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Abstract The behavior of biological and artificial agents strongly depends,
in general, on the data acquired through sensors while interacting with the
environment. The sensory apparatus, namely the location and kind of sensors,
has therefore a great impact on an agent’s ability of exhibiting complex behav-
iors. Considering the case of robots, sensors are usually a design choice that is
hard to take, due to the complexity of the robotic structure and a potentially
large number of possible combinations. Here, we explore the possibility of us-
ing evolutionary algorithms to automatically design (and optimizing their use)
the sensors of voxel-based soft robots (VSRs), a kind of robots composed of
multiple deformable components. We chose these robots due to their intrinsic
modularity, which allows to freely shape the robot body, brain, and sensory
apparatus. We consider a set of sensors that allow agents to sense themselves
and their environment and we show, experimentally, that the effectiveness of
the sensory apparatus depends on the body shape and the actuation capabil-
ity. Then we show that evolutionary optimization is able to evolve effective
sensory apparatuses, even with constraints on the availability of sensors. We
also consider how information from sensors can be exploited more efficiently
by introducing the concept of “sensor babbling”, which aims to enhance the
robots’ perception and, hence, their performances.
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1 Introduction

Soft robots are deemed to be one of the key technologies for the future of
mankind [I]: compared to traditional hard (i.e., rigid) robotics, they allow in
fact a better compliance with the environment and humans, which in turn
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leads to higher safety in mission-critical applications. Two of the most rele-
vant examples of soft robots are the voxel-based soft robots (VSRs) [2] and
the tensegrity soft modular robots (TSMRs) [3], although other paradigms
also have been proposed [4H6]. The main features of soft robots paradigms
are their intrinsic softness and flexibility, which allows them to perform tasks
that are considered incredibly difficult, if not impossible, for hard robots: for
example, soft robots are able to perform smooth locomotion on uneven ter-
rain [7] or squeeze through tight spaces [8]. These possibilities make them
ideal tools for complex robotic inspection applications normally handled by
either rigid robots or passive sensor agents [9]. In the medical domain, soft
robots have been proposed as a support tool for gait rehabilitation [10] and
colonoscopies [11].

Another important feature of soft robots is that they are, usually, inher-
ently prone to modular design. Often biologically inspired, these kind of soft
robots behave like organs made of multiple components of the same kind,
similar, e.g., to the myons of which muscle tissues are made. Furthermore,
modularity facilitates manufacturing, redundancy, and repair [12HI4].

Despite these promises, modeling soft robots’ body (or morphology) and
brain (or controller) results in a very complex task. This is mainly due to the
hard-to-model dynamics of soft materials being used in the body, as well as
the non-linearity of the body-brain system. This, and the current lack of an-
alytical design strategies, make Evolutionary Algorithms (EAs) coupled with
physics-based simulations currently the main tool for designing soft modular
robots. In a recent work, Kriegman et al. [I5] underlined the usefulness of
EAs for modeling soft modular robots: they not only found that morphologies
optimized through EA allow different kinds of interactions with the environ-
ment, but they also suggested that morphological development can, in turn,
guide evolution to more robust controller designs. Other recent examples of
evolutionary synthesis applied to soft robots where the authors used an EA to
optimize the body and/or brain of soft robots are reported in [I6HIg].

Overall, optimizing soft modular robots through EAs is clearly advanta-
geous for a number of reasons. Firstly, EAs are able to discover unconventional
designs, which are hard to design for a human expert. Moreover, these designs
not only are better than the handmade ones for solving the desired task, but
they can also improve non-functional aspects, such as reduced energy consump-
tion (thus extended lifetime), higher robustness, etc. Furthermore, evolution
is able to exploit synergistic effects between body and brain that, as discussed
earlier, are often too hard to model analytically.

While most of the works applying EAs to soft robots design focused on
the evolution of body and/or brain, we find that an important aspect that
has been neglected so far in this field is the sensory apparatus, i.e., the type
of sensors with which the robot is equipped and their position in the body.
In fact, sensors are usually based on expert design choices and/or physical
constraints that are considered before the evolutionary optimization, and kept
fixed during the optimization process. However, what happens if the sensory
apparatus can evolve? Is evolution able to optimize which sensors to use, and
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where to position them in the body of a soft modular robot? This is our first
research question. Our hypothesis is that evolving the sensory apparatus may
lead to a greater effectiveness of the robot: fewer sensors (with respect to a
manually designed sensory apparatus) might suffice for the robot for achieving
its task, or better robot performance might be obtained.

Secondly, we focus our attention on the robot lifetime. In particular, we
ask ourselves if evolutionary algorithms can be used not only to optimally
design the sensory apparatus, but also to optimize the use of sensors during
the lifetime. In this regard, our second research question is: can robots be
evolved to optimize the way they elaborate the information from sensors? In
this case, we hypothesize that increasing the proficiency in the use of sensors
can lead to a better adaptability when facing new terrains.

To the best of our knowledge, the only works that addressed similar re-
search questions are [T9H21], although those works focused on evolving the
sensory apparatus of hard robots. Another related work is [22], where it has
been shown that the landscape of the controller loss function depends on the
sensors placement, which in turn conducts evolution towards better controllers.
However, the context of that work is unicycle non-holonomic mobile robots.
On the other hand, no prior research so far studied the evolution of the sensory
apparatus in the domain of soft modular robots and, in particular, of VSRs.
Yet, VSRs offer a great freedom in the design of the sensory apparatus, due
to their intrinsic and fine-grained modularity.

In order to answer our first research question, we use an EA to evolve the
sensory apparatus on two different body shapes, a biped and a worm, which
are tested on a locomotion task. In doing that, we compare the results of the
evolutionary search with three baseline handcrafted sensory configurations,
from “Low” to “High” sensor equipment. To answer our second question, we
optimize the robot’s controller capability to elaborate the sensory information
during the robot lifetime, by including in the fitness function a measure of the
sensor input dispersion observed during the first phase of the robot lifetime—
that we call the “sensor babbling” phase. We compare then the results obtained
in this case with two cases where the fitness does not include any measurement
of “babbling”, to evaluate any advantage possibly provided by this mechanism.

