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UNIVERSITÀ DEGLI STUDI DI VERONA

Dipartimento di Informatica

2021-2022





Doctoral thesis in Mathematics

Joint doctoral programme in Mathematics, XXXIV cycle.

Department of Mathematics,
University of Trento.

Department of Computer Science,
University of Verona.

Supervisor: Prof. Giandomenico Orlandi





Acknowledgments

First and foremost, I would sincerely like to express my deep gratitude to my supervisor

Prof. Giandomenico Orlandi for his guidance, for years of training, for fruitful discussions in

mathematics, and uncountable support during my Ph.D studies and research. Indeed, his vast of

knowledge, his rigorous, and generous has shaped my mathematical research directions.

I would like to thank Prof. Matteo Novaga, and Dr. Mauro Bonafini for their collaboration

and fruitful discussions during the years. In particular, I wish to thank Dr. Mauro Bonafini again

for his willing helps during my period studies. I also would like to thank Prof. Sisto Baldo and

Dr. Annalisa Massaccesi for their collaboration. In addition, I would like to thank Dr. Giacomo

Canevari for useful discussions. Also, I would like to thank the referees for useful suggestions.

I would like to thank staff members at the department of mathematics, University of Trento

and the department of computer science, University of Verona. In particular, thanks go to Prof.

Antonio Marigonda for providing useful information.

I would like to thank Nguyen Xuan Cuong, Pham Dinh Dong, Nguyen Van Vinh for nice

conversations after hardworking days. I also would like to thank Alessandro Mella, and Giorgia

Pasini for their friendship.

I also would like to acknowledge my former teacher in undergraduate Cao Huy Linh for always

following and encouraging me.

Finally, I would like to take this opportunity to thank my parents, Le Van Nhan-Le Thi

Thanh Nga, my brothers and sisters for their guidance, constant encouragement, and support. In

particular, I would like to thank my wife Van Thi Diem Chau for her love, for being beside me,

and support during the years in Ph.D studies. I also would like to thank her parents, Van Duc

Son-Tran Thi Kim Yen, her sister for their encouragement and support. Also, I would like to

take this chance to memorize a brother of mine, Le Van Phu Thinh, who passed way 10 years

ago, I wish to make this dissertation as a gift for him.

The author was supported by the scholarship of the department of mathematics, University

of Trento, joint with department of computer science, University of Verona.

Verona, Italy, City of Love

Le Van Phu Cuong





Introduction

In this thesis, we investigate the hyperbolic type obstacle problems, nonlinear waves in adhesive

phenomena, harmonic maps with defects and their connection to Gilbert-Steiner problems.

On the obstacle problem for fractional semilinear wave equations:

The first problem that I have studied is the obstacle problem for fractional semilinear wave

equations [17]. In [17], which is the joint work with M. Bonafini, M. Novaga, G. Orlandi, we

aim to study both obstacle free-case (there is no obstacle), and the obstacle case (i.e. in the

presence of an obstacle), and including also non-local operators (e.g. fractional Laplacian). In

the obstacle-free case, the main motivation is that certain solutions of nonlinear wave equations

(possibly non-local) giving rise to interfaces (or defects) evolving by curvature such as minimal

surfaces in Minkowski space: for instance, consider the class of equations

utt −∆u+
1

ε2
∇uW (u) = 0 (0.0.1)

for u : [0,∞)× Rd → Rm, where W is a balanced double-well potential, m = 1, 2, and ε > 0 is a

small parameter. This case can be seen as the parallel analogous results with the elliptic case:

−∆u+
1

ε2
∇uW (u) = 0 (0.0.2)

where the defects are Euclidean minimal surfaces (see for instance [60, 44, 12]). And in the

parabolic case:

ut −∆u+
1

ε2
∇uW (u) = 0 (0.0.3)

where the defects evolve according to motion by mean curvature. (see for example [45, 13]). In

the hyperbolic scenario (0.0.1), this fact was observed in [61] by a formal analysis in the case

m = 1. Then, a rigorous analysis was given in [47, 77, 69] where solutions of (0.0.1) having

interfaces near a given timelike minimal surface were constructed. However, due to the onset

of singularities during the evolution, those results are valid only for a short time. On the other

hand, the analysis of singular limits of the hyperbolic Ginzburg-Landau equation possibly passing

to the singularities was studied in [9] under conditional assumptions i.e. if those conditions are

verified, then in the limits the Lagrangian density of the solutions will concentrate on timelike

lorentzian minimal submanifolds of codimension m within the varifold framework developed in

[10]. Therefore, our first goal is to propose a constructive time-discrete variational scheme in the

spirit of minimizing movements to build a solution for (0.0.1), this method was also used to treat

the fractional linear wave equation in [18](see also [42, 50]), and our results can be seen as the

extension of those obtained in [18]. Moreover, our results embrace the vector-valued case as well

i



as non-local operator:
utt + (−∆)su+∇uW (u) = 0 in (0, T )× Ω

u(t, x) = 0 in [0, T ]× (Rd \ Ω)

u(0, x) = u0(x) in Ω

ut(0, x) = v0(x) in Ω

(0.0.4)

where u : (0, T )× Ω→ Rm, T > 0, m ∈ N, W a continuous potential with Lipschitz continuous

derivative and (−∆)s stands for the fractional Laplacian having Fourier symbol |ξ|2sFu. We

expect that those conditions in [9] could be relaxed for our constructive solutions thanks to the

minimality of approximate solutions, and this will be the future investigation.

In the obstacle case, roughly speaking given an obstacle g, we look for a function u satisfying

certain variational inequalities and at the same time lying above the obstacle g. In recent years,

there has been a lot of works devoted to study the obstacle problems elliptic and parabolic setting

(see [75, 28, 27, 63, 8] and reference therein), in the hyperbolic scenario there are still few works:

for instance, the works of Schatzman and collaborators (see [71, 72, 73, 67]), Kikuchi dealing with

the vibrating strings with an obstacle in the 1-dimensional case by using a time semi-discrete

method [50]. By using the same approach in [50], the obstacle problem for fractional wave

equations have been investigated in [18], more recently similar time semi-discrete methods have

also been used to treat hyperbolic free boundary problems (see [1]). In [17], we have extended

the results in [18] to the semilinear setting, more precisely we consider the following system:

utt + (−∆)su+W ′(u) ≥ 0 in (0, T )× Ω

u(t, ·) ≥ g in (0, T )× Ω

(utt + (−∆)su+W ′(u))(u− g) = 0 in (0, T )× Ω

u(t, x) = 0 in [0, T ]× (Rd \ Ω)

u(0, x) = u0(x) in Ω

ut(0, x) = v0(x) in Ω

(0.0.5)

By using the scheme as the obstacle-free case, we provided energy estimates as well as compactness

results which allow us to prove the existence of solutions of the system (0.0.5) in the suitable sense.

Furthermore, we believe that the analysis developed in [17] could be used to analyse problems

which are shared the same character. And our results in [17] have been published in the journal

Nonlinear Analysis. 210(2021), 112368. This work will be presented in the Chapter 1.
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Weak solutions for nonlinear waves in adhesive phenomena:

In a joint work with Mauro Bonafini [15], the second problem that I have dealt with is the dynamic

of an elastic body (e.g. a string or a membrane) interacting with a rigid substrate through an

adhesive layer. In recent years, there are many works devoted to study the adhesive and the

debonding phenomenona (see for instance [46, 82, 39, 66] and references therein) which arise

from the engineering and biophysics. The phenomenon depend heavily on the involved materials,

and due to the complexity mechanism ranging from microscopic to macroscopic, mathematical

models has been proposed in order to capture the essential features.

In [15], following [32], where the dynamic of an elastic body (e.g. a string) glued to a rigid

substrate through an adhesive layer in 1-dimensional case can be modelled via a potential W

describing the effect of the adhesive layer on the dynamic. More precisely, the Lagrangian

governing the one dimensional dynamical system considered there is described by

`(u) = −1

2
u2
t +

1

2
u2
x +W (u), (0.0.6)

for a scalar displacement field u : [0, T ]× [0, L]→ R, the potential W has the following behavior:

W (u) =

{
u2 if |u| ≤ u∗,
(u∗)2 if |u| > u∗.

(0.0.7)

The lack of smoothness of W at points ±u∗ gives rises the difficulties in showing the existence of

solutions to the problem. And our goal is to address this issue, in particular our analysis extends

to vector-valued case as well as non-local operator. In view of this, we consider the following

system: 
utt + (−∆)su+∇uW (u) = 0 in (0, T )× Ω,

u(x, t) = 0 in [0, T ]× (Rd \ Ω),

u(0, x) = u0(x) in Ω,

ut(0, x) = v0(x) in Ω,

(0.0.8)

where Ω ⊂ Rd is an open bounded domain with Lipschitz boundary, u : [0, T ] × Ω → Rm and

(−∆)s stands for the fractional Laplacian (s = 1 provides the standard Laplacian). Furthermore,

the consideration (0.0.8) includes also the other interaction which manifests the adhesive feature,

more specifically in the case s = 2 i.e. bi-Laplacian, the equation models the elastic beam

interacting with a substrate through an elastic-breakable forcing term, and it has been recently

studied in [34]. In [15], we provide the existence results for the equation (0.0.8), and it depends

on the regularity of the potential W . Whenever W is a non-negative potential in C1(Rm) and

having Lipschitz continuous gradient ∇W , the existence results was provided in [17]. In [15], by

using the results in [17] and regularization methods of the considered potentials, we are able to

prove the existence of solutions in case without the assumption Lipschitz-condition on the ∇W ,

and show difficulties in defining the notion of solutions to the problem. More precisely,

(i) In first case we investigate the energetic contribution of adhesive layer, namely ∇W decays

continuously to zero. We prove the existence of solutions with initial datum as in [17].

(ii) In the other case where the adhesive layer discontinuously drop to zero as considered in

[32, 33], we shall see the limitation of current method and the obstacles in defining the

notion of solutions. However, we can provide the existence result for small initial datum

combined with the condition 2s > d. This work will be presented in the Chapter 2.
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Energy minimizing maps with prescribed singularities and Gilbert-Steiner optimal

networks:

The last problem that I have dealt with in this thesis is about the connection between k-harmonic

valued maps with prescribed singularities and Gilbert-Steiner problems which is based on a joint

work with S. Baldo, A. Massaccesi, G. Orlandi [7].

Steiner tree, Gilbert-Steiner (single sink) problems can be formulated as follows: given n distinct

points P1, . . . , Pn in Rd, where d, n ≥ 2, we are looking for an optimal connected transportation

network, L = ∪n−1
i=1 λi, along which the unit masses located at P1, . . . , Pn−1 are transported to the

target point Pn (single sink), here λi can be seen as the path of the mass at Pi flowing from Pi
to Pn, and the cost of moving a mass m along a segment with length l is proportional to lmα.

Therefore, we are led to consider the problem

(I) inf

{
Iα(L) : L =

n−1⋃
i=1

λi with {Pi, Pn} ⊂ λi, for every i = 1, . . . , n− 1

}

where the energy Iα is computed as Iα(L) =
∫
L |θ(x)|αdH1(x), with θ(x) =

∑n−1
i=1 1λi(x). Let us

notice that θ stands for the mass density along the network. In recent years, there are a lot of

works devoted to study the problem (I) from several aspects such as existence, regularity, stability

and numerical feasibility. In particular, the recent profound works [54, 55] has shown the problem

(I) as Plateau problem i.e. a mass-minimization problem of currents with coefficients in a norm

group (Zn−1, ψ) (see Chapter 3, Section 3.3 for more details on the norm ψ): roughly speaking,

we can interpret the network L =
⋃n−1
i=1 λi as the superposition of n− 1 paths λi connecting Pi to

Pn labelled with multiplicity ei, ei = (0, . . . , 1, . . . , 0) ∈ Zn−1, 1 is i-th position. This point of view

requires a density function with values in Zn−1, which corresponds to the so-called 1-dimensional

current with coefficients in the group Zn−1. Furthermore, by equipping Zn−1 with a certain norm

(depending on the cost of the problem), we may define the notion of mass of those currents, and

problem (I) turns out to be equivalent to

(M) inf
{
M(T ), ∂T = µ+ − µ−

}
where T is a 1-dimensional current with coefficients in the group Zn−1, µ+ = (e1+e2+. . .+en−1)δPn ,

µ− = e1δP1 + . . .+ en−1δPn−1 , and we refer the reader to Section 3.2 for rigorous definitions. They

also define the notion of calibration which are a useful tool to prove the minimality of minimizers.

[54, 55] are also a starting point for the works [19, 20] where the authors provided a variational

approximation functionals of the problem (Iα) in the sense of Γ-convergence.

Following the line [54, 55], [19, 20], in the present work motivated by the seminal work of

Brezis, Coron and Lieb [25] who showed the relation between sphere-valued harmonic maps having

prescribed topological singularities at given points in R3 with minimal connections between those

points, i.e. optimal mass transportation networks (in the sense of Monge-Kantorovich) having

those point singularities as marginals. More precisely, [25] showed that given P1, . . . , Pm, and

N1, . . . , Nm in Rd, we have

inf

{∫
Rd
|∇u|d−1dx | u ∈ V

}
= (d− 1)

d−1
2 αd−1L (0.0.9)

where V = {u ∈ C1(Rd \ {P1, . . . , Pm, N1, . . . , Nm};Sd−1) | deg(u, Pi) = 1, deg(u,Ni) = −1},
αd−1 is the surface area of the unit ball in Rd, and L is minimal connection between P1, . . . , Pm, and
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N1, . . . , Nm i.e. solutions of Monge-Kantorovich problems in which P1, . . . , Pm, and N1, . . . , Nm

play as marginals. And then this was later recast by Almgren, Browder and Lieb [4] by interpreting

the minimal connection as a mass-minimization problem of classical 1-dimensional integral currents

with the given topological singularities as prescribed boundary. Here, we aim to consider more

general minimizing configurations of more general energies for maps with valued into manifolds and

having prescribed topological singularities, and investigate their connection with Plateau problem

in the context of currents or flat chains with coefficients in suitable groups which are linked to

the topology of involved manifolds. In particular, we restrict our attention first to consider the

manifold which is a product of unit spheres, and show an equivalent between an energy-minimizing

configurations with Steiner tree, Steiner-Gilbert problems (I) under an appropriate condition,

this can be done thanks to the works in [55, 54] by proving Steiner tree, Steiner-Gilbert problems

as a mass-minimization problem of currents with coefficients in suitable norm group (Zn−1, ψ).

More precisely, let P1, . . . , Pn−1, Pn in Rd be given, and consider the spaces Hi defined as the

subsets of W 1,d−1
loc (Rd;Sd−1) where the functions are constant outside a neighbourhood of the

segment joining Pi, Pn and have distributional Jacobian
αd−1

d (δPi − δPn), respectively. Here αd−1

is the surface area of the unit ball in Rd.
Let ψ be a norm on Rn−1 which will be specified in Section 3.3 (see (3.4.9)), and set

H(u) =

∫
Rd
ψ(|∇u1|d−1, |∇u2|d−1, . . . , |∇un−1|d−1) dx (0.0.10)

where u = (u1, . . . , un−1) ∈ H1 ×H2 × . . .×Hn−1 is a 2-tensor. We investigate

(H) inf {H(u) : u ∈ H1 ×H2 × . . .×Hn−1} .

Our main contribution is the following:

Assume that a minimizer of problem (M) admits a calibration (see Definition 3.2.8). Then, we

have

inf H = (d− 1)
d−1
2 αd−1 inf M (0.0.11)

or equivalently,

inf H = (d− 1)
d−1
2 αd−1 inf Iα . (0.0.12)

This work will be presented in Chapter 3. In a companion paper in preparation [29] we will

consider more general manifolds and state the results corresponding to more general situations.

Summary of research outcome. The thesis work led to the following publications and preprints.

[17] Mauro Bonafini, Van Phu Cuong Le, Matteo Novaga, and Giandomenico Orlandi. On the

obstacle problem for fractional semilinear wave equations. Nonlinear Analysis, 210(112368),

2021

[15] Mauro Bonafini and Van Phu Cuong Le. Weak solutions for nonlinear waves in adhesive

phenomena. arXiv:2104.10437, submitted, 2021

[7] Sisto Baldo, Van Phu Cuong Le, Annalisa Massaccessi, and Giandomenico Orlandi. En-

ergy minimizing maps with prescribed singularities and Gilbert-Steiner optimal networks.

arXiv:2112.12511, submitted, 2021
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Chapter 1

On the obstacle problem for
fractional semilinear wave equations

In this chapter we prove existence of weak solutions to the obstacle problem for semilinear

wave equations (including the fractional case) by using a suitable approximating scheme in the

spirit of minimizing movements. This extends the results in Bonafini et al [18], where the linear

case was treated. In addition, we deduce some compactness properties of concentration sets (e.g.

moving interfaces) when dealing with singular limits of certain nonlinear wave equations.

1.1 Introduction

Semilinear wave equations have been considered extensively in the mathematical literature

with many dedicated contributions (see for example [71, 56, 78, 74, 61, 9, 47, 69] and references

therein). Our main motivation is to study certain nonlinear wave equations (possibly non-local)

giving rise to interfaces (or defects) evolving by curvature such as minimal surfaces in Minkowski

space: for instance, consider the class of equations

ε2(utt −∆u) +∇uW (u) = 0 (1.1.1)

for u : [0,∞) × Rd → Rm, where W is a balanced double-well potential, m ≥ 1, and ε > 0 is

a small parameter (see for example [61, 9, 47, 77, 69]). This case is the hyperbolic version of

the stationary Allen–Cahn equation where the defects are Euclidean minimal surfaces and the

parabolic Ginzburg–Landau where defects evolve according to motion by mean curvature (see for

instance [60, 45, 13] and references therein).

Obstacle problems in the elliptic and parabolic setting have attracted a lot of attention including

both local and non-local operators (see for example [75, 28, 27, 63, 8] and references therein). In

the hyperbolic scenario, we would like to mention works by Schatzman and collaborators (see

for example [71, 72, 73, 67]) and more recently, a work by Kikuchi dealing with the vibrating

strings with an obstacle in the 1-dimensional case by using a time semidiscrete method (see

[50]). Notice that similar time semidiscrete methods have also been used to treat hyperbolic free

boundary problems (see [42, 1]). By using the same approach as in [50], the obstacle problem

for the fractional wave equation has been investigated in [18], in which the existence of suitably

defined weak solutions is proved.

