
Department of Psychology and Cognitive Science

Doctoral School in Cognitive Science

XXXIV Cycle

Fine-Grained Analyses of Early Autism-related Social

Behavior in Real-World Scenarios by Machine Learning

Advisors:

Prof. Paola Venuti

Prof. Cesare Furlanello

Ph.D. candidate:

Gianpaolo Alvari

Academic Year 2020/2021



ii



Acknowledgements

The work presented in this dissertation was the result of invaluable teamwork and mutual

help from colleagues and friends. The first people I would like to acknowledge are my

supervisors, Prof. Paola Venuti and Prof. Cesare Furlanello. They have guided and

supported me throughout all of my research, even in the most challenging moments. I

mostly owe them the skills and the experiences I have matured during these valuable

years. I sincerely thank them for sharing their knowledge and mentorship, as well as for

all the opportunities. I want to thank all the members of ODFLab (University of Trento)

who allowed me to obtain the data used in my studies. In particular, I thank Dr. Arianna

Bentenuto for her support, professionalism, and friendship. I also thank the members of

the DSH research unit (FBK, Trento) for the chance to learn new computational skills.

A special thanks to Luca Coviello for his dedication in helping me develop my ideas,

and his precious contribution, especially in the third chapter. I want to thank all my

colleagues from the doctoral school with whom I shared moments of fun and help. I

would like to extend my gratitude to Prof. Marco Dondi for his advice and for sharing

part of his research experience with me. Last but not least, I would like to sincerely

thank all my family, friends, and Anna who have supported me and with whom I share

all the joys and troubles of this journey.

iii



Abstract

Autism Spectrum Disorder (ASD) is a condition that carries high costs for families and

the healthcare system, requiring extensive management both in terms of diagnosis and

treatment. The implementation of AI-based systems in clinical practice represents a

possible supportive solution that can help clinicians by providing more systematic meth-

ods to monitor child behavior. The main advantage over more traditional observational

approaches is to offer quantitative and refined analysis solutions that can be ecological

at the same time. The relevance of AI in clinical applications can have a role both

in the challenge of early detection and in designing intervention programs better tai-

lored to the specific functioning of children with ASD. The research project presented

in this dissertation focused on developing AI-based systems for fine-grained analysis of

autism-related social behaviors and their validation in concrete clinical environments.

Specifically, in Chapter 2, our first study is presented, which targets on implementing

a computational phenotyping system to address the need for new early markers of the

condition. Through fine-grained analytics of facial dynamics in videos, we identified a

set of features that distinguished young (6-12 months) infants with ASD (18 ASD, 15

non-ASD) during unconstrained at-home interactions. In Chapters 3 and 4, we introduce

EYE-C, a Behavior Imaging model for robust analysis of eye contact episodes in eco-

logical therapist-child interactions. The system was validated in the clinical setting for

personalized early intervention. First, we investigated the influence of extracted features

in categorizing spectrum heterogeneity across a sample of 62 preschool (<6 years) chil-

dren with ASD. Further, we tested our metrics as predictors of early intensive treatment

outcomes in a sub-sample of 18 subjects with ASD. The project aims to demonstrate the

feasibility of effective computational systems that are robust to the high variability of

unstructured interactions, with emphasis on the applicative value in real-world scenar-

ios. Even though based on limited sample sizes, the work presented may offer interesting

insights into the perspective of integrating AI into clinical practice.

The research project was funded by an FBK scholarship and developed in a double in-

ternship at ODFLab (University of Trento) and the FBK Data Science for Health (DSH)

research unit.
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Chapter 1

Introduction

1.1 Autism Spectrum

Before we proceed with the discussion of Autism Spectrum Disorders (ASD), it is manda-

tory to provide an explanation about why we should define the spectrum as a disorder

within the neurodiversity framework and not a mere pathology. There is currently an

open debate among experts about the most appropriate way to define the autism spec-

trum and how to address all facets of its complex nature (Baron-Cohen, 2017; W. W. Lai

and Oei, 2014). In this introductory part of the dissertation, this topic will be briefly

exposed with an emphasis on the reasons for this choice of definition.

Autism refers to a construct used to define individuals with a specific pattern of be-

haviorally defined impairments in social communication, interactions, and repetitive

behaviors. It is a critically heritable and complex neurodevelopmental condition with

underlying cognitive attributes that often overlap with other disorders (Lord et al., 2020).

In the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5)

(APA, 2013), the autism spectrum is classified as a disorder with multiple levels of sever-

ity. Over the last few years, an interesting debate has been opened in research about

the criticism of the DSM-5 categorization (W. W. Lai and Oei, 2014). From research,
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CHAPTER 1

we learn that it makes more sense to define autism based on differences rather than just

dysfunctions (Baron-Cohen, 2017; W. W. Lai and Oei, 2014). Social interaction and

communication areas indeed represent aspects of fragility and disadvantage for individ-

uals with autism, who need support and environmental restructuring. The notion of

neurodevelopmental pathology strongly implies the need for a cure or treatment mis-

characterization if not defined in the proper background (Baron-Cohen, 2017). From

this perspective, it is more meaningful to define autism in a neurodiversity framework

than a mere disease. The notion of neurodiversity also allows us to understand better

the intrinsic characteristic of autism as a dynamic spectrum characterized by extremes

ranging from individuals with minor impairments who adapt more easily to the environ-

ment up to individuals with severe behavioral compromises, requiring a more structural

intervention. Defining people with ASD as individuals with a different level of socio-

cognitive functioning better represents the autism spectrum both from a biological and

an ethical standpoint.

Epidemiological studies suggest that autism has a variable prevalence based on the

method of ascertainment employed and the sociocultural context (Lord et al., 2020).

According to the 2010 Global Burden of Disease study, there are an estimated more

than 52 million people with autism worldwide, corresponding to a prevalence of ap-

proximately 1 in 132 individuals (Lord et al., 2020). However, morbidity appears to be

significantly higher in high-income countries, where it ranges between 1-2% (Baio et al.,

2018; Maenner et al., 2020; Narzisi et al., 2020).

The rates of individuals diagnosed with ASD are overgrowing each year (A. Jacob et

al., 2015; Lyall et al., 2017; Rogge and Janssen, 2019). Despite this, it is still unclear

whether this growth is due to an actual increase of the condition, a shift in the diagnos-

tic definition, improved public and medical awareness, or a combination of these factors

(A. Jacob et al., 2015; Rogge and Janssen, 2019). In a recent systematic review, total

annual expenses were estimated to reach over $460 trillion in the United States by 2025
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(Leigh and Du, 2015) and over $2.4 million in lifetime costs per individual (Rogge and

Janssen, 2019). Further, a child impairment generates a spill-over impact, decreasing

the overall quality of life for the family (McCarty and Frye, 2020).

This massive impact of the condition both socially and economically has prompted

greater attention to global challenges in autism research (Lord et al., 2020). First and

foremost is the need to offer concrete solutions that can effectively lower costs, particu-

larly for families. In parallel, it is necessary to offer services that can improve diagnosis

and treatment in low-income countries, where medical awareness seems to be limited.