Summarizing our main results, we find that EAs are able to find configura-
tions that reach the same performances of the ones manually designed based
on our previous knowledge. This finding is confirmed also when evolution is
constrained to use a smaller number of sensors than the ones available to man-
ual designs. This additional constraint plays a key role from an engineering
point of view: using fewer sensors decreases the complexity of the robot, thus
reducing its possible points-of-failure and reducing energy use. Furthermore,
we collect empirical evidence on the fact that the optimal sensory apparatus
depends, in general, on the shape of the body and on the actuation capability.
These results allow us to reason, qualitatively, on the link between actua-
tion “strength” (i.e., how much the force exerted by actuators changes the
body) and sensory apparatus, and the evolutionary importance of discovering
the kinds of sensors that are actually beneficial to the task. Finally, concern-
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ing the improving of the robot’s capability to elaborate sensor readings, we
observe that the optimization of the robots’ perception can lead to better per-
formances while also allowing an increase in the adaptability of the robots to
new terrains.

This paper extends our previous work [23], where we first tackled the op-
timization of the sensory apparatus in VSRs, on two main aspects: firstly, we
conduct a deeper analysis of the robot behavior (Section ; secondly, and
most importantly, here we introduce the “sensor babbling” concept (Section
and, in doing so, we extend the optimization scale from the evolutionary
one to the robot lifetime (Section [5.2).

The rest of the paper is organized as follows. In the next section, we pro-
vide the background concepts on VSRs and the sensor/controller configuration
considered in this work. In Section [3] and [4] respectively, we describe how we
represent VSRs in a way that fits evolutionary optimization, and introduce the
concept of “sensor babbling” as a means to improve the robots’ capability to
elaborate sensor readings. In Section 5] we present the experiments and discuss
the results we obtained evolving the sensory apparatus and the ones achieved
considering the concept of sensor babbling. Finally, in Section [} we draw the
conclusions of this work and discuss possible future research directions.

2 Background: voxel-based soft robots and environment

Voxel-based soft robots (VSRs) are robotic agents composed of several de-
formable blocks (vozels) that can actively vary their volume in response to
a control signal [24]. In this study, we consider the 2-D version of the VSRs
presented in [25] along with a simulation engine tailored to optimization. We
remark that, as mentioned in the cited paper, working in 2-D (rather than in
3-D) eases optimization, since simulations are computationally cheaper and
search spaces are smaller; on the other hand, while in principle the approach
we propose in this study can be ported to the 3-D case, the generality of the
experimental results that we find in the 2-D has to be verified.

In this section we briefly describe the main concepts of VSRs that are
important to our study: we refer the reader to the aforementioned paper for
further details. A VSR is defined by its morphology and its controller. For
our purposes, we consider the morphology as defined by two elements: the
shape (of the body) and the sensory apparatus. The former is the number and
placement of the voxels composing the VSR, while the latter is represented
by the number, kind, and placement of sensors. The controller, instead, is a
component that at each time step takes as input the readings of the sensors
available to the body and determines the control signal applied to each voxel
of the VSR.
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2.1 Shape

The shape of a VSRs is a 2-D grid of voxels where adjacent voxels are rigidly
connected at their vertices (see Figure [1] for an example of the two shapes
considered in this study). A voxel is a deformable square that is modeled, in
the simulation, as a compound of masses, spring-damper systems, and distance
constraints, see [25] for details.
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(b) Biped on the validation terrain.

Fig. 1 Frames of two VSRs (a worm and a biped, both with vision sensors) captured
during two simulations. The color of each voxel encodes the ratio between its current area
and its resting area: red indicates contraction, yellow no variation, and green expansion; the
circular sector drawn at the center of each voxel indicates the current sensed values s(t)
(see [25]). The rays of the vision sensors are shown in red.

A voxel changes its area depending on: (a) the control signal, and (b) the
external forces applied by other voxels connected to it. The control signal is a
value in [—1, 1] representing the request of the controller to contract or expand
the voxel: —1 corresponds to maximum expansion, 1 corresponds to maximum
contraction. The actuation of the control signal is modeled in the simulation
as an instantaneous change of the resting length of the spring-damper systems.

The exact amount of area change depends on the parameters of the voxel
model, i.e., the properties of the voxel. In this work, we assume that all the
voxels have the same properties. A parameter that is particularly relevant to
this work is the mazimum area change pa, defined as follows. Let A be the
area of a voxel not subjected to external forces and with a control signal f = 0,
then the area of the voxel not subjected to external forces and a control signal
fis A(1—paf). Intuitively, pa represents the “strength” of a voxel: the larger
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its value, the larger the area change when the voxel is controlled with the same
control signal.

2.2 Sensory apparatus

The sensory apparatus of the VSR is a central point of this study and allows
the VSR to perceive itself and the environment. The perception, represented
by the vector of sensor readings, is processed by the controller in order to
calculate the control signal, affecting in this way the behavior of the VSR.

The sensory apparatus of a VSR consists of the number, position and kind
of available sensors; each voxel of the VSR shape can be equipped with zero
or more sensors. Each sensor has a type, and for each voxel there can be at
most one sensor of a given type. Each sensor produces, at each time step, a
sensor reading s € D C RP, D being the domain of the sensor and p being the
dimensionality of the sensor type.

In this work, we consider four types of sensors: two of them, area and
velocity, perceive the internal state of voxels, while the other two, touch and
vision, perceive the surrounding environment. More specifically, area sensors
perceive the ratio between the current area of the voxel and its resting area:
the domain is hence D = ]0,+oo|. Velocity sensors perceive the velocity of
the center of mass of the voxel along the z- and y- axes integral with the
voxel itself (i.e., the axes rotate with the voxel): the domain is D = R2
Touch sensors perceive whether the voxel is touching the ground (s = 1) or
not (s = 0): the domain is D = {0,1}. Vision sensors perceive the distance
towards close objects, i.e., the terrain and the obstacles, within a given field of
view. More specifically, vision sensors are modeled as lidars, i.e., p straight rays
cast from the voxel center with angles a; ... oy, with respect to the positive
zr-axis integral with the voxel. For each i-th ray, the corresponding value s;

of the sensor reading is min (di, 1), where d is the distance between the

voxel center and the point where the ray hits the closest object, and dyax is
a parameter representing the maximum distance of sight. The domain of the
vision sensors is hence D = [0, 1]?. For illustration purposes, Figure [1| shows
two examples of VSRs equipped with vision sensors and highlights the rays
cast by those sensors.

