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Abstract. Satellite data are widely used to study the spatial component of epi-
demics: to monitor their evolution, to create epidemiological risk maps and pre-
dictive models. The improvement of data quality, not only in technical terms but
also of scientific relevance and robustness, represents in this context one of the
most important aspects for health information technology that can make further
significant and useful progress in monitoring and managing epidemics. In this
regard, this paper intends to address an issue that is not always adequately con-
sidered in the use of satellite data for the creation of maps and spatial models of
epidemics, namely the preliminary verification of the level of spatial correlation
between remote sensing environmental variables and epidemics. Specifically, we
intend to evaluate the contribution of exposure to the pollutant nitrogen dioxide
(NO2) on the spatial spread of the virus and the severity of the current COVID
infection.
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1 Introduction

Satellite data, due to their capacity to guarantee constant and increasingly detailed obser-
vation, have long been permanently used to monitor and study spatial patterns and the
spread of epidemics, in particular with respect to those variables that are believed to
determine or favor the emergence and development of diseases, such as environmen-
tal conditions, distribution of causative agents and socio-demographic characteristics
of human populations [8, 18, 20, 43]. In particular, the combination of derived field
data, statistical variables and satellite data is a fundamental element for building epi-
demiological risk maps and predictive models [1, 25]. Moreover, the current pandemic
emergency has highlighted the need to develop and implement such tools not only in the
so-called developing countries, as has prevailed so far, but also in the more advanced
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countries, which have found themselves completely fragile with respect to such calami-
ties and unprepared in the prevention and response measures, although such a danger
was somewhat predictable [24, 42].

In the context of epidemic cartography, this contribution intends to deal in operational
terms with an issue not always adequately considered in the use of satellite data for
the creation of maps and spatial models of epidemics, i.e. the preliminary verification
of the level of spatial correlation between remote sensing environmental variables and
epidemics [19, 37]. More precisely, we intend to evaluate the contribution of exposure to
the pollutant nitrogen dioxide (NO2) on the spatial spread of the virus and on the severity
of the current COVID-19 infection, in order to confirm the operational validity of the use
of this environmental variable in the related epidemic cartography. The improvement of
data quality, not only in technical terms but also of scientific relevance and robustness,
is in fact one of the most important aspects for health information technology that can
make further significant and useful progress in monitoring and managing epidemics [20,
39].

As it is known, Northern Italy was the area most affected by the first wave of the
COVID-19 epidemic. The great speed and intensity with which COVID-19 disease has
spread to these regions has prompted the hypothesis, in some preliminary studies, that
high levels of pollution may play a role in viral transmission and in determining the
severity of the infection [4, 6, 28, 35, 38, 40]. In fact, Northern Italy is considered as
one of the most heavily polluted area in Europe in terms of smog and air pollution [2,
26, 33] because it is characterized by a high concentration of densely populated urban
areas, as well as by a strong presence of industrial activities. In addition, the particular
closed geomorphological conformation of Po Valley prevents pollutants re-circulation
and release with their consequent stagnation due to the low ventilation [16].

2 Materials and Methods

We worked on data from the Northwest regions and the first wave of the epidemic.

2.1 Environmental Data

Pollution data on average concentrations of nitrogen dioxide (NO2) expressed in
μmol/m2 were obtained using information provided by the space satellite Sentinel 5
Precursor (S5P), managed by the European Space Agency (ESA) and the European
Commission under the Copernicus program [9].

The periods analyzed refer to one baseline period identified before the spread of the
epidemic in Italy (February 1 - 24) and to the following weeks (February 24 - March 8,
March 8 - 22, March 22 - April 5 and April 5 - 19).