Finally, global issues of stigma and integration must be taken into account (Lord et al.,

2020).

1.1.1 Early Diagnosis

The diagnosis of ASD has a behavioral origin, based mainly on observation and de-

scription due to the lack of reliable biomarkers of biological or genetic anomalies. The

current guideline for screening children with suspected ASD includes follow-up pediatric

consultations with caregivers to gather a detailed medical history. When any suspect

pattern of neurodevelopmental irregularities emerges, the child is referred to a specialist

for in-depth evaluation through interviews, questionnaires, and psychological testing (re-

lated to both general cognitive development and social skills). Due to the complexity of

acquiring reliable data from a subjective observational assessment, diagnostic training

demands an extensive background of knowledge about child development and several

years of training by specialized clinicians (Dawson and Sapiro, 2019).

Diagnosing autism in childhood is still an ongoing concern for the clinical setting as it

requires long-term monitoring and detailed examination of the patient symptoms, which

is costly and time-consuming. As the medical resource deficiency stands, it is very

unfavorable for the clinical management of the condition (K. Campbell et al., 2019).

Furthermore, through studies of developmental trajectories and intervention outcomes,
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it has become evident that early detection is a major challenge in autism research (Rogers

and Talbott, 2016; Vivanti et al., 2019). From a pragmatic standpoint, being able to

recognize the condition earlier in the development gives the chance to gain increased

impact from specialized interventions and thus enhance the prospect for cognitive im-

provement and overall quality of life more in general (Dawson, 2008; Mozolic-Staunton

et al., 2020; Rogers and Talbott, 2016; Vivanti et al., 2019; Waddington et al., 2016).

Intervening early during cognitive maturation exploits brain plasticity, anticipating the

full phenotype expression, and hopefully containing in some degree the atypical trend of

cognitive development (Elder et al., 2017). There is now a consensus among experts that

the first red flags of atypical socio-communicative development emerge rather evident

from the second year of life (Barbaro and Dissanayake, 2013). Despite this, the median

age of clinical diagnosis in high-income countries is still close to about 4 years of age

(Brett et al., 2016). Nonetheless, several studies have reported that parents typically

raise concerns about specific behaviors much earlier at 2 years of age (Lord et al., 2020).

Reasons for this gap fall mainly into two domains. The primary cause is likely to be

related to the condition inherent characteristics of being extremely heterogeneous, espe-

cially in its early manifestations. Within childhood, patterns of atypical developmental

trajectories seem to vary between individuals and emerge at different stages of matu-

ration (Lombardo et al., 2019; Zwaigenbaum et al., 2015). In addition, they frequently

manifest through subtle signs that are difficult to detect by non-experts (Dawson et al.,

2018). Second, socioeconomic barriers to early detection have emerged in healthcare

systems worldwide, especially in disadvantaged environments where awareness of the

condition is limited and families have restricted access to public health services (Eapen

et al., 2013; Mozolic-Staunton et al., 2020). The challenge for autism research is to

address these weaknesses by identifying reliable early markers and offering scalable, low-

cost solutions.

Overall, early detection of prodromal symptoms has proven challenging. Atypical devel-
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opmental traits can be identified in the second year of life when children with ASD display

more marked socio-communicative impairments and stereotyped behaviors (Barbaro and

Halder, 2016; Shic et al., 2014; Varcin and Jeste, 2017; Zwaigenbaum et al., 2019). At

12 months of development, infants with ASD exhibit interaction-related deficits in their

first social exchanges with their parents. These impairments include a general poor

expression (Esposito and Venuti, 2009; Shic et al., 2014; Zwaigenbaum et al., 2015),

reduced eye contact (Barbaro and Dissanayake, 2013; Rozga et al., 2011), odd object

play (Ozonoff et al., 2008; Wilson et al., 2017), a decreased responsiveness in episodes

of joint attention (Rozga et al., 2011) and reduced capacity of name orientation (Nadig

et al., 2007; Varcin and Jeste, 2017). In addition, there is evidence of early deficits in

motor control (Esposito et al., 2011; Flanagan et al., 2012; Gima et al., 2018).

Therefore, the first years of growth mark a critical stage for cognitive development

within the social-communicative domain. Social skills mature to become a crucial basis

for communication throughout this period. The infant will start to actively employ these

socio-cognitive resources to interact with his/her environment and accumulate positive

interactive experiences. From studies about early detection, we can assume that in the

autism spectrum, the first markers emerge at this stage (E. J. Jones et al., 2016). It is

critical to provide the toddler with adequate tools to engage with the social environment

as soon as possible. Therefore a major goal is to lower the age threshold for screening

and anticipate the onset of severe symptoms (Chevallier et al., 2012; Landa, 2018).

Moreover, surveying signs of atypical behaviors within the first years of development

may uncover the primary components of later autistic phenotype (Zwaigenbaum et al.,

2019). Studying behavior so early, when impairments are less marked, is challenging

yet represents a necessary step for supporting the clinical setting. At such a low age,

behaviors can be subtle and difficult to analyze, so we need alternative solutions that

are more systematic and fine-grained. Overcoming this weakness would allow clinicians

to establish a more effective screening and support for the families.
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1.1.2 Early Intervention

So far, we have emphasized early detection. However, this is just the starting point.

Typically, the diagnostic effort has no clinical relevance if not to promptly launch a new

intervention pathway. Early intervention is the real priority for clinicians. Young chil-

dren with autism struggle to communicate and interact with other individuals, severely

constraining their opportunities to engage in pleasant social experiences (Lord et al.,

2020). In parallel, parents may find their child behaviors distressing and difficult to

regulate, frequently leading to the establishment of maladaptive relationship patterns.

Therefore, beginning a rehabilitative program timely is critical. Interventions for young

children on the autism spectrum may result in significant improvements in cognitive,

interactive, and communicative skills and eventually an overall reduction in symptom

severity (Elder et al., 2017). It is crucial to provide the child with ASD as early as pos-

sible with adequate compensatory strategies to interact most adaptively with the social

environment and minimize the loss of experience.

To date, there is no universally accepted intervention framework for autism (Jaliaawala

and Khan, 2020). Challenges in developing universally approved rehabilitative models

relate, on the one hand, to the underlying nature of the spectrum, on the other to the

lack of reliable tools to evaluate the outcome. There is a high degree of variability in

the timing and manifestation of the first prodromal symptoms (Lombardo et al., 2018;

Zwaigenbaum et al., 2015). For many individuals, the onset of the first clinical manifes-

tations could be early recognizable, whereas, for others, the phenotype may occur after

an apparent period of typical development (Lord et al., 2020). In the latter, the child

appears to develop in a typical manner but afterward starts to lose communication and

social competencies, leading to a regression or stasis in behaviors (Boterberg et al., 2019;

Lord et al., 2020; Pearson et al., 2018). Further, this pattern of variability in the onset

is often associated with co-occurring difficulties or disorders (Havdahl and Bishop, 2019;
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M.-C. Lai et al., 2019; E. Stevens et al., 2019). Studies on spectrum stratification have

also reported a high degree of variance in condition progression and symptom severity

(Fountain et al., 2012; Gotham et al., 2012; Venker et al., 2013; Wolfers et al., 2019).

