
Multi-omics integration—a comparison of

unsupervised clustering methodologies
Giulia Tini, Luca Marchetti, Corrado Priami and Marie-Pier Scott-Boyer
Corresponding author: Marie-Pier Scott-Boyer, Genomics Center, Centre Hospitalier Universitaire de Québec – Université Laval Research Center, Quebec,
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Abstract

With the recent developments in the field of multi-omics integration, the interest in factors such as data preprocessing,
choice of the integration method and the number of different omics considered had increased. In this work, the impact of
these factors is explored when solving the problem of sample classification, by comparing the performances of five unsu-
pervised algorithms: Multiple Canonical Correlation Analysis, Multiple Co-Inertia Analysis, Multiple Factor Analysis, Joint
and Individual Variation Explained and Similarity Network Fusion. These methods were applied to three real data sets
taken from literature and several ad hoc simulated scenarios to discuss classification performance in different conditions of
noise and signal strength across the data types. The impact of experimental design, feature selection and parameter train-
ing has been also evaluated to unravel important conditions that can affect the accuracy of the result.
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Introduction

Technological advances in high-throughput biological data gen-
eration, such as next-generation sequencing [1], mass spectrom-
etry [2] and nuclear magnetic resonance spectroscopy [3], now
allow the simultaneous collection of information from multiple
molecular levels and biological systems. Usually, molecular lev-
els (i.e. -omics) have been investigated in isolation for their asso-
ciation with a phenotypic trait of interest. This concept is,
however, challenged by many, as it views biology linearly and
does not consider the interactions between different molecular
levels at the basis of the central dogma of biology [4]. Noble [5]
recently proposed a multilevel causality theory with feedback
cycles among biochemical layers, where interactions within and

across different omics are acknowledged. The growing availabil-
ity of multi-omics data and the emerging biological phenotypes
originating from complex traits and interactions increased the
need for adequate multi-omics integration methods [6].

Some reviews and theoretical classifications have recently
defined general pipelines to combine omics data. They focused
on specific data types or biological systems [7–10] and computa-
tional differences among methods [11, 12]. In this work, we will
focus on statistical methods that simultaneously combine more
than two different omics [13, 14], in line with the hypothesis
that multiple biomolecular levels interact nonlinearly to con-
tribute to a given phenotype [9]. We will provide a classification
of those methods based on how data are handled before
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performing integration, and we will explore the effects of fac-
tors, such as data preprocessing, number of considered omics
and signal strength on resulting omics integration.

Statistical integration methods can be used to solve several
types of biological questions by reinforcing common signal from
different platforms (e.g. genomics and transcriptomics, miRNA
and transcriptomics, transcriptomics and proteomics or proteo-
mics and metabolomics) or by combining complementary infor-
mation potentially carried by data that do not interact directly
(e.g. transcriptomics and metabolomics). Multi-omics integration
has been used for the discovery of molecular mechanisms [15, 16],
biomarkers [17, 18] and sample/patient classification [19–21]. New
methods are constantly developed to challenge these biological
questions: recently, Singh et al. [18] have introduced DIABLO, an
expansion to more than two data types of the integrOmics super-
vised integration method [22], which found biomarkers for three
different breast cancer subtypes (Basal, Her2 and Luminal A). This
article will focus on the sample classification case by comparing
statistical unsupervised multi-omics integration methods that
deal simultaneously with more than two data types.

Review of statistical multi-omics integration approaches

Statistical integration approaches can be classified as multivariate,
concatenation-based and transformation-based methods accord-
ing to how data are manipulated before applying the algorithm.
Multivariate methods [7] are usually based on partial least squares
(PLS) [23, 24] or canonical correlation analysis (CCA) [25, 26], and
they treat different omics separately to find associations between
them. We focus here on CCA-based approaches [22, 27, 28], which,
differently to PLS-based methods [18, 22, 29–33], do not imply
any hierarchy between data. An example of multivariate
CCA-based approach is the Multiple Canonical Correlation
Analysis (MCCA) [27], an extended sparse CCA [34].