For this study, it was considered the tropospheric vertical column of NO2 reported
by ESA Sentinel-5P and made available through high resolution offline (OFFL) image
processing of nitrogen dioxide concentrations, obtainable approximately 5 days after
detection time [10]. The satellite data therefore comes from the Sentinel-5P OFFL NO2
dataset [15] of the Google Earth Engine API platform [17] through the use of Area of
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Interest (AOI) tools and a simple Python programming code. We obtained a single satel-
lite image defined by the mean of the NO2 concentrations expressed in μmol/m2, for
each of the periods considered. The satellite images were downloaded in raster (Geotiff)
format, georeferenced according to the World Geodetic System (WGS-1984) and then
a population-weighted average was made for the year 2020 of the NO2 values for each
individual provinces and regions through the QGIS software. The population data used
were obtained from the Gridded Population of the World - Fourth Version (GPWv4)
dataset provided by the Center for International Earth Science Information Network
(CIESIN) which models the distribution of the global human population consistent with
national censuses and population registers, for the years 2000, 2005, 2010, 2015 and
2020 on grid cells of about 1 km [3]. In addition, we retrieved vertical air flows (omega)
at 850mb (about 1,5 km above sea level) that define the atmospheric capacity to disperse
the gas, in order to obtain a better understanding of NO2 concentrations during the period
of the event considered. In regions where positive omega is observed, the atmosphere
forces the polluted NO2 to remain close to the surface, resulting in increased exposure to
the risk factor for the population. On the contrary, in regions with negative omega, atmo-
spheric conditions allow the dispersion of the gas further away and at higher altitudes.
Therefore, in these regions there is a lower exposure of the population to air pollution
and associated health risks [30]. Data were provided by the NOAA/OAR/ESRL PSD,
Boulder, Colorado, USA [29].

2.2 Epidemiological Data

The trend data on the number of total positive cases of SARS-CoV-2 infection at regional
and provincial level, corresponding respectively to levels 2 and 3 of the Nomenclature of
territorial units for statistics (NUTS),were available on thewebsite of theCivil Protection
Department [7]. Considering the number of positive cases of COVID-19, prevalence
rates per 100.000 inhabitants were obtained using themost up-to-date population data on
January 1, 2019, available from the Italian National Institute of Statistic [22]. Prevalence
rates were calculated as the ratio of the number of SARS-CoV-2 positive subjects to the
total number of individuals in the population during the lock down (as ofMarch 8,March
22, April 5 and April 19 2020).

Finally, in this research an analysis of excess mortality (in percentage values) was
carried out, in order to indirectly evaluate the effect of COVID-19 epidemic on total
deaths observed during the study period.

The excess mortality data defines the percentage change in deaths at the provincial
level recorded in 2020 compared to the average of the previous five years (2015–2019).
Clearly, positive values indicate an increase in deaths compared to the previous period
considered. Deaths data were available from the European Statistical Office dataset [11],
aggregated weekly at provincial level (NUTS 3).

For this analysis, it was chosen the period between the 10th week and the 16th week
(March 2 – April 19 2020) because the first COVID-19 deaths in this regions occurred
from March 3 to 5 respectively for Liguria and Piemonte, while the Valle d’Aosta has
encountered the first deaths only later on March 11 [7].
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2.3 Statistical Analysis

First, an exploratory and descriptive analysis of the dataset used was carried out, which
made it possible to investigate the distribution of each variable and the presence of any
anomalous values identifiable as outliers.

Second, the relationships between the average levels of NO2 prior to the onset of the
Italian epidemic (February 1–24) and the prevalence rates of SARS-CoV-2 infection in
the periodsMarch8 and22March,April 5 and19, 2020were examinedusingSpearman’s
correlation coefficient (ρ). This non-parametric index calculates the relation based not
on the values of the two variables but on their ordinal position (ranks). This allows to
obtain an index value much less affected by outliers than the Pearson’s linear coefficient.
Similar to the latter, the Spearman’s coefficient provides values between−1 and+1; the
closer the index is to zero, the weaker the relationship will be, the closer it gets to −1 or
+1 the stronger the relationship will be negative or positive.

Spearman’s correlation coefficient was also useful for investigating the associa-
tion between the average levels of NO2 before February 24 and excess mortality data
calculated for the period March 2 - April 19, 2020.

Once the functional relationships between the variables under consideration have
been established, subsequent exploratory analyses have been carried out with Poisson
regression model. Since evidence of overdispersion was observed, we applied quasi-
Poisson multivariate models. These ones are a generalization of the Poisson regression
and they allow to take into account the overdispersion of the data, adjusting the variance
according to a specific dispersion parameter [36].

Within the models, some possible confounding factors were considered such as the
percentage of the population over the age of 65 and the ratio of females to males, as
the incidence of COVID-19 has proven to be higher among men and people 65 years of
age or older [21]. In addition, another possible confounding factor taken into account
was population density (population/km2); in fact, one would expect the most densely
populated provinces to be among the most polluted, due to the social and economic
spatial concentration, but also the places where the contagion could have spread more
easily with a potential greater impact on the exposed population. These data used were
available from the Italian National Institute of Statistic (ISTAT), updated on January 1,
2019 [22].