Among the most impactful effects of this heterogeneity are also the irregular response

to the same kind of intervention and the variance in the outcome (Eapen et al., 2013;

Lord et al., 2020; Uddin et al., 2019). Studies about the effectiveness of early interven-

tion have indeed found evidence of overall improvement, but also wide inter-individual

variance in the response (Bentenuto et al., 2020; Magiati et al., 2011). Children who

are high-responders seem to achieve significant progress, while other low-responders are

unlikely to gain much improvement (Bentenuto et al., 2020; Eapen et al., 2013). Several

prodromic factors related to the baseline pre-treatment conditions, i. e. age, cognitive

functioning, the severity of symptoms, and social skills (Ben-Itzchak et al., 2014; Ma-

giati et al., 2011; Swallows and Graupner, 2005), seem to play a role in the definition of

developmental trajectories, but their specific role needs further exploration (Bentenuto

et al., 2020).

For these reasons, it is challenging to develop a standard intervention model that is

generalizable and that maximizes outcomes for all patients across the autism spectrum

(Estes et al., 2019; Rogers and Talbott, 2016). From this perspective, the necessity to

design individualized intervention programs that account for variability in developmen-

tal trajectories and individual response to intervention has grown. Interest in precision

psychiatry is growing fast in cutting-edge clinical environments. The demand for more

effective models of therapy stems from the awareness that tailoring interventions to the

patient individual characteristics may optimize the outcome.

Also of concern is the lack of systematic, autism-specific measures of the treatment re-

sponse. In clinical practice, standard diagnostic tools are used to monitor the long-term

improvement of a child with ASD. However, such tools are only structured for diag-

nostic assessment and not sensitive enough to measure improvements in the outcome of
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an intervention pathway (Bentenuto et al., 2020; Washington, Leblanc, Dunlap, Penev,

et al., 2020). To assist the clinical setting, research efforts should address the need for

standardized and shared systems among professionals for the evaluation and decision-

making of interventions. Systematic behavioral correlates are necessary to step forward

and help clinicians tailor the intervention according to children characteristics.

1.2 Machine Learning applications in ASD research

As noted in the previous sections, the clinical evaluation process is costly and time-

consuming. Traditional research has been able to provide a positive contribution in

trying to facilitate this process, increasing awareness of the prodromal stages of the

autism spectrum and facilitating the link between families and health services (Lord et

al., 2020). Still, not all shortcomings have been addressed, and many challenges remain.

The most controversial aspects are inherent in the evaluation process, which, being

observation-based, is bound to a subjective bias. In addition, the call for highly quali-

fied specialists still entails long waiting lists for families (especially in low-income com-

munities) and significant problems in the exportation of these methodologies in more

ecological frameworks, such as school or at home. Finally, the challenges of early detec-

tion and a shortage of uniform guidelines are leading to a lack of large datasets collection

(Dawson and Sapiro, 2019).

Therefore, the development of computational approaches for systematically analyzing

behaviors is an important goal in autism research. Artificial Intelligence (AI) offers

novel solutions for automated analysis of human behaviors. In recent years, the im-

plementation of AI has scaled up substantially in behavioral research, with promising

results in the context of ASD as well. Advanced Machine Learning (ML) models offer

the potential to overcome many of the limitations of traditional observational research,

offering alternative methodologies to provide support in studying and monitoring symp-
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toms (Dawson and Sapiro, 2019; de Belen et al., 2020; Hyde et al., 2019; Sapiro et al.,

2018).

The applications of computational psychology have largely proceeded towards three sep-

arate goals, attempting to address the major open issues in autism research: providing

lower-cost tools for screening through classification, seeking to analyze subgroups on the

spectrum, and providing alternative systematic methods for measuring behavior. Many

studies have focused on (1) the implementation of supervised ML intending to speed up

the diagnostic process, either by reducing the dimensionality of tests and questionnaires

or by predicting the diagnosis based on data collected during the assessment (Cavus

et al., 2021; Hyde et al., 2019); (2) a far smaller corpus of papers (mainly due to the

lack of enough numerous samples) has been concerned with the unsupervised analysis

of larger datasets, to investigate subgroups and heterogeneity of ASD (Wolfers et al.,

2019). Lastly, (3) the most promising trend is represented by Behavior Imaging (BI),

which is a technique used in medical contexts for the analysis and monitoring of behav-

ioral disorders through the automated analysis of images or videos, thanks to advanced

Computer Vision (CV) algorithms (de Belen et al., 2020; Sapiro et al., 2018). The first

two objectives (1,2) represent advanced methods of data analysis, generally based on

clinical data (psychological testing or parental reports) from the evaluation procedure of

children with ASD. In contrast, the latter trend (3) represents an alternative approach to

data collection no longer based on traditional standardized instruments from the clinical

evaluation but on systematic measurements of old/new behavioral markers through CV

models. The following sections will discuss each of these approaches in more detail.

1.2.1 Supervised methods

The development of algorithms aimed at fast classifying ASD symptoms and reducing

the overall length of the diagnostic process was among the first applications of supervised

ML into the clinical setting. Supervised approaches allow classification and prediction
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of autistic traits based on ground truth labels. One of the pioneering research groups in

this field is the lab headed by Dr. Dennis P. Wall, from Stanford University (California,

USA). In one initial study, Wall, Dally and colleagues (2012) attempted to accelerate the

assessment process by mining a subset of items from the ADI-R that would be enough

to classify ASD correctly. They collected a large dataset of 891 individuals with ASD

and 75 with typical development. Using only 7 of the 93 test items, an Alternating De-

cision Tree (ADTree) classifier achieved nearly 100% accuracy and over 90% specificity

(Wall, Dally, et al., 2012). In a related study, they tested the same methodology for the

ADOS in a smaller sample. They reached almost 100% accuracy and 94% specificity by

combining 8 of the 25 items in Module 1 while reducing the overall test length by near

70% (Wall, Kosmicki, et al., 2012).

Duda and colleagues (2014) further pursued validation of the eight-item classifier from

(Wall, Kosmicki, et al., 2012) in a larger sample of 2333 children with ASD and 283 con-

trols at younger ages. The algorithm showed significant correlations with both ADOS

and ADOS-2 scoring (Lord et al., 2012), achieving nearly 96%, 98% sensitivity, and 84%

specificity (Duda et al., 2014). A few years later, Duda and colleagues (2016) attempted

to replicate the same results in distinguishing children with ASD (n=2775) and ADHD

(n=150). Authors tested six different ML models and found that 5 of 65 Social Re-

sponsiveness Scale (SRS) scores were sufficient to distinguish between groups with an

AUC=0.97. The authors then expanded the results to include a novel crowdsourced

dataset to improve the classifier generalizability to real-world data. Pooling the two

samples, they developed an algorithm that could correctly distinguish ASD from ADHD

with only 15 items from the SRS, achieving an AUC score of nearly 0.9 (Duda et al.,

2016).