Concatenation-based integration [9] is performed by
combining omics data in a single matrix, used as input for low-
rank-based approximation [35] or latent factor analysis [36], to
combine the data into a single low-dimensional space [19, 37–43].
Lock et al. [37] proposed Joint and Individual Variation Explained
(JIVE), a method based on the decomposition of omics data in the
sum of a low-rank joint variation matrix, a low-rank individual
matrix and the residual noise. This method applied to gene
expression and microRNA (miRNA) from glioblastoma multi-
forme (GBM) samples revealed differences in GBM subtypes
involving both the considered omics. Another concatenation-
based method is Multiple Co-Inertia Analysis (MCIA) [39], an
extension of Co-Inertia Analysis [44] to more than two data types.
Following covariance optimization between the global score

derived from the concatenated matrix and single omics scores,
this method was applied to mRNA, miRNA and proteomics data,
and succeeded in distinguishing profiles from melanoma, leuke-
mia and central nervous system cell lines [45]. Furthermore, mul-
tiple factor analysis (MFA) [43, 46] is a concatenation-based
method whose strategy is instead based on the principal compo-
nent analysis (PCA) of the concatenated matrix. MFA was applied
in [43] to copy-number measurements and gene expression from
a glioma data set to study differences between different tumor
subtypes.

Finally, the transformation-based methods integrate omics
data after their transformation into an intermediate and com-
mon form, like a graph or a kernel matrix [47–52]. The main
advantage of a transformation step is to preserve individual
omics characteristics that can be lost otherwise [9]. For exam-
ple, the Similarity Network Fusion (SNF), described by Wang
et al. [48], creates patient similarity networks from the omics
data of interest. The method recognized three GBM subtypes
with different survival profiles from the integration of DNA
methylation, mRNA and miRNA expression.

The methods selected for the comparison are MCCA [27], JIVE
[37], MCIA [39], MFA [43] and SNF [48] (Table 1 and Supplementary
Material for their description). The chosen methods are well-
known unsupervised algorithms, representative of the different
classes of statistical integration approaches and already considered
in reviews focused on specific theoretical characteristics of the
methods (unsupervised/supervised [53], use of networks [11], clus-
ter computation [12], dimension reduction [45]). Our classification,
based on how methods handle data, takes into account all these
aspects by providing a direct comparison of the methodologies,
which, although suggested in [53], has never been presented in lit-
erature. Moreover, these methods can be applied to different types
of omics without any required previous knowledge about the phe-
notype of interest. Interestingly as well, these methods are all pro-
vided as R packages, making them suitable for a direct comparison
inside the same computing environment. Finally, this article will
also address the impact of experimental design, data preprocessing
and parameter training on the multi-omics integration outcomes.

A graphical overview of the article structure is presented in
Figure 1, describing the comparison pipeline, method classifica-
tion, the tested data sets and result organization.

Material and methods
Real data sets

Methods were tested on three real data sets (murine liver (BXD)
[54], platelet reactivity [55] and Breast Cancer (BRCA) [56] data sets),

Table 1. Summary of the multi-omics integration methods reviewed

Method Integration
approach

Description Data scaling R package

MCCA [27] Multivariate Seeks linear combination of correlated
features from different data

Columns normalization (mean¼0; SD¼ 1) PMA

JIVE [37] Concatenation Separates signal common to all data from
individual one

Columns normalization (mean¼0; SD¼ 1) r.jive

MCIA [39] Concatenation Projects data on a common lower dimen-
sional space

Nonsymmetric correspondence analysis omicade4

MFA [43] Concatenation Projects data on a common lower dimen-
sional space

Columns normalization (mean¼0; SD¼ 1) FactoMineR

SNF [48] Transformation Builds a fused network from single ones Columns normalization (mean¼0; SD¼ 1) SNFtool

Note: The column ‘data scaling’ indicates which scaling has been applied to data before integration.
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each one composed by three different data types including tran-
scriptomics, proteomics, metabolomics, miRNA and epigenomics
(see details in Table 2; PCA data visualization and correlation
analysis in Supplementary Figures S1–S3 and Supplementary
Tables S1–S3). Some data preprocessing was performed before
integration. The averaged values across the measured probes
of the BXD data set were retained for each gene. Missing values
for proteins and metabolites measurements were substituted by
their median over all the cohorts. To obtain the proteomics data
for the Platelet data set, the averaged ratio of all peptides for a
given protein was considered (available for download from
the Omics Discovery Index, http://www.omicsdi.org/). Then,
quantile normalization was applied to reduce the batch effect