The estimated coefficients, obtained from quasi-Poisson multivariate regression
models, define the size of the variation in the dependent variable (prevalence rates or
excessmortality) for a unit increase of the independent variable (defined as a 10μmol/m2

increase in the average concentration of NO2 before February 24).
The data of each variable was collected and organized in table format through

Microsoft Excel program and then processed in statistical analysis using RStudio
software.
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3 Results

3.1 Analysis of Tropospheric NO2 Concentrations

Figure 1 shows the geographical distribution at provincial level of the average concen-
trations of NO2 tropospheric inμmol/m2 weighted on the population for the five periods
analyzed, corresponding to before and after the spread of the Italian epidemic.

The average concentrations of NO2 had high values in the first period before the
outbreak (February 1 to 24). They were particularly high in the Metropolitan City of
Torino (119 μmol/m2) and in the province of Novara (118 μmol/m2). While, in the
following weeks during the spread of the epidemic, there was a drastic reduction in
concentrations of polluted, less than 90 μmol/m2, in all the provinces analyzed. This
reduction is attributable to the containment measures implemented by the government
against the spread of COVID-19 disease, which led to a consequent sharp reduction
in transportation-related emissions, as well as the decrease in industrial activities and
electricity production.

Fig. 1. Study area of North-Western Italy showing the average concentrations of tropospheric
NO2 (μmol/m2) weighted on the population for the five periods considered in the analysis.
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Key to abbreviations/provinces:

AL Alessandria CN Cuneo NO Novara TO Torino

AO Aosta GE Genova SP La Spezia VB Verbano C.O

AT Asti IM Imperia SV Savona VC Vercelli

BI Biella

These concentrations of nitrogen dioxide, for the whole event considered, were also
accompanied by vertical downward air flows (positive omega between 0 and 0,02 Pa/s)
which prevented the dispersion of the pollutant and increased exposure and risk factors
for the population.

3.2 Relationship Between NO2 Pollution and Prevalence Rates

Table 1 shows the total number of SARS-CoV-2 positive cases and prevalence rates
(per 100.000) calculated over the four time periods considered in the study, i.e. the one
corresponding to the establishment of the total block (March 8) and the following weeks
(March 22, April 5 and 19). In this table are also reported population data on January
1, 2019 with the values of the confounding factors used in the multivariate analysis
(females/males, % population over 65 years old and population density).

Table 1. Total number of positive cases from SARS-CoV-2 and prevalence rates (per 100.000)
on March 8, March 22, April 5 and April 19 and population data as of January 1, 2019.

The preliminary exploratory analysis of prevalence rates showed very high values
that were numerically distant from the rest of the data collected, identifiable as outliers
and corresponding to the Valle d’Aosta region. Therefore, the latter was excluded from
the subsequent correlation analysis.

The variables have a positive monotone relationship for the periods March 22, April
5, and April 19, as evidenced by the regression lines in the scatter plots in Fig. 2.
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Fig. 2. Scatterplot of correlations between mean NO2 levels before February 24 and prevalence
rates (TP).

Sperman’s coefficients showed positive correlations between NO2 concentrations
before February 24 and prevalence rates for the periods of March 22, April 5 and 19 (ρ
= 0,65, p-value < 0,05; ρ = 0,21 and ρ = 0,40, p-value > 0,05, respectively). While
a weak negative correlation for the period March 8 (ρ = −0,07, p-value > 0,05) may
probably depend on the slowdown in cumulative positive cases of SARS-CoV-2 infection
in the studied territories, until that day.

The results of estimates prevalence rate ratio of quasi-Poisson regression models
are summarized on a logarithmic scale in the following Table 2 together with the corre-
sponding standard error (se) for the four different periods considered (March 8 and 22,
April 5 and 19).

Table 2. Estimates of prevalence rate ratio and the corresponding standard error (se) of quasi-
Poisson regression models over the four periods considered.
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An increase of 10 units in the concentration of NO2 in μmol/m2 is associated with
an increase between 9.5% and 22% (95% CI: -2.6 ÷ 55) on the prevalence rates in the
territories analyzed during the first wave of COVID-19.

3.3 Relationship Between NO2 Pollution and Excess of Mortality

The analysis of excess mortality for the period March 2 – April 19, 2020 is shown
spatially in graphic form in the map in Fig. 3, for all the provinces considered. The map
was made taking into account the average (μ) and the standard deviation (σ). Therefore
the classes identified are broken down according to the range defined by these two
statistical values: lower (x < μ − σ), low (μ − σ ≤ x < μ), high (μ ≤ x < μ + σ) and
higher (x ≥ μ + σ).