In parallel, from the same research group, Levy and colleagues (2017) employed differ-

ent ML models to diagnose children with ASD based on ADOS scores in two different

modules: Module 2 (1319 ASD, 70 typical development) and Module 3 (2870 ASD, 273
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typical development). By employing less than 10 features, they were able to achieve an

AUC=0.95 for Module 3 and an AUC=0.93 for Module 2 (Levy et al., 2017).

More recently, the Wall Lab has been focused on designing low-cost systems for rapid

screening of children on the autism spectrum, combining mobile-based technologies and

psychological testing.

Tariq and colleagues (2018) developed a mobile web portal to collect 3-minute home

videos of children with (n=116) and without (n=46) ASD. The videos were evaluated

by several blinded non-expert raters based on 30 behavioral variables taken from the

ADOS. The authors then employed several models for ASD classification over the 30

features, resulting in the highest performance with an AUC=0.92 (Tariq et al., 2018).

Abbas et al. (2018) merged two stand-alone classifiers to generate an ASD screening

tool based on parental questionnaires and home videos. ADI-R and ADOS scores were

collected to train 2 Random Forest classifiers for questionnaires (2299 ASD, 100 typical

development, 287 other conditions) and videos (3310 ASD, 585 typical development,

364 with other conditions) respectively for predicting clinical diagnosis. Pooling the

scores from both models outperformed traditional screening tools, including the Mod-

ified Checklist for Autism in Toddlers (M-CHAT; Robins et al., 2014) and the Child

Behavior Checklist (CBCL; Achenbach and Dumenci, 2001) (Abbas et al., 2018).

Likewise, in a large recent study, Washington and colleagues (2021) further explored a

similar system for early screening (<8 years of age) of ASD starting with non-expert

raters. A novel system was implemented for crowdsourcing and identifying a pool of re-

liable evaluators to extract features (based on ADOS items) from 50 naturalistic videos

(25 ASD, 25 controls). Two logistic regression classifiers were employed to assess the

accuracy of the non-expert raters, yielding an AUC score above 0.98. The authors

then compared performances across the same videos manipulated (by drawing a box

over children faces, via OpenCV toolkit) for privacy-preserving, achieving similar results

(Washington et al., 2021).
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Overall, very promising outcomes emerged from this research stream. The contribution

of ML models has major potential in lowering the high dimensionality of delayed psycho-

logical testing while still preserving a good degree of accuracy in discriminating children

on the autism spectrum (Duda et al., 2014; Hyde et al., 2019; Kosmicki et al., 2015;

Levy et al., 2017; Wall, Dally, et al., 2012; Wall, Kosmicki, et al., 2012). Moreover,

when combined with questionnaires or checklists, ML also holds a strong contribution

in developing more effective screening strategies (Abbas et al., 2018; Tariq et al., 2018).

Within the domain of early detection, more recent studies have also shed light on the

possibility of designing mobile-based frameworks that rely on the involvement of un-

trained raters, paving the way for translational at-home support solutions (Tariq et al.,

2018; Washington et al., 2021). It seems that supervised ML actually offers the possi-

bility to lighten the workload of lengthy clinical evaluations by making processes shorter

and based on fewer features (Hyde et al., 2019). However, despite promising results,

the impact is limited. The real objective is not only to facilitate diagnosis by reducing

the dimensionality of psychological tests but rather to find new behavioral indicators to

anticipate the screening process. Retaining data collection through traditional methods

(psychological testing for socio-cognitive functioning and parental reports) is unlikely to

lower the screening threshold for children on the autism spectrum, representing one of

the most critical objectives in the diagnostic framework.

1.2.2 Unsupervised methods & heterogeneity

The second important AI approach in the context of autism research is unsupervised ML.

In contrast to supervised, unsupervised approaches aims at analyzing data without the

need for labels, but only based on the data structure. This method is perfect for facing

heterogeneity within the autism spectrum, which is a persistent challenge for ASD re-

search. With the term heterogeneity is intended the occurrence of subgroups within the

condition that differ possibly functionally from each other. Various studies attempted to
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tackle this issue, trying to identify homogeneous and clinically relevant subgroups. Yet,

the findings are more irregular and less supported among the experts (van Rentergem et

al., 2021). It has been argued that stratification of the autism spectrum might actually

be self-inflicted along with the progressive tendency to define the condition based on a

spectrum of autistic-traits rather than well-defined and specific symptoms (Mottron and

Bzdok, 2020). The inclusion of attenuated phenotypes (especially in the DSM-5) would

have made delineation of the condition more difficult rather than easier. Symptoms that

appeared more specific years ago would have faded away due to the “grinding” of autism

into a spectrum of traits (Mottron and Bzdok, 2020). Debate is still open, nonetheless,

since though broadening the spectrum has led to increased heterogeneity, it also led to

improved overall clinical management of the condition (both in diagnosis and treatment)

by increasing awareness and yielding a more valuable definition of the autism spectrum

(Baron-Cohen, 2017; W. W. Lai and Oei, 2014; Lombardo et al., 2019). Beyond all

the discussion, it is important to focus on an applicative perspective to offer concrete

assistance to the clinical setting. For many reasons, it is key to investigate subtypes.

Primarily, if we can recognize individuals in terms of multiple (stratification), we might

better understand prognostic implications and provide ad-hoc support. Also, tracking

down consistent sub-phenotypes might facilitate the detection of behavioral markers,

which in turn could aid in early detection and intervention (Mottron and Bzdok, 2020).

Unsupervised ML techniques offer optimal solutions for handling this challenge. ASD

stratification via clustering algorithms provides the opportunity to identify behavioral

patterns through a data-driven approach, in the absence of explicit labels. Typically, the

procedure is based on the analysis of behavioral traits and the recognition of multiple

clusters, which are then externally validated through measures of clinical presentation

(Lombardo et al., 2019; van Rentergem et al., 2021; Wolfers et al., 2019).

Along with this perspective, Hu and Steinberg (2009) used several clustering algorithms

to analyze a large dataset of individuals with ASD (n=1954) based on ADI-R scores.
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The combined analysis yielded 4 distinct phenotypic clusters with different levels of

symptom severity: severe language deficits, milder deficits in other domains (e.g., social

development, interests and behaviors, nonverbal communication, and play skills), higher

frequency of savant abilities, intermediate severity in general (Hu and Steinberg, 2009).

In work by Lombardo and colleagues (2016), an analysis of a mixed dataset (694 ASD;

249 controls) revealed 5 discrete subgroups of ASD that differed based on performance on

an emotion comprehension task (Reading the Mind in the Eyes Test, RMET). Notably,

3 of the 5 subgroups included most adults with ASD who showed a major impairment on

the task, whereas the other subgroups were generally without any impairments (Lom-

bardo et al., 2016).