In this chapter, following [18], we implement a semidiscrete in time approximation scheme

in order to prove existence of solutions to hyperbolic PDEs with possibly specific additional
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conditions. The scheme is closely related to the concept of minimizing movements introduced by

De Giorgi, and it is also elsewhere known as the discrete Morse semiflow approach or Rothe’s

method [70]. Our main focus is to prove the existence of weak solutions to the following PDEs

(including also the obstacle case):
utt + (−∆)su+∇uW (u) = 0 in (0, T )× Ω,

u(t, x) = 0 in [0, T ]× (Rd \ Ω),

u(0, x) = u0(x) in Ω,

ut(0, x) = v0(x) in Ω,

(1.1.2)

for Ω ⊂ Rd an open bounded domain with Lipschitz boundary and W a continuous potential

with Lipschitz continuous derivative. For s > 0 the operator (−∆)s stands for the fractional

s-Laplacian. We prove a classical energy bound for the approximating trajectories in Proposition

1.3.4 and rely upon it to prove existence of a suitably defined weak solution of (1.1.2) in the

obstacle-free case (Theorem 1.3.3) and in the obstacle case (Theorem 1.4.2). The approximation

scheme allows us to deal with a variety of situations, including non-local fractional semilinear

wave equations, and is valid in any dimension. This gives also some compactness results for

concentration sets in the singular limit of (2.1.3).

Chapter 1 is organized as follows: in Section 1.2 we briefly review some properties of the

fractional Sobolev spaces and fractional Laplace operator so as to fix notations. In Section 1.3

we introduce the approximating scheme and apply it to fractional semilinear wave equations

by means of an appropriate variational problem, prove existence result Theorem 1.3.3 in the

obstacle-free case, and the conservative property of the solutions, namely Proposition 1.3.10. In

proposition 1.3.13 we prove compactness properties for the concentration sets in the singular limit

of (2.1.3). In Section 1.4 we adapt the scheme to deal with the obstacle problem for fractional

semilinear wave equations, and prove Theorem 1.4.2. Eventually, in Section 1.5 we present an

example implementing a case related to moving interfaces in a relativistic setting.

1.2 Preliminaries

Let us fix s ≥ 0 and m ≥ 1. Following [62], we introduce fractional Sobolev spaces and

the fractional Laplacian through Fourier transform. Consider the Schwartz space S of rapidly

decaying C∞ functions, namely S(Rd; Rm). For any u ∈ S(Rd; Rm) denote by

Fu(ξ) =
1

(2π)d/2

∫
Rd

e−iξ·xu(x) dx

the Fourier transform of u. The fractional Laplacian operator (−∆)s : S(Rd; Rm)→ L2(Rd; Rm)

can then be defined, up to constants, as

(−∆)su = F−1(|ξ|2sFu) for all ξ ∈ Rd.

Given u, v ∈ L2(Rd; Rm), we consider the bilinear form

[u, v]s =

∫
Rd

(−∆)s/2u(x) · (−∆)s/2v(x) dx

2



and the corresponding semi-norm [u]s =
√

[u, u]s = ||(−∆)s/2u||L2(Rd;Rm). Given the semi-norm

[·]s, we define the fractional Sobolev space of order s as

Hs(Rd) =

{
u ∈ L2(Rd; Rm) :

∫
Rd

(1 + |ξ|2s)|Fu(ξ)|2 dξ < +∞
}

equipped with the norm ||u||s = (||u||2
L2(Rd)

+ [u]2s)
1/2.

Fix now Ω ⊂ Rd to be an open bounded set with Lipschitz boundary and define

H̃s(Ω) = {u ∈ Hs(Rd;Rm) : u = 0 a.e. in Rd \ Ω},

endowed with the || · ||s norm, and its dual H−s(Ω) := (H̃s(Ω))∗. One can prove, see e.g. [59],

that H̃s(Ω) corresponds to the closure of C∞c (Ω) with respect to the || · ||s norm.

1.3 Weak solutions for the fractional semilinear wave equations

We prove in this section existence of weak solutions for the fractional semilinear wave equation.

The proof, as in [18], is based on a constructive time-discrete variational scheme whose main

ideas date back to [70] and which has since then been adapted to many instances of parabolic

and hyperbolic equations.

Let Ω ⊂ Rd be an open bounded domain with Lipschitz boundary. For u = u(t, x) :

(0, T )× Rd → Rm, let us consider the system
utt + (−∆)su+∇uW (u) = 0 in (0, T )× Ω

u(t, x) = 0 in [0, T ]× (Rd \ Ω)

u(0, x) = u0(x) in Ω

ut(0, x) = v0(x) in Ω

(1.3.1)

with initial data u0 ∈ H̃s(Ω) and v0 ∈ L2(Ω) := L2(Ω; Rm) (we conventionally intend that

v0 = 0 in Rd \ Ω), and a non-negative potential W ∈ C1(Rm; R) having Lipschitz continuous

derivative with Lipschitz constant K > 0, i.e.,

|∇W (x)−∇W (y)| ≤ K|x− y| for any x, y ∈ Rm. (1.3.2)

As we are dealing with non-local operators, the boundary condition is imposed on the whole

complement of Ω. We define a weak solution of (1.3.1) as follows:

Definition 1.3.1. Let T > 0. We say u = u(t, x) is a weak solution of (1.3.1) in (0, T ) if

1. u ∈ L∞(0, T ; H̃s(Ω)) ∩W 1,∞(0, T ;L2(Ω)) and utt ∈ L∞(0, T ;H−s(Ω)),

2. for all ϕ ∈ L1(0, T ; H̃s(Ω))∫ T

0
〈utt(t), ϕ(t)〉dt+

∫ T

0
[u(t), ϕ(t)]s dt+

∫ T

0

∫
Ω
∇uW (u(t)) · ϕ(t) dxdt = 0 (1.3.3)

with

u(0, x) = u0 and ut(0, x) = v0. (1.3.4)
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The energy of u is defined as

E(u(t)) =
1

2
||ut(t)||2L2(Ω) +

1

2
[u(t)]2s + ||W (u(t))||L1(Ω), t ∈ [0, T ].

Remark 1.3.2. In case ut ∈ L∞(0, T ; H̃s(Ω)), we observe that the following energy norms

1

2
||ut(·)||2L2(Ω) : [0, T ]→ [0,∞)

t 7→ 1

2
||ut(t)||2L2(Ω)

(1.3.5)

1

2
[u(·)]2s : [0, T ]→ [0,∞)

t 7→ 1

2
[u(t)]2s

(1.3.6)

||W (u(·))||L1(Ω) : [0, T ]→ [0,∞)

t 7→ ||W (u(t))||L1(Ω)

(1.3.7)

are absolutely continuous. Moreover, for a.e t ∈ (0, T ) one has:

1

2

d||ut(t)||2L2(Ω)

dt
=< utt(t), ut(t) >,

1

2

d[u(t)]2s
dt

= [u(t), ut(t)]s,

and
d||W (u(t))||L1(Ω)

dt
=

∫
Ω
∇uW (u(t)) · ut(t)dt.

(1.3.8)

We refer the reader to [37] for these facts.

This section is devoted to the proof of the following theorem.

Theorem 1.3.3.

(i) There exists a weak solution of the fractional semilinear wave equation (1.3.1) such that it

satisfies the energy inequality:

E(u(t)) ≤ E(u(0)) (1.3.9)

for any t ∈ [0, T ].

(ii) if u0 ∈ H̃2s(Ω) and v0 ∈ H̃s(Ω), then there exists a solution u of the equation (1.3.1) such

that u ∈W 1,∞(0, T ; H̃s(Ω)), ut ∈W 1,∞(0, T ;L2(Ω)). Moreover, for any t ∈ [0, T ]

E(u(t)) = E(u(0)), (1.3.10)

i.e. the energy of u is conserved during the evolution.

(iii) The equation (1.3.1) has unique solution in the class:

X = {u | u is a weak solution of (1.3.1), ut ∈ L∞(0, T ; H̃s(Ω))} in the sense that if v, w ∈
X, then for each t ∈ [0, T ]

v(t) = w(t) in H̃s(Ω).

In particular the solution found in point (ii), since it belongs to X, it is unique.

The proof relies on an extension of the approximating scheme already used in [18] in the linear

case, where now one has to deal with the additional contribution of the (possibly non convex)

potential term (the proof would simplify in case of a convex potential, as for example in [78]).

4



1.3.1 Approximating scheme

For n ∈ N, set τn = T/n and define tni = iτn, 0 ≤ i ≤ n. Let un−1 = u0 − τnv0, un0 = u0 and

for every i ≥ 1 let

uni ∈ arg min
u∈H̃s(Ω)

Jni (u) = arg min
u∈H̃s(Ω)

[∫
Ω

|u− 2uni−1 + uni−2|2

2τ2
n

dx+
1

2
[u]2s +

∫
Ω
W (u)dx

]
.

(1.3.11)

We can readily see, using the direct method of the calculus of variations, that each Jni admits

a minimizer in H̃s(Ω) so that uni is indeed well defined (notice that we are not working under

uniqueness assumptions, thus we may have to choose between multiple minimizers). For any fixed

i ∈ {1, . . . , n}, by minimality we have

d

dε
Jni (uni + εϕ)|ε=0 = 0 for every ϕ ∈ H̃s(Ω)

or, equivalently,∫
Ω

(
uni − 2uni−1 + uni−2

τ2
n

) ·ϕdx+[uni , ϕ]s+

∫
Ω
∇uW (uni ) ·ϕdx = 0 for every ϕ ∈ H̃s(Ω). (1.3.12)

We define the piecewise constant and piecewise linear interpolations over [−τn, T ] as follows:

� piecewise constant interpolant

ūn(t, x) =

{
un−1(x) t = −τn
uni (x) t ∈ (tni−1, t

n
i ],

(1.3.13)

� piecewise linear interpolant

un(t, x) =


un−1(x) t = −τn
t− tni−1

τn
uni (x) +

tni − t
τn

uni−1(x) t ∈ (tni−1, t
n
i ].

(1.3.14)

At the same time, upon defining vni = (uni − uni−1)/τn, 0 ≤ i ≤ n, let v̄n be the piecewise constant

interpolation and vn be the piecewise linear interpolation over [0, T ] of the family {vni }ni=0, defined

similarly to (1.3.13), (1.3.14).

From (1.3.12), an integration over [0, T ] provides∫ T

0

∫
Ω

(
unt (t)− unt (t− τn)

τn

)
·ϕ(t) dxdt+

∫ T

0
[ūn(t), ϕ(t)]s dt+

∫ T

0

∫
Ω
∇uW (ūn(t)) ·ϕ(t) dxdt = 0

for all ϕ ∈ L1(0, T ; H̃s(Ω)), which is equivalent to∫ T

0

∫
Ω
vnt (t) · ϕ(t) dxdt+

∫ T

0
[ūn(t), ϕ(t)]s dt+

∫ T

0

∫
Ω
∇uW (ūn(t)) · ϕ(t) dxdt = 0. (1.3.15)

The strategy in proving Theorem 1.3.3 is then to consider (1.3.15), pass to the limit as n→∞
and prove that un and ūn converge to a weak solution of (1.3.1). In order to do so, we need the

following energy estimate.
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Proposition 1.3.4 (Key estimate). The approximate solutions ūn and un satisfy

1

2
‖unt (t)‖2L2(Ω) +

1

2
[ūn(t)]2s + ||W (ūn(t))||L1(Ω) ≤ E(u(0)) + Cτn

for all t ∈ [0, T ], with C = C(E(u(0)),K, T ) a constant independent of n.

Proof. For fixed i ∈ {1, . . . , n}, we consider equation (1.3.12) with test function ϕ = uni−1 − uni =

−τnvni to obtain

0 =

∫
Ω

(vni−1 − vni ) · vni dx+ [uni , u
n
i−1 − uni ]s +

∫
Ω
∇uW (uni ) · (uni−1 − uni )dx

≤ 1

2

∫
Ω

[
|vni−1|2 − |vni |2

]
dx+

1

2
([uni−1]2s − [uni ]2s)−

∫ tni

tni−1

∫
Ω
∇uW (uni ) · vni dxdt

(1.3.16)

where we used the standard inequality 2a · (b− a) ≤ |b|2 − |a|2, for a, b ∈ Rm. Let us focus on the

last term in the previous expression: for any t ∈ (tni−1, t
n
i ], we write

−
∫ tni

tni−1

∫
Ω
∇uW (uni ) · vni dxdt = −

∫ tni

tni−1

∫
Ω
∇uW (ūn(t)) · v̄n(t) dxdt

= −
∫ tni

tni−1

∫
Ω
∇uW (un(t)) · v̄n(t) dxdt−

∫ tni

tni−1

∫
Ω

(∇uW (ūn(t))−∇uW (un(t)) · v̄n(t) dxdt

We recognize in the first integral a derivative, so that

−
∫ tni

tni−1

∫
Ω
∇uW (un(t)) · v̄n(t) dxdt = −

∫ tni

tni−1

∫
Ω

d

dt
W (un(t)) dxdt =

∫
Ω

[
W (uni−1)−W (uni )

]
dx

On the other hand, since ūn and un are just different interpolations of the same data and ∇uW
is Lipschitz continuous by assumption, the second integral can be estimated as

−
∫ tni

tni−1

∫
Ω

(∇uW (ūn(t))−∇uW (un(t)) · v̄n(t) dxdt ≤ K
∫ tni

tni−1

∫
Ω
|ūn(t)− un(t)||v̄n(t)| dxdt

= K

∫ tni

tni−1

∫
Ω
|uni − (uni + (t− tni )vni )| · |vni | dxdt =

τ2
n

2
K

∫
Ω
|vni |

2 dx

Hence, inequality (1.3.16) leads to

0 ≤ 1

2

(
||vni−1||2L2(Ω) − ||v

n
i ||2L2(Ω)

)
+

1

2
([uni−1]2s − [uni ]2s)

+

∫
Ω

[
W (uni−1)−W (uni ))

]
dx+

τ2
n

2
K||vni ||2L2(Ω)

Taking the sum for i = 1, . . . , k, with 1 ≤ k ≤ n, we get

Enk :=
1

2
||vnk ||2L2(Ω) +

1

2
[unk ]2s +

∫
Ω
W (unk) dx

≤ 1

2
||v0||2L2(Ω) +

1

2
[u0]2s +

∫
Ω
W (u0) dx+

τ2
n

2
K

k∑
i=1

||vni ||2L2(Ω)

(1.3.17)

6



In particular, we have

||vnk ||2L2(Ω) ≤ 2E(u(0)) + τ2
nK

k∑
i=1

||vni ||2L2(Ω)

for any k = 1, . . . , n. For n large enough so that (1− τ2
nK) > 1/2, we write

||vnk ||2L2(Ω) ≤
1

(1− τ2
nK)

(
2E(u(0)) + τ2

nK
k−1∑
i=1

||vni ||2L2(Ω)

)
(1.3.18)

Then, in view of the discrete Gronwall’s inequality (cf. Proposition 1.6.1), we obtain that

||vni ||2L2(Ω) ≤ C̄ for every i = 1, . . . , n (1.3.19)

with C̄ = C̄(E(u(0)),K). Taking into account (1.3.19) into (1.3.17) we finally get

Enk =
1

2
||vnk ||2L2(Ω) +

1

2
[unk ]2s +

∫
Ω
W (unk) dx ≤ E(u(0)) +

τ2
n

2
K

k∑
i=1

C̄ ≤ E(u(0)) +

(
T

2
KC̄

)
τn

for every k = 1, . . . , n, which is the sought for conclusion. �

Thanks to the energy bound of Proposition 1.3.4 we can now provide a suitable uniform bound

on ∇uW (ūn), which is one of the main ingredients to be able to pass to the limit in (1.3.15).

Proposition 1.3.5. Let ūn be the piecewise constant interpolant constructed in (1.3.13). Then,

∇uW (ūn(t)) is bounded in L2(Ω) uniformly in t and n.

Proof. We first observe that ūn is bounded in L2(Ω) uniformly in t and n. Indeed, one has

||un(t2, .)− un(t1, .)||2L2(Ω) =

∫
Ω

∣∣∣∣∫ t2

t1

unt (t, x)dt

∣∣∣∣2 dx ≤ (t2 − t1)

∫
Ω

∫ t2

t1

|unt (t, x)|2dtdx

= (t2 − t1)

∫ t2

t1

∫
Ω
|unt (t, x)|2dxdt ≤ C(t2 − t1)2,

(1.3.20)

for any t1 < t2 in [0, T ], where we made use of Jensen’s inequality, Fubini’s theorem and the

uniform bound on unt in L2(Ω) provided by Proposition 1.3.4. That implies that un is bounded

in L2(Ω) uniformly in t and n, and so is ūn since lim
n→∞

sup
t∈[0,T ]

||un(t, x)− ūn(t, x)||2L2(Ω) = 0. For

every fixed t ∈ [0, T ], this uniform L2-bound, combined with the Lipschitz continuity of ∇uW
and with boundedness of Ω, provides∫

Ω
|∇uW (ūn(t))|2 dx ≤ C1

∫
Ω

(|ūn(t)|+ 1)2 dx ≤ C2 (1.3.21)

uniformly in t and n. �

We are now in the position to prove the convergence of un, ūn, W (ūn) and ∇uW (ūn).

Proposition 1.3.6 (Convergence of un and vn). There exist a subsequence of steps τn → 0 and

a function u ∈ L∞(0, T ; H̃s(Ω)) ∩W 1,∞(0, T ;L2(Ω)), with utt ∈ L∞(0, T ;H−s(Ω)), such that

(i) un → u in C0([0, T ];L2(Ω)),
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(ii) unt ⇀
∗ ut in L∞(0, T ;L2(Ω)),

(iii) un(t) ⇀ u(t) in H̃s(Ω) for any t ∈ [0, T ],

(iv) vn → ut in C0([0, T ];H−s(Ω)),

(v) vnt ⇀
∗ utt in L∞(0, T ;H−s(Ω)).

Proof. The existence of a limit function u ∈ L∞(0, T ; H̃s(Ω)) ∩W 1,∞(0, T ;L2(Ω)) and points (i),

(ii) and (iii) follow from Proposition 1.3.4 combined with Ascoli-Arzelà’s Theorem (for details

see, e.g., [18, Proposition 6]).

To prove (iv) and (v), we observe that from (1.3.15), with the aid of Proposition 1.3.4 and

Proposition 1.3.5, we have that vnt (t) is bounded in H−s(Ω) uniformly in t and n. Combining

this with the L2-bound on the velocities vni , we have

vn bounded in L∞(0, T ;L2(Ω)) and in W 1,∞(0, T ;H−s(Ω)) (1.3.22)

uniformly in t, n, and at the same time, for any given ϕ ∈ Hs(Ω) and for all 0 ≤ t1 < t2 ≤ T , we

have∫
Ω

(vn(t2)− vn(t1)) · ϕdx =

∫
Ω

∫ t2

t1

vnt dt · ϕdx =

∫
Ω

∫ t2

t1

vnt · ϕdtdx =

∫ t2

t1

∫
Ω
vnt · ϕdxdt

≤
∫ t2

t1

||vnt ||H−s ||ϕ||Hsdt ≤ C||ϕ||Hs(t2 − t1).

Thus, there exists v ∈W 1,∞(0, T ;H−s(Ω)) such that

vn → v in C0([0, T ];H−s(Ω)) and vnt ⇀
∗ vt in L∞(0, T ;H−s(Ω)).