Finally, we further wrap each sensor in two artifacts: the first one normal-
izes the values perceived in the range [0, 1], in order to have the same domain
for all sensors. The second one adds a random noise to the sensor, simulating
the noise present in real robots. The wrapper modifies the sensor readings as
follows:

s:=s+v, withv=[v ... 1] and v;—1 ., ~yN(0,1) (1)

where v is set to 0.01.
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2.3 Controller

The role of the controller is to process the information perceived by sensors,
determining the value of the control signals of the VSR voxels over time. Here
we follow the control approach proposed in [26], i.e., the controller is a feed-
forward neural network (FFNN), as depicted in Figure

Fig. 2 Graphical representation of the controller for a robot composed of 3 voxels each
one with 2 sensors. The 6 sensor readings provide 6 inputs to the FFNN (blue lines), the
remaining two inputs (in the upper part) are the driving function and the bias respectively.
The output layer returns the actuation value of each voxel (red lines).

The FFNN has one input for each of the values sensed by the sensors (i.e.,
one input for each touch sensor, two inputs for each velocity sensor, and so on),
one input whose value varies over time according to an input driving function,
and the bias. The role of the driving function is to facilitate the emergence of
dynamics useful for the task to be accomplished by the VSR [26]: in particular,
we use a sinusoidal function with frequency of 1 Hz. The FFNN has one output
for each voxel. The value determines, at each time step k, the control signal
fi(k) of the corresponding i-th voxel:

F*) = FFNN,, ([s§k> ) sin(27rk:At)D 2)
where sgk) is the j-th sensor reading at time step k, sin(2wkAt) is the value
of the driving function at time k, At = 1/60s is the duration of a time step
in the simulation, and w is the vector of the weights of the FFNN.

In our experiments, the input and output layers are connected without
inner layers and each node in the FFNN is controlled by a tanh activation
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function. We opt for this simple topology of the FFNN because it reduces
the number of parameters, and hence the size of the search space when op-
timizing the controller. Indeed, previous works showed that the performance
gap between VSRs with zero or more than zero hidden layers is not signifi-
cant [16] 27].

In order to optimize the controller, we use a direct encoding of the weights
w of the FENN (more on this below). The total number |w| of weights depends,
for a given shape, on the sensory apparatus of the VSR, as a change in the
kind or number of available sensors corresponds to a change in the number of
inputs.

2.4 Environment

We simulate robots on two different kinds of terrain: the first one, used for
the evolution of the sensory apparatus, is an uneven terrain obtained by the
alternation of three elements: a gap, a hill, and a rough section; the second one,
used for the analysis of sensor babbling, is characterized by a sequence of hills
with different slopes. It should be noted that both kinds of terrain are difficult
enough to highlight the importance of the sensory apparatus. However, for
the sensor babbling experiments we use the second terrain as the first one
is computational heavier due to the numerous contacts between voxels and
terrain, in particular in the rough sections.

3 Evolution of the sensory apparatus

As discussed earlier, previous works have applied EAs to evolve the morphol-
ogy and controller of VSRs, while here we are interested in investigating if also
the sensory apparatus can be explicitly evolved. However, the sensory appa-
ratus is intrinsically connected to the controller, and vice versa: in particular,
as we have seen the size of the FFNN is directly determined by the number
and type of sensors available in the sensory apparatus. For this reason, we
evolve the controller and the sensory apparatus together and propose, for this
purpose, two representations (also called mappers)—that we call respectively
“Unlimiting” and “Limiting”—which differ in the possibility of limiting or not
the maximum number of sensors. According to these mappers, a numerical
vector (the genotype) is mapped, given a certain shape, to a pair (sensory
apparatus, controller) (the phenotype) suitable for that shape. As introduced
before, we use the weights vector w as genome, since this vector completely
describes the controller for a given shape and its numerical nature allows us
to use well-known general-purpose optimizers to conduct the search. For our
experiments, we rely on the Covariance Matrix Adaptation Evolution Strate-
gies (CMA-ES) algorithm [28], which has been shown already to be effective
for optimizing VSRs [18] [29).

In both representations, each element of the numerical vector (that consti-
tutes the genotype) determines directly the realization of a component of the
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sensory apparatus and its relative controller. Furthermore, the two represen-
tations exhibit some degree of redundancy: in some portion of the genotype
space, several different genotypes correspond in fact to the same phenotype.
This can result in degeneracy of the representation [30)].

Finally, both representations are specific to a given body, i.e., to a pair
consisting of a shape and a maximal sensory apparatus. The maximal sensory
apparatus determines the most complex sensory apparatus (i.e., the one with
the largest number of sensors) that can be represented for that body.

As for the mechanism used to limit (or not) the number of sensors in
the two mappers, the implementation is the following. Let ng be the overall
dimensionality of the sensors of the maximal sensory apparatus and ny the
number of voxels of the shape. The genotype is defined in R(™s+2)mv and
directly encodes the weights w of a maximal controller, i.e., the FFNN that
takes the inputs from the maximal sensory apparatus (plus the bias and the
driving function) and applies its outputs to the ny voxels. We denote with
w(,) the vector of weights corresponding to the inputs of the FENN connected
to the sensor s.

In the “Unlimiting” representation, given a threshold 7, € R, the sensory
apparatus corresponding to a genotype w is composed of each sensor s of the
maximal sensory apparatus for which at least one weight in w ) is greater,
in absolute value, than 7, i.e., for which ws max = max; |w) ;| > 7. The
sensors that satisfy this condition will be selected to compose the inputs of
the FFNN while the weights will be directly obtained from the genotype, see
Figure It can be seen that there is no hard limit to the complexity of
the sensory apparatus that can be represented: if enough weights are large
enough, the sensory apparatus is the maximal one. On the other hand, this
representation allows for a sensory apparatus consisting of no sensors at all.

w =[0.5,0.2,-0.2,0.1,0.6, —0.4,0.2, —0.7,0.3,0.8, 0.1,0.4]
——— —— —— ——— N —

S1,1 S1,2 $2,1 $2,2 bias driving f.