A further alternative way to assess autism spectrum stratification is through develop-

mental trajectories (E. Stevens et al., 2019). Fein and colleagues (1999) conducted a

clustering analysis on a sample of preschool-aged children (n=194) with Pervasive De-

velopmental Disorders (PDD). Two major subsets of high and low functioning emerged

from the analysis, distinguished by dissimilar levels of functioning in the socio-cognitive

domain. Participants were then re-evaluated at school-age while maintaining stable sub-

group membership. Upon assessing developmental trajectories, high-functioning children

showed greater overall improvement in the socio-cognitive domain, while low-functioning

children showed little to no progress (Fein et al., 1999).

Similarly, Stevens and colleagues (2000) employed hierarchical clustering to explore a

sample of children with ASD (n=138). Based on social, language, and nonverbal skills

measurements, 2 low- and high-functioning clusters again emerged. The developmen-

tal trajectory of low-functioning children remained stable over time, while the high-

functioning group diverged (M. C. Stevens et al., 2000).

More recently, Pickles and colleagues (2014) in a longitudinal study investigated the

progression of language abilities in a sample (n=192) of individuals with ASD over 17

years. Patterns of development between 2 and 6 years proved to be strongly heteroge-
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neous with significant variance in progress, with some groups showing improvement or

decline in verbal skill progress. Conversely, after 6 years of age, the trajectory appeared

uniform (Pickles et al., 2014).

In addition, Lord and colleagues (2015) furthered this line of research by following the

developmental trajectories of a sample of children with ASD (n=85) from age 2 through

adulthood. The authors analyzed parent-reported social impairments, adaptive social

functioning, and stereotypical behaviors. Three groups emerged by the outcome, which

included young adults with cognitive delays and persistent autistic traits, individuals

with borderline or average cognitive abilities who continued to have socio-cognitive diffi-

culties related to the autism spectrum, and a small group of young adults who adapted

socially in later life despite being diagnosed with ASD in childhood (Lord et al., 2015).

Overall, although several studies tackled the heterogeneity of the autism spectrum, no

emerged subgroups have been well replicated. Unfortunately, as noted above, the lack of

large datasets is suboptimal to investigate heterogeneity (Lombardo et al., 2016). Sub-

types of ASD may contribute to variation in response to intervention and early onset of

symptoms. This requires clustering analyses that are strongly geared toward providing

support rather than identifying subgroups for their own sake.

To the best of our knowledge, there is only one example in research that combined un-

supervised ML to identify subgroups and the evaluation of the intervention response.

Stevens and colleagues (2019) employed Gaussian mixture models (GMM) and hierar-

chical clustering to identify behavioral phenotypes in a large sample (n=2400) of children

with ASD. The sample was explored based on a comprehensive measure of over 3000

abilities in 8 domains: including social, language, adaptive, academic, cognitive, exec-

utive functioning, play, and motor skills. The initial application of GMM revealed 16

subgroups. Afterward, the subgroups were further analyzed by hierarchical clustering,

which revealed 2 overlying behavioral phenotypes (high-/low-functioning) with unique

impairment patterns, each comprising multiple in-groups that differed across deficits
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severity. In addition, differentiated response to treatment was found across subtypes,

which showed distinct treatment response profiles when modeled with linear regression

(E. Stevens et al., 2019). Participants included in clusters within the highest-functioning

subgroup capitalized more rapidly across the treatment compared to participants in-

cluded in the low-functioning subgroup (E. Stevens et al., 2019).

Altogether, the results of this study seem to support the idea that there are two main

groups of functioning in the autism spectrum, in line with what has been found in pre-

vious studies on smaller samples (Fein et al., 1999; M. C. Stevens et al., 2000). Further

exploration is needed to pursue this applicability perspective and to try as much as pos-

sible to offer more concrete solutions (Lombardo et al., 2019; E. Stevens et al., 2019).

Implementing data-driven systems has proven to be the right way to address the chal-

lenge of ASD heterogeneity. However, there is still a lack of consistency in the results.

Challenges may arise not only from the shortage of large representative datasets but also

from the lack of adequate behavioral indicators that are sensitive to differences between

subgroups. Expanding the supervised case, the availability of new stratification methods

based on unsupervised ML can help change the data collection structure, look for new,

more systematic indicators, and detach from psychological testing.

1.2.3 Towards fine-grained analysis using Behavior Imaging

Behavior Imaging probably represents the AI application with the potential to contribute

the most to the clinical setting by providing alternative ways to quantify behavior. Sev-

eral of the studies discussed in Sections 1.2.1/2 already implemented ML models, which

rely on providing data-driven methodologies to parse clinical measures or features col-

lected through observation of behavior and make predictions (supervised) or identify

new subgroups (unsupervised). The problem with these approaches is that they depend

on variables collected during the diagnostic process or otherwise within the framework

of psychological testing. As mentioned in previous sections, assessment is largely based
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on observation and thus suffers from limitations of subjective methodologies of analysis

(Dawson and Sapiro, 2019).

In addition, such metrics are frequently not sensitive enough for detecting subtle ir-

regularities on the autism spectrum (Dawson et al., 2018; Dawson and Sapiro, 2019;

Sapiro et al., 2018). As compelling and certainly valuable as analyzing large data collec-

tions through ML algorithms, however, similar approaches inherit the limitations of the

methodology employed in data collection. ML offers new insights into the inter-data rela-

tionships that may be missed, yet the benefit may remain constrained if data is collected

through outdated methodologies. The importance of developing alternative solutions for

behavior analysis has been emphasized multiple times in the literature (Dawson et al.,

2018; Dawson and Sapiro, 2019; de Belen et al., 2020; Sapiro et al., 2018).

Despite standardized methods for clinical observation still being widely used, they suffer

from significant limitations. These include the use of subjective rather than objective

methods, poor precision of metrics, the requirement for highly trained professionals,

and difficulties in translating these practices into naturalistic settings, such as at-home

(Dawson and Sapiro, 2019).

Behavior Imaging relies on CV algorithms, which have the potential to solve each of

these challenges by offering systematic solutions for behavior analysis through video,

which are low-cost (no need for trained experts), automated, non-intrusive, fine-grained,

and translational. In recent years the implementation of CV models has increased ex-

ponentially, becoming the best practice for several research frameworks, in particular

within the healthcare sector (de Belen et al., 2020). Computational approaches provide

quantitative metrics, letting clinicians represent behaviors by a dynamic pattern that

ranges on a scale of a few milliseconds (Dawson and Sapiro, 2019).

Within psychiatry, Behavior Imaging implementation is growing but still maturing. In

autism research, the emphasis of deployment is both for early detection, CV techniques

have been effectively implemented to detect and analyze early behavioral markers au-
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tomatically, and discover new ones, as well as in the intervention framework through

symptom monitoring and assistive technology, even if to a lesser extent (Dawson and

Sapiro, 2019; de Belen et al., 2020; Jaliaawala and Khan, 2020; Sapiro et al., 2018;

Washington, Park, et al., 2020). Multiple categories of behavioral markers referring

to both social-communicative and motor aspects have been considered: including eye

gaze, attentional patterns, affective/facial expressions analysis, motor stereotypies, head

movement, and movement patterns (de Belen et al., 2020; Sapiro et al., 2018).