Indeed, we have v(t) = ut(t) as elements of L2(Ω) for a.e. t ∈ [0, T ]: take t ∈ (tni−1, t
n
i ] and

ϕ ∈ H̃s(Ω), we observe that unt (t) = vn(tni ), so that∫
Ω

(unt (t)− vn(t)) · ϕdx =

∫
Ω

(vn(tni )− vn(t)) · ϕdx =

∫
Ω

(∫ tni

t
vnt (s) ds

)
· ϕdx

≤ τn||vnt ||L∞(0,T ;H−s(Ω))||ϕ||s

which implies, for any ψ(t, x) = ϕ(x)η(t) with ϕ ∈ H̃s(Ω) and η ∈ C1
0 ([0, T ]), that∫ T

0

[∫
Ω

(ut(t)− v(t)) · ϕdx
]
η(t) dt =

∫ T

0

∫
Ω

(ut(t)− v(t)) · ψ dxdt

= lim
n→∞

∫ T

0

∫
Ω

(unt (t)− vn(t)) · ψ dxdt = lim
n→∞

∫ T

0

[∫
Ω

(unt (t)− vn(t)) · ϕdx
]
η(t) dt

≤ lim
n→∞

τnT ||vnt ||L∞(0,T ;H−s(Ω))||ϕ||s||η||∞ = 0.

This implies ∫
Ω

(ut(t)− v(t)) · ϕdx = 0 for all ϕ ∈ H̃s(Ω) and a.e. t ∈ [0, T ],

which yields v(t) = ut(t) for a.e. t ∈ [0, T ]. Thus, vt = utt and utt ∈ L∞(0, T ;H−s(Ω)).

�
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Remark 1.3.7. From point (iv) in Proposition 1.3.6 we have that vn → ut in C0([0, T ];H−s(Ω)). At

the same time, due to Proposition 1.3.4, vn(t) is uniformly bounded in L2(Ω). Thus, vn(t) ⇀ ut(t)

in L2(Ω), which in turn provides

unt (t) ⇀ ut(t) in L2(Ω) for any t ∈ [0, T ].

Proposition 1.3.8 (Convergence of ūn and W (ūn)). Let u be the limit function obtained in

Proposition 1.3.6. Then, up to a subsequence,

(i) ūn ⇀∗ u in L∞(0, T ; H̃s(Ω)),

(ii) ūn(t) ⇀ u(t) in H̃s(Ω) for any t ∈ [0, T ],

(iii) W (ūn)→W (u) in C0([0, T ];L1(Ω)).

Proof. Regarding (i) and (ii) one can proceed as in [18, Proposition 7]. By construction, taking

into account Proposition 1.3.4, we have

sup
t∈[0,T ]

∫
Ω
|un(t, x)− ūn(t, x)|2 dx =

n∑
i=1

sup
t∈[tni−1,t

n
i ]

(t− tni )2

∫
Ω
|vni |2 dx ≤ τ2

n

n∑
i=1

||vni ||2L2(Ω) ≤ Cτn

(1.3.23)

which implies ūn → u in L∞(0, T ;L2(Ω)). Furthermore, again by Proposition 1.3.4, ūn(t) is

bounded in H̃s(Ω) uniformly in t and n, so that we have ūn ⇀∗ u in L∞(0, T ; H̃s(Ω)). Thanks to

point (i) in Proposition 1.3.6, we also obtain pointwise convergence ūn(t) ⇀ u(t) in H̃s(Ω) for

any t ∈ [0, T ], which is (ii).

For the convergence of W (ūn), we first observe a following property of W : there are positive

constants C1, C2 such that

|W (x)−W (y)| ≤ (C1(|x|+ |y|) + C2)(|x− y|) (1.3.24)

for any x, y ∈ Rm. Indeed, let x, y ∈ Rm be fixed, by the Mean Value Theorem there exists

c ∈ [x, y], here we denote [x, y] the segment connecting x and y in Rm, such that

W (x)−W (y) = ∇W (c) · (x− y). (1.3.25)

Thus, from the Lipshitz continuity of ∇W we deduce that

|W (x)−W (y)| ≤ |∇W (c)||x− y|
≤ (C1|c|+ C2)|x− y|
≤ (C1 max{|x|, |y|}+ C2)|x− y|
≤ (C1(|x|+ |y|) + C2)|x− y|

(1.3.26)

where C1, C2 are positive constants independent of c, x, y.

Then, let t ∈ [0, T ] we have∫
Ω
|W (ūn(t))−W (u(t))|dx ≤

∫
Ω

(C1(|ūn(t)|+ |u(t)|+ C2)|ūn(t)− u(t)|dx

≤
∫

Ω
(C1|ūn(t) + u(t)|+ C2)|ūn(t)− u(t)|dx

≤ ||(C1|ūn(t) + u(t)|+ C2)||L2(Ω)||ūn(t)− u(t)||L2(Ω)

≤ C3||ūn(t)− u(t)||L2(Ω),

(1.3.27)
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where C3 is a constant independent of t, n due to the boundedness of ūn, un in L2(Ω) uniformly in

t, n and point (i) in Proposition 1.3.6. In addition, once again from point (i) in Proposition 5 com-

bined with (1.3.23), it implies that ūn → u in C0([0, T ];L2(Ω)). So, we can conclude that W (ūn)→
W (u) in C0([0, T ];L1(Ω)). �

Proposition 1.3.9 (Convergence of∇uW (ūn)). Let u be the limit function obtained in Proposition

1.3.6. Then, up to a subsequence, ∇uW (ūn) ⇀∗ ∇uW (u) in L∞(0, T ;H−s(Ω)).

Proof. The same spirit of the analysis of the convergence W (ūn) in Proposition 1.3.8, one can

check that, up to a subsequence,

∇uW (ūn)→ ∇uW (u) in L2((0, T )× Ω). (1.3.28)

From Proposition 1.3.5, we observe that ∇uW (ūn) is bounded in H−s(Ω) uniformly in t and n, this

implies our conclusion. �

1.3.2 Proof of Theorem 1.3.3

Proof of Theorem 1.3.3 (i). Let u be the cluster point obtained in Proposition 1.3.6, we shall

prove that u is a weak solution of (1.3.1). In fact, for each n > 0, from (1.3.15) one has∫ T

0

∫
Ω
vnt (t) · ϕ(t) dxdt+

∫ T

0
[ūn(t), ϕ(t)]s dt+

∫ T

0

∫
Ω
∇uW (ūn(t)) · ϕ(t) dxdt = 0

for any ϕ ∈ L1(0, T ; H̃s(Ω)). Passing to the limit as n→∞, using Propositions 1.3.6, 1.3.8, 1.3.9,

we immediately get∫ T

0
〈utt(t), ϕ(t)〉dt+

∫ T

0
[u(t), ϕ(t)]s dt+

∫ T

0

∫
Ω
∇uW (u(t)) · ϕ(t) dxdt = 0. (1.3.29)

The fact that u(0) = u0 and ut(0) = v0 follows observing that un(0) = u0 and vn(0) = v0

for all n and that, thanks to Proposition 1.3.6, un → u in C0([0, T ];L2(Ω)) and vn → ut in

C0([0, T ];H−s(Ω)). Finally, the verification of energy inequality is easily obtained by passing to the

limit in energy estimate in Proposition 1.3.4. �

In order to prove Theorem 1.3.3 (ii), i.e. energy conservation for the limiting solution u

under more regular initial data, we actually have to slightly modify the approximating scheme, as

precised in the following

Proposition 1.3.10. Let u0 ∈ H̃2s(Ω), v0 ∈ H̃s(Ω), and set un−1 = u0 − τnvn0 where {vn0 }n ⊂
H̃s(Ω), vn0 → v0 in H̃s(Ω), and such that ||u0 − τnv

n
0 ||H̃2s(Ω) ≤ C with C independent of n.

Then, let un, ūn be approximate solutions of (1.3.1) satisfying the equation (1.3.15), and u be a

limiting solution, we have that u ∈ W 1,∞(0, T ; H̃s(Ω)), ut ∈ W 1,∞(0, T ;L2(Ω)). Moreover, for

any 0 ≤ t1 < t2 ≤ T , the energy E(u) satisfies

E(u(t1)) = E(u(t2)). (1.3.30)

Remark 1.3.11. Observe that slightly changing the approximating scheme in the initialization step,

by setting un−1 = u0 − τnvn0 , doesn’t affect the properties of the approximate solutions, namely

the same energy estimate as in Proposition 1.3.4 holds true, and hence Proposition 1.3.6, 1.3.8,

1.3.9 remain valid.
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Proposition 1.3.10 is a consequence of the following

Lemma 1.3.12. Let u0 ∈ H̃2s(Ω), v0 ∈ H̃s(Ω) and un−1 = u0 − τnvn0 be as in Proposition 1.3.10.

Then, there exists a constant C independent of n such that:∫
Ω
|
un1 − 2un0 + un−1

τ2
n

|2dx+ [
un1 − un0
τn

]2s ≤ C. (1.3.31)

Proof. By substituting the test function ϕ =
un1−2un0 +un−1

τ2n
in the Euler’s equation (1.3.12) with

i = 1, we obtain that∫
Ω
|
un1 − 2un0 + un−1

τ2
n

|2 dx+ [un1 ,
un1 − 2un0 + un−1

τ2
n

]s +

∫
Ω
∇uW (un1 ) ·

un1 − 2un0 + un−1

τ2
n

dx = 0

⇐⇒
∫

Ω
|an1 |2dx+ [

un1 − un0
τn

]2s − [
un0 − un−1

τn
]2s + [un−1, a

n
1 ]s +

∫
Ω
∇uW (un1 ).an1dx = 0

(1.3.32)

where an1 =
un1−2un0 +un−1

τ2n
. It implies that∫

Ω
|an1 |2dx+ [

un1 − un0
τn

]2s ≤ [
un0 − un−1

τn
]2s + ||∇uW (u1)||L2(Ω)||an1 ||L2(Ω) + |[un−1, a

n
1 ]s| (1.3.33)

On the other hand, we observe that [
un0−un−1

τn
]2s = [vn0 ]2s and

|[un−1, a
n
1 ]s| =|

∫
Rd
|ξ|2sF(un−1)(ξ).F(an1 )(ξ)dξ|

≤
(∫

Rd
|ξ|4s|F(un−1)(ξ)|2dξ

) 1
2
(∫

Rd
|F(an1 )(ξ)|2dξ

) 1
2

≤ [un−1]2s||an1 ||L2(Ω).

(1.3.34)

From this observation combined with the hypothesis, Proposition 1.3.5, and the inequality (1.3.33),

we can deduce that there exist constants C1, C2 independent of n such that∫
Ω
|an1 |2dx ≤

∫
Ω
|an1 |2 + [

un1 − un0
τn

]2s ≤ C1||an1 ||L2(Ω) + C2 (1.3.35)

This gives rise to the uniform bound on
∫

Ω |a
n
1 |2dx, and it also follows that [

un1−un0
τn

]2s is uniformly

bounded, which is the sought conclusion. �

We are now ready to prove Proposition 1.3.10 and hence Theorem 1.3.3(ii) :

Proof of Theorem 1.3.3 (ii). For each n fixed, let the Euler’s equation at the step i subtract

the step i− 1 divided by τn, we obtain that∫
Ω

(
vni − 2vni−1 + vni−2

τ2
n

)·ϕdx+[vni , ϕ]s+

∫
Ω

∇uW (uni )−∇uW (uni−1)

τn
·ϕdx = 0 for every ϕ ∈ H̃s(Ω).

(1.3.36)

for i = 2, . . . , n, and vni =
uni −uni−1

τn
, i = 0, . . . , n. Now, let ani =

vni −vni−1

τn
, and substituting the test

function ϕ = vni−1 − vni into the equation (1.3.36). One has∫
Ω

(ani−1−ani ) ·ani dx+[vni , v
n
i−1−vni ]s+

∫
Ω

∇uW (uni )−∇uW (uni−1)

τn
·(vni−1−vni )dx = 0. (1.3.37)
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with i = 2, . . . , n. From the equation (1.3.37) and due to the Lipshitz continuity condition of

∇W , it follows that

0 ≤
∫

Ω
(ani−1 − ani ) · ani dx+ [vni , v

n
i−1 − vni ]s + τn

∫
Ω
K|vni | · |ani |dx

≤
∫

Ω

1

2
(|ani−1|2 − |ani |2) dx+

1

2
([vni−1]2s − [vni ]2s) + τn

∫
Ω
K|vni | · |ani |dx

≤
∫

Ω

1

2
(|ani−1|2 − |ani |2) dx+

1

2
([vni−1]2s − [vni ]2s) +

1

2
τn

∫
Ω
K(|vni |2 + |ani |2)dx

(1.3.38)

Let’s sum up the previous inequality for i = 2, . . . , k one has∫
Ω
|ank |2 dx+ [vnk ]2s ≤

∫
Ω
|an1 |2 dx+ [vn1 ]2s + τnK

(
Σk
i=2

∫
Ω

(|vni |2 + |ani |2)dx

)
≤ ||an1 ||2L2 + [

u1 − u0

τn
]2s + τnK

(
Σk
i=2

∫
Ω
|ani |2

)
+K

′
τn(k − 1).

≤ C + τnK

(
Σk
i=2

∫
Ω
|ani |2

)
+K

′
T.

(1.3.39)

here we have made use of the Lemma 1.3.12, and the uniform bound in L2(Ω) of vni . From

(1.3.39), we can deduce that∫
Ω
|ank |2 dx ≤ C + τnK

(
Σk
i=2

∫
Ω
|ani |2

)
+K

′
T (1.3.40)

and, then in view of Gronwall’s inequality Proposition 1.6.1, there exists a constant C(T ) such

that ∫
Ω
|ank |2 dx ≤ C(T ) (1.3.41)

It also implies that [vni ]2s is uniformly bounded i.e. there exists a constant C1(T ) such that

[vni ]2s ≤ C1(T ). (1.3.42)

Due to uniform bounds (1.3.41), (1.3.42), and by the analysis as in the proof of Proposition

1.3.6, 1.3.8, one can show that u ∈ W 1,∞(0, T ; H̃s(Ω)), ut ∈ W 1,∞(0, T ;L2(Ω)). Then, by

substituting the test function ϕ = I[t1, t2] × ut in the weak equation of u, where 0 < t1 < t2 < T ,

and I[t1, t2] is the indicator function on the time interval [t1, t2], we obtain that∫ t2

t1

< utt(t), ut(t) > dt+

∫ t2

t1

[u(t), ut(t)]sdt+

∫ t2

t1

∫
Ω
∇uW (u(t, x))ut(t, x)dxdt = 0

⇐⇒
∫ t2

t1

dE(u(t))

dt
dt = 0

⇐⇒ E(u(t1)) = E(u(t2))

(1.3.43)

i.e. E is constant inside the interval (0, T ), and we can extend the conservative property at

endpoints by using the absolute continuity in time of u, ut, and W (u) in appropriate energy spaces.

�
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Proof of Theorem 1.3.3, (iii). We are left to prove the uniqueness property: Indeed, let v ∈ X,

and consider the following quantity

K(t) =
1

2
||ut(t)− vt(t)||2L2(Ω) +

1

2
[u(t)− v(t)]2s.

From Remark 1.3.2, one has∫ t

0

dK(t
′
)

dt′
dt
′

=

∫ t

0

∫
Ω
< ut′ t′ − vt′ t′ , ut′ − vt′ > dt

′
+

∫ t

0
[u(t

′
)− v(t

′
), ut′ (t

′
)− vt′ (t

′
)]sdt

′

= −
∫ t

0

(∫
Ω

(∇uW (u)−∇vW (v))(ut′ − vt′ )dx
)
dt
′

(1.3.44)

here we have made use of the weak equation of u with the test function ut′ × I[0, t] subtracting the

one of v with the test function vt′ × I[0, t], I[0, t] is the indicator function on the time interval [0, t].

From the equation (2.2.1) combined with Lipshitz continuity property of ∇W and Poincaré-type

inequality in Proposition 1.6.3, we obtain that

K(t) ≤ K
∫ t

0

∫
Ω
|u− v||ut − vt|dx

≤ 1

2
K

∫ t

0

(
||u(t)− v(t)||2L2(Ω) + ||ut′ (t

′
)− vt′ (t

′
)||2L2(Ω)

)
dt
′

≤ Cs
∫ t

0

(
1

2
[u(t

′
)− v(t

′
)]2s +

1

2
||ut′ (t

′
)− vt′ (t

′
)||L2(Ω)

)
dt
′

≤ Cs
∫ t

0
K(t

′
)dt
′

(1.3.45)

for some postive constants Cs, by Gronwall’s inequality in Proposition 1.6.2, it implies that

K(t) = 0

for any t ∈ [0, T ] here we extend to the endpoint t = T by using the absolute continuity in time

of u, v. Then, it is easy to show that

u(t) = v(t) in H̃s(Ω)

for any t ∈ [0, T ]. �

1.3.3 Singular limits of nonlinear wave equations

We turn our attention to the application of the results in the previous section to the singular

limits of semilinear wave equation (2.1.3) related to topological defects (timelike minimal surfaces

in Minkowski space). We consider the hyperbolic Ginzburg-Landau equation:
ε2

(
∂2uε
∂2t

−∆uε

)
+∇uW (uε) = 0 in (0, T )× Ω,

uε(0, x) = u0
ε(x) in Ω,

uεt(0, x) = v0
ε(x) in Ω,

(1.3.46)
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where ε > 0 is a small parameter, Ω is a bounded domain in Rd, for functions

uε : (0, T )× Ω −→ Rm, (1.3.47)

we will focus on the cases m = 1, m = 2, and W is a non-convex balanced double well potential

of class C2. So as to apply the results in Section 1.3, for simplicity we assume that the potential

is given by

W (u) =
(1− |u|2)2

1 + |u|2
. (1.3.48)

Let us now introduce relevant quantities when dealing with topological defects: the first one

is the gradient ∇uε (for m = 1), and the second is the Jacobian 2-form, Juε = du1
ε ∧ du2

ε (in

the case m = 2) defined on (0, T )× Ω. Both will be considered as distributions (concerning the

distributional Jacobian, see for instance [48, 2]) . We can prove that under natural bounds on

initial energy they enjoy compactness properties and concentrate on codimension m rectifiable

sets in (0, T )× Ω as ε→ 0+. We have

Proposition 1.3.13. Let (uε)0<ε<1 be a sequence of solutions of (1.3.46) constructed by the

approximating scheme in Section 1.3 for each 0 < ε < 1 fixed such that E(uε(0))
kε

≤ C where C

is a constant independent of ε, kε = 1
ε for m = 1 and kε = | log ε| for m = 2. Then, up to a

subsequence εn → 0,

� In case m = 1,

uεn → u in L1((0, T )× Ω),

where u(t, x) ∈ {−1, 1} for a.e. (t, x) ∈ (0, T )× Ω, and u ∈ BV ((0, T )× Ω).

� In case m = 2,

Juεn ⇀ J in [C0,1((0, T )× Ω)]∗,

where 1
πJ is a d− 1 dimensional integral current in (0, T )× Ω.