(function normalizeBetweenArrays from limma R package [57]).
For the BRCA data set [56], the eight subjects with a normal-like
cancer subtype were excluded from the analysis because of the
small number of samples. Moreover, 80 randomly selected subjects
were considered for the two largest subtypes, Luminal A and B, to
avoid a bias with respect to these cancer subtypes: missing values
for gene expression and methylation data were then substituted
with their median values across the subjects.

Simulated data sets

Several simulated data sets (Figure 2A) (composed of three
matrices 60�500 (60 subjects and 500 features) were created to

Figure 1. Graphical overview of the multi-omics integration method comparison discussed in the review. The schema is divided in three areas: (i) method classification

and comparison pipeline, (ii) data sets and (iii) result organization. In the left side of the schema, the different pipeline steps are presented, together with the method

classification. This is represented in the pipeline step called ‘Integration’, where each block collects the methods belonging to the same integration approach. Data sets

are represented in the middle according to the division simulated/real data sets (BXD: murine liver data set; Platelet: platelet reactivity data set; BRCA: breast cancer

data set). Finally, in the right part of the diagram, results are organized according to how they are presented and discussed in the article. Arrows linking data sets and

results indicate which data set has been used to produce the corresponding result.

Table 2. Overview of the three real data sets used to compare integration methods

Data set Phenotype Number
of subjects

Subtypes Omics Platform

BXD [54] Mitochondrial
metabolism

66 High fat diet (31) Transcriptomics Affymetrix Mouse Gene 1.0 ST
microarrays

Chow diet (35) Proteomics SWATH-MS quantification
Metabolomic MS signatures

Platelet [55] Platelet reactivity 12 High (6) Transcriptomics Affymetrix GeneChip Human
Genome U133 Plus 2.0 arrays

Low (6) Proteomics MS quantification
miRNA NanoString

BRCA [56] Breast cancer 491 Luminal A (225) Epigenomics Illumina Infinium
Luminal B (120) Transcriptomics Agilent microarrays
HER2 enriched (56) miRNA Illumina sequencing
Basal-like (90)

Note: Columns provide the studied phenotype, the number of subjects (total and for each subtype) and the omics data included in each data set.
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Figure 2. (A) Visualization of the simulated scenarios: for each of them, three data types (d1, d2 and d3) of 500 features were generated by creating 60 samples divided

in two (Case A) or three groups (Cases B–E). When the group is colored in white, it has been generated to be clearly detectable in the data matrix; otherwise, it is colored

in gray. 20 (d1 and d2) or 100 (d3) columns of noise were also added to the data. (B) Comparison of the integration methods (JIVE, MCCA, MCIA, MFA and SNF) applied to

the simulated scenarios, with and without noise addition. Light- and dark-shaded bars represent the averaged F-scores obtained before and after the feature selection

step, respectively. The solid black lines represent the minimum F-scores. A minimum F-score equal to 0 means that not all the groups have been recognized. The num-

ber of subtypes recognized for each trial is added above the bars.
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evaluate the performances of the considered algorithms in a
more controlled context. In each data set, sample profiles were
generated following normal distributions with mean and SD
derived from randomly selected gene expressions, methylation
levels and miRNA from the BRCA data set [56] (details in the
Supplementary Material, section ‘Generation of the Simulated
Datasets’). Independent noise �Nð0; 0:4Þ was also added to the
data matrices during the generation. Finally, as not all the mole-
cules in a system usually contribute to a significant signal, the
considered methods were also tested after adding noisy col-
umns to the matrices. Sample profiles on those columns were
again computed as normal distributions derived from the BRCA
data set features.

