, 53].
Recently, auto-code generation techniques have made it possible to write high-performance

code on specific architectures automatically [8, 15, 61, 62, 65]. Several aspects might limit such
approaches, which often require that the micro-architecture is exposed. Moreover, they generate
highly-optimized code for a specific algorithm, so that in the presence of multiple algorithms the
problem of selecting the best solution still remains. Finally, architectural changes require to re-
encode the problem [15]. Over the last years, several studies have focused on the use of machine
learning (ML) techniques to model performance [4, 57, 61] or to prune the search space of auto-
tuners [21]. For example, hand-written decision rules can easily be replaced by machine learning
techniques such as Decision Tree [16]. Many studies emphasize the performance achieved by these
methods as black-box models, however several questions are still open and worth to be investi-
gated. In particular, from a methodology perspective, there is no consensus in the community re-
garding how to model the problem by using supervised methods (e.g., classification and regression
are two valid options) or other machine learning approaches (e.g., semi-supervised techniques).
For example, the criteria for generating high-quality datasets have not been investigated yet. This
aspect is fundamental for SoC where the generation of a large dataset to train the model may be
expensive. Another aspect concerns the assessment of the model. In literature, well-established
measures like accuracy usually reflect the quality of a model. However, the relation between ac-
curacy and practical performance has yet to be investigated in depth.

Finally, from an application perspective, sophisticated deep learning compilers already adopt
machine learning techniques for generating optimized code [9, 62]; however, they assume that the
same implementation of convolution is used for all the convolution layers. Such an assumption
does not guarantee the best performance across all the existing networks, or for those generated
by AutoML. Figure 2 reports the performance of GEMM-based convolution against an ideal oracle
that is able to select the fastest methods for each layer. We may notice that the static method is
not efficient in most of the CNNs evaluated.

Motivated by these limitations, this article provides a deep analysis of predictive models to
design efficient adaptive and input-aware libraries. The contribution of this article is twofold:
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Fig. 2. Comparison of ARMCL GEMM-based convolution method against the performance of the best con-
volution methods per layer over popular CNNs.

• The study of several supervised classification techniques shows that models learned using
Gradient Tree Boosting and Multi Layer Perceptron outperform other models in different
settings. Our evaluation considers various aspects such as accuracy-based metrics, learn-
ing rate, generalization ability, and performance metrics in relation to dataset generation
strategies;

• The implementation of learning-based heuristics to accelerate three libraries and two popu-
lar routines, convolution and GEMM, over three different GPU architectures, two high-end
Nvidia GPUs (Pascal and Volta) and an embedded low-power ARM GPUs.

Specifically, we accelerate the convolution operator on the ARM Compute Library. Unlike well-
established deep learning compilers, which generate optimized code for a specific convolution
method (e.g., direct convolution), our framework is able to use a different convolution method for
each layer at runtime. Second, by applying the same methodology on Nvidia cuBLAS, our model-
based heuristics is two times better than Nvidia heuristics in selecting the best GEMM implemen-
tation by achieving an improvement of up to 2.2× over random sizes and up to 2.8× on matrices
collected by popular CNNs. In addition, instead of using predictive models to infer parameters from
the search space of traditional auto-tuners, we integrate them to select the best algorithm and re-
lated parameters when the input changes. We implement this solution by integrating the CLBlast
library and several models that have been trained from the information provided by auto-tuners.
We show that the model-based version of CLBlast outperforms the traditional auto-tuned version
with up to 3× and 2.5× speed-ups on a high-end Nvidia GPU architecture and on an embedded
ARM Mali GPU.

The article is organized as follows. Section 2 provides the background on supervised classifi-
cation and the applications. Sections 3 and 4 describe our methodology, the use-cases, and their
characteristics. Section 5 presents an exhaustive experimental evaluation. Section 6 provides a dis-
cussion of our results and sketches future works directions, while Section 7 reviews related work.
Finally, Section 8 summarizes the contributions of this article and gives some concluding remarks.

2 NOTATION, BACKGROUND, CONCEPTS

The most important symbols employed in this article are summarized in Table 1. A classifier is a
mapping from a feature space I ⊂ Rd to the set of labels A. Supervised classifiers learn this map-
ping from a dataset of known features-class pairings. The training, evaluation and comparison of
classifiers are driven by an objective function that the classifiers aim to maximize. Normally, this
function is the expected rate of correct classifications over the true distribution of the inputs—the
(true) accuracy. Supervised methods are evaluated for their ability to recognize specific classes
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Table 1. Symbols and Definitions Used in the Article
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DT Decision Tree [55].

RF Random Forest [27]

GT B Gradient Tree Boosting [73].

N BC Naive Bayesian Classifier [54].

LoR Logistic Regression [41].

K N N K-Nearest Neighbours [47].

SV N Support Vector Machines [13].

MLP Multi Layer Perceptron [48].

P
er
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rm
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ce

M
ea
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re

s

Accuracy fraction of correctly predicted data points.

Precision fraction of data points correctly assigned to a class, over all points assigned to that class.

Recall fraction of data points correctly assigned to a class, over all points belonging to that class.

Balanced Accuracy the macro-average of recall over classes.

SO Speed-up over the oracle.

SB Speed-up over the baseline.

Other

Symbols

I is the input space, i ∈ I is a specific instance.

A is the set of classes or labels assignable to instances i . a ∈ A is a specific label.

D is the training dataset, a collection of pairs (i, a).

using related measures such as precision and recall. There are various ways to summarize class-
specific measures into a single global metric. Accuracy is one such measure; another is balanced

accuracy, defined as the average of recall among classes and strictly related to informedness [52].
When one class is definitively more populated than the others, balanced accuracy provides a
fairer and better-generalized estimation of the classifier performance than “simple” accuracy.
Accuracy-like measures assume the cost of misclassification to be uniform, however in most
practical applications different errors entail different costs. Although many research studies
focus on cost-sensitive learning, they mostly concern class-dependent costs, where the cost of
misclassification varies among classes but not within elements of the same class. In our setting,
the cost of misclassification for each sample depends on the application. Focusing on the accuracy
alone may be enough to obtain a good performance in terms of the objective function—the highest
score (100% of accuracy) will always maximize the latter. However, we will see that there are other
cases, such as GEMM, where almost optimal performance can be achieved despite low accuracy.