Proof. In fact, for each ε, from Theorem 1.3.3 the solution uε which is constructed by the

approximating scheme in Section 1.3 satisfies the energy inequality:

E(uε(t)) ≤ E(uε(0)) (1.3.49)

for any t ∈ [0, T ]. Recall that E(uε(t))) = 1
2 ||uεt(t)||

2
L2(Ω) + 1

2 ||∇uε(t)||
2
L2(Ω) + 1

ε2
||W (uε(t))||L1 .

By assumption we have
E(uε(0))

kε
≤ C (1.3.50)

where C is a constant independent of ε, kε = 1
ε for m = 1 and kε = | log ε| for m = 2.

Then,

� In the case m = 1, by integrating from 0 to T both side in (1.3.49) combined with (1.3.50)

we obtain that∫
(0,T )×Ω

ε|∇t,xuε(t, x)|2dxdt+

∫
(0,T )×Ω

1

ε
W (uε(t, x))dxdt ≤ TC (1.3.51)

where ∇t,x is the gradient in the space-time. In view of Modica-Mortola Theorem (see [60]),

it follows that there exists a function u ∈ BV ((0, T )× Ω; {−1, 1}) such that uε converges
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to u in L1((0, T ) × Ω) up to a subsequence. Moreover, the reduced boundary of the set

Σ1 = {(t, x) ∈ (0, T )×Ω |u(t, x) = 1} denoted by ∂∗Σ1 is a d−dimensional rectifiable set in

(0, T )× Ω (for the definition of reduced boundary, see [76]). The set ∂∗Σ1 is said to be the

jump set of u and it is a type of defects of the interfaces.

� In the complex case, following the results in [49], again from (1.3.49), up to a subsequence,

we have that Juε ⇀ J in [C0,1((0, T ) × Ω)]∗, where 1
πJ is a d − 1 dimensional integral

current in (0, T )× Ω, which concentrates on d− 1 dimensional rectifiable set Σ2 so called

the vorticity set.

�

To study the dynamics of jump and the vorticity sets one has to rely on the analysis of

renormalized Lagrange density

µε =
`(uε(t, x))

kε
dxdt (1.3.52)

where `(uε) = −|uεt|2+|∇uε|2
2 + W (uε)

ε2
. In [61], Neu showed that certain solutions of (1.3.46) in case

m = 1 give rise to interfaces sweeping out a timelike lorentzian minimal surface of codimension

1. Further rigorous analysis were given in ([47, 77, 69]), where solutions of (1.3.46) having

interfaces near a given timelike minimal surface were constructed. However, due to the presence

of singularities, the validity of those results are only for short times. On the other hand, the

limit behavior of hyperbolic Ginzburg-Landau equation (1.3.46) as ε→ 0+ without restricting

short times (i.e. also after the onset of singularities) has been treated in [9] under conditional

assumptions that the measure µε is shown to concentrate on a timelike lorentzian minimal

submanifold of codimension m within the varifold framework developed in [10]. This has been

proved by adapting the parabolic approach [6] to the hyperbolic setting through the analysis

of the stress-energy tensor. We conjecture that the assumptions in [9] could be relaxed for the

solutions constructed by our approximating scheme through exploiting the minimizing properties

of our approximate solutions.
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1.4 The obstacle problem for fractional semilinear wave equations

In this section, following the pipeline of [18], we move on to study the obstacle problem for

the fractional semilinear wave equation. From now on we assume m = 1 and work with real

valued functions. Given an open bounded domain Ω ⊂ Rd with Lipschitz boundary and a function

g ∈ C0(Ω̄), g < 0 on ∂Ω, we are interested in the obstacle problem described by

utt + (−∆)su+W ′(u) ≥ 0 in (0, T )× Ω

u(t, ·) ≥ g in [0, T ]× Ω

(utt + (−∆)su+W ′(u))(u− g) = 0 in (0, T )× Ω

u(t, x) = 0 in [0, T ]× (Rd \ Ω)

u(0, x) = u0(x) in Ω

ut(0, x) = v0(x) in Ω

(1.4.1)

with u0 ∈ H̃s(Ω), u0 ≥ g a.e. in Ω, and v0 ∈ L2(Ω) (with W as in Section 1.3 with m = 1). We

define a weak solution of (1.4.1) as follows:

Definition 1.4.1. Let T > 0. We say u = u(t, x) is a weak solution of (1.4.1) in (0, T ) if

1. u ∈ L∞(0, T ; H̃s(Ω)) ∩W 1,∞(0, T ;L2(Ω)) and u(t, x) ≥ g(x) for a.e. (t, x) ∈ (0, T )× Ω;

2. there exist weak left and right derivatives u±t on [0, T ] (with appropriate modifications at

endpoints);

3. for all ϕ ∈W 1,∞(0, T ;L2(Ω)) ∩ L1(0, T ; H̃s(Ω)) with ϕ ≥ 0, sptϕ ⊂ [0, T ), we have

−
∫ T

0

∫
Ω
utϕt dxdt+

∫ T

0
[u, ϕ]s dt+

∫ T

0

∫
Ω
W ′(u)ϕdxdt−

∫
Ω
v0 ϕ(0) dx ≥ 0

4. the initial conditions are satisfied in the following sense

u(0, ·) = u0,

∫
Ω

(u+
t (0)− v0)(ϕ− u0) dx ≥ 0 ∀ϕ ∈ H̃s(Ω), ϕ ≥ g.

This section is then dedicated to prove the existence of such a weak solution, combining results

from the previous section and extensions of arguments of [18, Section 4].

Theorem 1.4.2. There exists a weak solution u of the obstacle problem for fractional semilinear

wave equation (1.4.1), and u satisfies

1

2
||u±t (t)||2L2(Ω) +

1

2
[u(t)]2s + ||W (u(t))||L1(Ω) ≤

1

2
||v0||2L2(Ω) +

1

2
[u0]2s + ||W (u0)||L1(Ω) (1.4.2)

for a.e. t ∈ [0, T ].

Remark 1.4.3 (Non-uniqueness and energy behaviour). The notion of weak solutions introduced

in Definition 1.4.1 can be seen as the minimal requirement we can make, i.e., to control “upward”

variations. This leaves us with less control on the behaviour of “downward” moving regions, which

is intended in order to allow sudden adjustments when hitting the obstacle. However, these coarse

requirements lead at the same time to non-uniqueness of solutions. Generally speaking, uniqueness
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and in particular existence of energy preserving solutions for (1.4.1) is still an open problem, with

only partial results in specific one dimensional configurations hinging on purely one dimensional

arguments (see, e.g., [72] for a specific 1d setting with local energy conservation at impacts).

Within our framework a local (in space and time) energy conservation is expected whenever we

are “away” from the obstacle (in the spirit of Proposition 1.4.8 below), but deducing/imposing

any additional condition at impact times would require the use of more technical local arguments

that need further specific investigations.

1.4.1 Approximating scheme

For n ∈ N, set τn = T/n and define tni = iτn, 0 ≤ i ≤ n. Let un−1 = u0 − τnv0, un0 = u0 and

define

Kg := {u ∈ H̃s(Ω) |u ≥ g a.e. in Ω}.

For every 0 < i ≤ n, given uni−2 and uni−1, we define uni as

uni ∈ arg min
u∈Kg

Jni (u),

where Jni is defined as in (1.3.11). Existence of uni can be obtained through the direct method

of calculus of variations thanks to the convexity of Kg. In order to provide a variational

characterization of each minimizer uni , take ϕ ∈ Kg and consider the function (1 − ε)uni + εϕ,

which belongs to Kg for any sufficiently small positive ε. Thus, by minimality of uni , we have

d

dε
Jni (uni + ε(ϕ− uni ))|ε=0 ≥ 0,

which is equivalent to∫
Ω

uni − 2uni−1 + uni−2

τ2
n

(ϕ− uni ) dx+ [uni , ϕ− uni ]s +

∫
Ω
W ′(uni )(ϕ− uni )dx ≥ 0 for all ϕ ∈ Kg.

(1.4.3)

Moreover, because every ϕ ≥ uni is also an admissible test function, we obtain that∫
Ω

uni − 2uni−1 + uni−2

τ2
n

ϕdx+ [uni , ϕ]s +

∫
Ω
W ′(uni )ϕdx ≥ 0 for all ϕ ∈ H̃s(Ω), ϕ ≥ 0. (1.4.4)

We define ūn and un to be the piecewise constant and the piecewise linear interpolations in terms

of {uni }i, just as in (1.3.13) and(1.3.14); furthermore, let vn be the piecewise linear interpolant of

velocities vni = (uni − uni−1)/τn, 0 ≤ i ≤ n. Taking into account (1.4.4), integrating from 0 to T ,

we obtain∫ T

0

∫
Ω

(
unt (t)− unt (t− τn)

τn

)
ϕ(t) dxdt+

∫ T

0
[ūn(t), ϕ(t)]s dt+

∫ T

0

∫
Ω
W ′(ūn(t))ϕ(t)dxdt ≥ 0

for all ϕ ∈ L1(0, T ; H̃s(Ω)), ϕ(t, x) ≥ 0 for a.e. (t, x) ∈ (0, T )× Ω.

Remark 1.4.4 (Extension of the key estimate). By choosing the test function ϕ = uni−1 in (1.4.3),

we have

0 ≤
∫

Ω

(uni − 2uni−1 + uni−2)(uni−1 − uni )

τ2
n

dx+ [uni , u
n
i−1 − uni ]s +

∫
Ω
W ′(uni )(uni−1 − uni )dx
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and following the proof of Proposition 1.3.4, we obtain the same energy estimate

1

2
‖unt (t)‖2L2(Ω) +

1

2
[ūn(t)]2s + ||W (ūn(t))||L1(Ω) ≤ E(u(0)) + Cτn

for all t ∈ [0, T ], with C = C(E(u(0)),K, T ) a constant independent of n.

Given that the main energy estimate is still true, we can largely repeat the convergence proofs

presented in the previous section.

Proposition 1.4.5 (Convergence of un, ūn, W (ūn), and W ′(ūn), obstacle case). There exists a

subsequence of steps τn → 0 and a function u ∈ L∞(0, T ; H̃s(Ω)) ∩W 1,∞(0, T ;L2(Ω)) such that

un → u in C0([0, T ];L2(Ω)), un(t) ⇀ u(t) in H̃s(Ω) for any t ∈ [0, T ],

unt ⇀
∗ ut in L∞(0, T ;L2(Ω)), ūn ⇀∗ u in L∞(0, T ; H̃s(Ω)).

Furthermore, u(t, x) ≥ g(x) for a.e. (t, x) ∈ [0, T ]× Ω. Also,

W (ūn)→W (u) in C0([0, T ];L1(Ω)), W ′(ūn) ⇀∗ W ′(u) in L∞(0, T ;H−s(Ω)).

Proof. See the proof of Propositions 1.3.6, 1.3.8 and 1.3.9. The fact that u(t, x) ≥ g(x)

for a.e. (t, x) ∈ [0, T ] × Ω follows by the fact that uni ∈ Kg for all n and 0 ≤ i ≤ n.

�

Regarding the regularity of ut, similar to what happens for the obstacle problem for the linear

fractional wave equation, it is nearly impossible to expect ut to posses the same regularity as the

obstacle-free case, i.e. utt ∈ L∞(0, T ;H−s(Ω)), mainly due to dissipation of energy at the contact

region with the obstacle. Nonetheless, extending the pipeline outlined in [18, Section 4], we are

still able to provide some sort of higher regularity for ut.

Proposition 1.4.6. Let u be the function obtained in Proposition 1.4.5 and, for any fixed

0 ≤ ϕ ∈ H̃s(Ω), let us define F : [0, T ]→ R as follows

F (t) =

∫
Ω
ut(t)ϕdx. (1.4.5)

Then F ∈ BV (0, T ). Moreover, unt (t) ⇀ ut(t) in L2(Ω) for a.e. t ∈ [0, T ].

Proof. Consider the functions Fn : [0, T ]→ R defined as

Fn(t) =

∫
Ω
unt (t)ϕdx. (1.4.6)

where ϕ is fixed in H̃s(Ω) with ϕ ≥ 0. The first observation is that because unt is bounded in

L2(Ω) uniformly in n and t (see Remark 1.4.4), ||Fn||L1(0,T ) is uniformly bounded. Moreover,

{Fn}n is also uniformly bounded in BV (0, T ): indeed, for every fixed n > 0 and 0 ≤ i ≤ n, from

(1.4.4) taking into account Remark 1.4.4 and Proposition 1.3.5, we can deduce that∣∣∣∣∣
∫

Ω
(vni − vni−1)ϕdx

∣∣∣∣∣−
∫

Ω
(vni − vni−1)ϕdx ≤ 2τn

∣∣∣∣[uni , ϕ]s +

∫
Ω
W ′(uni )ϕdx

∣∣∣∣
≤ 2τn|[uni , ϕ]s|+ 2τn

∣∣∣∣∫
Ω
W ′(uni )ϕdx

∣∣∣∣ ≤ 4τnC||ϕ||s

(1.4.7)
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Summing over i = 1, . . . , n, we obtain

n∑
i=1

∣∣∣∣∣
∫

Ω
(vni − vni−1)ϕdx

∣∣∣∣∣ ≤
∫

Ω
vnnϕdx−

∫
Ω
v0ϕdx+

n∑
i=1

4τnC||ϕ||s

≤ ||vnn||L2(Ω)||ϕ||L2(Ω) + ||v0||L2(Ω)||ϕ||L2(Ω) + 4TC||ϕ||s ≤ C||ϕ||s,

with C independent of n, where we make use of the uniform bound on ||vni ||L2(Ω). Thus, by Helly’s

selection theorem, there exists a function F̄ of bounded variation such that Fn(t)→ F̄ (t) for every

t ∈ (0, T ) as n→∞. Taking into account that unt ⇀
∗ ut in L∞(0, T ;L2(Ω)), one can then prove

that F (t) = F̄ (t) and thus unt (t) ⇀ ut(t) for almost every t ∈ (0, T ) (we refer to [18, Proposition 11]

for details). �

From now on we can select ut to be

ut(t) = weak-L2 limit of unt (t),

which is then defined for all t ∈ [0, T ].

Proposition 1.4.7. Fix 0 ≤ ϕ ∈ H̃s(Ω) and let F be defined as in (1.4.5). Then, for any

t ∈ (0, T ), we have

lim
r→t−

F (r) ≤ lim
s→t+

F (s).

Proof. Because F ∈ BV (0, T ), it has right and left limits at any point. Fix t ∈ (0, T ) and

let 0 < r < t < s < T . For each n, let us define rn and sn such that r ∈ (tnrn−1, t
n
rn ] and

s ∈ (tnsn−1, t
n
sn ]. From (1.4.6), proceeding as in (1.4.7), we see that

Fn(s)− Fn(r) =

∫
Ω

(unt (s)− unt (r))ϕdx =

∫
Ω

(vnsn − v
n
rn)ϕdx

=

sn∑
i=rn+1

∫
Ω

(vni − vni−1)ϕdx ≥ −2τn

sn∑
i=rn+1

|[uni , ϕ]s| − 2τn

sn∑
i=rn+1

∫
Ω
|W ′(uni )ϕ|dx

≥ −4Cτn(sn − rn)||ϕ||s

for some positive constant C independent of n. Moreover, |s− r| ≥ |tnsn−1− tnrn | = τn(sn− 1− rn),

thus it implies that

Fn(s)− Fn(r) ≥ −2C|s− r| · ||ϕ||s − 2Cτn||ϕ||s.

By passing to the limit n→∞ we obtain that F (s)−F (r) ≥ −2C|s−r|·||ϕ||s, this yields the conclu-

sion. �

We are now ready to prove the existence result, namely Theorem 1.4.2.

Proof of Theorem 1.4.2. Let u be the cluster point obtained in Proposition 1.4.5. It is easy to

see that the first condition in Definition 1.4.1 follows from Proposition 1.4.5. From Proposition

1.4.6, it implies that for any fix ϕ ≥ 0, ϕ ∈ H̃s, F (t) =
∫

Ω ut(t)ϕdx has the left and right limits

for any t ∈ [0, T ] since F is BV (0, T ), this in turn implies the second condition in Definition 1.4.1.

Let us verify the third and the fourth conditions in Definition 1.4.1.
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(3.) For n > 0 and any test function ϕ ∈ W 1,∞(0, T ;L2(Ω)) ∩ L1(0, T ; H̃s(Ω)), with ϕ ≥ 0,

sptϕ ⊂ [0, T ), we recall that∫ T

0

∫
Ω

(
unt (t)− unt (t− τn)

τn

)
ϕ(t) dxdt+

∫ T

0
[ūn(t), ϕ(t)]s dt+

∫ T

0

∫
Ω
W ′(ūn)(t)ϕ(t)dxdt ≥ 0

(1.4.8)

From Proposition 1.4.5, we have∫ T

0
[ūn(t), ϕ(t)]s dt→

∫ T

0
[u(t), ϕ(t)]s dt as n→∞,∫ T

0

∫
Ω
W ′(ūn(t))ϕ(t)dxdt→

∫ T

0

∫
Ω
W ′(u(t))ϕ(t)dxdt as n→∞.

To deal with the first term of (1.4.8), we observe that∫ T

0

∫
Ω

unt (t)− unt (t− τn)

τn
ϕ(t) dxdt =

∫ T−τn

0

∫
Ω
unt (t)

(
ϕ(t)− ϕ(t+ τn)

τn

)
dxdt

−
∫ τn

0

∫
Ω

v0

τn
ϕ(t) dxdt+

∫ T

T−τn

∫
Ω

unt (t)

τn
ϕ(t) dxdt

→
∫ T

0

∫
Ω
ut(t)(−ϕt(t)) dxdt−

∫
Ω
v0 ϕ(0) dx+ 0 as n→∞

and this completes the proof of condition (3).

(4.) By the convergence of un to u in C0([0, T ];L2(Ω)) and un(0) = u0, it implies that

u(0) = u0. So as to check the initial condition on velocity we assume, without loss of generality,

that the sequence un is constructed by taking n ∈ {2m : m > 0} (each successive time grid is

obtained dividing the previous one). Fix n and ϕ ∈ Kg, let T ∗ = mτn for 0 ≤ m ≤ n (i.e. T ∗ is a

“grid point”). We have∫ T ∗

0

∫
Ω

unt (t)− unt (t− τn)

τn
(ϕ− ūn(t)) =

m∑
i=1

∫ tni

tni−1

∫
Ω

uni − 2uni−1 + uni−2

τ2
n

(ϕ− uni )

=

∫
Ω

m∑
i=1

uni − 2uni−1 + uni−2

τn
(ϕ− uni ) =

∫
Ω

m∑
i=1

(vni − vni−1)(ϕ− uni )

= −
∫

Ω
vn0 (ϕ− un1 ) dx+

∫
Ω
vnm(ϕ− unm) dx+ τn

m−1∑
i=1

∫
Ω
vni v

n
i−1 dx

= −
∫

Ω
v0(ϕ− un(τn)) dx+

∫
Ω
unt (T ∗)(ϕ− un(T ∗)) dx+ τn

m−1∑
i=1

∫
Ω
vni v

n
i−1 dx.

which combined with (1.4.3) gives

−
∫

Ω
v0(ϕ− un(τn)) dx+

∫
Ω
unt (T ∗)(ϕ− un(T ∗)) dx ≥ −τn

m−1∑
i=1

∫
Ω
vni v

n
i−1 dx

− τn
m∑
i=1

[uni , ϕ− uni ]s − τn
m∑
i=1

∫
Ω
W ′(uni )(ϕ− uni ) ≥ −CT ∗ − CT ∗||ϕ||s
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thanks to the boundedness ofW ′(uni ) in L2(Ω). Passing to the limit as n→∞, using un(τn)→ u(0)

and unt (T ∗) ⇀ ut(T
∗) (as noticed before we choose ut being the weak-L2 limit of unt ), we obtain

that

−
∫

Ω
v0(ϕ− u(0)) dx+

∫
Ω
ut(T

∗)(ϕ− u(T ∗)) dx ≥ −CT ∗ − C||ϕ||sT ∗.