Fig. 3 Representation of the Unlimiting mapper: in the upper part the genotype is rep-
resented, while in the bottom the corresponding FFNN (the phenotype) is shown. Here the
VSR is made of two voxels and its maximal sensory configuration is composed of 4 sensors
(s1,1,51,2,82,1,52,2) represented by the inner squares. The color of the square indicates if
the sensor is enabled (red) or not (white). The genotype length, |w|, is 12 as there are two
weights for each sensor, plus the ones for the bias and the driving function. In this case we
set the threshold 7, to 0.3, hence the unlimiting mapper enables all the sensors except for
51,2, whose weights are in absolute value smaller than 7.
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In the “Limiting” representation, instead, given a maximum number of
Sensors Ngensors, the sensory apparatus corresponding to a genotype w is com-
posed of the ngensors sensors with the largest ws max (in absolute value), see
Figure [4] for an example. It should be noted that in this case, regardless of the
values in w, the sensory apparatus has always the same complexity (i.e., it
always consists of exactly Ngensors sensors). We remark, however, that weights
that are very small correspond, in practice, to sensors that do not significantly
impact the computation of the control signals, i.e., that are not actually used
by the controller.

w =1[0.5,0.2,—0.2,0.1,0.6, —0.4,0.2, —0.7,0.3,0.8, 0.1,0.4]
N N N e e e N N —

S1,1 S1,2 $2,1 $2,2 bias driving f.

..

Fig. 4 Representation of the Limiting mapper: in the upper part the genotype is rep-
resented, while in the bottom the corresponding FFNN (the phenotype) is shown. The
VSR is made of two voxels and its maximal sensory configuration is composed of 4 sensors
(s1,1,51,2,82,1,52,2) represented by the inner squares. The color of the square indicates if
the sensor is enabled (red) or not (white). The genotype length, |w|, is 12 as there are two
weights for each sensor plus the ones for the bias and the driving function. We set the Lim-
iting mapper to enable two sensors. The mapper ranks the sensors based on their greatest
weight (in absolute value) and it enables the first two, which, in this case, are s2 1 and s2 2.

4 Sensor babbling

As discussed in Section [} sensors allow the robot to perceive the environment
and hence determine the robot’s behavior. However, sensors are actually useful
only if they produce readings that vary in a sensible way when the robot
interacts with the environment; on the other hand, sensors that are never
stimulated, regardless of the current situation the robot is in, are likely to be
of poor utility. In order to capture, and possibly exploit for the optimization
of the sensory apparatus, the usefulness of sensors, we get inspiration from
the concept of motor babbling [31), [32], that has been introduced in robotics
to imitate the process through which infants perform random movements in
order to understand (i.e., build an internal model of) the relationship between
their body and the environment. Since we deal with sensors, we call sensor
babbling the phase of the robot’s life when it explores its sensing ability. Our
hypothesis is that, through this sensor babbling process, robots are exposed
to a broad range of sensor inputs, which may lead to better performances on
the task.
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In order to be able to use the sensor babbling phase for the purpose of op-
timization (see Section, we need to measure how “intensively” the robot is
doing sensor babbling. Once we can measure sensor babbling, we can promote
robots that not only achieve a better performance on the task, by observ-
ing them in an “adult” phase of their life, but that also do an intense sensor
babbling in an earlier “infant” phase of their life.

We measure quantitatively the “intensity” of the sensor babbling (to be
maximized) by using, for each sensor kind, the average distance of the sensor
readings from their centroid. In particular, first we collect the sensor readings
for each sensor kind at each simulation tick; then, the vector of sensor inputs is
filtered, keeping only the values read from the selected sensor kind; finally, we
calculate the distance of each filtered vector from the corresponding centroid.
In Algorithm [I] a the pseudo-code of the measurement algorithm used for
sensor babbling is given.

Algorithm 1 Sensor babbling measurement.

1: procedure MEASURESENSORBABBLING (sensorKind)

2 filteredInputs <+ inputs.filtersBy(sensorKind)
3 centroid « calculateCentroid(filteredInputs)

4 distance < 0

5: for input in filteredInputs do

6

7

8

distance < distance + euclideanDistance(input, centroid)
end for
return distance / filteredInputs.size()

5 Experimental analysis
5.1 Evolution of the sensory apparatus

We aim at investigating the possibility of evolving the sensory apparatus of
VSRs from different points of view. More precisely, we address three facets of
the problem, here represented in terms of research questions (RQ):

RQ1 Are sensors beneficial to robot effectiveness? Is the benefit of sensing
ability somehow diminished by greater strength? Is it dependent on the
robot shape?

RQ2 Can evolution discover an effective sensory apparatus?

RQ3 When the complexity of the evolvable apparatus is limited, what sensors
are “preferred” by evolution?

To answer these questions, we perform a number of experiments on the un-
even terrain described in Section We evolve two shapes (shown previously
in Figure : the first, that we call worm, is a 7 x 1 (x and y size of the voxel
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grid constituting the shape) rectangle; while the second one resembles a biped
structured as a 7 x 4 rectangle with 3 x 2 missing voxels at the bottom-center.

Concerning the task, we consider locomotion, i.e., a limited time span,
the episode, in which the robot has to travel as far as possible along the
positive x direction. We measure the effectiveness of a VSR in performing
locomotion as its velocity with respect to the xz-axis during the episode: v, =
w (in m/s), where ¢; is the episode duration and x(t) is the position
of the VSR center of mass at time ¢. Of note, locomotion is a classic task in
evolutionary robotics and usually consists in making the robot run along a
flat terrain. However, robots that perceive the environment, in particular the
ones that perceive obstacles, should be favored with respect to robots that
base their locomotion capability on a regular gait that does not depend on
sensors [20]. Hence, in this work, we use an uneven terrain which we consider
better suited for investigating the robots’ perception capabilities. Moreover,
for a subset of the experiments, we measure the locomotion velocity v, over
two different terrains, one used for evolution, one after: the motivation is to
verify if the robot actually exploits the sensory apparatus for running faster
on an “unknown” terrain.