2.1 Supervised Classification

We will now provide a quick overview of the supervised techniques used in this article. The expe-
rienced reader may skip this part, or skim through it, and jump to Section 3. Decision trees (DT) [55]
are a non-parametric supervised ML method used for classification and regression. DTs generate
“white box” models, which are easily interpreted as if-then-else statements. However, small
data perturbations might result in completely different trees being generated. To reduce variance
and over-fitting, Random Forest (RF) [27] fits many independent trees on various subsets of the
dataset. Another notable tree-based classifier is Gradient Tree Boosting (GTB) [73], which uses
gradient descent to progressively grow a weighted ensemble of DTs. A naive Bayesian classifier

(NBC) [54] is the simplest variant of a Bayesian network. A NBC assumes that all features are con-
ditionally independent given the class variable. This assumption, while usually false, has proven
to be incredibly effective in practice, producing good, simple models with little training. Logistic

Regression (LoR) [41] is a simple form of regression analysis that assumes a linear relationship be-
tween the independent variables and the log-odds of the classes. K-Nearest Neighbours (KNN) [47]
searches for the K data points that are nearest to the query feature vector and polls their assigned
labels to decide that of the query vector. KNN is a non-generalizing method, which means that,
instead of learning the parameters of a model, it just “remembers” the training points and eventu-
ally stores them in an appropriate data structure such as a Ball Tree for accelerating the inference.
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Support Vector Machine (SVM) [13] separates data by drawing hyper-planes in the feature space.
All the points that are closest to the hyper-planes are used as a reference to maximize the class sep-
aration. The well-known “kernel trick,” which amounts to define alternative inner products for the
data points, can be used to implicitly embed the problem in higher-dimensional spaces, allowing for
complex separating surfaces. A Multi Layer Perceptron (MLP) [48] is the simplest feed-forward neu-
ral network. It consist of at least three layers of nodes: an input (features) layer, a hidden layer and
an output (classes) layer. Except for the input nodes, each node uses a nonlinear activation function.

3 METHODOLOGY

In this section, we define the performance maximization problem as a classification task and briefly
discuss the methodology for the training and evaluation of predictive models.

3.1 Performance as Classification Task

Performance modeling involves the maximization of the objective function over the input domain.
One formulation consists in defining the maximization problem as a classification task. More pre-
cisely, one wants to select the best classes among multiple possibilities such that the objective
function is maximized. Another option would be to predict the performance of each implemen-
tation and select either the best among them (ordinal rankings) or the best values of the tunable
parameters. This approach would require the use of regression techniques, however classification
in this case is advisable. Indeed, classification can handle arbitrarily structured solution spaces A,
since it treats each solution as a black-box (see the GEMM use-case in Section 4.2). Moreover, re-
gression may infer invalid parameters choice, or wrong values if the features selected for modeling
the architecture are not relevant. For these reasons, in this work, we will focus on classification
techniques. To this aim, we define the optimization problem as a classification task. Let a be a
solution to a particular problem and A a collection of such solutions. Let fa : I → R be an objec-
tive function, where I is the multidimensional input domain for a. The solution set A may contain
algorithms, collections of parameters, or any other implementation description. A classification
task is thus defined as follows: for each i ∈ I , we identify the class label arg maxa∈A fa (i ), i.e., the
best solution for that input according to the objective function. A classifier will then consist of a
mapping from input descriptions i to solutions a.

3.2 Dataset Generation

Supervised techniques require datasets that pairs training points in I to optimal solutions in A. To
build a dataset, entries can be generated by fixing an input i and benchmarking fa (i ) for every
solution a on the target architecture. In this process, the size of the solution space (set of pos-
sible classes) plays a fundamental role. In the simplest scenario, the solution space includes few
algorithm implementations without the need for searching optimal parameters. In this case, the
classes are known in advance, and the only challenge is to find enough training points for each
class. In other cases, the solution space A is composed by several algorithms, each one having its
own configuration parameters. For each algorithm, every possible combination of parameters can
potentially be a class on its own. A classifier will only be aware of classes that appear at least once
as the optimal solution of some instance in the training set. Unfortunately, this means that for
complex problems the class space strongly depends on the choice of training points. Furthermore,
classes that appear in the test set and not in the training set will be impossible to predict. Specific
policies for dataset generation must thus be identified to address this issue. We will see later that a
proper analysis of the learning curves may reveal helpful to determine if and how much the model
would benefit, in terms of accuracy, from growing the training set.
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3.3 Model Evaluation and Selection

In this article, we propose to train standard, cost-insensitive classifiers and then try to discrimi-
nate among them in the model selection phase. To assess the quality of the models, we evaluate
(i) their ability to adapt to previously unseen data (generalization), (ii) the model performance
w.r.t. the objective function, and (iii) the inference cost, which includes feature extraction and
class selection.

3.3.1 Generalization of the Model. We determine the ability to model unseen data by studying
the differences between training and test scores. Specifically, if both are low, the model will be
underfitting. Overfitted models will instead present a high training score and a low validation
score. When both the training and validation score are high, the model is working well.

3.3.2 Model Performance. The choice of the evaluation measure depends on the complexity of
the task. For simple classification tasks, where the accuracy of some classifiers is close to 100%,
accuracy-like metrics are effective in the prediction of the best model in terms of performance.
In more complex tasks, where high accuracy is hard to achieve, near-optimal classes in terms of
performance are more important regardless of the accuracy score. In these cases, studying the
impact of misclassification is necessary to evaluate the model. We introduce two metrics to assess
the quality of the heuristics based on the predictive model:

(1) SO (Speed-up over the Oracle), which considers the possible best performance of an ideal
estimator (oracle) against the predictive model;

(2) SB (Speed-up over the Baseline), which takes into account the baseline performance of
the original heuristics/baseline implementation.