Let T ∗ tend to 0 along a sequence of “grid points”, we have that∫
Ω

(u+
t (0)− v0)(ϕ− u(0)) dx ≥ 0.

To complete the proof, we observe that the energy estimate (1.4.2) is obtained by passing to the

limit as n→∞ in

1

2
‖unt (t)‖2L2(Ω) +

1

2
[ūn(t)]2s + ||W (ūn(t))||L1(Ω) ≤ E(u(0)) + Cτn

for all t ∈ [0, T ], with C a constant independent of n (cf. Remark 1.4.4). �

We end this section by an observation that in the case s = 1 the solutions become more

regular whenever the approximation un lies strictly above g.

Proposition 1.4.8 (Regions without contact). Let s = 1 and, for δ > 0, suppose there exists an

open set Aδ ⊂ Ω such that un(t, x) > g(x) + δ for a.e. (t, x) ∈ (0, T )× Ω and for all n > 0. Then

utt ∈ L∞(0, T ;H−1(Aδ)) and u satisfies (2.2.6) for all ϕ ∈ L1(0, T ;H1
0 (Aδ)).

Proof. Fix n > 0 and 1 ≤ i ≤ n. For every ϕ ∈ H1
0 (Ω) with sptϕ ⊂ Aδ we have uni + εϕ ∈ Kg for

ε sufficiently small. In particular, inequality (1.4.4) turns into∫
Ω

uni − 2uni−1 + uni−2

τ2
n

ϕdx+

∫
Ω
∇uni · ∇ϕdx+

∫
Ω
W ′(uni )ϕdx = 0 (1.4.9)

The equality allows us to rescue the second part of the proof of Proposition 1.3.6: in the same

notation, we can prove vnt (t) to be bounded in H−1(Aδ) uniformly in t and n by using the uniform

bound on ||W ′(uni )||L2(Ω) provided by Proposition 1.3.5. Thus, v ∈W 1,∞(0, T ;H−1(Aδ)) and

vn ⇀∗ v in L∞(0, T ;L2(Aδ)) and vn ⇀∗ v in W 1,∞(0, T ;H−1(Aδ)).

A localization on Aδ proves that vt = utt in Aδ so that

utt ∈ L∞(0, T ;H−1(Aδ)).

To get (2.2.6) we pass to the limit in (1.4.9) as we have done in the proof of Theorem 1.3.3.

�

1.5 A numerical example

We present in this section a simple example implementing the scheme of Section 1.3 for a two

dimensional radially symmetric problem related to moving interfaces in the relativistic setting.

We consider equation (1.3.1) with potential

W (u) =
(1− u2)2

1 + u2
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and a radially symmetric initial datum u0 having a sharp transition at a given radius R0 > 0 (the

function transitioning form 1 inside to −1 outside). The initial velocity is assumed to be zero and

the computational domain Ω = B(0, R̄) for R̄ > R0. From results in [47], the solution u(t, ·) is

expected to keep the initial structure of a radially symmetric function with a sharp transition

region, with said transition region evolving inwards: for 0 ≤ t < R0π/2 the solution u(t, ·) will

display its transition region along the circle of radius

R(t) = R0 cos

(
t

R0

)
.

Thus, we incorporate the radial symmetry in the minimization of (1.3.11) and we translate the

problem into a 1d optimization over Ω̄ = [0, R̄] and assume Dirichlet boundary conditions ±1 at

0, R̄. We employ the same discretization used in [18], based on classical piecewise linear finite

elements. The finite dimensional optimization problem is then solved via a projected gradient

descent method combined with a dynamic adaptation of the descent step size. We display the

results in Figure 3.2: we can see how the solution evolves the transition region in time and how

the position of the transition follows closely the expected radius.

Figure 1.1: Left: space-time orthogonal view of the solution, red being +1 and blue being −1.

Right: time evolution of the transition region (analytical vs. simulated).
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1.6 Appendix

We recall the proof for the discrete Gronwall’s inequality as used in the proof of Proposition

1.3.4.

Proposition 1.6.1. (Discrete Gronwall inequality) Let {yn}Nn=0 be a sequence of non-negative

numbers, and assume there exist two positive constants A,B > 0 such that

y0 = 0 and yn ≤ A+
B

N

n−1∑
j=0

yj for all n = 1, . . . , N.

Then,

yi ≤ A exp(B) for all i = 1, . . . , N.

Proof. We first prove by induction that

yi ≤ A
(

1 +
B

N

)i
(1.6.1)

for all 0 ≤ i ≤ N . The case i = 0 is obvious. Now suppose that (1.6.1) holds from 0 to k, then

yk+1 ≤ A+
B

N

k∑
j=0

yj

≤ A+
B

N

(
A

(
1 +

B

N

)
+A

(
1 +

B

N

)2

+ . . .+A

(
1 +

B

N

)k)

= A+
AB

N

((
1 + B

N

)k − 1
B
N

)(
1 +

B

N

)
= A+A

((
1 +

B

N

)k
− 1

)(
1 +

B

N

)

= A

((
1 +

B

N

)k+1

− B

N

)
≤ A

(
1 +

B

N

)k+1

.

This yields (1.6.1), which in turn gives

yi ≤ A
(

1 +
B

N

)i
≤ A

[
exp

(
B

N

)]i
= A exp

(
i

N
B

)
≤ A exp (B)

for all i = 0, . . . , N . �

We also provide here the continuous version of Gronwall’s inequality:

Proposition 1.6.2. Let g : [0, 1] −→ R be a non-negative continuous function, and it satisfies

the following inequality:

g(t) ≤ C
∫ t

0
g(s)ds

for any t ∈ [0, 1], for some positive constants C. Then, g(t) = 0 for any t ∈ [0, 1].
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Proof. Let m(t) = e−Ct
∫ t

0 g(s)ds. We observe that dm(t)
dt ≤ 0 for any t ∈ (0, 1), and m(0) = 0.

Therefore, we have

m(t) = 0

for any t ∈ (0, 1), this implies that g(t) = 0 for each t ∈ (0, 1), and we extend to the endpoints by

continuity of g. �

The last inequality presented here which is the Poincaré-type inequality, is used in the proof

of uniqueness.

Proposition 1.6.3. Let u ∈ H̃s(Ω). Then, there exists a postive constant Cs such that

||u||L2(Ω) ≤ Cs[u]s.

Proof. Let u ∈ H̃s(Ω), by Heisenberg-Pauli-Weyl inequality, one has

||u||4L2(Ω) ≤ Cs
(∫

Rd
|x|2s|u(x)|2dx

)(∫
Rd
|η|2s|F(u)(η)|2dη

)
≤ Ds||u||2L2(Ω)[u]2s.

(1.6.2)

for some constants Ds, we have used that u is equal to 0 outside the bounded domain Ω. Thus,

we obtain that

||u||L2(Ω) ≤ Ds[u]s,

which is the conclusion. �

24



Chapter 2

Weak solutions for nonlinear waves in
adhesive phenomenona

In this chapter we discuss a notion of weak solution to a semilinear wave equation that models

the interaction of an elastic body with a rigid substrate through an adhesive layer, relying on

results in Chapter 1, Bonafini et al [17]. Our analysis embraces the vector-valued case in arbitrary

dimension as well as the case of non-local operators (e.g. fractional Laplacian).

2.1 Introduction

In recent years, there have been many works devoted to adhesion phenomena arising from

biophysics and engineering (see for instance [46, 82, 39, 66] and references therein). Because

of the complex underlying mechanisms at both microscopic and macroscopic level, the rigorous

mathematical description of such phenomena is quite challenging, and increasingly accurate

mathematical models which are able to capture their essential features are being proposed (see

for instance [26, 52, 53, 32, 1] and references therein).

Following [32], where the dynamic of an elastic body (e.g. a string or a membrane) glued to

a rigid substrate through an adhesive layer can be modelled via a potential W describing the

effect of the adhesive layer on the dynamic. More precisely, the Lagrangian governing the one

dimensional dynamical system considered there is described by

`(u) = −1

2
u2
t +

1

2
u2
x +W (u), (2.1.1)

for a scalar displacement field u : [0, T ] × [0, L] → R (see, for instance, [33, Section 2] for the

derivation of the model), the potential W has the following behavior:

W (u) =

{
u2 if |u| ≤ u∗,
(u∗)2 if |u| > u∗.

(2.1.2)

The lack of smoothness at points ±u∗ gives rise to the difficulties in proving the existence of

solutions to the problem. And our main focus is to address this issue, in particular our analysis

extends also to vector-valued case as well as non-local operator. In view of this, the generalized

25



model problem we will consider in this chapter is
utt + (−∆)su+∇uW (u) = 0 in (0, T )× Ω,

u(x, t) = 0 in [0, T ]× (Rd \ Ω),

u(0, x) = u0(x) in Ω,

ut(0, x) = v0(x) in Ω,

(2.1.3)

where Ω ⊂ Rd is an open bounded domain with Lipschitz boundary, u : [0, T ] × Ω → Rm and

(−∆)s stands for the fractional Laplacian (s = 1 provides the standard Laplacian). The equation

considered in (2.1.3) also embraces the case s = 2, i.e. the bi-Laplacian, recently studied in [34]

to model an elastic beam interacting with a substrate through an elastic-breakable forcing term.

The key component in (2.1.3) is the potential W that models the energetic contribution of

the glue layer and is responsible for the adhesive behaviour. In [32], for d = 1, s = 1 and m = 1,

and in [34] for d = 1, s = 2 and m = 1, the authors propose to consider the potential W (2.1.2)

for some critical state u∗. In this setting, we are assuming the stress of the glue layer to drop

immediately to zero when the displacement of the string goes beyond the critical value. The

derivative W ′ is then discontinuous at ±u∗ and hence a suitable notion of weak solution is needed

to handle such discontinuity in the equation.

Any notion of solution for (2.1.3) heavily depends on the regularity of the potential W .

Whenever W is regular enough, i.e. W is non-negative and W ∈ C1(Rm) with Lipschitz

continuous gradient, a notion of weak solution and existence of it have been proved in Chapter

1. In this chapter, our aim is to explore how far such notion of weak solution can reach. We

first investigate in Section 2.3 the case where the gradient of the potential is not Lipschitz

continuous (but still continuous) and then tackle the discontinuous setting in Section 2.4. While

in the former scenario we are able to prove existence of weak solutions via a limiting approach

using smooth approximations of W , the latter scenario represents the boundary of the working

setting we currently put us into: even in the one dimensional case described by (2.1.2), with

W ′ discontinuous at ±u∗, the general lack of informations about the distribution of the values

of the approximate solutions around the critical states −u∗ and u∗ prevents us from providing

direct proofs by approximation, as shown in Examples 2.4.2 and 2.4.3. Hence, this is calling for

increasingly weaker notions of solutions.

The plan of Chapter 2 is organized as follows: in Section 2.2 we briefly recall preliminary

definitions and notations, together with the notion of weak solution. In Section 2.3 we deal with

problem (2.1.3) in case of (non Lipschitz-) continuous ∇W and prove existence of weak solutions

in Theorem 2.3.1. In Section 2.4, after discussing the limitations of the approximation approach

in Examples 2.4.2 and 2.4.3, we extend the analysis to a particular class of potentials with

discontinuous ∇W , proving existence of weak solutions under some very restrictive assumptions

(Theorem 2.4.4).

2.2 Preliminaries and model problem

2.2.1 Notation.

Let d,m ∈ N and s > 0. We define the fractional Laplacian operator (−∆)s as the operator

whose Fourier symbol is |ξ|2s, i.e., for any u ∈ L2(Rd;Rm)

F(−∆)su = |ξ|2sFu
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where F denotes the Fourier transform. We denote by Hs the fractional Sobolev space of order s,

which is defined as

Hs(Rd) =

{
u ∈ L2(Rd; Rm) :

∫
Rd

(1 + |ξ|2s)|Fu(ξ)|2 dξ < +∞
}

and equip it with the scalar product [u, v]s = 〈(−∆)s/2u, (−∆)s/2v〉 (where 〈·, ·〉 is the L2

scalar product), the corresponding semi-norm [u]s =
√

[u, u]s = ||(−∆)s/2u||L2(Rd;Rm) and norm

||u||2s = ||u||2
L2(Rd;Rm)

+ [u]2s. For Ω ⊂ Rd an open bounded set with Lipschitz boundary, we define

H̃s(Ω) = {u ∈ Hs(Rd;Rm) : u = 0 a.e. in Rd \ Ω},

endowed with the || · ||s norm, and its dual H−s(Ω) := (H̃s(Ω))∗. One has C∞c (Rd;Rm) is dense

in Hs(Rd) (see [79]). We recall the following embedding, and in order to be self-contained we

provide a proof it (based on [79]).

Lemma 2.2.1. Let 2s > d and u ∈ Hs(Rd). Then, u ∈ C0(Rd;Rm) and there exists a constant

C independent of u such that

||u||C0(Rd;Rm) ≤ C||u||Hs(Rd). (2.2.1)

Proof. Let S(Rd;Rm) be the Schwartz space of rapidly decaying functions. Let f be a function

in S(Rd;Rm), we now prove the inequality (2.2.1) for f . One has

(2π)
d
2 |f(x)| =

∣∣∣(2π)
d
2F−1(f̂)(x)

∣∣∣ =

∣∣∣∣∫
Rd
eixξFf(ξ)dξ

∣∣∣∣ ≤ ∫
Rd
|Ff(ξ)|(1 + |ξ|s) 1

1 + |ξ|s
dξ

≤
(∫

Rd

1

(1 + |ξ|s)2
dξ

) 1
2
(∫

Rd
|Ff(ξ)|2(1 + |ξ|s)2dξ

) 1
2

≤
√

2

(∫
Rd

1

(1 + |ξ|s)2
dξ

) 1
2
(∫

Rd
|Ff(ξ)|2(1 + |ξ|2s)dξ

) 1
2

≤
√

2

(∫
Rd

1

(1 + |ξ|s)2
dξ

) 1
2

||f ||Hs(Rd).

Since we consider 2s > d,
∫
Rd

1
(1+|ξ|s)2dξ is finite. Thus, we obtain that

||f ||C0(Rd;Rm) ≤ C||f ||Hs(Rd). (2.2.2)

Now let u ∈ Hs(Rd), and {fn}n ⊂ S(Rd;Rm) such that fn converges to u in Hs(Rd). We first

observe that {fn} is a Cauchy sequence in Hs(Rd), then combining this fact with (2.2.2),

||fn − fm||C0(Rd;Rm) ≤ C||fn − fm||Hs(Rd). (2.2.3)

It follows that {fn} is a Cauchy sequence in C0(Rd;Rm), and finally by passing to the limit we

obtain that

||u||C0(Rd;Rm) ≤ C||u||Hs(Rd). (2.2.4)

�
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2.2.2 Model problem.

For an open bounded set Ω ⊂ Rd with Lipschitz boundary and a potential W : Rm → [0,∞)

(whose regularity we specify later on), we look for a solution u = u(t, x), u : [0, T ]× Ω→ Rm, of
utt + (−∆)su+∇uW (u) = 0 in (0, T )× Ω

u(t, x) = 0 in [0, T ]× (Rd \ Ω)

u(0, x) = u0(x) in Ω

ut(0, x) = v0(x) in Ω

(2.2.5)

with initial data u0 ∈ H̃s(Ω) and v0 ∈ L2(Ω;Rm) (we intend that v0 = 0 in Rd \ Ω). For m = d

one can conventionally interpret u as the displacement of an elastic body (see [33, Section 2]). A

notion of weak solution for problem (2.2.5) can be given as follows.

Definition 2.2.2 (Weak solution and energy). Let T > 0. We say u = u(t, x) is a weak solution

of (2.2.5) in (0, T ) if

1. u ∈ L∞(0, T ; H̃s(Ω)) ∩W 1,∞(0, T ;L2(Ω)) and utt ∈ L∞(0, T ;H−s(Ω)),

2. for all ϕ ∈ L1(0, T ; H̃s(Ω))∫ T

0
〈utt(t), ϕ(t)〉dt+

∫ T

0
[u(t), ϕ(t)]s dt+

∫ T

0

∫
Ω
∇uW (u(t))ϕ(t) dxdt = 0 (2.2.6)

with

u(0, x) = u0 and ut(0, x) = v0. (2.2.7)

The energy of u is defined as

E(u(t)) =
1

2
||ut(t)||2L2(Ω) +

1

2
[u(t)]2s + ||W (u(t))||L1(Ω) for t ∈ [0, T ].

Existence of a weak solution in the sense of Definition 2.2.2 has been proved in Chapter 1 for

non-negative potential W ∈ C1(Rm) with Lipschitz continuous gradient. We prove in the next

section the existence of weak solutions under the assumption W ∈ C1(Rm), non-negative and

dropping Lipschitz continuity of the gradient in favour of boundedness and uniform continuity

assumptions. Less regular potentials are then partially addressed in Section 2.4, where limitations

of the current approach are discussed in Examples 2.4.2 and 2.4.3, and existence of weak solutions

is proved under the assumption of small initial data for 2s > d.

2.3 The case of continuous ∇W

Taking into account prototypical potentials modelling adhesive behaviours, e.g. one expects

constancy of W outside a bounded region, this section is devoted to the proof of the following

theorem.

Theorem 2.3.1. Let W ∈ C1(Rm), and W be non-negative. Assume there exists K > 0 such

that 0 ≤W (y) ≤ K and 0 ≤ |∇W (y)| ≤ K for all y ∈ Rm, with ∇W uniformly continuous. Then,

there exists a weak solution of (2.2.5) satisfying the energy inequality

E(u(t)) ≤ E(u(0)) for any t ∈ [0, T ]. (2.3.1)
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Proof.

Step 1. Construction of regularized approximate weak solutions. Let us consider a family of

non-negative potentials (Wε)ε>0 in C2(Rm) such that:

(i) Wε converges uniformly to W ,

(ii) ∇Wε converges uniformly to ∇W ,

(iii) ∇Wε is Lipschitz continuous for each ε.