For all the experiments, we use CMA-ES for the optimization process, with
default parameter settings (as indicated in [33]—the main ones being the initial
step size 0 = 0.5 and the population size A = 4+ |3log |w||)—and with the ini-
tial vector of means set by sampling uniformly the interval [—1, 1] for each vec-
tor element. We simulate episodes lasting t; = 180s (simulated time). For the
simulation, we use the default parameters of the 2D-VSR-SIM software [25],
unless otherwise specified. The code used for the experiments, based on JGEA
(https://github.com/ericmedvet/jgea) for the evolutionary optimization
part, is publicly available at: https://github.com/ndr09/HSMRcoevo.

5.1.1[RQ1}: Sensor potential benefit

In order to answer this question, first we manually design, based on domain
knowledge, three sensory apparatuses for each of the two shapes. For each
resulting body, we then evolve the controller with different values of pa4, i.e.,
different values of strength (see Section .

Figure |5| shows the six bodies, i.e., shapes and sensory apparatuses. For
each shape, the three apparatuses are derived from a single maximal sensory
apparatus that consists of a number of sensors of different types placed in
the shape in order to favor the perception of a robot that moves towards the
right, i.e., in the positive z direction. In particular, in the maximal sensory
apparatus we place:

— a vision sensor with three rays (with a3 = 0°, ap = —15°, and a3 = —30°)
on each rightmost voxel of the shape; for the worm, we also place one vision
sensor on the leftmost voxel (with a; = 180°, g = 195°, and ag = 210°)
to compensate the limited extension of the forward front of the shape;

— a touch sensor on each voxel of the bottom row of the grid (i.e., all the
voxels in the worm and the voxels corresponding to the “feet” of the biped);
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— area and velocity sensors spread over the body, as shown in Figure

We then differentiate the three apparatuses based on the total number of
available sensors with respect to the corresponding maximal sensory appara-
tus. In the “Low” perception apparatus, robots are equipped with few area
sensors. In the “Medium” perception apparatus, we remove all the vision sen-
sors. In the “High” perception apparatus, we do not remove any sensor, i.e.,
this apparatus is the maximal sensory apparatus and is the only one that al-
lows the robot to “see” its surroundings. As a consequence, the genome size,
i.e., the number of weights |w|, greatly varies for the three controllers and the
two shapes: from 35 variables for the worm with the Low apparatus to 1188
variables for the biped with maximal sensory configuration. The genome size
of all the combinations of shape and sensory apparatus considered in the ex-
perimentation is shown in Table [1| (where, for completeness, we also show the
genome size for the Limiting and Unlimiting representations, which for both
mappers coincides with that of the maximal sensory apparatus, i.e., the High
one).
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(a) Worm-Low. (b) Worm-Medium. (c) Worm-High.
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Fig. 5 The six bodies (shape and sensory apparatus) used in the experiments. In each voxel,
sensors are represented as stacks of p squares, p being the dimensionality of the sensor (see
Section [2.2). Area sensor (p = 1) is the first (leftmost) column; touch sensor (p = 1) is the
second column; velocity sensor is the third one (p = 2); vision sensor is the last one (p = 3).
The color of the sensor represents its presence in the apparatus: gray border means not
present; black border means not present, but present in the maximal sensory apparatus; red
fill means present.

Table 1 Genome size for all the combinations of shape and sensory apparatus considered
in the experimentation.

Shape Low Medium High Limiting Unlimiting

Worm 35 210 252 252 252
Biped 352 924 1188 1188 1188
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We consider 8 values for p4, evenly distributed in [0.1, 0.8]. For each one of
the 2 x 3 x 8 combinations of shape (worm, biped), sensory apparatus (Low,
Medium, High), and p4, we perform 10 independent evolutionary runs of the
controller with CMA-ES. We use the velocity v, as fitness and we stop the
evolutionary process after 2000 fitness evaluations.

Figure [6] summarizes the results of this experiment with the two shapes,
the three fixed sensory apparatuses, and the eight values of pas. The solid
lines indicate the average performances, across the 10 runs, in the locomotion
task, namely the average velocity 7., of the best VSR found by CMA-ES
on the training terrain. The figure also shows, with dashed lines, the average
performances that the best VSRs score on the validation terrain, i.e., an uneven
terrain different from the one using during evolution, which is created with a
different seed. The shaded areas indicate the std. dev. across the 10 runs.

Worm Biped
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Fig. 6 Velocity U, of the best evolved VSRs on different terrains (line style) and sensory
apparatuses (line color) vs. the strength pa.

We can highlight three points observing Figure[6] First of all, as expected,
the locomotion capability of the robots depends on their strength: the stronger
the robot, the faster it will be in locomotion; however, this holds only for
values of p4 lower than 0.5. For p4 > 0.5, the results show a lowering in
the performance of the VSRs: we further analyze the behavior of the evolved
robots in this case and we discover that increasing the value of p4 in practice
leads to the limit of the physics model of the simulator; this results in robots
that are difficult to control and hence ineffective, due to stronger contractions
and expansions of their voxels.

Secondly, the differences in velocity among sensory apparatuses depend
on the shape. For the worm, the more complex the sensory apparatus, the
faster is the robot: moreover, the three apparatuses peak at different values of
strength and the Low apparatus is greatly outperformed by the Medium and
High configurations. For the biped, the differences are in general smaller: the
Medium and the High apparatuses result in roughly the same peak 7, ~ 4.3
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for the same value of ps. The gap of the Low apparatus with respect to the
other two is not negligible only for values of p4 in the range [0.2,0.5].

Finally, when the VSR bases its locomotion also on the perception of envi-
ronment, it is more capable of coping with unseen environmental conditions.
We can draw this conclusion observing the difference in fitness on the training
and validation terrains: it appears to be larger for the Low sensory apparatus—
this is more apparent for the worm shape.

We believe that these findings are important, in particular the second one,
since they suggest that there is not a one-fits-all solution for the sensory ap-
paratus. On the contrary, the best apparatus depends (at least) on the shape
and strength of the VSR. Thus, the idea of optimizing a sensory apparatus for
a specific VSR shape appears sound.

5.1.2[RQ% Effectiveness of the evolved sensory apparatus

In order to answer this second question, we perform a longer optimization
process evolving the sensory apparatus of the two shapes, the worm and the
biped, using the two mappers described in Section [3] We then compare the
results of this evolutionary optimization against the three fixed apparatuses
previously described (Low, Medium, High). In this case, when we evolve the
apparatus we use the High configuration as the maximal sensory apparatus:
the number of weights |w| for the evolvable apparatuses is hence 252 and 1188,
respectively for the worm and the biped.