The collaborative efforts of Dr. Geraldine Dawson and Dr. Guillermo Sapiro laborato-

ries from Duke University (North Carolina, USA) are one of the most successful actions

towards developing application-oriented systems (Sapiro et al., 2018).

In one of the first joint projects, Hashemi and colleagues (2014) attempted to develop a

non-invasive system for early screening of children with ASD to aid in early risk recog-

nition. They implemented a system based on CV and the Autism Observation Scale

for Infants (AOSI, Bryson et al., 2008) to measure response in visual attention tasks

by tracking facial dynamics. Exploring behavior in a small sample of at-risk children

between 5 and 18 months (n=12) showed promising results. The authors examined

frame-by-frame videos of playful clinician-child interaction, focusing on periods of at-

tentional disengagement and visual tracking performance. The high temporal resolution

(30 frames per second) pulled out possible latent patterns of head movements. Chil-

dren with ASD displayed a delay in attentional disengagement and tracking compared

to AOSI scores, consistent with ratings by experienced clinicians. In addition, partic-

ipants showed a pattern of piecewise constant lateral head movement and less smooth

movement that was almost impossible to recognize with the naked eye (Hashemi et al.,

2014).

Within the same project, Egger and colleagues (2018) further developed a mobile-based

technology to collect videos of young children with ASD in a non-clinical environment.

The goal was to analyze children facial behavior while watching a video designed to elicit
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social autistic traits. The authors collected a large sample of toddlers between 12 and 72

months of age (n=1756) with over 4000 videos in a naturalistic environment. The sam-

ple was composed of toddlers at high risk of autism, detected based on parental reports

and screening results (M-CHAT scores), and low-risk controls. Facial dynamics were

automatically encoded by an AI-based tool developed by the authors. For each video,

the percentage of neutral, positive, and negative expressions was quantified. High-risk

children produced significantly more neutral expressions and a lower mean percentage

of positive ones, controlling for age and sex. Findings demonstrated the relevance of

an app-based framework to collect at-home ecological data and the potential of com-

putational analysis from quantifying expressive and attentional features (Egger et al.,

2018). Furthermore, this study confirmed the importance of studying child emotions in

naturalistic settings.

Similarly, Campbell and colleagues (2019) compared typical and atypical attentional

patterns in an answer-to-name task by tracking head movements from video. The au-

thors collected a sample of more than 100 children between 16 and 31 months of age (22

ASD, 82 controls) while watching video stimuli on a tablet and built-in camera recording

their motions. A CV-based algorithm was designed to examine the response to name

calls, and the validity of the algorithm was tested against human coding with excellent

results. Only 8% of children with ASD directed attention in response to name calls dur-

ing the task, compared to 63% in the typically developing group. Differences emerged in

latency, which was significantly longer in children on the autism spectrum; in addition,

older children with ASD showed less attention to video in general (K. Campbell et al.,

2019).

Carpenter and colleagues (2021) recently furthered their analysis of the same sample

from (K. Campbell et al., 2019), investigating expressive facial dynamics. The authors

designed a computational model to automatically detect and track facial landmarks,

employed to estimate head pose and capture facial expressions. Specific sequences were
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identified throughout the videos, differentiating the two groups according to facial dy-

namics (AUC ranging from 0.62 to 0.73). Overall, children with ASD displayed more

frequently neutral expressions, compared to typically developing controls (Carpenter et

al., 2021).

Furthermore, the same research group provided interesting new applications within the

motor domain (Sapiro et al., 2018). Martin and colleagues (2018) conducted a compar-

ison study among children with (n=21) and without (n=21) ASD on head movement

dynamics in relation to stimulus sociability. Children were frontally recorded while

watching a 16-min movie, including social and non-social stimuli. To analyze head

movements, 3 variables were evaluated: head nods, head turns, lateral head inclinations.

For each video frame, the variables were coded via a CV algorithm that can capture

a dense 3D shape in real-time (Jeni and Cohn, 2016). Children with ASD exhibited

a greater degree of head-turning and a greater speed of inclination. In addition, these

differences were found to be condition-specific to social stimuli (Martin et al., 2018).

Dawson and colleagues furthered these analyses by testing the sample used in (K. Camp-

bell et al., 2019). Rates of spontaneous head movements during active attention states

were coded using a CV-based system capable of detecting facial landmarks and esti-

mating head pose angles relative to the camera. Consistent with findings from previous

studies (Martin et al., 2018), toddlers with ASD displayed a greater degree of head move-

ments, expressing difficulties in maintaining the head in midline position while engaged

in attentional tasks (Dawson et al., 2018).

Literature related to the implementation of behavior imaging in autism research has

grown steadily in recent years. Studies have contributed valuable insights into various

aspects of atypical behavior. Promoting evidence has emerged regarding the classifica-

tion of emotions and facial expressions as an important aspect of screening the monitoring

of ASD, which commonly highlights a reduced expressiveness in children on the autism

spectrum (de Belen et al., 2020; Drimalla et al., 2021; Guha et al., 2016; Kalantarian
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et al., 2018; Leo et al., 2018; Li et al., 2019; Manfredonia et al., 2019; Samad et al., 2019;

Tang et al., 2019). Also, CV models have been employed to predict the social engage-

ment intensity (Rudovic et al., 2018) and affect coordination (Zampella et al., 2020) of

children with ASD. Further applications are also provided for eye gaze and attentional

skills more in general, which showed a difference in patterns between children with and

without ASD by computational video analysis and digital technologies (i.e smart-glasses)

(Chong et al., 2017; de Belen et al., 2020; Higuchi et al., 2018; Jiang and Zhao, 2017;

Liaqat et al., 2021; Liu et al., 2016; Liu et al., 2015; Xu et al., 2020). Results also

emerged in the domain of motor abilities, such as differences in grasping (Zunino et al.,

2020), body pose (Vyas et al., 2019), and detection of stereotyped movements (Negin

et al., 2021; Rad et al., 2015).

Overall, the literature in this domain has demonstrated the enormous potential of Be-

havior Imaging in analyzing the dynamic nature of childhood behaviors during social

interactions by providing a high resolution and continuous measure (Sapiro et al., 2018).

The major benefit comes from the potential to deliver alternative metrics for data col-

lection upon which supervised or unsupervised ML models can be implemented for early

classification or stratification.

Concerning early detection, even though there is still no truly concrete solution, compu-

tational approaches have managed to gain popularity. However, within the intervention

area, the progress of AI-based applications in autism research is still minimal (Jaliaawala

and Khan, 2020). Some studies have tested the use of CV-based technologies to support

intervention, in particular by giving feedback real-time on expressiveness to improve

the recognition and production of facial expressions of children on the autism spectrum

(Cockburn et al., 2008; de Belen et al., 2020; Golan et al., 2010; Hopkins et al., 2011;

Tsai and Lin, 2011).