Leveraging the existence result in [Theorem 1.3.3, Chapter 1], for each ε > 0 there exists a weak

solution uε of 
uεtt + (−∆)suε +∇uWε(u

ε) = 0 in (0, T )× Ω

uε(t, x) = 0 in [0, T ]× (Rd \ Ω)

uε(0, x) = u0(x) in Ω

uεt (0, x) = v0(x) in Ω

in the sense of Definition 2.2.2. This in particular means that∫ T

0
〈uεtt(t), ϕ(t)〉dt+

∫ T

0
[uε(t), ϕ(t)]s dt+

∫ T

0

∫
Ω
∇uWε(u

ε(t))ϕ(t) dxdt = 0 (2.3.2)

for all ϕ ∈ L1(0, T ; H̃s(Ω)), and, for any t ∈ [0, T ], we have

1

2
||uεt (t)||2L2(Ω) +

1

2
[uε(t)]2s + ||Wε(u

ε(t))||L1(Ω) ≤
1

2
||v0||2L2(Ω) +

1

2
[u0]2s + ||Wε(u0)||L1(Ω). (2.3.3)

Step 2. Existence of a cluster point. Since Wε converges uniformly to W in Rm and W is bounded,

for sufficiently small ε we have a uniform bound on Wε. Thus, using (2.3.3), there exists a constant

C > 0 such that for any t ∈ [0, T ]

E(uε(t)) =
1

2
||uεt (t)||2L2(Ω) +

1

2
[uε(t)]2s + ||Wε(u

ε(t))||L1(Ω) ≤ C. (2.3.4)

This energy bound, reasoning as in [Proposition 1.3.6, Chapter 1] or [18, Proposition 6], readily

provides the existence of u ∈ L∞(0, T ; H̃s(Ω))∩W 1,∞(0, T ;L2(Ω)) such that, up to a subsequence,

(iv) uε → u in C0([0, T ];L2(Ω)),

(v) uεt ⇀
∗ ut in L∞(0, T ;L2(Ω)),

(vi) uε(t) ⇀ u(t) in H̃s(Ω) for t ∈ [0, T ],

(vii) uε ⇀∗ u in L∞(0, T ; H̃s(Ω)).

Step 3. Passage to the limit in the definition of weak solution. In order to prove that u is a weak

solution we first has to pass to the limit in (2.3.2) as ε→ 0. To do so, observe that

� utt ∈ L∞(0, T ;H−s(Ω)) and uεtt ⇀
∗ utt in L∞(0, T ;H−s(Ω))

Indeed, from (2.3.4), (2.3.2), and the uniform bound on |∇Wε|, we obtain that uεtt is

uniformly bounded in L∞(0, T ;H−s(Ω)). This implies that uεtt ⇀
∗ utt in L∞(0, T ;H−s(Ω)).
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� ∇uWε(u
ε) ⇀∗ ∇uW (u) in L∞(0, T ;H−s(Ω))

Indeed, uε → u for a.e. (x, t) ∈ (0, T ) × Ω due to the convergence of uε to u in

C0([0, T ];L2(Ω)). Thus, since∇Wε converges uniformly to∇W in Rm and∇Wε is uniformly

bounded, by the dominated convergence theorem we conclude that

∇uWε(u
ε)→ ∇uW (u) in L2((0, T )× Ω).

On the other hand, ∇uWε(u
ε) is uniformly bounded in L∞(0, T ;H−s(Ω)), therefore we can

conclude that ∇uWε(u
ε) ⇀∗ ∇uW (u) in L∞(0, T ;H−s(Ω)).

Thus, letting ε→ 0 in (2.3.2) we obtain∫ T

0
〈utt(t), ϕ(t)〉dt+

∫ T

0
[u(t), ϕ(t)]s dt+

∫ T

0

∫
Ω
∇uW (u(t))ϕ(t) dxdt = 0 (2.3.5)

for all ϕ ∈ L1(0, T ; H̃s(Ω)). To finally conclude, observe that

� E(u(t)) ≤ E(u(0)) for each t ∈ [0, T ]

From the fact that uεtt is uniformly bounded in L∞(0, T ;H−s(Ω)), we deduce that uεt → ut
in C0([0, T ];H−s(Ω)). On the other hand, each uεt (t) is uniformly bounded in L2(Ω), thus

we obtain that uεt (t) ⇀ ut(t) in L2(Ω) for each t ∈ [0, T ]. For the convergence of Wε(u
ε),

let t ∈ [0, T ] and an arbitrary η > 0, since Wε converges uniformly to W , for sufficiently

small ε we obtain that

|Wε(y)−W (y)| ≤ η (2.3.6)

for any y ∈ Rm. Hence,∫
Ω
|Wε(u

ε(t))−W (u(t))|dx ≤
∫

Ω
|Wε(u

ε(t))−W (uε(t))|dx+

∫
Ω
|W (uε(t))−W (u(t))|dx

≤ |Ω|η + max
y∈Rm

|∇W (y)| · max
t∈[0,T ]

||uε − u||L2(Ω)|Ω|
1
2

where we have made use of (2.3.6), Lipschitz continuity of W , and Hölder’s inequality. Thus,

from the fact that uε → u in C0([0, T ];L2(Ω)), we can deduce that up to a subsequence,

Wε(u
ε) → W (u) in C0([0, T ];L1(Ω)). The energy inequality for u follows passing to the

limit in (2.3.3).

� u(0, x) = u0, ut(0, x) = v0

Since uε → u in C0([0, T ];L2(Ω)) and uεt → ut in C0([0, T ];H−s(Ω)), we have u(0, x) = u0

and ut(0, x) = v0.

�

Remark 2.3.2. In case u0 ∈ H̃2s(Ω), v0 ∈ H̃s(Ω), the weak solution of (2.2.5) constructed in

Theorem 2.3.1 is such that its energy E(u) is conserved during the evolution. Indeed, for more

regular initial data approximate solutions uε turns out to be more regular and energy preserving

[Theorem 1.3.3, Chapter 1]. In particular we have a uniform H̃s bound on the velocity of the

approximate solutions, namely (uεt )ε, due to the uniform bounds on Wε and ∇Wε. This allows us

to obtain higher regularity for the velocity of the limiting solution, which in turn gives rise to the

energy conservation by using suitable test functions (see Chapter 1).
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2.4 The case of discontinuous ∇W

So as to express the manifestation of an adhesive phenomenon through a sharp discontinuity

in the same spirit as [32], we consider here equation (2.2.5) with the prototypical continuous

potential W ∈ C(Rm) defined as

W (y) =

{
|y|2 if y ∈ B(0, 1)

1 if y /∈ B(0, 1)
(2.4.1)

where B(0, 1) = { y ∈ Rm | |y| < 1 }, B(0, 1) = { y ∈ Rm | |y| ≤ 1 }, and we define

∇W (y) =

{
2y if y ∈ B(0, 1)

0 if y /∈ B(0, 1)
(2.4.2)

Then, we define weak solutions in this case as follows:

Definition 2.4.1 (Weak solution and energy for the discontinuous case). Let T > 0. We say

u = u(t, x) is a weak solution of (2.2.5) in (0, T ) if

1. u ∈ L∞(0, T ; H̃s(Ω)) ∩W 1,∞(0, T ;L2(Ω)) and utt ∈ L∞(0, T ;H−s(Ω)),

2. ∇uW (u) ∈ L∞(0, T ;H−s(Ω)),

3. for all ϕ ∈ L1(0, T ; H̃s(Ω)),∫ T

0
〈utt(t), ϕ(t)〉dt+

∫ T

0
[u(t), ϕ(t)]s dt+

∫ T

0

∫
Ω
∇uW (u(t))ϕ(t) dxdt = 0 (2.4.3)

with

u(0, x) = u0 and ut(0, x) = v0. (2.4.4)

The energy of u is defined as

E(u(t)) =
1

2
||ut(t)||2L2(Ω) +

1

2
[u(t)]2s + ||W (u(t))||L1(Ω) for t ∈ [0, T ].

This potential designates ∂B(0, 1) as the set of critical states serving as boundary of the

adhesive dynamics. Trying now to prove existence of weak solutions as in the proof of Theorem

2.3.1, due to the discontinuous behaviour of ∇W , we cannot approximate the gradient uniformly

and thus possibly lose any control on the behaviour of the approximating sequence, in particular

in regions where approximate solutions approaches the discontinuity. It turns out that this

approach is indeed not always successful when combined with Definition 2.4.1 of weak solutions,

as it can be shown via some counterexamples for the one dimensional semilinear wave equation

utt − uxx +W ′(u) = 0 (we consider here for simplicity a Neumann problem in order to be able to

write explicitly some approximate solutions).

Example 2.4.2. Consider the 1-dimensional problem
utt − uxx +W ′(u) = 0 in (0, T )× [0, L]

ux(t, 0) = ux(t, L) = 0 in [0, T ]

u(0, x) = 1 in [0, L]

ut(0, x) = 0 in [0, L]

(2.4.5)
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for a potential W ∈ C(R) defined as above

W (u) =

{
u2 if |u| ≤ 1

1 if |u| > 1
(2.4.6)

and

W ′(u) =

{
2u if |u| ≤ 1

0 if |u| > 1.
(2.4.7)

Consider now the sequence of approximate potentials Wε with

W ′ε(u) =



(2− ε)u if |u| ≤ 1

2− ε
ε

(1 + ε− u) if 1 ≤ u ≤ 1 + ε

ε− 2

ε
(1 + ε+ u) if − 1− ε ≤ u ≤ 1

0 if |u| ≥ 1 + ε.

One can easily show that uε(t, x) = 1 + ε solves the approximate problems
uεtt − uεxx +W ′ε(u

ε) = 0 in (0, T )× [0, L]

uεx(t, 0) = uεx(t, L) = 0 in [0, T ]

uε(0, x) = 1 + ε in [0, L]

uεt (0, x) = 0 in [0, L],

and such approximate solutions converge to the constant function 1 but

lim
ε→0

∫
Ω
W ′ε(u

ε(t))ϕ(t) dxdt = 0

while W ′(1) = 2. Hence, we generally cannot expect to harmlessly pass to the limit in any

definition of weak solution involving (2.2.6) (indeed, for general W , already the measurability of

the integrand ∇uW (u(t)) may fail, breaking this notion of solution from the very beginning).

Example 2.4.3. Consider again problem (2.4.5). One can in general build non constant approximate

solutions: consider potentials Wε with

W ′ε(u) =



2u− ε if |u| ≤ 1

2ε− 2

ε
u− ε+

2

ε
if 1 ≤ u ≤ 1 + ε,

ε if u ≥ 1 + ε,

2

ε
u− 2

ε
− 2− ε if − 1− ε ≤ u ≤ −1

− ε if u ≤ −1− ε.

(2.4.8)

Then, uε(t, x) = −ε t22 +
√
ε+ 1 solves
uεtt − uεxx +W ′ε(u

ε) = 0 in (0, T )× [0, L]

uεx(t, 0) = uεx(t, L) = 0 in [0, T ]

uε(0, x) = 1 +
√
ε in [0, L]

uεt (0, x) = 0 in [0, L]

(2.4.9)

and uε → 1 and W ′ε(u
ε) = ε.
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Observe that when approximate solutions do not approach the discontinuity region, one

can indeed repeat the same exact steps as in the proof of Theorem 2.3.1. Within this very

specific setting, one can prove the existence of weak solutions for small initial data (i.e., when the

troublesome region is completely avoided).

Theorem 2.4.4. Consider 2s > d, W , ∇uW as defined in (2.4.1), (2.4.2) respectively and assume

that

||u0||H̃s(Ω) ≤ ε1, ||v0||L2(Ω) ≤ ε2 (2.4.10)

for sufficiently small ε1, ε2. Then, there exists a weak solution of problem (2.2.5) in the sense of

Definition 2.4.1 with

|u(x, t)| < 1 for all (t, x) ∈ [0, T ]× Ω (2.4.11)

and

E(u(t)) ≤ E(u(0)) for any t ∈ [0, T ]. (2.4.12)

Proof. We repeat the approach used in the proof of Theorem 2.3.1: construct a family of

non-negative potentials (Wε)ε>0 in C2(R) such that:

(i) Wε converges uniformly to W in Rm,

(ii) ∇Wε converges pointwise to ∇W in Rm \ ∂B(0, 1), ∇Wε converges uniformly to ∇W in

B(0, 1), ∇Wε is uniformly bounded in Rm,

(iii) ∇Wε is Lipschitz for each ε.

For each ε > 0 there exists a weak solution uε in the sense of Definition 2.2.2 corresponding to

Wε with initial data u0, v0 such that for any t ∈ [0, T ] one has

1

2
||uεt (t)||2L2(Ω) +

1

2
[uε(t)]2s + ||Wε(u

ε(t))||L1(Ω) ≤
1

2
||v0||2L2(Ω) +

1

2
[u0]2s + ||Wε(u0)||L1(Ω). (2.4.13)

Since Wε converges uniformly to W in Rm, for sufficiently small ε we have

|Wε(y)−W (y)| ≤ ε3 (2.4.14)

for any y ∈ Rm and ε3 > 0 fixed. This fact combined with (2.4.10) implies that

||Wε(u0)||L1(Ω) ≤ ||W (u0)||L1(Ω) + ε3|Ω| ≤ |Ω|ε2
1 + ε3|Ω|. (2.4.15)

Thus, combining (2.4.13) with estimates in (2.4.10) and (2.4.15), we obtain that

E(uε(t)) =
1

2
||uεt (t)||2L2(Ω) +

1

2
[uε(t)]2s + ||Wε(u

ε(t))||L1(Ω) ≤ C(ε1, ε2, ε3,Ω) (2.4.16)

for any t ∈ [0, T ]. On the other hand, we have

||uε(t)− uε(0)||2L2(Ω) =

∫
Ω

∣∣∣∣∫ t

0
uεt (s, x)ds

∣∣∣∣2 dx ≤ t ∫
Ω

∫ t

0
|uεt (s, x)|2dsdx

≤ T
∫ t

0

∫
Ω
|uεt (s, x)|2dxds ≤ 2T 2C(ε1, ε2, ε3,Ω)

(2.4.17)
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where we have made use of Jensen’s inequality and Fubini’s theorem. Hence,

||uε(t)||L2(Ω) ≤ ||uε(0)||L2(Ω) + T
√

2C(ε1, ε2, ε3,Ω) ≤ ε1 + T
√

2C(ε1, ε2, ε3,Ω) (2.4.18)

for all t ∈ [0, T ]. So, from the estimates (2.4.16) and (2.4.18) we obtain that

||uε(t)||H̃s(Ω) ≤ C(ε1, ε2, ε3, T,Ω), (2.4.19)

Since 2s > d, by means of the Sobolev embedding from H̃s(Ω) into the space C0(Rd;Rm) (see

Lemma 2.2.1), we obtain

||uε(t)||C0(Ω;Rm) ≤ C||uε(t)||H̃s(Ω) ≤ C(ε1, ε2, ε3, T,Ω), (2.4.20)

for all t ∈ [0, T ], where C(ε1, ε2, ε3, T,Ω) is decreasing as soon as ε1, ε2, ε3 are decreasing. Thus,

for any small η > 0, by choosing ε1, ε2, ε3 small enough one has

|uε(x, t)| ≤ 1− η (2.4.21)

for any (t, x) ∈ [0, T ] × Ω. Since approximate solutions never enter the discontinuity region of

the gradient ∇W , one can then repeat the same steps as in the proof of Theorem 2.3.1 to pass

to the limit along the sequence (uε)ε and obtain a weak solution satisfying (2.4.11) and (2.4.12).

�

As the above discussion made clear, in order to be able to handle problems with a discontinuity

of the adhesive glue layer, i.e. discontinuities in ∇W , a more robust notion of solution is needed.

An immediate follow-up would be to consider for instance solutions in the sense of differential

inclusions, e.g.

utt + (−∆)su ∈ −∂W (u)

(see for example [31], and references therein) or in the sense of Young measures, but we postpone

such discussion to future works.
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Chapter 3

Energy minimizing maps with
singularities and Gilbert-Steiner
problems

In this chapter we investigate the relation between energy minimizing maps valued into

spheres having topological singularities at given points and optimal networks connecting them (e.g.

Steiner trees, Gilbert-Steiner irrigation networks). We show the equivalence of the corresponding

variational problems, interpreting in particular the branched optimal transport problem as a

homological Plateau problem for rectifiable currents with values in a suitable normed group. This

generalizes the pioneering work by Brezis, Coron and Lieb [25].

3.1 Introduction

In their celebrated paper [25], Brezis, Coron and Lieb showed, in the context of harmonic maps

and liquid crystals theory, the existence of a close relation between sphere-valued harmonic maps

having prescribed topological singularities at given points in R3 and minimal connections between

those points, i.e., optimal mass transportation networks (in the sense of Monge-Kantorovich)

having those points as marginals. This relation was further enlightened by Almgren, Browder and

Lieb in [4], who recovered the results in [25] by interpreting the (minimal connection) optimal

transportation problem as a suitable Plateau problem for rectifiable currents having the given

marginals as prescribed boundary.

Our aim is to consider minimizing configurations for maps valued into manifolds and with

prescribed topological singularities when the energy is possibly more general than the Dirichlet

energy, and investigate the connection with Plateau problems for currents (or flat chains) with

coefficients in suitable groups. The choice of these groups is linked to the topology of the involved

target manifolds.

In this chapter we will consider the particular case where the manifold is a product of spheres

and the maps have assigned point singularities, and we will show, in Theorem 3.1.1 below, that

energy minimizing configurations are related with Steiner-type optimal networks connecting the

given points, i.e., solutions of the Steiner problem or solutions of the Gilbert-Steiner irrigation

problem. In a companion paper in preparation [29] we will discuss and state the results which

correspond to more general situations.
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Steiner tree problems and Gilbert-Steiner (single sink) problems can be formulated as follows:

given n distinct points P1, . . . , Pn in Rd, where d, n ≥ 2, we are looking for an optimal connected

transportation network, L = ∪n−1
i=1 λi, along which the unit masses initially located at P1, . . . , Pn−1

are transported to the target point Pn (single sink); here λi can be seen as the path of the ith

mass flowing from Pi to Pn, and the cost of moving a mass m along a segment with length l is

proportional to lmα, α ∈ [0, 1]. Therefore, we are led to consider the problem

(I) inf

{
Iα(L) : L =

n−1⋃
i=1

λi with {Pi, Pn} ⊂ λi, for every i = 1, . . . , n− 1

}

where the energy Iα is computed as Iα(L) =
∫
L |θ(x)|αdH1(x), with θ(x) =

∑n−1
i=1 1λi(x). Let us

notice that θ stands for the mass density along the network. In particular, we consider the range

α ∈ [0, 1]:

� when α = 0 the problem is equivalent to optimize the total length of the graph L, as in the

Steiner Tree Problem (STP);

� when α = 1 the problem (I) becomes the well-known Monge-Kantorovich problem;

� and when 0 < α < 1 the problem is known as the Gilbert-Steiner problem, or, more generally,

as a branched optimal transport problem, due to the fact that the cost is proportional to a

concave function θα, which favours the clustering of the mass during the transportation,

thus giving rise to the branched structures which characterize the solutions (we refer the

reader to [11] for an overview on the topic).