We set the parameters of the two representations as follows. For the Limit-
ing representation, we set Ngensors = 20 for the worm and ngensors = 30 for the
biped, i.e., approximately the number of sensors in the Medium apparatus. For
the Unlimiting representation, we determine the value of the weight threshold
Tw by examining the values of the weights of the 10 + 10 (worm and biped)
best evolved VSRs with the High apparatus found in the previous experiment
(see Figure . Then we choose, for each shape, the value corresponding to
the tenth percentile of ws max (see Section , that is 7, = 1.96 for the worm
and 7, = 2.87 for the biped. We recall that the Unlimiting representation,
differently from the Limiting one, can potentially allow all the sensors of the
High configuration, which are 23 and 37 respectively for the worm and the
biped.

In this case, we fix the value of ps = 0.3. We choose this value (that
is also the default value of the simulator) because, based on the findings of
the previous experiment (see Figure @7 with p4 = 0.3 the differences among
sensory apparatuses are large enough to allow investigation. As in the pre-
vious experiment, we perform 10 independent evolutionary runs, in this case
ended after 25000 fitness evaluations. We consider a total of 10 different com-
binations of shapes and sensory apparatuses, namely 2 shapes (worm, biped),
each one tested with the three statically defined sensor configurations (Low,
Medium High), and two evolvable ones (Limiting, Unlimiting). Finally, we
modify CMA-ES in order to have an initial population starting with all the
sensors disabled.
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Fig. 7 Distribution of the ws max values for the sensors evolved with the High sensory
apparatus in the experiment of Sectionm The red line corresponds to the 10-th percentile.

Figure[§summarizes the results of this experiment: it shows the trend of the
velocity T, (mean =+ std. dev. across the 10 runs) of the best VSR at different
stages of the evolutionary process (i.e., number of births). The foremost finding
that can be noted from is that the evolved sensory apparatuses are not, in
general, worse than the hand-designed ones. By looking in detail at the values
of U, at the end of the runs, which are shown in Figure[J]in the form of boxplots
(where the whiskers represent the 1.5 IQR), it can be seen that for the worm
there are not significant differences between the Medium, the High, and the
two evolved apparatuses, while for the biped both the evolved apparatuses and
the High one outperform the others.
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Fig. 8 Velocity v of the best evolved VSRs found during the evolutionary process in the
experiment described in Section [5.1.2

We further analyze the results for the worm with the Medium and High
configurations to understand why they reach similar performances. Inspecting



18 Andrea Ferigo et al.

the behavior of the robots in the Medium configuration, we observe that the
majority of them vibrate at a high frequency, causing a behavior that produces
a faster, but less realistic locomotion with respect to the one shown by the
other robots. In Figure we show the velocity (mean =+ std. dev. across the
10 runs) of the robots classified by visual inspection based on their behavior
(i.e., vibrating or not vibrating). As it can be seen, the performance of the
robots that do not vibrate is similar to the one of the High configuration.
Moreover, we observe that the vibration behavior is not favorable to avoid
difficult obstacles, such as deeper gaps.

Worm Biped
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Fig. 9 Distribution of the velocity v, of the best evolved VSRs found at the end of the
evolutionary process in the experiment described in Section [5.1.2}
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Fig. 10 Velocity vg of the best evolved VSRs found during the evolutionary process with
the worm and the Medium configuration, classified by behavior. The velocity of the VSRs
that vibrate is much bigger than that of the ones that do not vibrate.

As a further confirmation of the results shown in Figure 8| we perform the
Mann-Whitney U test (after having verified the relevant hypotheses) between
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pairs of samples from different apparatuses for each shape. Table [2| shows the
resulting p-values. By comparing the two representations for the evolvable ap-
paratuses it can be seen that there are no significant differences. In particular,
this means that when evolution uses fewer sensors it is still capable to find a
pair of sensors apparatus and controller that reaches the same performances
of the controller evolved with a fixed configuration.

Table 2 p-values of the pairwise Mann-Whitney U test performed on the v, resulting
from the experiment of Section (values shown in Figure E[) Values corresponding to a
significant difference (Bonferroni correction, a = 0.05) are highlighted in boldface.

Low Med. High Unlim. Lim.
Low 0.00078 0.00078 0.00078 0.00078
Med. 0.00078 1.0 0.2062 0.0778
Worm  High 0.00078 1.0 1.0 1.0
Unlim. 0.00078  0.2062 1.0 1.0
Lim. 0.00078  0.0778 1.0 1.0
Low 0.1418 0.0057  0.0007  0.0007
Med. 0.1418 0.4105 0.2939 0.9938
Biped High 0.0057 0.4105 1.0 1.0
Unlim.  0.0007 0.2939 1.0 1.0
Lim. 0.0007 0.9938 1.0 1.0

Finally, by looking at the values of T, during the evolutionary process with
the Unlimiting representation, it can be seen that they stay below the values
obtained with the Limiting representation in the early stage of evolution. For
the biped in particular, the peculiar behavior of the fitness shows that after
an initial, rapid improvement the performance decreases up to = 150 births
and then starts to improve again—recall that CMA-ES does not guarantee
the monotonicity of the fitness. Analyzing the raw results, we find that this
behavior is due to the progressive discovery of the sensors: at the beginning,
evolution pushes towards a controller that is able to run without perceiving
the environment (thanks to the dynamics generated by the driving function).
As sensors are discovered, they initially require evolution to “adjust” the con-
troller, and in this phase the fitness decreases. Later, sensors become beneficial,
thus allowing the fitness to increase again. This interpretation is supported by
Figure that shows the distribution of VSRs that have at least one sen-
sor enabled and the ones that do not have any sensor enabled. Initially all
VSRs belong to the second population, because of the initialization of CMA-
ES means to 0. Then, the number of VSRs that do not use sensors quickly
goes to 0% in the early stage of the evolutionary process. This phenomenon is
less visible in the fitness trend of the Unlimiting representation for the worm,
since this configuration has much fewer sensors to be activated and, hence,
the changing phase happens faster. Moreover, the same phenomenon can not
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be present using the Limiting representation, because this configuration main-
tains a controller with ngensors Sensors enabled by design.
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Fig. 11 Percentage (mean =+ std. dev. across 10 runs) of the individuals in the population
not using (blue) or using (red) sensors in the early stage of the evolutionary process (up
to 1250 births) with the biped and the Unlimiting representation, see Figure [§] for the full
evolutionary trend.