In this way, we can measure how far the performance is from the possible best (SO) and the im-
provement over the baseline (SB).

3.3.3 Inference Cost. Finally, we consider the problem of cost-effectiveness, i.e., we want the
cost of selecting the new routine to be lower than the performance improvement. In other words,
we require that fa (i ) + c (i ) < fa (i ), where c (i ) is the cost to select a new implementation a for
the input i by using a predictive model. In this work, we will show how the inference cost may
weight on the selection of a specific model. However, for some applications, e.g., Deep Learning
workloads, this cost can be amortized over multiple repetitions.

4 USE-CASES

Due to their importance in deep learning and scientific computing, we select two use-cases, CNNs
and GEMM. Specifically, we formalize three different classification tasks. The first one aims to
model the performance of convolution in the ARM Compute Library [3]. As for GEMM, we focus
on two different libraries (cuBLAS [46] and CLBlast [44]).

4.1 Convolutional Neural Networks

CNNs are a class of deep, feed-forward artificial neural networks widely employed in image recog-
nition. They are composed of a set of layers, each of them applying a set of learned convolution
filters over the results (activations) of the previous layer. The final layer typically consists of a
classifier, associated with a loss function to backpropagate gradients through the network and up-
date the filter values (weights). The core of a CNN is the convolution operator, which transforms
the input data by applying a set of filters (tipically consists of a classifier, associated with a loss
function to backpropagate gradients through the network and update the filter values (kernels)
to create a feature map for each channel of an image. Formally, given an image I ∈ RW ×H and a
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Table 2. Convolution: Symbols, Definitions, and Algorithms

C
o
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o

lu
ti
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n

d
es

cr
ip

ti
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n

W Width.
H Height.
Cin Input channel.
Cout Output channel.
K is a pair (k × k ), which represents the filter dimension.
P Pad.
S Stride.
NP Numerical precision.

C
o

n
v.

A
lg

o
. directConv is the convolution method that implements Equation (1).

winograd is Winograd Filtering Algorithm [35].
conv is GEMM with image to column convolution implementation [66].

kernel K ∈ Rk×k , the feature map O ∈ RĤ×Ŵ is given by

F (I,K ) =
i=k/2∑

i=−k/2

j=k/2∑

j=−k/2

I (x + i,y + j ) × K (i, j ). (1)

As a first use-case, we consider the ARM Compute Library (ARMCL), which is an open-source
collection of low-level routines for image processing and deep learning, supporting ARM CPU
and GPU architectures. It provides basic arithmetic, mathematical and binary operators and CNN
building blocks. Convolution is implemented using three different approaches: (i) direct convolu-
tion (directConv), which implements Equation (1); (ii) GEMM plus auxiliary algorithms (conv) [66];
(iii) Winograd filter algorithm (winograd) [35]. Depending on the ARM architecture, numeric pre-
cision and specific input tensor each method can exhibit different performance [38, 40, 49, 76].

4.1.1 Dataset Generation. To define the training dataset, we collected ∼ 6,000 instances of syn-
thetic convolution instances. Each i is a tuple (W , H ,Cin ,Cout , K , P , S , NP ) where the parameters
W . . . S characterize the operation of convolution, while NP denotes the numerical precision:

• W and H can take the values 7, 128, or 256;
• Cin ranges between 2 and 2,048 with a multiplicative factor of 2;
• Cout ranges between 8 and 1,024 with a multiplicative factor of 2;
• K ranges between 1 and 11 with an increment factor of 1;
• NP can be 32 or 8 bits.

A detailed summary of the tensor description instance is provided in Table 2. To generate a dataset
entry from a tuple i , we first created a convolution instance, randomly populating the matrix
and kernels. Then, we ran the resulting convolution instance with each of the three methods and
selected the fastest one as the correct classification label for those features.

4.1.2 Model Training. We trained the models using the ML techniques described in Section 2
for the maximization of the accuracy over the synthetic dataset. We used 10-fold cross-validation
with balanced accuracy scoring to avoid biasing and overfitting. To prevent the selection of invalid
classes, we used the standard convolution method conv whenever an inapplicable class is inferred.

4.2 GEMM

GEMM is a key component of many traditional scientific applications and extensively employed in
deep learning and other ML algorithms. Moreover, GEMM is used in combination with the image
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Table 3. Generic Matrix Multiplication: Symbols, Definitions, and Algorithms

G
E

M
M

M Number of the rows of the first operand and the output.
N Number of columns of the second operand and the output.
K Number of columns of the first operand and

number of rows of the second operand.

C
L

B
la

st

GEMM is a multi-kernel to accelerate larger matrices [42].

GEMM Direct is a single generic kernel that handles all cases.
Threshold Decision rule based on matrix dimension

for switching GEMM Direct to GEMM.
Default Tuned version for a specific matrix dimension.

GEMM Direct is tuned for M=N=K=256, GEMM is tuned for M=N=K=1024.
Oracle Tuned version for each matrix dimension. Oracle always selects

the best algorithm and related set of tunable parameters.
Model The heuristics selects an algorithm and

the parameters based on a predictive model.

cu
B

L
A

S

Default GEMM implementation selected by Nvidia heuristics.
CU BLAS_GEMM_ALGO [0..23] Nvidia GEMM Algorithms.
Oracle The heuristics always selects the best algorithm.
Model The heuristics selects one of 24 algorithm implementations

according to a predictive model.

to column routine in one of the most efficient convolution algorithms, i.e., conv. GEMM is usually
defined as

C ←− α · A · B + β ·C s .t . A ∈ CMxK ,B ∈ CKxN ,C ∈ CMxN , (2)

where A and B are the input matrices,C is the output, and α and β are constants. The operands A
and B can be optionally transposed. Without loss of generality, we will set to 1 the values of α and
β . A GEMM instance is then represented by the tuple (M,N ,K ) describing the sizes of the involved
matrices. The complexity is O (M · N · K ) [25]. As mentioned at the beginning of this section, we
will focus on two different libraries, cuBLAS and CLBlast:

• Nvidia cuBLAS is a CUDA implementation of the standard basic linear algebra subroutines
(BLAS), which includes 152 standard BLAS routines. It is designed to leverage Nvidia archi-
tecture capability, and supports single, double, complex, and double complex data types as
well as succinct data types for deep learning. As for GEMM, cuBLAS provides 24 different
kernels that can be explicitly selected. Nvidia heuristics automatically selects one of those
implementations that are specifically tuned for sizes used in various neural networks [46].