In the last decade, the communities of Calculus of Variations and Geometric Measure Theory

made some efforts to study (Gilbert-)Steiner problems in many aspects, such as existence, regularity,

stability and numerical feasibility (see for example [81, 68, 54, 55, 35, 36, 65, 23, 58, 19, 21, 20]

and references therein). Among all the significant results, we would like to mention recent works

in [54, 55] and [19, 20], which are closely related to our work. To be more precise, in [54, 55]

the authors turn the problem (I) into the problem of mass-minimization of integral currents

with multiplicities in a suitable group. For the sake of readability we postpone proper definitions

about currents to Section 3.2, in this introduction we only recall that a 1-dimensional integral

current with coefficients in a group can be thought as a formal sum of finitely many curves and

countably many loops with coefficients in a given normed abelian group. For instance, considering

the group Zn−1 and assigning to the boundary datum P1, P2, . . . , Pn−1, Pn the multiplicities

e1, e2, . . . , en−1,−(e1 + . . . + en−1), respectively (where {ei}1≤i≤n−1 is the basis of Rn−1), we

recover the standard model in [54, 55].

In fact we can interpret the network L =
⋃n−1
i=1 λi as the superposition of n − 1 paths λi

connecting Pi to Pn labelled with multiplicity ei. This point of view requires a density function

with values in Zn−1, which corresponds to the so-called 1-dimensional current with coefficients in

the group Zn−1. Furthermore, by equipping Zn−1 with a certain norm (depending on the cost of

the problem), we may define the notion of mass of those currents, and problem (I) turns out to

be equivalent to the Plateau problem.

(M) inf
{
M(T ) : ∂T = e1δP1 + e2δP2 + . . .+ en−1δPn−1 − (e1 + e2 + . . .+ en−1)δPn

}
where T is a 1-dimensional current with coefficients in the group Zn−1 (again, we refer the reader

to the Section 3.2 for rigorous definitions). For mass minimization, there is the very useful notion
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of calibration (see section 3.3), that is, a tool to prove minimality when dealing with concrete

configurations (see Example 3.3.1). To be precise, a calibration is a sufficient condition to prove

minimality, see Definition 3.2.8 and the following remarks.

In [19, 20], by using [54, 55], a variational approximation of the problem (I) was provided

through Modica-Mortola type energies in the planar case, and through Ginzburg-Landau type

energies (see [3]) in higher dimensional ambient spaces via Γ-convergence. The corresponding

numerical treatment is also shown there.

Following [54, 55], [19, 20], and the strategy outlined in [4] (relating the energy of harmonic

maps with prescribed point singularities to the mass of 1-dimensional classical integral currents)

we provide here a connection between k-harmonic manifold-valued maps with prescribed point

singularities and (Gilbert-)Steiner problems (I). More precisely, let P1, . . . , Pn−1, Pn in Rd be

given, and consider the spaces Hi defined as the subsets of W 1,d−1
loc (Rd;Sd−1) where the functions

are constant outside a neighbourhood of the segment joining Pi, Pn and have distributional

Jacobian
αd−1

d (δPi − δPn), respectively. Here αd−1 is the surface area of the unit ball in Rd.
Let ψ be a norm on Rn−1 which will be specified in Section 3.3 (see (3.4.9)), and set

H(u) =

∫
Rd
ψ(|∇u1|d−1, |∇u2|d−1, . . . , |∇un−1|d−1) dx (3.1.1)

where u = (u1, . . . , un−1) ∈ H1 ×H2 × . . .×Hn−1 is a 2-tensor. We investigate

(H) inf {H(u) : u ∈ H1 ×H2 × . . .×Hn−1} .

The main contribution of this chapter is the following

Theorem 3.1.1. Assume that a minimizer of problem (M) admits a calibration (see Definition

3.2.8). Then, we have

inf H = (d− 1)
d−1
2 αd−1 inf M (3.1.2)

or equivalently, in view of paper [54, 55],

inf H = (d− 1)
d−1
2 αd−1 inf Iα . (3.1.3)

Currently, we cannot evade the assumption on the existence of a calibration, because it is still

not known if a calibration, or even a weak version of it, is not only sufficient but also a necessary

condition for minimality (see Section 3.2). Nonetheless, dropping this assumption we can still

state some partial result as follows.

Remark 3.1.2. (i) If α = 1, then we are able to prove that (3.1.3) still holds true, as a variant

of the main result in Brezis, Coron, Lieb [25].

(ii) In case 0 ≤ α < 1, we obtain the following inequality

(d− 1)
d−1
2 αd−1 inf M = (d− 1)

d−1
2 αd−1 inf Iα ≥ inf H . (3.1.4)

The investigation of equality in (3.1.4) when 0 ≤ α < 1 is delicate and will be considered in

forthcoming works.

Remark 3.1.3. We believe that the assumption of the existence of a calibration is not too restrictive.

We actually conjecture that minimizing configurations for the problem (M) admit a calibration

in case of uniqueness, which is somehow a generic property. We carry out in Example 3.3.1 the

construction of configurations of n points in Rn−1 with n− 2 branching points which are generic

in character and these configurations admit a calibration.
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The organization of Chapter 3 is as follows: in Section 3.2, we briefly review some basic notions

of Geometric Measure Theory which will be used in the chapter, in Section 3.3 we recall (Gilbert-)

Steiner problems and briefly describe their connection with Plateau’s problem for currents with

coefficients in a group. Finally, in Section 3.4 we prove the Theorem 3.1.1.

3.2 Preliminaries and notations

3.2.1 Rectifiable currents with coefficients in a group G

In this section, we present the notion 1-dimensional currents with coefficients in the group

Rn−1 in the ambient space Rd with n, d ≥ 2. We refer to [57] for a more detailed exposition of

the subject.

Consider Rn−1 equipped with a norm ψ and its dual norm ψ∗. Denote by Λ1(Rd) the space of

1-dimensional vectors and by Λ1(Rd) the space of 1-dimensional covectors in Rd.

Definition 3.2.1. An (Rn−1)∗-valued 1-covector on Rd is a bilinear map

w : Λ1(Rd)× Rn−1 −→ R .

Let {e1, e2, . . . , en−1} be an orthonormal basis of Rn−1, and let {e∗1, e∗2, . . . , e∗n−1} be its dual.

Then, each (Rn−1)∗-valued 1-covector on Rd can be represented as w = w1e
∗
1 + . . .+ wn−1e

∗
n−1 ,

where wi is a “classical” 1-dimensional covector in Rd for each i = 1, . . . , n− 1. To be precise, the

action of w on a pair (τ, θ) ∈ Λ1(Rd)× Rn−1 can be computed as

〈w; τ, θ〉 =
n−1∑
i=1

θi〈wi, τ〉 ,

where the scalar product on the right hand side is the standard Euclidean scalar product in Rd.
We denote by Λ1

(Rn−1,ψ)(R
d) the space of (Rn−1)∗-valued 1-covectors in Rd, endowed with the

following norm:

|w| := sup{ψ∗(〈w; τ, ·〉) : |τ | ≤ 1} .

Definition 3.2.2. An (Rn−1)∗-valued 1-dimensional differential form defined on Rd is a map

ω : Rd −→ Λ1
(Rn−1,ψ)(R

d) .

Let us remark that the regularity of ω is inherited from the components ωi, i = 1, . . . , n− 1. Let

ϕ = (ϕ1, . . . , ϕn−1) be a function of class C1(Rd;Rn−1). We denote

dϕ := dϕ1e
∗
1 + . . .+ dϕn−1e

∗
n−1,

where dϕi is the differential of ϕi. Thus dϕ ∈ C(Rd; Λ1
(Rn−1,ψ)(R

d)).

Definition 3.2.3. A 1-dimensional current T with coefficients in (Rn−1, ψ) is a linear and

continuous map

T : C∞c

(
Rd; Λ1

(Rn−1,ψ)(R
d)
)
−→ R .
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Here the continuity is meant with respect to the (locally convex) topology on C∞c (Rd; Λ1
(Rn−1,ψ)(R

d))

defined in analogy with the topology on C∞c (Rd;R) which allows the definition of distributions.

The mass of T is defined as

M(T ) := sup

{
T (ω) : sup

x∈Rd
|ω| ≤ 1

}
.

Moreover, if T is a 1-dimensional current with coefficients in (Rn−1, ψ), we define the boundary

∂T of T as a distribution with coefficients in (Rn−1, ψ), ∂T : C∞c (Rd; (Rn−1, ψ)) −→ R, such that

∂T (ϕ) := T (dϕ) .

The mass of ∂T is the supremum norm

M(∂T ) := sup

{
T (dϕ) : sup

x∈Rd
ψ∗(ϕ) ≤ 1

}
.

A current T is said to be normal if M(T ) + M(∂T ) <∞.

Definition 3.2.4. A 1-dimensional rectifiable current with coefficients in the normed (abelian)

group (Zn−1, ψ) is a (1-dimensional) normal current (with coefficients in (Rn−1, ψ)) such that there

exists a 1-dimensional rectifiable set Σ ⊂ Rd, an approximate tangent vectorfield τ : Σ −→ Λ1(Rd),
and a density function θ : Σ −→ Zn−1 such that

T (ω) =

∫
Σ
〈ω(x)τ(x), θ(x)〉 dH1(x)

for every ω ∈ C∞c
(
Rd; Λ1

(Rn−1,ψ)(R
d)
)

. We denote such a current T by the triple JΣ, τ, θK.

Remark 3.2.5. The mass of a rectifiable current T = JΣ, τ, θK with coefficients in (Zn−1, ψ) can be

computed as

M(T ) := sup

{
T (ω) : sup

x∈Rd
|ω| ≤ 1

}
=

∫
Σ
ψ(θ(x)) dH1(x) .

Moreover, ∂T : C∞c (Rd; (Rn−1, ψ)) −→ R is a measure and there exist x1, . . . , xm ∈ Rd,
p1, . . . , pm ∈ Zn−1 such that

∂T (ϕ) =
m∑
j=1

pjϕ(xj).

Finally the mass of the boundary M(∂T ) coincides with
∑m

j=1 ψ(pj).

Remark 3.2.6. In the trivial case n = 2, we consider rectifiable currents with coefficients in the

discrete group Z and we recover the classical definition of integral currents (see, for instance, [38]).

Finally, it is useful to define the components T with respect to the index i ∈ {1, . . . , n− 1}:
for every 1-dimensional test form ω̃ ∈ C∞c (Rd; Λ1(Rd)) we set

T i(ω̃) := T (ω̃e∗i ) .

Notice that T i is a classical integral current (with coefficients in Z). Roughly speaking, in some

situations we are allowed to see a current with coefficients in Rn−1 through its components

(T 1, . . . , Tn−1).
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When dealing with the Plateau problem in the setting of currents, it is important to remark a

couple of critical features. For the sake of understandability, we recall them here for the particular

case of 1-dimensional currents, but the matter does not depend on the dimension.

Remark 3.2.7. If a boundary {P1, . . . , Pn} ⊂ Rd is given, then the problem of the minimization

of mass is well posed in the framework of rectifiable currents and in the framework of normal

currents as well. In both cases the existence of minimizers is due to a direct method and, in

particular, to the closure of both classes of currents. Obviously

min{M(T ) : T normal current with coefficients in Rn−1 and boundary {P1, . . . , Pn}}
≤min{M(T ) : T rectifiable current with coefficients in Zn−1 and boundary {P1, . . . , Pn}} ,

but whether the inequality is actually an identity is not known for currents with coefficients in

groups. The same question about the occurence of a Lavrentiev gap between normal and integral

currents holds for classical currents of dimension bigger than 1 and it is closely related to the

problem of the decomposition of a normal current in rectifiable ones (see [57] for a proper overview

of this issue).

A formidable tool for proving the minimality of a certain current is to show the existence of a

calibration.

Definition 3.2.8. Consider a rectifiable current T = JΣ, τ, θK with coefficients in Zn, in the

ambient space Rd. A smooth (Rn)∗-valued differential form ω in Rd is a calibration for T if the

following conditions hold:

(i) for a.e x ∈ Σ we have that 〈ω(x); τ(x), θ(x)〉 = ψ(θ(x));

(ii) the form is closed, i.e., dω = 0;

(iii) for every x ∈ Rd, for every unit vector t ∈ Rd and for every h ∈ Zn, we have that

〈ω(x); t, h〉 ≤ ψ(h) .

It is straightforward to prove that the existence of a calibration associated to a current implies

the minimality of the current itself. Indeed, with the notation in Definition 3.2.8, if T ′ = JΣ′, τ ′, θ′K
is a competitor, i.e., T ′ is a rectifiable current with coefficients in Zn and ∂T ′ = ∂T , then

M(T ) =

∫
Σ
ψ(θ) =

∫
Σ
〈ω; τ, θ〉 =

∫
Σ′
〈ω; τ ′, θ′〉 ≤

∫
Σ′
ψ(θ′) = M(T ′) .

We stress that fact that the existence of a calibration is a sufficient condition for the minimality

of a current, so it is always a wise attempt when a current is a good candidate for mass minimization.

Nonetheless, it is also natural to wonder if every mass minimizing current has its own calibration

and this problem can be tackled in two ways: for specific currents or classes of currents (such as

holomorphic subvarieties) one has to face an extension problem with the (competing) constraints

(ii) and (iii), since condition (i) already prescribes the behaviour of the form on the support of

the current. In general, one may attempt to prove the existence of a calibration as a result of a

functional argument, picking it in the dual space of normal currents, but this approach has two

still unsolved problems:

� the calibration is merely an element of the dual space of normal currents, thus it is far to

be smooth;
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� this argument works in the space of normal currents and it is not known whether a minimizer

in this class is rectifiable as well (see Remark 3.2.7).

Anyway, in this specific case of currents with coefficients in Zn which match the energy minimizing

networks of a branched optimal transport problem (with a subadditive cost), we think that the

Lavrentiev phenomenon cannot occur, as explained in Remark 3.1.3.

3.2.2 Distributional Jacobian

We recall the notion of distributional Jacobian of a function u ∈W 1,d−1
loc (Rd;Rd)∩L∞loc(Rd;Rd),

see also [48, 2].

Let u be in W 1,d−1
loc (Rd;Rd) ∩ L∞loc(Rd;Rd), we define an auxiliary map ũ ∈ L1

loc(Rd;Rd) as

ũ := (det(u, ux2 , . . . , uxd),det(ux1 , u, . . . , uxd), . . . ,det(ux1 , . . . , uxd−1
, u)) ,

where uxj is a Ld−1
loc (Rd;Rd) representative of the partial derivative of u with respect to the jth

direction. Thus we define the Jacobian Ju of u as 1
ndũ in the sense of distributions. More

explicitly, if ϕ ∈ C∞c (Rd;R) is a test function, then one has∫
Rd
ϕJudx = − 1

n

∫
Rd
∇ϕ · ũ dx . (3.2.1)

The identity required in (3.2.1) is clearer if one notices that ũ has been chosen in such a way that

div(ϕũ) = ∇ϕ · ũ+nϕ detDu whenever u is smooth enough to allow the differential computation.

Once the singularities of the problem p1, . . . , pn have been prescribed, we can also introduce

the energy spaces Hi, for each i = 1, . . . , n− 1. By definition a map u ∈W 1,d−1
loc (Rd;Sd−1) belongs

to Hi if Ju =
αd−1

d (δPi − δPn), and there exists a radius r = r(u) > 0 such that u is constant

outside B(0, r(u)) 3 Pi, Pn, where B(0, r) is the open ball of radius r centered at 0.

In order to prove Theorem 3.1.1 we consider the following problem:

(H) inf {H(u), u = (u1, . . . , un−1) ∈ H1 ×H2 × . . .×Hn−1} .

where

H(u) =

∫
Rd
ψ(|∇u1|d−1, |∇u2|d−1, . . . , |∇un−1|d−1) dx . (3.2.2)

As indicated in the introduction, the inspiration for considering the problem (H) and comparing it

with the irrigation problem (I) is coming from the works [54, 55] and [4]. More precisely, [54, 55]

provided a new framework for the problem (I) by proving it to be equivalent to the problem of

mass-minimizing currents with coefficients in the group Zn−1 with a suitable norm. The point of

view is to look at each irrigation network L =
⋃n−1
i=1 λi encoded in the current T = (T 1, . . . , Tn−1)

where T i is a classical current supported by λi, and the irrigation cost of L is the mass of the

current T . Then, by combining this point of view with [4] (see also [25]), where the energy of

harmonic maps with prescribed point singularities was related to 1-dimensional classical currents.

This leads us to investigate the problem (H) in connection with problem (I).

3.3 (Gilbert-)Steiner problems and currents with coefficients in

a group

Let us briefly recall the Gilbert-Steiner problem and the Steiner tree problem and see how it

can be turned into a mass-minimization problem for integral currents in a suitable group.
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Let n distinct points P1, . . . , Pn in Rd be given. Denote by G(A) the set of all acyclic graphs

L =
⋃n−1
i=1 λi, along which the unit masses located at P1, . . . , Pn−1 are transported to the target

point Pn (single sink). Here λi is a simple rectifiable curve and represents the path of the mass at

Pi flowing from Pi to Pn. In [54, 55], the occurrence of cycles in minimizers is ruled out, thus the

problem (I) is proved to be equivalent to

(I) inf

{∫
L
|θ(x)|αdH1(x), L ∈ G(A), θ(x) =

n−1∑
i=1

1λi(x)

}

where θ is the mass density along the network L. Moreover, in [54, 55] the problem (I) can

be turned into a mass-minimization problem for integral currents with coefficients in the group

Zn−1: the idea is to label differently the masses located at P1, P2 . . . , Pn−1 (source points) and

to associate the source points P1, . . . , Pn−1 to the single sink Pn. Formally, we produce a 0-

dimensional rectifiable current (a.k.a. a measure) with coefficients in Zn−1, given by the difference

between

µ− = e1δP1 + e2δP2 + . . .+ en−1δPn−1 and µ+ = (e1 + . . .+ en)δPn .

We recall that {e1, e2, . . . , en} is the canonical basis of Rn−1. The measures µ−, µ+ are the

marginals of the problem (I). To any acyclic graph L =
⋃n−1
i=1 λi we associate a current T with

coefficients in the group Zn−1 as follows: to each λi associate the current Ti = Jλi, τi, eiK, where τi
is the tangent vector of λi. We associate to the graph L =

⋃n−1
i=1 λi the current T = (T1, . . . , Tn−1)

with coefficients in Zn−1. By construction we obtain

∂T = µ+ − µ− .

Choosing the norm ψ on Zn−1 as

ψ(h) =

|| · ||α =
(∑n−1

j=1 |hj |
1
α

)α
in case α ∈ (0; 1], h ∈ Zn−1

|| · ||0 = max{h1, . . . , hn−1} in case α = 0, h ∈ Zn−1 ,
(3.3.1)

in view of Remark 3.2.5, the problem (I) is equivalent to

(M) inf
{
M(T ), ∂T = µ+ − µ−

}
.

We refer the reader to [54, 55] for more details. From now on we restrict our attention to the

coefficients group (Zn−1, || · ||α), 0 ≤ α ≤ 1.