For example, Pan and colleagues (2015) developed an automatic emotion recognition

system implemented in a robot-child interaction for the treatment of ASD. Their re-
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sults suggested that computational analyses could help to improve the effectiveness of

behavioral analyses during the intervention. Similarly, Harrold and colleagues (2014)

developed a mobile-based framework that allowed children to learn to produce emotions

with real-time feedback on performance (Harrold et al., 2014). Jain and colleagues (Jain

et al., 2020) proposed an interactive game to support autism intervention for non-verbal

abilities.

In addition, Rudovic and colleagues (2018) designed a multimodal system for recognizing

a child affective states in a multimodal robot-assisted therapy setting. To improve the

system, the authors additionally considered each child contextual information to tailor

the framework outperforming non-personalized methods in recognition of engagement

and affect (Rudovic et al., 2018).

Despite the increasing appeal of such applications, research has focused primarily on

diagnosis (de Belen et al., 2020; Uddin et al., 2019). The implementation of AI-based

methods in the treatment of ASD is much recent and still at an experimental stage. The

integration of BI solutions in the therapeutic context could be a valuable step in the

effort to achieve a joint approach among professionals. Yet, we are missing variables,

perhaps subtle, that can be extracted automatically and have the power to predict the

intervention outcomes and support the therapists in monitoring the progression of the

symptoms. Thus although AI-based systems have considerable clinical relevance, they

continue to suffer from limited translational applications (Jaliaawala and Khan, 2020).

The analysis of intervention sessions is a very challenging domain that requires much

flexibility, as maintaining a non-invasive approach is essential not to compromise the

therapist-child interaction.

Further, fine-grained visual analysis (i.e., body or gaze tracking, facial expression recog-

nition) is limited by real-life highly dynamic situations that often include occlusions or

low signal quality, as with ASD intervention. In this regard, recent AI applications in the

treatment scenario are still driven by heavy interaction structuring (de Belen et al., 2020;
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Voss et al., 2019). As much as these approaches offer more robust performance, they do

not scale to more naturalistic contexts that allow for generalizable results (Leclère et al.,

2016).

1.3 Motivations for AI-based fine-grained analysis in eco-

logical contexts

The autism spectrum is a very challenging, multifaceted condition. The spectrum is sub-

tly and unevenly manifested in the initial stages, making early detection highly difficult,

even when using the well-known standardized screening tools (Dawson Sapiro, 2019). It

is a disorder with large individual variability and heterogeneity that prevents the further

development of a uniform standardized management system. As a final point, there is

a lack of predictive tools that can support the therapists in monitoring the intervention

and maximizing the progress of children on the autism spectrum.

AI-based models are well suited to tackle the challenges of autism and redefine the di-

agnostic and intervention process. Data-driven analyses can provide interesting insights

into aspects of heterogeneity (Lombardo et al., 2019; van Rentergem et al., 2021; Wolfers

et al., 2019) and computational phenotyping offers alternative, more systematic solutions

to extract behavioral variables that can serve as early markers or for monitoring ASD

(Dawson and Sapiro, 2019; de Belen et al., 2020; Jaliaawala and Khan, 2020; Washing-

ton, Park, et al., 2020). A very interesting perspective is the rule-based classification

paradigm, which brings the two aspects together, involving the use of CV models to

extract relevant features and then apply a set of quantitative criteria for classification

or clustering (Washington, Park, et al., 2020).

Another critical dimension is the feasibility of obtaining systematic measurements in a

non-intrusive way, allowing to analyze behavioral aspects in ecological and naturalistic

contexts, which is an essential aspect in the autism spectrum research (Dawson and
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Sapiro, 2019; Hashemi et al., 2018; Sapiro et al., 2018).

Combined, all these aspects can upgrade the clinical infrastructure and provide a valu-

able support tool for both clinicians and families. On the diagnostic side, they have

the potential to provide high-precision digital measurements to detect subtle early in-

dicators that may be missed by the naked eye, and to support non-intrusive, perhaps

remote, screening systems. In terms of intervention, they could help therapists identify

precise measures to quantify the severity of symptoms and deliver care at the right time

and frequency, perhaps through online feedback during intervention sessions. Moreover,

AI-based solutions could help integrate aspects of heterogeneity paving the way for per-

sonalized treatment based on individual differences in the response (Lord et al., 2020;

Rudovic et al., 2018; E. Stevens et al., 2019; Uddin et al., 2019). This may assist clini-

cians in optimally delivering treatment based on (1) quantitative data, (2) fine-grained

analysis impossible to be carried out by humans involved in the social interplay, and (3)

real-time feedback. From a clinical standpoint, this could allow for the implementation

of personalized interventions aimed at maximizing efficacy in terms of developmental

outcomes, symptom severity reduction, and adaptive functioning (Jaliaawala and Khan,

2020; Rudovic et al., 2018; E. Stevens et al., 2019). Finally, in a larger perspective, dig-

ital interventions and automated screening tools would allow the development of more

objective assessment systems, which can reduce the bias for subjectivity and provide

low-cost, non-invasive services that have the potential to lower health system expendi-

tures and access families also in low-income countries (de Belen et al., 2020; Lord et al.,

2020).

Finally, AI-assisted clinical practice is the new frontier. Unfortunately, clinicians and

families are still generally unaware of the supportive potential of these technologies.

Indeed there is a critical lack of systems that can be adopted for real-world scenarios.

The shortage of effective concrete applications still prevents generalizability and filling

the gap between the research community and the medical and psychological staff (Jali-
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aawala and Khan, 2020). Future research will have to push for empirical validation of

these methods and develop more wide-scale concrete solutions. Therefore to address

the problem, researchers need to design methods for AI-based systems that can amplify,

augment, and enhance human performance in ways that make systems reliable, safe, and

trustworthy (Jaliaawala and Khan, 2020).

This doctoral project aims precisely at attempting to move the first steps towards a more

homogeneous integration of clinic and research. We tried to develop more translational

applications by employing state-of-the-art algorithms for computational behavior analy-

sis and a tight collaboration with stakeholders. Across two core studies, we have focused

on implementing Behavior Imaging analysis to provide support from both screening and

intervention perspectives through the detection of new markers by CV-based algorithms

for data collection and the implementation of supervised and unsupervised ML models

for data analysis. The following chapters will be devoted to a detailed description of the

two studies and their implications.
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Chapter 2

Is Smiling the Key? Machine Learning

Analytics Detect Subtle Patterns in Mi-

cro-Expressions of Infants with ASD 1

1The following chapter is based on:
Alvari, G., Furlanello, C., Venuti, P. (2021). Is Smiling the Key? Machine Learning
Analytics Detect Subtle Patterns in Micro-Expressions of Infants with ASD. Journal of
clinical medicine, 10 (8), 1776.
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Abstract

The first study we conducted focused on addressing the primary challenge of autism

research: early detection. From a clinical perspective, identifying the condition as early

as possible is crucial for successful treatment. Despite advances in the literature, it is

still difficult to identify early markers that can reliably predict the onset of symptoms.