5.1.3[RQ3 Sensors preferred by evolution

We attempt to answer this question in two ways. First, quantitatively, looking
at the robots evolved with the Limiting representation and analyzing which
sensors of the maximal sensory configuration remain deactivated—we recall
that, by design, the Limiting representation does not enable all the sensors.
Second, qualitatively, through the examination of the activation order, during
the evolutionary time, of the sensors in the evolutionary runs performed with
the Unlimiting representation—we recall that, by design, the Unlimiting rep-
resentation starts with all the sensors disabled and can end with all the sensors
enabled. The rationale is that the sensors that appear to be more beneficial
for locomotion should be enabled more often, in the first case, and earlier, in
the second case.

In order to better investigate sensor importance, we repeat the experiment
of the previous section after having slightly modified the two representations.
In this experiment, we allow the possibility to enable only specific domains of
a sensor, e.g., a biped can have just one front vision sensor with ag = —30°
enabled, and the other dimensions (a; = 0° and as = —15°) disabled.

Table [3] shows the results corresponding to the first, quantitative analysis.
It shows the number of sensors (mean and std. dev. across 10 runs), for each
type and shape, that are enabled at the end of the evolutionary process with
the Limiting representation. We consider a sensor as enabled if at least one
dimension of the sensor is enabled.
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Table 3 Mean and std. dev. (across the 10 runs) for the number of sensors, for each
type and shape, that are enabled at the end of the evolutionary process with the Limiting
representation.

Shape Sensory app. Area Touch Velocity Vision
Wo Maximal 7.0 7.0 7.0 2.0
" Evolved 57410  58+0.6  6.7+0.6  2.0+0.0
Bined Maximal 22.0 4.0 7.0 4.0
PEE Evolved 16.4+£0.9  3.4+0.7  6.840.3  4.0+0.0

From the table, it can be seen that for both shapes the vision sensors are the
only ones that result all enabled (in all runs). While for the area sensors, that
are the least used ones with both shapes, there is a great difference between
the worm and biped case, velocity and touch sensors share, more or less, the
same activation percentages for both the shapes. With the biped, ~25 % of the
area sensors remain not used on average: interestingly, this is also the most
numerous sensor in the maximal sensory apparatus of this shape. A possible
interpretation of the latter finding is that in the manually designed maximal
sensory apparatus of the biped the area sensors are redundant: under the
constraint posed by the Limiting representation to use fewer sensors, evolution
still finds an effective solution for locomotion (see Section and hence it
“is aware” of this redundancy.

Concerning the qualitative analysis, we report here the detailed outcome for
one of the runs with the Unlimiting representation—several other runs exhibit
a similar behavior. Figure shows the sensory apparatus of the best biped
(represented with the graphical notation of Figure [5)) in four salient points
of the evolutionary process, that are referred to the corresponding values of
the fitness 7, and the percentage of sensor dimensions enabled with respect
to the maximal sensory apparatus. Besides the beginning of the evolutionary
process, we select three other salient moments: (i) the discovery of the first
sensor, (ii) the phase of maximum improvement of the fitness after the initial
drop, and (iii) the first time all sensors are enabled.

Two qualitative observations can be made by looking at Figure [I2] Firstly,
in the moment of maximum improvement after the initial drop in the fitness,
the number of area, velocity and touch sensors enabled is much lower with
respect to the vision ones, which are almost all enabled. This clue seems to
confirm the findings discussed above (based on Table [3)) about the relevance
of the vision sensors for locomotion. Secondly, the first peak value of the fit-
ness and the discovery of the sensors occurs at the same evolutionary time,
namely just after the beginning of the evolutionary process. After that mo-
ment, as previously observed in Section (in particular in Figure [8| and
111)), evolution needs to “learn” how to effectively use the discovered sensors
for a faster locomotion. For this reason, initially the fitness rapidly decreases
for some hundreds of births and then it starts to increase again.
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Fig. 12 Sensory apparatus of the biped with the Unlimiting representation in four salient
moments of the evolutionary process for one of the evolutionary runs. The plots of the VSRs
are referred to the corresponding values of fitness T, (green) and percentage of enabled sensor
dimensions (black) in the bottom plot.

5.2 Sensor babbling

The previous experiments show that robots with an evolved sensory apparatus
perform not worse than those with a sensory apparatus designed by hand.
Here, we experimentally investigate whether, given a fixed sensory apparatus,
explicitly favoring sensor babbling during the optimization can lead to robots
that are more effective in the locomotion task. More precisely, we aim at
answering the following two research questions:

RQ1 Is sensor babbling useful for driving evolution of faster robots?
RQ2 Is the adaptability of the VSRs affected by sensor babbling?

In order to answer these questions, we consider the worm and the biped
with the High sensory apparatus and we perform the evolutionary optimization
of their controllers by using a fitness function that explicitly takes into account
the measure of sensor babbling defined in Section [d In particular, given a
simulation of 60s, we use the first 20s for measuring the “intensity” of the
sensor babbling (separately for each sensor kind), and the remaining 40s for
measuring the ability in locomotion, i.e., the velocity v,. Considering that the
two metrics are not in contrast, we evaluate the overall fitness of the robots
by summing these two values.

We perform 10 independent runs on the two shapes, each run stopping
after 10000 fitness evaluations. After each evolutionary run, we take the best
robot (in terms of fitness), and we measure its velocity over a flat terrain and
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over 10 uneven terrains different from the one used for fitness evaluation—we
use this as a proxy measure for the adaptability of the robot.

We repeat this entire procedure twice: in the first case (that we call “Fixed”
terrain policy), each VSR faces the same uneven terrain during the evolution-
ary process; in the second one (that we call “Random” terrain policy), at
each fitness evaluation the VSR faces a different terrain with random hills,
generated with a distinct seed.