The excess mortality is evident in all three regions with a significant increase in
deaths in the provinces of Alessandria, Vercelli and Biella, respectively with 103% for
the first two and 101% for the third one. The least affected provinces appear to be Cuneo
and Savona, despite an increase in mortality between 43% and 47%.

Even there, the statistical analysis returned a positive correlation between pollution
from NO2 before February 24 and data on excess mortality for the period March 2 -
April 19, 2020 (ρ = 0,44, p-value > 0,05), as also evidenced by the regression line of
the scatterplot graph in Fig. 4.

The quasi-Poisson multivariate regression model returned the rate ratio estimated
(RR) that are shown in the Table 3 with the corresponding standard error (se) values. An
increase of 10 units in the concentration of NO2 inμmol/m2 has an estimated association
of 4,7% (95%CI: 1,8 ÷ 7,9) on excess mortality over the period March 2 to April 19,
2020.

Fig. 3. Excess mortality recorded in the provinces of North-West Italy
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Fig. 4. Scatterplot of correlation between NO2 levels before February 24 and excess mortality.

Table 3. Results of estimates rate ratio and the corresponding standard error (se) of quasi-Poisson
regression model for excess mortality data.

4 Conclusion

The processing of satellite information showed high levels of nitrogen dioxide in
μmol/m2 in the pre-epidemic period and a consequent drastic reduction in pollution in the
following weeks. In all the provinces considered, this reduction revealed an overall aver-
age of -43%, following the national containment and mitigation measures implemented
by the government to deal with the spread of the SARS-CoV-2 virus.

The statistical analysis carried out in this research has allowed to obtain good evi-
dence of the relationship between exposure to nitrogen dioxide (NO2) and theCOVID-19
epidemic. The relationships turn out to be positive but not significant, as also reflected in
the wide confidence intervals (95%CI) because the dataset considered has low number
and the statistical analysis was carried out with data at aggregate levels that do not allow
to consider all the possible confounding factors that influenced the disease epidemic.
With reference to the estimates obtained from the multivariate models of quasi-Poisson
regression and the confounding factors, no effect related to the relationship between
females and males is observed. Whereas it is noted that provinces with a higher share
of the population aged 65 and over and with a higher population density were the most
affected during the epidemic, as was likely.
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Results from Spearman’s correlation coefficients (ρ) and quasi-Poisson’s multivari-
ate regression models highlighted the presence of positive relationships between NO2
pollution and the spatial spread of the virus, as well as a positive association between
the same concentrations of NO2 and the severity of SARS-CoV-2 infection in 12 of the
13 provinces of North-Western Italy analyzed, excluding Valle d’Aosta. These results
are consistent with the emerging literature on the subject [5, 12–14, 23, 27, 30, 32, 44],
while biological plausibility gives greater robustness to the positive association observed
between the average concentrations of NO2 and the data on excess mortality. In fact,
there is clear evidence that the presence of previous diseases can contribute to a more
clinically severe forms of COVID-19 and increased mortality from the disease [21, 31,
34, 41]. On the other hand, biological validity is weaker in confirming a potential positive
association between polluted nitrogen dioxide and the spatial spread of the virus.

This research project finds possible elements of improvement through the validation
of concentrations obtained from satellite information with those collected by ground
monitoring stations; analyses carried out with other polluted such as atmospheric partic-
ulate matter (PM2,5 and PM10) or tropospheric ozone (O3) to investigate their reduction
in the period corresponding to lock-down but also to assess their possible contribution to
the COVID-19 epidemic; analysis at more detailed scales, referring to individual urban
areas or areas defined on mobility data (e.g. local labour systems - SLL); and finally,
studies carried out with individual data that consider the individual risk factors that
influenced SARS-CoV-2 infection. This allows regression models to be adjusted for all
potential confusing factors, so that more robust and important statistical and biological
validity can be achieved than those obtained here.

In conclusion, relationships obtained in this research confirm the hypothesis of an
important contribution of chronic exposure to air pollution of nitrogen dioxide on the
spatial spread and lethality of the SARS-CoV-2 virus.However, there is an awareness that
a correlation study at the aggregate level and at the regional and provincial scale cannot
identify a real causal link between an exposure and an outcome, but it only suggests a
potential association. Therefore, the present work has addressed only a small part of this
complex problem and it is appropriate to proceed with further analyzes to better clarify
the role of air pollution during the COVID-19 pandemic, which may be useful to activate
prevention plans for future health emergencies and encourage and promote sustainable
environmental policies.
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