• CLBlast is a modern, lightweight, fast and tunable OpenCL BLAS library. As for GEMM,
CLBlast provides two kernels: a “direct” kernel covering all GEMM use-cases, and an “in-
direct” kernel making several assumptions about the layout and sizes of the matrices. The
“indirect” kernel cannot be used on its own and requires several helper kernels to pad and/or
transpose matrices to meet these assumptions (for more details, see References [44, 45]).

A summary of the terminology used for GEMM, cuBLAS, and CLBlast is reported in Table 3.

4.2.1 Dataset Generation. To create the dataset, we benchmarked cuBLAS and CLBlast and kept
a record of the Floating Point Operation per Second (FLOPS) of GEMM routines over different
matrices described by (M,N ,K ) triples. In particular, we generated three different datasets, one
from real-world shapes and two from synthetic shapes:

(1) As real-world dataset, we gathered the shapes of GEMM operands involved in popu-
lar Deep Neural Networks. AntonNet is a friendly name of the shapes collected from
AlexNet [32], GoogLeNet [60], and SqueezeNet [29] by using batch sizes ranging from
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Table 4. Description of the Classification Tasks

Task/Application Problem Features Classes
Convolution Algorithm selection 8 2–3
cuBLAS GEMM Algorithm selection 3 24
CLBlast GEMM Algorithm and parameters selection 3 28–82

The number of classes for CLBlast GEMM depends on the benchmark and dataset strategy generation on

a specific GPU architectures.

2 to 128 with a step of 2. AntonNet consists of 1,377 different triples, which mostly repre-
sent rectangular shapes.

(2) Grid of two (go2) is composed by (M,N ,K ) triples where each value ranges from 256 to
8,192 with a step of 256. This dataset involves more than 32,000 different synthetic shapes.

(3) Power of two (po2) consists of triples where the values are powers of 2 ranging from 64 to
8,192.

In the cuBLAS case, to determine an entry of the dataset we ran all 24 implementations of GEMM
and kept the best one in terms of perfomance. For the CLBlast library, we used smaller datasets
because of the large search space of tunable parameters. In this case, to define an entry of the
dataset, we had to run the tuner of both kernels (GEMM and GEMM direct) for each (M,N ,K )
tuple. We report all the details in Tables 8 and 9. To implement GEMM, we applied the approach
provided by the CLTune tuner [45] for finding the best configuration. Notice that the number of
classes appearing in each dataset may vary and strongly depends on the architecture as well as on
the dataset generation strategy.

4.2.2 Models Training. In this case, the number of classes is larger than the number of features.
For example, the number of classes for the Nvidia cuBLAS is 24, the features are only three. Starting
from this observation, we applied the following approach:

• cuBLAS: We trained the models using the ML techniques described in Section 2 for maxi-
mizing the accuracy over the synthetic go2 dataset.

• CLBlast: We selected the simplest ML method, Decision Tree (DT), whose results can be
analyzed easily. This choice is also justified by the fact that classifiers based on DT show
better performance even in the presence of low accuracy. Specifically, we trained multiple
DTs by varying parameters L andH , where L is the minimum number of sample required for
a class to be a leaf node, andH is the maximum height of the decision tree. Notice that larger
values of L will result in smoother decision trees. IfH = +∞, then nodes are expanded either
until all the leaves are pure (i.e., all the value of the feature in the node comes from a single
class) or until they contain less than 2L samples. In our analysis, H ∈ H = {1, 2, 4, 8,+∞}
and L ∈ L = {1, 2, 4, 0.1, 0.2, 0.4, 0.5}, where L < 1 indicates a corresponding fraction of the
total data points. Our framework auto-generated a C++ source code that implements DT
models as an if-then-else statement and compiles them into CLBlast.

Table 4 summarises the description of the classification tasks for both convolution and GEMM.

5 EXPERIMENTAL RESULTS

To test the effectiveness of our approach, we carried out an exhaustive experimental analysis using
three different GPU architectures: an Nvidia Tesla P100, an Nvidia Titan V, and an embedded ARM
Mali-T860 based on the Midgard architecture. To collect and automatize the benchmarks, we used
the Collective Knowledge framework [22]. For every benchmark, we used from 5 to 10 repetitions
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Table 5. Classification Results for Different Models, Conv, Directconv, and Winogradconv, from 10-fold
Cross-validation on the Synthetic Dataset

accuracy
balanced

accuracy

conv directconv winogradconv

precision recall precision recall precision recall

RF 0.93 ± 0.005 0.94 ± 0.005 0.98 ± 0.005 0.93 ± 0.01 0.85 ± 0.02 0.92 ± 0.01 0.83 ± 0.03 0.99 ± 0.01

MLP 0.89 ± 0.01 0.85 ± 0.05 0.92 ± 0.02 0.93 ± 0.01 0.82 ± 0.03 0.80 ± 0.05 0.82 ± 0.085 0.82 ± 0.1

DT 0.91 ± 0.01 0.93 ± 0.01 0.98 ± 0.01 0.92 ± 0.01 0.83 ± 0.02 0.89 ± 0.025 0.81 ± 0.07 0.98 ± 0.015

LoR 0.57 ± 0.01 0.70 ± 0.01 0.90 ± 0.015 0.50 ± 0.015 0.53 ± 0.025 0.64 ± 0.035 0.22 ± 0.015 0.98 ± 0.02