Samples have been generated to reproduce the following sce-
narios, represented in Figure 2A: (A) two groups of 30 samples
clearly distinguishable in each data matrix; (B) three groups of 20
samples clearly distinguishable in each data matrix; (C) three
groups of 20 samples, with only one matrix over three generated
to distinguish all of them. One group is created to be detectable
in all the three matrices; (D) two groups over three clearly distin-
guishable in each matrix, with one of them common to the three
matrices. One group is created to be detectable only in one
matrix; (E) two groups over three clearly distinguishable in each
matrix, without a common detectable one (see Supplementary
Figures S4–S8 and Supplementary Tables S4–S8 for PCA visual-
ization and correlation analysis).

Methods

As input for statistical methods, omics data measured on a com-
mon set of n samples are thought as matrices with n rows (sam-
ples) but different number of columns (e.g. the number of genes,
proteins, etc.). The details of the methods used can be found in
the Supplementary Material. To check the effect of preprocessing
on integration accuracy, a feature selection step was performed
(subsection ‘Feature selection’ of Supplementary Material). The
features showing a coefficient of variation (CV) [58] (a standard
way to compare variability in different data types, as it is inde-
pendent from the scaling) lower than a selected threshold were
removed from the analysis (Table 3). Thresholds were selected for
each data set accordingly to the omics-specific CV distributions as
the common value indicating low variability across all the data.
Three-omics and pairwise integration for all the different omics
couples were then computed for each data set with the considered
methods, both before and after the feature selection step
(Supplementary Material, subsection ‘Datasets multi-omics inte-
gration’). Once integration was completed, spectral clustering,
known to outperform other clustering algorithms [59], was applied
to classify samples (subsection ‘Spectral clustering analysis’,

Supplementary Material). The F-score index (Fscore ¼ 2 P�R
PþR 2 0; 1½ �,

with P ¼ True positives
True positivesþfalse positives and R ¼ True positives

True positivesþfalse negatives)
[60], a standard measure assessing the optimality in binary classi-
fications [61, 62], was used to evaluate the agreement between
computed clusters and real subtypes. A 0 F-score was assigned to
subtypes for which no cluster has been identified. The minimum
and the averaged F-scores were considered to assess the perform-
ance of the overall classification. The accuracy index has also
been computed for each analysis (Supplementary Figures S9
and S10). The SNF method has also been applied after performing
a training/validation procedure on its parameters, to explore the
gain of this procedure on the classification performances. Here,
the value of SNF parameters r and K were trained to obtain the
highest minimum F-score on 80% of the samples. The trained
parameters were then validated on the remaining 20% of subjects.
F-scores from integration performances before and after feature
selection with default parameters were also computed on the vali-
dation set. Owing to the small number of subjects (12), this analy-
sis was not applied to the Platelet reactivity data set.

Results

Statistical multi-omics integration methods have been applied
to both simulated and real data sets to assess and compare their
performances in sample classification. All results, resumed in
Figure 1, are presented in Figure 2B, Figure 3 and Figure 4 where
classification results have been indicated in terms of F-score
results based on the accuracy index, and F-scores tables are pro-
vided in the Supplementary Material (Supplementary Figures S9
and S10 and Supplementary Tables S9–S16).

Influence of signal strength, noise and feature selection
in the simulated scenarios

Influence of signal strength
We observed a general decrease in classification performance in
all the simulated scenarios when the signal strength across the
data types diminished (Figure 2B, from A to E, light-shaded bars
without noise addition). As expected, all methods obtained the
highest classification accuracy in Scenario A (easiest situation,
see Figure 2A and Supplementary Figure S4), with averaged
F-scores ranging from a minimum of 0.833 to the best value of 1
obtained by MFA. Classification performances decreased step by
step in Scenarios from B to E, where only SNF was able to distin-
guish all the sample groups in all the considered scenarios (see
Figure 2B: only SNF has minimum F-score (solid black lines) >0).
The method with the worst performance resulted to be JIVE,
especially in Scenario E where no clear signal was common to

Table 3. Number of features for each data set before (complete) and after (filtered) feature selection step, with the corresponding threshold on
the CV used to filter the data

Data set Omics Complete (number of features) CV threshold Filtered (number of features)