5.2.1[RQ1}: Sensor babbling effectiveness

Analyzing the setting with sensor babbling, we find that the component of the
fitness related to babbling remains constant during the entire evolution, while
the velocity component is the only part of the fitness that increases. Therefore,
in order to evaluate the actual effectiveness of babbling, we compare the results
of the setting with sensor babbling with the results obtained from two other
settings where the fitness does not take into account any babbling measure.
For a fair comparison, we consider two comparative cases: in the first one,
that we refer to as “only velocity”, the entire locomotion tasks lasts 40s and
the fitness is the velocity over this period; in the second one, that we refer
to as “last velocity”, the duration of the task is set to 60s, but velocity is
measured only in the last 40s, because the first 20s are not considered. We
perform this comparison in order to verify if, considering the different fitness
function definitions, the sensor babbling component assumes an important
role in enhancing the locomotion capability of the VSRs and that only leaving
robots free to move at the beginning of the locomotion task (without measuring
babbling) is not sufficient to increase the performance.

The results, shown in Figure (mean + std. dev. across the 10 runs),
indicate that, considering the sensor babbling as the first phase of the robot
lifetime, only in some configurations this allows to produce better performances
than the ones achieved in the settings where no babbling fitness component is
measured. More in detail, with the worm the results obtained with babbling
are in general comparable to, or slightly worse than, those obtained in the
two settings without babbling. In the case of the biped, instead, the sensor
babbling setting shows comparable or better performances (with both the
terrain policies) for all the sensors except for the vision one. The reason for
this is quite straightforward: to read different values from vision sensors, the
biped has to present a behavior which is not favorable to a fast locomotion,
i.e., in order to allow vision sensors on the top to read different values it has
to bend the front “leg”.

5.2.2[RQ%: Sensor babbling adaptability

For this analysis, we test over a flat terrain and over 10 uneven (randomly
generated) ones the best 10 robots (one for each run) found in each configura-
tion from the previous experiment. The results, which are shown in Figure
indicate that over unseen terrains bipeds evolved with sensor babbling are at
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least as capable as the ones without babbling: in particular, if the “Random”
terrain policy is adopted, the adaptability of the VSRs slighly increases. The
results for the worm show another interesting aspect: while with the “Ran-
dom” terrain policy the results are consistent with the previous ones, with the
“Fixed” terrain policy the touch and vision settings are capable of reaching
similar performances with respect to the ones evolved considering the “only
velocity” setting, which instead outperforms them in the previous experiment.
However, we should note that we cannot draw any sharp conclusion on this
regard since the differences in the results shown in the figure do not have sta-
tistical significance according to the Mann-Whitney U test with Bonferroni
correction (« = 0.05), except for a few occasional cases.

6 Concluding remarks and future works

In this paper we have investigated two aspects related to the sensory apparatus
of a 2-D variant of simulated Voxel-based Soft Robots.

In the first part of the work, we evaluated if and how evolutionary opti-
mization can be used to evolve the sensory apparatus. In order to do that, we
considered a locomotion task with two predefined shapes, a worm and a biped,
that remain fixed during the evolutionary process. We compared the results
of the evolution of the sensory apparatus under two genotype representations,
referred to as “Limiting” and “Unlimiting”, against three manually designed
sensory configurations with different levels of available sensory information.
In all cases, the results of the evolutionary search were at least comparable to
those of the handcrafted sensory configurations. Furthermore, we analyzed the
results in terms of performance difference between robots that use sensors and
robots that do not use them: although different kinds of sensors have different
effects on the fitness, we demonstrated that VSRs equipped with sensors have
a clear evolutionary advantage over the others. The resulting evolutionary
trend indeed presents phases that indicate that evolution effectively “learns”
to use the sensors that are most beneficial to the task. From a practical point
of view, it is also important to note that the use of the Limiting representation
can lead to minimal yet efficient sensor configurations and thus simplify the
manufacturing of the soft robots, while also reducing their points-of-failure
and energy consumption.

In the second part of the work, we focused on the lifetime of the VSRs
and, in particular, we investigated if and how the information perceived from
sensors can be elaborated more efficiently by introducing a robot life phase
that we called “sensor babbling”. The latter occurs in the first part of the
robot lifetime and consists in leaving the robot “free to move”. Our hypothesis
was that thanks to this procedure, evolution can optimize the way robots
elaborate the sensor readings and thus improve their performance on the task
at hand (in this case, locomotion). The results have shown that, at least for
the biped shape, this approach produces comparable or better performance
with respect to those obtained not taking into account babbling as part of the
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Fig. 13 Velocity v; of the best evolved VSRs with sensor babbling and in two cases where
babbling is not taken into account in the fitness (separate runs for each sensor kind): “only
velocity” indicates the case where the locomotion task lasts for 40s; “last velocity” indicates
the case where the first 20 s are discarded.

fitness. Concerning the adaptability, our results indicate that in most cases
the robots evolved with sensor babbling are at least as capable as the ones
without babbling ad dealing with over unseen terrains.

While we cannot state that our findings apply to more complex robots
(e.g., 3-D simulated VSRs, simulated rigid-body robots, real robots) or robot
with different controllers (e.g., neural networks with a more complex topology
than ours), we believe that they indicate that the sensory apparatus of robots
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Fig. 14 Distribution of the velocity U, of the best evolved VSRs found in the experiment
of Sectionm facing a terrain unseen during the evolutionary process. The labels “Fixed
terrain” and “Random terrain” indicate respectively if the VSRs have been evolved using the
“Fixed” terrain policy or the “Random” one. The labels “Test: Flat” and “Test: Uneven”
indicate respectively if the evolved VSRs have been tested on a flat or an uneven terrain.

is a key component whose design may benefit from evolutionary optimization.
More broadly, our results confirm the importance of EAs in soft robot de-
sign, extending their use to the evolution of the sensory apparatus, beyond
the conventional optimization of the body shape and controller. Furthermore,
the present work encourages research directions that aim to consider alter-
native evolutionary paradigms, such as MAP-Elites [I7] and quality diversity
algorithms [34], similar to the recent work on modular rigid robots [35]. These
diversity-driven algorithms might indeed be able to explore the search space
even more effectively than traditional fitness-driven EAs. Other interesting
opportunities would be to include explicit energy constraints in the sensory
apparatus evolution, with the aim to reduce the overall robot complexity and
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reduce the reality gap. Finally, another interesting research direction would be
the co-evolution of body (including both shape and sensory apparatus) and
controller in VSRs.
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