KNN 0.72 ± 0.2 0.50 ± 0.01 0.80 ± 0.01 0.84 ± 0.03 0.65 ± 0.045 0.62 ± 0.025 0.05 ± 0.025 0.05 ± 0.025

NBC 0.71 ± 0.15 0.74 ± 0.01 0.85 ± 0.015 0.80 ± 0.015 0.59 ± 0.02 0.41 ± 0.025 0.37 ± 0.03 0.99 ± 0.05

SVM 0.72 ± 0.15 0.69 ± 0.02 0.90 ± 0.01 0.72 ± 0.02 0.64 ± 0.03 0.76 ± 0.02 0.27 ± 0.025 0.59 ± 0.055

GTB 0.94 ± 0.05 0.94 ± 0.01 0.96 ± 0.005 0.97 ± 0.005 0.90 ± 0.02 0.89 ± 0.01 0.93 ± 0.03 0.96 ± 0.025

and collected the average time. For the ARM Mali GPUs, to avoid DVFS effect, we set an idle time
(2 s) between two consecutive runs. For each use-case presented in Section 4—i.e., Convolution,
cuBLAS, and CLBlast—we performed the training and evaluation of models in the following way.
The synthetic dataset was partitioned in training, validation and test-sets to train, tune hyper-
parameters and to perform the evaluation of each model, respectively. Learning curves, and in
general, the other evaluation metrics were estimated through 10-fold cross validation. To evaluate
the models on test-sets, we removed from the training and validation all entries appearing in the
test-sets.

Our analysis will investigate the following aspects:

(1) The quality of the models learned from different machine learning techniques in terms of
generalization, accuracy, performance, and inference cost;

(2) The impact of misclassification on performance;
(3) The performance on real use-cases.

5.1 Convolution

We compared the performance of several models against the oracle, which always selects the
fastest convolution method. The ARMCL does not adopt heuristic for selecting the convolu-
tion method layer-by-layer. Thus, we report the performance of the default ARMCL method, the
GEMM-based convolution conv, for the comparison with our method. We tested our models on
hold-out sets from the synthetic dataset and on a collection of 238 convolutional layers (aggregate

test-set) from several popular CNNs, such as Alexnet, FCN-16s, ResNet-50, VGG-16s, GoogLeNet,
and InceptionV3.

5.1.1 Models Evaluation. To learn our predictive models, we applied the ML techiniques pre-
sented in Section 2 over the synthetic dataset. The learning curves of each model are shown in
Figure 3. We may observe that all models converge and provide both good generalization and
good balanced accuracy, the only exceptions being KNN, which suffers from overfitting, and SVM,
which would require more training points to converge. Decision tree-based estimators showed
superior performance overall (Figures 3(a)–3(c)). For each model, Table 5 shows the classification
results in terms of accuracy, balanced accuracy, precision and recall. The performance of the mod-
els is measured by its balanced accuracy and its total computation time, and is shown in Figure 4.
As for performance, tree-based models (DT, RF, and GTB) and MLP obtained the best accuracy
and balanced accuracy on unseen data; they also achieved the highest precision and recall scores
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Fig. 3. Learning curves over a training dataset of 5,657 data points.

Fig. 4. Performance of the learned models and of the fixed “conv” method against the oracle for the aggregate
test-set with f32 precision. Colors denote the fraction of time spent on each method.

on the directconv class, contrary to other models (see Table 5). The performance of these models
on the aggregate test set is close to the oracle.

SVM also showed a good performance improvement against the fixed methods, using only
4% more time than the oracle, against the +11.5% of the fixed conv method. LoR, NBC, and
polynomial-kernel SVM (not shown) achieved poor performance and accuracy, proving that
no simple cut exists in the feature space to adequately separate the classes. KNN obtained bet-
ter performance than static methods, however it achieved a low balanced accuracy score due to
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Fig. 5. Performance of the learned models against the static “conv” method and the oracle for the FCN-16s
test set (f32 precision).

Table 6. Speed-up Over the Fixed “Conv” Method and Slow Down Over the Oracle
for the Best Model in Each CNN

CNN
SPEED-UP AGAINST SLOW-DOWN AGAINST

BEST MODEL
‘CONV’ ORACLE

Alexnet 1.19× +0.00% RF
FCN-16s 1.55× +5.77% RF
GoogLeNet 1.01× +0.05% MLP
InceptionV3 1.25× +0.00% DT
Mobilenet 1.00× +0.00% DT
NiN 1.00× +0.00% DT
ResNet-50 1.04× +0.00% DT
VGG-16 1.44× +0.00% RF

Ties between models are broken by inference time.

its inability to identify winogradconv instances. As for popular CNNs, Figure 5 shows the perfor-
mance of the models on FCN-16s. The RF model outperforms the others by correctly recognizing
the directconv instances. Again, the motivation is behind the learning curve: RF performs better
than others in data generalization. This demonstrates that this model-driven approach can achieve
even higher speed-ups in more balanced test sets. This is also observed by analyzing the results
on other CNNs, as reported in Table 6. Since the relative proportion of classes varies considerably
among CNNs, the balanced accuracy score reported in Table 5 is a better performance indicator
than simple accuracy.

5.1.2 Inference Overhead. To conclude our analysis, we compared the inference time of the dif-
ferent models, i.e., the time occurring between the feature extraction (the input of the problem in
our case) and the selection of the convolution method. We use as a baseline the cost of traversing
the if-then-else rules of the DTs, which have the lowest inference cost overall. All the mod-
els show up to a 7.5× (KNN) of overhead with the exception of RF, for which the overhead cost
depends on the number of trees. They provided the best performance (balanced accuracy, gener-
alization, SO) when using around 300 trees, which makes their inference cost significant (261×).
This cost can be reduced by cutting the number of trees, possibly down to the still good perfor-
mance of a single DT. This allows for an easily adjustable trade-off between accuracy on hand, and
training and inference costs on the other. The optimal trade-off between precision and inference
overhead depends on the circumstances. Our study on inference time for GEMM revealed that
the overhead of an efficiently implemented DT amounts to less than 1% of the computation time
of the average GEMM multiplication. Taking into account the training cost, inference cost and
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Table 7. Relative Importance of Features in the Convolution Classification
Task, Extracted from a Trained Random Forest

FEATURE K C-IN C-OUT W + H NP P S
IMPORTANCE 37% 20% 17% 13% 11% 2% 0%

performance, DTs, RF, and GTB are the best models for this task. Moreover, these models allow for
an easy-to-interpret feature analysis. In a DT, the importance of a feature is the normalized total
reduction of the splitting criterion (in our case, the entropy) due to that feature. Ranking features
by their average importance in the RF model revealed that the kernel size has the greatest impact
on classification, followed by the number of input and output channels, as summarized in Table 7.
This information can be useful when generating or expanding a training set to guide the choice
and density of training points throughout the feature space.