BXD Transcriptomic 21 836 0.015 17 036
Proteomic 976 976
Metabolomic 2607 2607

Platelet Transcriptomic 54 675 0.02 39 888
Proteomic 663 661
miRNA 490 407

BRCA Epigenomic 14 443 0.2 12 474
Transcriptomic 17 814 16 419
miRNA 1010 942
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Figure 3. Comparison of the different integration methods (JIVE, MCCA, MCIA, MFA and SNF) applied to the real data sets on all the possible omics combinations

(provided in the x-axis). The light- and dark-shaded bars represent the averaged F-scores obtained before and after feature selection, respectively. For each method,

the first two bars represent the results from three-omics integration. The thick black lines represent the minimum F-score obtained for each trial: a minimum value

equal to 0 means that not all the subtypes have been recognized. The number of subtypes recognized for each trial is added above the bars. The horizontal dashed lines

give the highest F-scores reached for the data set. (A) BXD data set (G: gene expression, P: proteins, M: metabolites. (B) Platelet data set (G: gene expression, Mi: miRNA,

P: proteins). (C) BRCA data set (G: gene expression, Mi: miRNA, Me: methylation).
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the three data matrices, and therefore, no joint pattern was
found by the method.

Influence of noise
All methods exhibited a general decrease in performance when
noise has been added to the data sets without applying a fea-
ture selection step (Figure 2B, from A to E, light-shaded bars
with noise addition). MFA was the method less affected by noise
in the simpler scenarios, however, in the most complex case
(Scenario E), only SNF was still able to distinguish all the sample
groups. JIVE resulted to be the method most affected by noise
because of its inability to detect common signal in Scenarios B,
C and E. As discussed in [37], noise can overwhelm the low-rank
signal, affecting the permutation testing approach used by JIVE.

Influence of feature selection
To understand the impact of data preprocessing on multi-omics
integration, a preliminary feature selection step was also
applied to the simulated scenarios with and without noise addi-
tion (Figure 2B, from A to E, dark-shaded bars). After feature
selection, 25 of the 50 considered trials did not change F-score;
19 improved and 6 diminished. Feature selection did not
improve the accuracy for JIVE, in line with the method descrip-
tion: its strategy is natively able to separate residual noise in an
additional matrix without influencing the joint signal.
Conversely, performances of MCCA were the most positively
affected by feature selection, with 6 improved trials over 10.

This result is in line with the paper by Witten and Tibshirani
[27], where a fused lasso penalty has been used to reduce sam-
ples noise before applying MCCA. Although not all the perform-
ances benefited from feature selection, the classification
accuracy lost by noise addition has been generally recovered by
applying this preprocessing step.

Three-omics integration versus pairwise integration in
real data sets

Methods comparison was repeated on the real data sets
described in Table 2: the BXD (Figure 3A), the Platelet (Figure 3B)
and the BRCA (Figure 3C) data sets. The best classifications were
obtained by three-omics integration in all the considered data
sets even if this result was obtained by different methods
(MCCA for BXD, SNF for Platelet and BRCA). This highlights the
importance of considering additional omics when possible.
Interestingly, we also observed a sort of general agreement on
the omics couple more difficult to integrate: proteins and
metabolites for the BXD data set; gene expression and proteins
for the Platelet; miRNA and methylation for the BRCA.

BXD data set
Three-omics integration allowed a good separation of mice with
different diets (Figure 3A) with an averaged F-score ranging
from 0.727 to 0.985, value obtained by MCCA. JIVE obtained the
best classification result by considering the omics couple
genes–proteins (F-score¼ 0.939) while SNF, MCIA and MFA by

Figure 4. Comparison of SNF results on the validation sets by using default parameters before and after feature selection and by using trained parameters without fea-

ture selection. Averaged F-scores obtained from the three analyses are represented with light-, dark- and medium-shaded bars, respectively. Minimum F-scores are

represented with black lines. A minimum F-score equal to 0 indicates that not all the subtypes have been recognized. The number of subtypes recognized for each trial

is added above the bars. (A) Simulated scenarios. (B) BXD data set (G: gene expression, P: proteins, M: metabolites). (C) BRCA data set (G: gene expression, Mi: miRNA,

Me: methylation).
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considering genes–metabolites (F-scores of 0.925, 0.97 and 0.97,
respectively). The omics couple proteins–metabolites was the
most difficult to integrate for all the approaches except for
MCCA. This result could be related to the fact that some cross-
dimensional correlations have been observed between metabo-
lites and adjacent enzymes in known metabolic pathways (e.g.
tricarboxylic acid cycle) [54].