We remark that turning the problem (I) into a mass-minimization problem allows to rely on

the (dual) notion of calibration, which is a useful tool to prove minimality, especially when dealing

with concrete configurations. We also recall that the existence of a calibration (see Definition

3.2.8) associated with a current T implies that T is a mass-minimizing current for the boundary

∂T .

Example 3.3.1. Let us consider an irrigation problem with α = 1
2 . We will consider a minimal

network joining n + 1 points in Rn, the construction of the network is explained below. Let

us stress that in this example the coincidence of the dimension of the ambient space with the

dimension of the space of coefficients is needed.

Adopting the point of view of [43], we propose a calibration first, and only a posteriori we

construct a current which fulfills the requirement (i) in Definition 3.2.8. We briefly remind that
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the problem (I) can be seen as the mass-minimization problem for currents with coefficients in

Zn with the norm ‖ · ‖ 1
2
.

Let {dx1, . . . ,dxn} be the (dual) basis of covectors of Rn = span(e1, . . . , en). We now prove

that the differential form

ω =


dx1

dx2
...

dxn


satisfies conditions (ii) and (iii) in Definition 3.2.8. Obviously dω = 0. Moreover, let τ =

(τ1, τ2, . . . , τn) ∈ Rn be a unit vector (with respect to the Euclidean norm). Thus, for our choice

of the norm ψ = ‖ · ‖ 1
2

we can compute ‖〈ω; τ, ·〉‖
1
2 = (τ2

1 + τ2
2 + τ2

3 + . . .+ τ2
n)

1
2 = 1.

We will build now a configuration of n+1 points P1, P2, . . . , Pn+1 in Rn calibrated by ω. Notice

that the network has n− 1 branching points and is somehow generic in character. More precisely,

our strategy in building such a configuration is to choose end points, and branching points following

the directions parallel to e1, e2, e3, . . . , en, e1+e2, e1+e2+e3, . . . , e1+e2+. . .+en−1, e1+e2+. . .+en.

We illustrate the construction in R3,R4. This process can be extended to any dimension.

� In R3, let us consider P1 = (−1, 0, 0), P2 = (0,−1, 0), P3 = (1, 1,−1), P4 = (2, 2, 1). Take,

as branching points, G1 = (0, 0, 0), G2 = (1, 1, 0). Now consider the current T = JΣ, τ, θK
with support Σ obtained by the union of the segments P1G1, P2G1, G1G2, P3G2, G2P4.

Figure 3.1: The picture illustrates the construction of T .

The multiplicity θ is set as

θ(x) =



e1 if x ∈ P1G1

e2 if x ∈ P2G1

e1 + e2 if x ∈ G1G2

e3 if x ∈ P3G2

e1 + e2 + e3 if x ∈ G2P4

0 elsewhere.

We observe that T is calibrated by ω, thus T is a minimal network for the irrigation problem

with sources P1, P2 and P3 and sink P4. Notice that edges of the network meet at the
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branching points with the 90 degrees angles, as known for branched optimal structures with

cost determined by α = 1/2.

� In R4, we keep points P1 = (−1, 0, 0, 0), P2 = (0,−1, 0, 0), P3 = (1, 1,−1, 0) and, in general,

the whole network of the example above as embedded in R4. We relabel G3 := (2, 2, 1, 0).

We now pick P4 and P5 in such a way that
−−−→
P4G3 = e4 and

−−−→
G3P5 = e1 + e2 + e3 + e4. For

instance, we choose P4 = (2, 2, 1,−1) and P5 = (3, 3, 2, 1). As before, the marginals of

the irrigation problem are P1, P2, P3, P4 as sources and P5 as sink, while G1, G2, G3 are

branching points.

Let us now consider the current T = JΣ, τ, θK supported on the union of segments

P1, G1, P2G1, G1G2, P3G2, G2G3, P4G3, G3P5 and multiplicity θ given by

θ(x) =



e1 if x ∈ P1G1

e2 if x ∈ P2G1

e1 + e2 if x ∈ G1G2

e3 if x ∈ P3G2

e1 + e2 + e3 if x ∈ G2G3

e4 if x ∈ P4G3

e1 + e2 + e3 + e4 if x ∈ G3P5

0 elsewhere.

It is easy to check that the orientation of each segment coincides with the multiplicity,

therefore T is calibrated by ω.

� This procedure can be replicated to construct a configuration of n+1 points P1, P2, . . . , Pn+1

in Rn calibrated by ω, always in the case α = 1/2.

Example 3.3.2. We now consider a Steiner tree problem. As in the previous example, we aim

to construct calibrated configurations joining n+ 1 points in Rn (with n− 1 branching points).

Consider the following differential form:

ω =



1
2dx1 +

√
3

2 dx2
1
2dx1 −

√
3

2 dx2
−1
2 dx1 −

√
3

2 dx3
−1
4 dx1 +

√
3

4 dx3 −
√

3
2 dx4

−1
8 dx1 +

√
3

8 dx3 +
√

3
4 dx4 −

√
3

2 dx5
...

−1
2n−2 dx1 +

√
3

2n−2 dx3 +
√

3
2n−3 dx4 + . . .+

√
3

2n−k
dxk+1 + . . .+

√
3

4 dxn−1 −
√

3
2 dxn


.

It is easy to check that the differential form ω is a calibration only among those currents having

multiplicities e1, e2, e3, . . . , en, e1 + e2, e1 + e2 + e3, . . . , e1 + e2 + . . .+ en−1, e1 + e2 + . . .+ en and

hence it will allow to prove the minimality of configurations in the class of currents with those

multiplicities (cf.[30] for the notion calibrations in families). Nevertheless, it is enough to prove

the minimality of global minimizers in some configurations.
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� Consider n = 3 and P1 =
(
−1
2 ,
√

3
2 , 0

)
, P2 =

(
−1
2 ,
−
√

3
2 , 0

)
, P3 =

(√
6

2 −
1
2 , 0,

√
3

2

)
, P4 =(√

6
2 −

1
2 , 0,−

√
3

2

)
(see also the example in [20, Section 3]). Indeed, we observe that the

lengths |P1P2| = |P1P3| = |P1P4| = |P2P3| = |P2P4| = |P3P4| =
√

3, meaning that the

convex envelope of points P1, P2, P3, P4 is a tetrahedron: this observation allows us to restrict

our investigation among all currents having multiplicities e1, e2, e3, e1 +e2, e1 +e2 +e3. More

precisely, given any 1-dimensional integral current T with ∂T = (e1 + e2 + e3)δP4 − e1δP1 −
e2δP2 − . . .− e3δP3 whose support is an acyclic graph with two additional Steiner points, we

can always construct a corresponding current L with multiplicities e1, e2, e1 +e2, e1 +e2 +e3

having the same boundary with T such that M(T ) = M(L) thanks to the symmetric

configuration P1, P2, P3, P4 combined with the fact that any minimal configuration cannot

have less than two Steiner points. Indeed, by contradiction, if a minimal configuration for

the vertices of a tetrahedron had 1 Steiner point, then this configuration would violate the

well-known property of the 120 degrees angles at Steiner points. Therefore, ω calibrates

the current T = JΣ, τ, θK, where S1 = (0, 0, 0), S2 =
(√

6
2 − 1, 0, 0

)
are the Steiner points,

Σ = P1S1 ∪ P2S1 ∪ S1S2 ∪ P3S2 ∪ S2P4 and the multiplicity is given by

θ(x) =



e1 if x ∈ P1S1

e2 if x ∈ P2S1

e1 + e2 if x ∈ S1S2

e3 if x ∈ P3S2

e1 + e2 + e3 if x ∈ S2P4

0 elsewhere .

� Using the same strategy of Example 3.3.1, we can build a configuration P1, P2, P3, P4, P5 in

R4 starting from the points P1, P2, P3, P4 above, in such a way that the new configuration is

calibrated by ω among all currents with multiplicities e1, e2, e3, e4, e1 + e2, e1 + e2 + e3, e1 +

e2 + e3 + e4. This construction can be extended to any dimension.

3.4 Proof of the main result

We devote this section to the proof of Theorem 3.1.1. The proof of Theorem 3.1.1 is much

in the spirit of the dipole construction of [25] (in the version of [2]), and makes use of Coarea

Formula to relate the harmonic energy to mass-minimization of classical integral currents, as in

[4].

Proof. In the first steps we prove the inequality

inf H ≤ (d− 1)
d−1
2 αd−1 inf Iα.

We briefly recall the dipole construction (see, for instance, [25, Theorem 3.1, Theorem 8.1]).

Given a segment AB ⊂ Rd and a pair of parameters β, γ > 0, we define

U := {x ∈ Rd : dist(x,AB) < min{β, γ dist(x, {A,B})}} ⊂ Rd (3.4.1)

to be a pencil-shaped neighbourhood with core AB and parameters β, γ. For any fixed ε > 0, the

dipole construction produces a function u ∈W 1,d−1
loc (Rd; Sd−1) with the following properties:
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� u ≡ (0, . . . , 0, 1) in Rd \ U ;

� Ju =
αd−1

d (δA − δB);

� moreover the map u satisfies the following inequality

1

(d− 1)
d−1
2 αd−1

∫
Rd
|∇u|d−1dx ≤ |AB|+ ε , (3.4.2)

Step 1. Let L =
⋃n−1
i=1 λi be an acyclic connected polyhedral graph, and T be the associated cur-

rent with coefficients in Zn−1 corresponding to L. Since L is polyhedral, it can also be written as

L =
⋃k
j=1 Ij , where Ij are weighted segments. For each segment Ij we can find parameters δj , γj >

0 such that the pencil-shaped neighbourhood Uj =
{
x ∈ Rd : dist(x, Ij) ≤ min {βj , γjdist(x, ∂Ij)}

}
(modelled after (3.4.1)) is essentially disjoint from U` for every ` 6= j. Then, for every i =

1, . . . , n − 1, let Vi =
⋃
j∈Ki Uj be a sharp covering of the path λi. To be precise, we choose

Ki ⊂ {1, . . . , k} such that Vi ∩ U` is at most an endpoint of the segment I`, if ` /∈ Ki.

Figure 3.2: A dipole construction of a Y-shaped graph connecting 3 points.

For each path λi, i = 1, . . . , n− 1, we build the map ui ∈ Hi in such a way that it coincides

with a dipole associated to the segment Ij in the neighbourhood Uj for each j ∈ Ki. We put

ui ≡ (0, . . . , 0, 1) in Rd \ Vi.
We obtain that ui ∈W 1,d−1

loc (Rd;Sd−1) and satisfies Jui =
αd−1

d (δPi−δPn). Moreover, summing

up inequality (3.4.2) repeated for each segment Ij with j ∈ Ki, the following inequality holds

1

(d− 1)
d−1
2 αd−1

∫
Rd
|∇ui|d−1dx ≤M(Ti) + kε ,

where Ti is the (classical) integral current corresponding to the ith component of T .

In particular, let us stress that the maps u1, . . . , un−1 have the following further property: if

some paths λi1 , λi2 , . . . , λim have a common segment Ij for some j ∈ Ki1 ∩Ki2 ∩ . . . ∩Kim , then

ui1 , . . . , uim agree in Uj . Furthermore, setting hi1,i2,...,im = (0, . . . , |∇ui1 |d−1, . . . , |∇uim |d−1, . . . , 0),

we obtain
1

(d− 1)
d−1
2 αd−1

∫
Uj

||hi1,i2,...,im ||αdx ≤ mα(|Ij |+ kε) ,

where hi1,i2,...,im = (0, . . . , |∇ui1 |d−1, . . . , |∇uim |d−1, . . . , 0). This holds for every α ∈ [0, 1].
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Combining all the previous observations, we can conclude that, given any ε̃ > 0 , there exist

ui ∈ Hi, i = 1, . . . , n− 1 such that∫
Rd
||(|∇u1|d−1, |∇u2|d−1, . . . , |∇un−1|d−1)||α dx ≤(d− 1)

d−1
2 αd−1

∫
L
|θ(x)|αdH1(x) + ε̃

=(d− 1)
d−1
2 αd−1M(T ) + ε̃ ,

where θ(x) =
∑n−1

i=1 1λi(x).

Step 2. Considering an arbitrary acyclic graph L =
⋃n−1
i=1 λi, there is a sequence of acyclic

polyhedral graphs (Lm)m≥1, Lm =
⋃n−1
i=1 λ

m
i such that the Hausdorff distance dH(λmi , λi) ≤ 1

m ,

moreover (see [19, Lemma 3.10]) denoting by T and Tm the associated currents with coefficients

in Zn−1 we also have that

M(Tm) =

∫
Lm

|θm(x)|α dH1(x) ≤M(T ) =

∫
L
|θ(x)|α dH1(x) +

1

m
.

here θm(x) =
∑n−1

i=1 1λmi (x). On the other hand, by previous construction there exists a sequence

{um}m, um = (u1,m, . . . , un−1,m) ∈ H1 × . . .×Hn−1 such that∫
Rd
||(|∇u1,m|d−1, . . . , |∇un−1,m|d−1)||α dx ≤ (d− 1)

d−1
2 αd−1

∫
Lm

|θm(x)|αdH1(x) +
1

m

= (d− 1)
d−1
2 αd−1M(Tm) +

1

m

≤ (d− 1)
d−1
2 αd−1M(T ) +

C

m

= (d− 1)
d−1
2 αd−1

∫
L
|θ(x)|αdH1(x) +

C

m
,

where C is a constant depending on T . As m tends to infinity, we can conclude that

inf H ≤ (d− 1)
d−1
2 αd−1 inf Iα. (3.4.3)

Step 3: In this step, we are going to prove the reverse inequality, i.e.

inf H ≥ (d− 1)
d−1
2 αd−1 inf Iα = (d− 1)

d−1
2 αd−1 inf M . (3.4.4)

Let u = (u1, . . . , un−1) ∈ H1 × . . .×Hn−1. Take an array of non-negative measurable functions

g = (g1, . . . , gn−1). We distinguish two cases:

� if α ∈ [0, 1), then we assume
(∑n−1

j=1 |gj(x)|
1

1−α
)1−α

≤ 1 for every x ∈ Rd;

� if α = 1, then we assume max{g1(x), . . . , gn−1(x)} ≤ 1 for any x ∈ Rd.

Thanks to this choice, we have∫
Rd
||(|∇u1|d−1, |∇u2|d−1, . . . , |∇un−1|d−1)||α dx ≥

∫
Rd

n−1∑
i=1

gi(x)|∇ui|d−1 dx . (3.4.5)
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By using a standard energy inequality (see [25]-page 64, [4]-A.1.3), we also obtain that∫
Rd

n−1∑
i=1

gi(x)|∇ui|d−1 dx ≥ (d− 1)
d−1
2

∫
Rd

n−1∑
i=1

gi(x)|Jui(x)| dx , (3.4.6)

where Jui is the (d− 1)-dimensional distributional Jacobian of ui. Then, using Coarea Formula

(see, for instance, [2, Section 7.4 and Section 7.5]) under the further minor assumption that ui is

constant outside an open ball containing Pi, Pn, we have∫
Rd

n−1∑
i=1

gi(x)|Jui(x)| dx =

n−1∑
i=1

∫
Sd−1

dσ(y)

(∫
u−1
i (y)\Ei

gi(x) dH1(x)

)
, (3.4.7)

where Ei is the set of all points where ui is not approximately differentiable, Riy := u−1
i (y) \ Ei

is a H1-rectifiable set connecting Pi to Pn for Hd−1-a.e. y ∈ Sd−1. For a.e y ∈ Sd−1, let

Σy =
⋃n−1
i=1 R

i
y, we can canonically define the current with coefficients in Zn−1 corresponding to

Σy, Ty = JΣy, τy, θyK. Notice that each component of Ty is the 1-dimensional (classical) integral

current associated to Riy, M
i
y = JRiy, τ iy, 1K, where τ iy is tangent to Riy a.e. (see [2, Theorem 3.8]).

Moreover ∂M i
y = δPn − δPi , in the sense of currents, for Hd−1-a.e. y ∈ Sd−1, i = 1, . . . , n− 1.

Putting (3.4.5), (3.4.6) and (3.4.7) together, we deduce that

H(u) ≥ (d− 1)
d−1
2

n−1∑
i=1

∫
Sd−1

dσ(y)

(∫
Riy

gi(x) dH1(x)

)
. (3.4.8)

By assumption, the minimizer T = JΣ, τ, θK of the problem (M) is calibrated by a smooth

differential form ω = (ω1, . . . , ωn−1). Then, we choose gi as follows:

gi(x) =

{
|〈ω(x), τy(x), ei〉| in case ∃ y ∈ Sd−1, x ∈ Riy,
0 otherwise.

(3.4.9)

We observe that gi is well-defined since for Hd−1-a.e. y1, y2 ∈ Sd−1, y1 6= y2, Riy1 ∩R
i
y2 = ∅. One

has

M(T ) =

∫
Σ
〈ω; τ, θ〉H1(x) =

∫
Σy

〈ω; τy, θy〉H1(x)

=

n−1∑
i=1

∫
Riy

〈ω; τy, ei〉H1(x)

≤
n−1∑
i=1

∫
Riy

giH1(x) .

(3.4.10)

This implies that

αd−1M(T ) ≤
∫
Sd−1

dσ(y)

(
n−1∑
i=1

∫
Riy

giH1(x)

)
. (3.4.11)

From (3.4.8) and (3.4.11), since T is a minimizer we obtain that

H(u) ≥ (d− 1)
d−1
2 αd−1 inf M

= (d− 1)
d−1
2 αd−1 inf Iα.

�
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Remark 3.4.1. In the proof of Theorem 3.1.1, step 3, we must assume the existence of a calibration

ω. Observe that, without this assumption, we still can deduce from (3.4.8) that

(d− 1)
d−1
2 αd−1 inf M = (d− 1)

d−1
2 αd−1 inf Iα ≥ inf H ≥ (d− 1)

d−1
2 αd−1 inf N, (3.4.12)

where inf N is the infimum of the problem obtained measuring the mass among 1-dimensional

normal currents with coefficients in Rn−1 (compare with Remark 3.2.7).

Moreover, in case α = 1, (I) turns out to coincide with the Monge-Kantorovich problem.

Replicating the proof above and choosing gi = 1 for every i = 1, . . . , n− 1 in step 3, then applying

the Mean Value Theorem as before (combined with the fact that the minimizer of the problem

(I) is obviously the weighted union of segments PiPn) this implies that

inf H ≥ (d− 1)
d−1
2 αd−1 inf Iα = (d− 1)

d−1
2 αd−1 inf M .

Another way to see this is to use the results of Brezis-Coron-Lieb [25] separately for each map ui,

i = 1, . . . , n− 1, for the energy

H(u) =

∫
Rd

(|∇u1|d−1 + |∇u2|d−1 + . . .+ |∇un−1|d−1) dx ,

where, again, u = (u1, . . . , un−1) ∈ H1× . . .×Hn−1. The investigation of equality cases in (3.4.12),

when 0 ≤ α < 1, will be considered in forthcoming works.
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