5.2 cuBLAS

The classification task in this case is more complex than the convolution case. Thus, we expect to
observe lower performance and accuracy and slower convergence of the learning curves. To mea-
sure the quality of our models, we use the oracle and the Nvidia Heuristics performance. Moreover,
the metrics introduced in Section 3.3 allow us to measure how far the performance is from the
possible best (SO), and the improvement over the baseline (SB). They are thus especially useful
when the model is not accurate.

5.2.1 Models Evaluation. The learning curves are shown in Figure 6 and report the training
and cross-validation scores over 7,000 data points of the go2 dataset. The final models have been
trained over around 10,000 points. As expected, they do not achieve high accuracy even in the case
of larger datasets, because the number of classes is too large in relation to the number of features.
Moreover, most of the models converge towards low accuracy on predicting new data, and the
distance between training and cross-validation curves is low. The model learned by KNN suffers
from underfitting. In this case, the scores increase when the traning set grows, however there is
still no convergence. From an accuracy and generalization perspective, GTB (Figure 6(c)) and MLP
(Figure 6(d)) are worth considering (0.7 of accuracy). Simple DTs can learn better models by using
datasets composed by 10,000 up to 30,000 points. The cost of generating such a dataset require
around four days on Nvidia Volta GPU. Therefore, the improvement in terms of accuracy does not
justify this cost.

5.2.2 Benchmark. The classification results presented so far suggest to avoid the use of predic-
tive models in the case of cuBLAS. Nonetheless, if we look at the performance curves in terms of
SO, then the conclusion is different. Figure 7 reports the SO score of the three best models over
8,000 points. In general, all the models beat Nvidia heuristics (green line) with a speed-up from 2%
up to 10% on average. This is due to the fact that, even if in nearly 30% of the cases the models
do not predict the best algorithm, they are able to select a second or third-best algorithm with
comparable performance. More significant average improvements are hard to achieve, because on
average the worst implementation is 60% as efficient as the best one. Notice that the performance
curves converge faster than learning curves. This means that we can learn a good model by using a
smaller dataset. As an example, the analysis of GTB shows that the convergence between the train-
ing and cross-validation curves is reached after 2,500 points only, in contrast with the accuracy
curve that converges at around 6,000 points. Motivated by the performance analysis carried out
in Section 1, we compared the performance of Nvidia heuristics on two different datasets, Deep-
Bench and AntonNet. While the performance on the first was satisfactory, the heuristics designed
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Fig. 6. Learning curves over 7,000 training points in the Nvidia cuBLAS classification task.

Fig. 7. Performance curves of the best three models over 8,000 points in the Nvidia cuBLAS classification
task.

by Nvidia is not able to model the AntonNet dataset properly. The histogram in Figure 8(a) com-
pares GTB-based heuristics against Nvidia heuristics in relation to the oracle. The y-axis shows
the number of points where a certain SO (x-axis) is achieved. The red shadows show the overlap
between the predictive model and Nvidia heuristics. Our model-based heuristics selects the best
implementation (SO 0.9–1.0) using 50% of the points (>2 times better than Nvidia heuristics per-
formance and up to 2.8× on specific instances in terms of FLOPS). A similar improvement can be
observed on random instances. Figure 8(b) shows a better performance of the GTB model with
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Fig. 8. Relative performance of Nvidia heuristics and model-based (GTB) heuristics against the oracle.

Table 8. Datasets Statistics—Nvidia P100

Dataset

Name

Dataset

Size

No. Unique No. Unique Total Best Best Best Best

Config. Config. No. DT DT DT DT

Xgemm XgemmDirect Classes Name accuracy SO SB

AntonNet 456 1 81 82 h4-L1 36 0.484 1.013

PowerOf2(po2) 216 2 41 43 hMax-L1 21 0.431 0.931

GridOf2(go2) 3375 6 22 28 hMax-L1 60 0.852 1.424

“Best DT” indicates the Decision Tree model with the highest SO score.

Table 9. Dataset Statistics—ARM Mali-T860

Dataset

Name

Dataset

Size

No. Unique No. Unique Total Best Best Best Best

Config. Config. No. DT DT DT DT

Xgemm XgemmDirect Classes Name accuracy SO SB

AntonNet 456 28 35 63 h1-L0.1 55 0.702 1.092

PowerOf2(po2) 216 29 1 30 h8-L0.1 45 0.551 1.121

GridOf2(go2) 1000 32 3 35 h8-L0.4 53 0.803 1.479

“Best DT” indicates the Decision Tree model with the highest SO score.

respect to Nvidia heuristics (up to 2.2× on single instances) over 300 randomly selected matrices.
Thus, DT-based classifiers may allow us to obtain learning models that can reach very good perfor-
mances despite their accuracy. To achieve a greater speed-up on single instances, the model-based
approach requires further highly optimized codes designed for specific instances.

5.3 CLBlast GEMM

We have seen so far that DT-based models achieve practical good performance. In this section, we
will investigate the impact of hyper-parameter tuning in the CLBlast scenario, where the number
of classes is larger than for cuBLAS (up to 82 different classes, see Tables 8 and 9). Moreover, we
want to understand the practical implication of misclassification. To this aim, we trained several
DTs on the datasets described in Section 4, varying parameters L and H . In the following, we refer
to the definitions reported in Table 3.

5.3.1 Models Evaluation. By varying L and H , we observe a huge accuracy variation in the
range between 50% and 70% for go2 on Nvidia 100. More specifically, models trained on the denser
go2 have a much higher accuracy than those trained on po2 and AntonNet. The ARM architec-
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Fig. 9. Evaluation of the impact of misclassification for models generated by varying H and L parameters
on go2, po2 and AntonNet on Nvidia P100.