Platelet data set
SNF was the method performing better (Figure 3B), reaching the
same F-score of 0.748 both with three-omics integration and
with the omics couple genes–miRNAs. SNF obtained the worst
performance with the omics couple genes–proteins. This could
be explained by the weak Spearman correlation observed
between the platelet transcriptome and proteome [63]. MFA
obtained the highest F-score of 0.657 for three-omics integra-
tion. Except for genes–proteins integration, MCIA always
obtained the same F-score of 0.657, while MCCA reached the
highest F-score by integrating miRNAs and proteins
(F-score¼0.667). JIVE could not recognize common signal in any
of the tested omics sets. This indicates that the amount of
signal dividing the two extreme phenotypes across the different
data types is not strong, in line with what observed by Zufferey
et al. [55].

BRCA data set
Differently to previous cases, where a binary classification was
required, here samples have been classified in four clinical sub-
types: Luminal A, Luminal B, Basal-like and HER2-enriched
(Figure 3C). As expected, the obtained F-scores were generally
lower than those of the other studies, confirming the increased
level of uncertainty with respect to binary classification. As for
the Platelet data set, SNF provided the highest performance
(best result with three-omics integration, F-score¼ 0.631). SNF
was also the only method able to recognize all the four clinical
subtypes. The classification accuracy of MCIA, the second-best
method after SNF, was also highest in three-omics integration
(averaged F-score of 0.516), but the method failed to recognize
the HER2-enriched subtype, which resulted to be the most diffi-
cult subtype to recognize, in line with [56]. Also MFA recognized
three subtypes (HER2-enriched excluded), but with lower
F-scores: the highest (0.507) was obtained for genes–miRNA and
genes–methylation integration. The latter case provided the
highest, but indeed low, F-scores for JIVE and MCCA, which
could distinguish only Basal-like and Luminal A. The poor result
obtained with JIVE could be motivated by the fact that, as the
HER2-enriched subtype does not provide a signal common to
the three omics, the method could not recognize a shared pat-
tern. This is also in agreement with [64], where JIVE applied on
mRNA, methylation and miRNA from another breast cancer
data set, separated Basal-like and Luminal A samples from the
others. Basal-like and Luminal A subtypes were recognized by
all the methods, especially with three-omics integration. This
agrees with the literature, as the Basal-like subtype is known to
be clearly separated from the Luminal one [56].

Feature selection
The effect of feature selection on the real data sets was also
evaluated (Figure 3A–C, dark-shaded bars). A different threshold
for the CV was selected for each data set (Table 3), to reduce
data dimensions without losing too much signal. Three-omics
integration performances were not diminished by feature selec-
tion (BXD data set because of the mild filtering, which reduced
only transcriptomic features), and in some cases were improved

by it, as for Platelet and BRCA data sets (Figure 3B and C). In the
latter case, although, F-scores were only slightly improved.

Influence of parameter training

All classification results presented so far have been computed by
applying the reviewed methods with default parameters. Here, we
investigate the gain in classification accuracy obtained by training
parameters according to a training/validation procedure (see
‘Methods’ section and Supplementary Material for details). In this
analysis, classification results have been computed by SNF, the
method that performed better, on average, in all previous results.
The training procedure was applied to all the simulated and real
data sets (Figure 4), with the exception of the Platelet data set,
where the limited number of samples prevents the reliability of
the analysis. According to the literature, all classification results
refer to the sample subset devoted to validation (20% of the data
set samples). This is an important aspect to consider because in all
the scenarios, the classification performances obtained by training
parameters outperformed those obtained by using default parame-
ters when considering also samples included in the training set
(data not shown). This result, however, has been rarely confirmed
in the validation set. Indeed, the training/validation procedure
demonstrated an obvious advantage with respect to the standard
unsupervised procedure only in simulated Scenario D.