Fig. 10. Evaluation of the impact of misclassification for models generated by varying H and L parameters
on go2, po2 and AntonNet on ARM Mali-T860.

ture shows a slightly different trend, with all the models performing similarly, and an accuracy
up to 60%. Our results indicate that H does not impact the accuracy significantly, while higher
values of L marginally impair it. Experiments on the accuracy show that its value decreases in the
presence of an unbalanced distribution of unique configurations among kernels (see Tables 8 and
9). Figures 9 and 10 report SO and SB values for each model on both architectures. These met-
rics depend more strongly than accuracy on the models parameters, especially on L. Figure 9(a)
shows that models trained on go2 achieve the highest scores (SO ≥ 0.7). Such models outperform
the tuned version of CLBlast (see Figure 9(b)). For the ARM architecture, the scenario is similar
(Figure 10). Despite the go2 models exhibit an accuracy compared to the models trained from po2

and AntonNet, they achieve better performance in terms of SB and SO metrics. Indeed, the best go2

model is 1.4x faster than the traditional tuned version (SB) on both architectures. Furthermore, the
misclassification represents another important issue in this case: for the matrices in AntonNet and
po2, the configurations learned are very specific and different from each other. In the presence of
low accuracy, models that have been trained from denser and regular datasets, where the configu-
rations are similar to each other, perform better. To validate that, we analyzed the distance-based
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Fig. 11. Performance on single instances for the best model trained on go2.

similarity [37] inside the datasets, defined as the average geometric distance between all tuples of
tuning parameters in the dataset. Since each configuration has different parameters, we normalize
their numerical domains. For both architectures, go2 has the lowest average distance between all
the pairs. Thus, even in the presence of misclassification, the model is likely to select a configura-
tion that is not too far from the possible best. To get stronger evidence of the correlation between
the similarity of the dataset and the performance of the model, we also analyzed the leaves of DTs.
We observed that, in some cases, the best configuration is not a leaf of the decision tree even if
it belongs to the training set. When this is the case, the misclassification is due to the accuracy
of the ML technique used. By analyzing the best model learned from go2 on Nvidia, we observed
that the best parameters configuration is usually closer to the one chosen by the model than to
the default one. For such cases, the model-based CLBlast outperforms the approach based on the
auto-tuner. When the misclassification introduces a performance penalty, the selected configura-
tion shows different values for either the size of the matrix tile, or the number of elements for
the loop unrolling. Such parameters are usually similar for the best model learned from go2, while
they show a big variation on AntonNet-based models. A very small gap in terms of performance
has been noticed when the stride or the value of the padding changes.

5.3.2 Benchmark. In Figure 11, we report the performance on single GEMM instances for the
best performing go2 model on both architectures. On the Nvidia P100, the model hMax-L1 learned
from go2 achieves very good performance in most instances, with a maximum speed-up of 3×
and an average of 1.42× over the traditional tuned CLBlast (Figure 11(a) and Table 8). The same
behaviour can be observed on the ARM architecture, where the model h8-L0.1 achieves a maximum
speed-up of 2× and an average of 1.47× (Figure 11(b) and Table 9). The improvement is greater for
those matrix shapes that are far from the default sizes. On the contrary, the best model trained from
po2 does not guarantee satisfactory performance on average. For both the architectures, the models
that have been trained from AntonNet showed unsatisfactory performance (poor generalization of
the model).

5.3.3 Inference Overhead. On the Nvidia P100, we analyzed hMax-L1 model trained on go2

(which has 1, 200 leaves and a depth of 19), measuring its inference times over all the matrices
in the test dataset. Traversing the tree of if-else statements introduces less than 2% of overhead on
small matrices. The relative overhead definitively decreases as the size of the matrices grows, with
an average impact of less than 1% on performance. We observed similar results on the ARM system.

6 DISCUSSION AND FUTURE WORK

The adoption of predictive models learned through machine learning techniques is intuitive and
may prove to be appealing for different applications, e.g., improving the performance of modeling
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tasks. However, determining the right conditions for an appropriate use of such a methodology
requires a careful analysis of the application and, in our case, of the target libraries. Along our
experiments and the lessons learned thereby, in the following, we discuss the good practices for
applying predictive models. We should focus on four main aspects:

(1) The relation between number of features and number of classes to predict. Our experiments
show that the number of features and the structure of the class space must be taken into
account both during the dataset generation and the model selection phase. In simple clas-
sification tasks (convolution), where the few possible classes are easily inferred from the
features, a high accuracy ensures good performances without the need for further anal-
ysis. As the class space becomes more complex (cuBLAS), accuracy and other standard
classification metrics are less effective in evaluating the models. High performance may
be achieved with relatively low accuracy (60%), and model selection should thus be guided
by performance measures.

(2) Considerations on the dataset generation strategy. Parametric class spaces (CLBlast) pose
the greatest challenge. Here, the dataset generation strategy is of vital importance, as
the choice of training points influences the number of classes and their similarity. We
explored several strategies for the dataset generation, showing that a regularly spaced
dataset is more effective than irregular datasets, even when the latter are collected from
real use-cases (AntonNet) and thus better match the test point distribution. Also, an in-
depth analysis of models (see Figures 10 and 9) is required for model-selection. Finally,
especially in embedded system, dataset generation may be extremely time-consuming.
Therefore, it is vital to grow the dataset while monitoring the learning curves. Moreover,
in the low-accuracy setting with many similar classes, performance may converge well
before accuracy (see Figures 6 and 7), thus allowing for smaller datasets.

(3) Considerations on the machine learning techniques to be adopted. According to our exper-
imental results, DTs have short inference time, are easily implemented and interpreted,
and are effective across all the application range explored in this article. Ensembles of
DTs, such as RF and GTB, would allow for an adjustable increase over the DT accuracy,
at the cost of more inference time/implementation complexity. They are thus our chosen
models.