Simulated data sets
Integration with default parameters outperformed training/vali-
dation in Cases A, B and C (Figure 4A). An effective gain in train-
ing parameters was observed in Scenario D, emphasizing the
advantage of training parameters when the signal in the data
set becomes weak (see Supplementary Figure S7). Such a result
has not been confirmed in Scenario E, but this could be moti-
vated by the high complexity of classifying samples when a
clear common signal is missing between the three data matri-
ces (see Figure 2A and Supplementary Figure S8).

Real data sets
Integration with default parameters outperformed training/vali-
dation in all cases (Figure 4B and C). On the validation set of the
BXD data set (seven Chow diet (CD) and six High Fat diet (HFD)
samples), three-omics and genes–metabolites integration after
parameter training (K ¼ 12, r ¼ 0:59 and K ¼ 7, r ¼ 0:8, respec-
tively) reached the same averaged F-score (0.923) of integration
with default parameters (Figure 4B). Training parameters for the
other omics couples resulted in lower accuracies. On the valida-
tion set of the BRCA data set (11 HER2-enriched, 45 Luminal A,
24 Luminal B and 18 Basal-like samples), training parameters
never improved integration results (Figure 4C), but this analysis
could be influenced by the different number of samples of the
clinical subtypes, which can affect the estimation of some
parameters of the method.

Influence of multiclass classification and experimental
design

The results presented so far indicate that data characteristics,
such as the number of sample subtypes and the experimental
design, could influence multi-omics integration performances.

Multiclass classification
When samples belong to two subtypes (simulated Scenario A,
BXD and Platelet data sets), all the methods, excluded JIVE for
Platelet, identified the two sample groups. This confirms the
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relative simplicity of recovering information when the signal is
given by two phenotypes and strong across all the data.
Similarly, the two different diets in the BXD data set induced a
strong signal when single omics were individually assessed for
significance. Conversely, multi-omics integration of data sets
with multiple subtypes (BRCA data set and simulated Scenarios
from B to E) resulted more challenging, with generally low
F-scores.

Experimental design
The high classification performances observed for the BXD sam-
ples can also be explained in terms of experimental design.
Transcriptomics, proteomics and metabolomics were assessed
on the same mice livers, with a split-sample study, which Cavil
et al. [7] suggested being the best experimental design for multi-
omics integration. Also in the Platelet data set, the omics couple
providing the best classification performance was genes–
miRNAs, and this could be motivated by the fact that both gene
expression and miRNAs were assessed from the same RNA.
This provides an important advantage with respect to the way
in which proteomics data have been obtained: proteins were
quantified with different preparations and three technical repli-
cates for each patient. Moreover, they were separated in two
groups, thus presenting a batch effect on sampling timing that
needed to be corrected, and which could have negatively influ-
enced proteomic integration with the other omics.

Discussion

Five multi-omics integration methods, representative of multivari-
ate, concatenation-based and transformation-based approaches,
were selected for comparison of their ability to integrate more than
two omics data in unsupervised way.

In general, our analysis showed that the integration of three
different omics results in better sample classification than pair-
wise omics integration. This demonstrates that the additional
knowledge brought by considering multiple omics data at once
is essential to increase the understanding of the mechanisms
underlying the characteristics of sample subtypes. Furthermore,
F-scores obtained with SNF, the transformation-based method,
were the highest in 9 of the 22 trials considered and among the
highest in the other cases. MFA performed the best in six trials
(simulated data sets), MCIA and MCCA in three and JIVE only in
one. Additionally, by also considering the accuracy index and
the single-class F-scores (Supplementary Figures S9 and S10,
Supplementary Tables S9–S16), SNF demonstrated to be the best
method when the data set complexity increases.

In addition, the comparisons revealed that the outcome of
multi-omics integration is data-dependent and influenced by
the experimental design as suggested by Cavil et al. [7]. This
could thus warrant some preliminary examination of the data
at hand to determine the appropriate integration method to
use. Omics data should be separately analyzed and visualized
(e.g. with PCA) to quantify how much signal is carried by each
omics and how much of it is shared across omics types.
Recently, Ciucci et al. [65] proposed an algorithm able to detect
the optimal normalization method to be applied and the most
discriminative dimensions. In cases where PCA is not powerful
enough to segregate samples, more advanced techniques (such
as Minimum Curvilinear Embedding [66, 67]) based on nonlinear
dimension reduction can be tested to inspect each omics data
type at a time [68]. Computing correlations between the omics
could also help in assessing and quantifying inter-omics
relationships.

If preliminary analysis reveals shared signals across data
(simulated Scenario A), a method like JIVE able to separate noise
and to provide the common pattern in an already computed
matrix could be a good choice. The multivariate method MCCA
could instead reinforce visible intra-omics signal, when no evi-
dent inter-omics signal (necessary for JIVE) is present (simu-
lated Scenarios C and D). As MCCA is correlation-based, it could
also be applied when data sets show well correlated features
across omics: it obtained the most precise sample classification
for the BXD data set, where 25% of transcript–proteins pairs cor-
related significantly in the CD subtype (P-value < 0.05), 137 of
those with Spearman’s q ¼ j0:65j ([54]).

For more complex cases (simulated Scenario E: multiple sub-
types and noisy data set), SNF, MCIA and MFA, methods based
on subjects’ similarities and dissimilarities, can be better
options. Indeed, these methods recognized all the subtypes
demonstrating their ability to recover not only shared but also
complementary signals across omics. Moreover, the data trans-
formation step applied by SNF succeeded in distinguishing all
the tumor subtypes of the BRCA data set, including the HER2-
enriched (weakest signal), while MCIA and MFA could distin-
guish three of the four subtypes.

Additionally, feature selection is a popular preprocessing
step and, according to our analysis, it can be useful to integrate
omics not showing a strongly shared signal. However, the
thresholds for feature selection need to be carefully selected.
Features can carry signals not detected in single omics analysis
but that can make the difference when more omics are inte-
grated. To define a unique threshold of low variability across
data types, we used a general method to filter out noise. This
can be substituted by more specific methods considering the
data and the problem at hand (e.g. supervised/unsupervised) or
whether the relationships among features should be considered
while filtering (see [69] for a review of feature selection
methods).

Some limitations of our work must be acknowledged. First,
methods were tested only in situations known to potentially
affect results of multi-omics integration such as when consider-
ing omics that bring reinforced or complementary signal, with
increasing numbers of subtypes when noise is present. Second,
we considered only Gaussian distributed data: integrating more
heterogeneous data (e.g. microbiome) would require the study
of more specific methods. Additionally, the type of noise we
generated in the simulated scenarios and the feature selection
approach that was applied could have influenced observations.
The influence on omics integration of other types of noise and
filtering methods should be tested in the future. Finally, we
investigated and compared results related to only one of the
possible applications of multi-omics integration (i.e. sample
classification) because of the possibility to clearly assess classi-
fication results against real subtypes. One needs to keep in
mind that the methodologies tested here can be applied to solve
other questions with potentially different outcomes.

Conclusions

The addition of biological knowledge obtained by considering
multiple molecular levels (omics) to the analysis increases the
knowledge extracted from the available data, in the present
case, sample classification precision. Simultaneous omics inte-
gration should thus be considered in future studies with more
omics data available. Noise was also shown to influence inte-
gration results, an effect that can be mitigated by adding a fea-
ture selection step before proceeding with data integration. This
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is especially recommended when dealing with complex design
(such as those having more than two different omics data, or
with low signal strength, or multiple cellular subtypes).
However, we believe that statistical integration methods could
still be improved, for example by adding a priori information
about relationships between the different omics data, which
could diminish false-positive results, while enhancing the rele-
vance of true molecular interactions.

Key Points

• Multi-omics integration is sensitive to noise increasing
and signal strength decreasing across the omics data.

• Combining more omics data increases the integration
precision. However, this process can add noise.

• A complex biological problem (many subtypes, many
omics data, low signal) can benefit from a feature selec-
tion step.

• SNF resulted to be the most robust method when the
complexity of the data set increases.

Supplementary Data

Supplementary data are available online at https://aca
demic.oup.com/bib.
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