(4) Analysis of performance and possible improvements. At this point is quite clear that increas-
ing the number of possible classes is a great opportunity for improving the performance as
long as there are enough features that allow selecting them. Thus, to obtain more perfor-
mance it is possible to integrate other strategies (e.g., auto-code generation code methods
or specific offline compilers as TVM for Deep learning applications) by extending the class
domain. However, it is necessary to monitor learning curves and practical measure such as
SO or SB. Adding new classes in some case would require to add new features or, generate
larger datasets. Both cases have possible negative consequences. Adding a new feature
may imply to pay feature extraction costs which for some applications are not negligi-
ble [74] and require a detailed analysis. Similarly, adding new entries in the dataset may
be not feasible for SoC.

The approach proposed in this article enables the design of effective predictive models that, con-
trary to existing methods, are (i) general, since they are architecture aware and can be used as
a black box; (ii) easy to implement and integrate; and (iii) efficient, considering that we showed
superior performance w.r.t. traditional auto-tuners and hand-written heuristics.

There are a number of directions in which this work can be extended. First, it would be in-
teresting to investigate the design of a new ML technique to generate more effective models by
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optimizing multi-objective functions (e.g., performance and energy consumption). Moreover, we
will study how to generate smaller but still representative training sets. This aspect is particularly
crucial for embedded architectures where generating the training set is expensive—just as an ex-
ample, seven days were necessary to create po2 for the Mali GPU. Finally, the study of irregular
applications and hence the cost of feature extraction remains an open challenge. As an example,
the extraction of the sparsity pattern might be costly when dealing with sparse matrix multipli-
cation, and this aspect is crucial for predicting the best storage format, algorithm [6, 7, 19, 58, 72,
74], and other optimization parameters [17].

7 RELATED WORK

The use of machine learning techniques to predict performance has been addressed for the first
time by Singer and Veloso [57] 20 years ago. De Mesmay et al. [16] applied DTs for automatically
generating heuristics. In their work, they did not provide an analysis of the model but they showed
the performance the heuristics trained from different dataset. Traditional auto-tuners focused on
the efficient exploration huge search space efficiently [2, 45, 63]. However, all of the existing auto-
tuners do not address the problem of performance portability on data-driven applications. The
problem of exploring a huge search space of tunable parameters has been partially mitigated by
the use of meta-heuristics optimization approaches [45, 64] and machine learning techniques [20,
62]. Again, they specifically generate optimized code by assuming a specific input shape. Recently,
auto-tuning and input aware techniques [18, 20] have been used in combination to address the
problem of performance portability on specific applications [14, 28, 39]. For example, a compre-
hensive study on automatic tuning of compilers by using machine learning has been provided
by Ashouri et al. [4]. An interesting approach extends such techniques in the presence of mul-
tiple algorithmic choice [50]. Their solution is suitable when a specific routine is called multiple
times. Specifically to BLAS, several optimized linear algebra and BLAS libraries have been de-
ployed [11, 67, 71]. Others provided auto-tuning and optimization approaches to accelerate only
GEMM on different architectures [23, 31, 33, 34, 36, 42]. To limit the cost of auto-tuners, boosted
trees models have been used to predict parameters by starting from the exploration of a small
search space [5]. Recently, model-driven solutions have been adopted for accelerating sparse lin-
ear algebra [12, 74]. However, predicting the best data storage require the extraction of complex
features. Existing works do not include this cost, but just provide the speed-up without includ-
ing the feature extraction. Tillet et al. developed ISAAC, which exploits a MLP to generate highly
optimized parametric-code in the training step. At run-time, the library infers the best parame-
ters for the specific input [62]. However, since it generates assembly code, it is not able to run
on different architectures like ARM. Regarding deep learning applications, a plethora of compiler-
based approaches has arisen [9, 10, 61, 77]. AutoTVM [10] generates the best implementation for
a specific DNN by extracting domain-specific features from a given low-level abstract syntax tree.
The features include loop structure information (e.g., memory access count). Furthermore, their
approach does not consider multiple operators but try to optimize just one. In the context of Au-
toML workloads this approach is not feasible. On the contrary, our method is (a) implementation-
independent, since we select among multiple algorithms/implementations even if the source-code
is not exposed, and (b) scaled over different input at runtime. Other approaches adopt polyhedral
optimization to generate optimized DNN primitives [61].

8 CONCLUSION

In this article, we presented and analyzed several models learned through different machine
learning techniques for the design of highly-optimized adaptive input-aware libraries. Our anal-
ysis shows that models learned from GTB—and more in general techniques based on Decision
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Trees—are more effective than other models because of their ability to enable efficient heuristics
even in the presence of few features. To validate these results, we optimized two fundamental ker-
nels used in deep learning and scientific computing (convolution and GEMM) and three different
libraries: the ARM Compute Library, the Nvidia cuBLAS, and CLBlast. While determining the best
operator for convolution involves few classes and many features, the optimal implementation of
GEMM has to be chosen among a great variety of classes based on only three features. In the
convolution task, due to the simpler class space, several machine learning techniques were able
to achieve near-optimal accuracy, and this translated in near-optimal performance—we obtained
a 1.5× speedup. For the GEMM tasks, the models did not achieve high accuracy. However, we ob-
served significant improvements in terms of performance (up to 3×) compared to the traditional,
hand-tuned approach and traditional auto-tuners. The impact of mispredictions is mitigated when
the model is generated from a dense dataset, even when using just few simple features. Our results
suggest to avoid the use of specific datasets (e.g., AntonNet) in the presence of poor accuracy and
in tasks with very complex class spaces. Regardless of their simplicity, decision trees-based models
such as Random Forest and GTB achieve good performance even in the presence of high misclas-
sification. Indeed, their learning curves show a good ability to generalize unseen data even with
few training points and few features. Even considering different classification tasks, these models
exhibited better performance than traditional auto-tuned heuristics overall.

To conclude, we are able to design effective predictive models that, contrary to existing methods,
are general, easy to implement and integrate, and efficient, showing superior performance than
traditional auto-tuners and hand-written heuristics.
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