We developed a CV-based system to analyze early social behavior to uncover novel

behavioral markers able to anticipate the diagnosis of ASD. Comparing a sample of

infants with ASD (n=18) and a control sample (n=15), we examined the facial behavior

during their first ecological interactions with the caregiver, between 6 and 12 months of

age. We combined Openface, an AI-based software designed to encode frame-by-frame

facial micro-movements systematically, and robust post-processing analysis to extract

the subtle dynamics of social smiles in wild Home Videos. Infants with ASD displayed

a reduced frequency and intensity of social smiles already within the first year of life.

Also, we implemented a Random Forest classifier with cross-validation to predict the

diagnosis and obtained an AUC=.90. The application of CV models allowed us to map

facial behavior consistently, exposing early differences that are hardly detectable by the

naked eye. The results of this study contribute to emphasize the potential of AI as a

supporting tool for the clinical setting and offer excellent insights into an early screening

of the autism spectrum.
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2.1 Introduction

Early recognition of the autism condition is one of the most important challenges. From

studies on early treatment, we know that age is a key factor in the success of the interven-

tion program. Starting treatment earlier significantly increases the rate of improvement

and eventually maximizes the outcome for a child with ASD (Elder et al., 2017; Rogers

and Talbott, 2016; Vivanti et al., 2019). Identifying early markers has proved very

complex, and to date, there are still difficulties in lowering the age of diagnosis. The

obstacles extend both into the shortage of effective screening tools and into the complex-

ity of disease manifestation in the early stages of development (Lombardo et al., 2018;

Zwaigenbaum et al., 2015).

As highlighted in the second chapter of this dissertation, many people agree that it is

possible to identify the first red flags as early as the second year of life, in which different

studies have raised a variety of warning signs linked mainly to socio-interactive aspects

(Barbaro and Dissanayake, 2013; Esposito and Venuti, 2009; Nadig et al., 2007; Ozonoff

et al., 2018; Rozga et al., 2011; Shic et al., 2014; Varcin and Jeste, 2017; Wilson et al.,

2017; Zwaigenbaum et al., 2015). In particular, social-attentive components apparently

hold a central role in shaping the early onset of the condition while suggesting that

these impairments may manifest very early in infants with ASD, leading to a cascade of

developmental losses in social cognition. Problems in processing incoming social stimuli

may render the interactive environment stepwise less rewarding, eventually resulting in

a deprivation of core experiences and a collapse of the child interest in the surrounding

social environment (Chevallier et al., 2012; E. J. Jones et al., 2014; E. J. Jones et al.,

2016).

Behaviour Imaging techniques have proven to be the best choice, offering systematic

measurements and being suitable to be robust against real-world scenarios. As a result

of these properties, the implementation of state-of-the-art CV models in the study of
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behavior may be capable of exposing covert markers by disentangling behavior into more

refined low-level components (K. Campbell et al., 2019; Dawson et al., 2018; Dawson

and Sapiro, 2019; Sapiro et al., 2018). Accordingly, AI-based methodologies might be

employed to discover new red flags for the autism spectrum through a richer characteri-

zation of existing markers from the literature by exploring primary components. This is

a major concern when dealing with infantile behavior, whose diversity often results in a

more detailed breakdown (Lombardo et al., 2019; Zwaigenbaum et al., 2015).

2.1.1 What marker? Facial expressions production in ASD

Facial expressions are an important channel to convey information and social experiences

(Frith, 2009). Because of their importance in the socio-communicative development of

the individual, they have often been taken into account within the autism spectrum.

Nevertheless, it is challenging to infer significant findings concerning expressivity in

ASD from the literature. This is partly due to conflicting results, partly due to out-

dated analysis methodologies. Many issues remain unresolved, but due to its nature,

the production of facial expressions still is a key to investigation within atypical social

development. In the population, atypical facial dynamics are related to lower social

competence (Nowicki and Duke, 1994; Trevisan et al., 2018).

In the first years of life, newborns increase their expressiveness and begin to share feel-

ings with caregivers (Begeer et al., 2008). At this stage, facial expressions are the main

channel that toddlers exploit to interact with the social environment (Nichols et al.,

2014). Moreover, newborns are biologically prepared to express emotional states to oth-

ers (Nuske et al., 2013). This behavioral pattern elicits a series of physiological reactions

in adults related to specific neural activations (Azhari et al., 2020; Esposito and Venuti,

2009; Nguyen et al., 2020). The dyadic coordination of discrete social signals provides

the basis for the maturation of the child self-regulation and understanding of interactive

dynamics (Azhari et al., 2020; Bornstein, 2013; Bornstein et al., 2016; Feldman et al.,
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2012). Consequently, this mechanism implies innate patterns of communicative behavior

that subserve the development of a secure caregiver-child bond and the development of

a typical social cognition (Azhari et al., 2020).

Overall findings in the literature suggest that there is variability in how children with

ASD display facial expressions. This variety depends on many factors, including the type

of analysis method employed and the experimental conditions. As reported in several

studies, facial production in ASD appears to be more compromised in naturalistic con-

texts, when facial dynamics are spontaneous (Czapinski and Bryson, 2003; Stagg et al.,

2014; Yirmiya et al., 1989). In these settings, the expressiveness of children with ASD

results to be flatter, awkward, and less socially congruous (Nuske et al., 2013; Trevisan

et al., 2018). Although facial expressions are generally perceived as more mechanical

and irregular in appearance, the results are not always consistent with each other and

sometimes show contradictions (Trevisan et al., 2018). By comparing studies that have

used alternative measurement techniques, referring to more systematic analyses, the ev-

idence becomes more explicit.

The exploitation of the AI framework allows employing more refined behavioral analysis

by reducing the high coding costs. In the field of facial expressions, AI has allowed

many researchers to extract subtle variables of facial dynamics avoiding time-consuming

manual annotations (Dawson et al., 2018; Dawson and Sapiro, 2019; Manfredonia et al.,

2019). This way, by shifting the focus to fine features, more consistent results seem to

have emerged regarding facial production in children with ASD. Taking into account

facial movements, clear differences in general expressivity emerged (Egger et al., 2018;

Ekman and Friesen, 1978; Samad et al., 2019). The facial expressions of children with

ASD appear to be less intense in terms of the magnitude of activation (Samad et al.,

2019).

Regarding frequency, infants with ASD showed more neutral expressions than typically

developing controls (Egger et al., 2018). In addition, analyzing the complexity, children
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with ASD showed lower coordination and variability between facial regions (Del Coco

et al., 2017; Guha et al., 2016). Findings support what emerged in the more traditional

literature about how parents perceive expressivity (Grossman, 2015; Trevisan et al.,

2018). Micro-expressions seem to be an important subtle feature to consider, especially

in childhood when the most prominent features of the condition are not yet easily rec-

ognizable. These observations are also demonstrated by the effectiveness of AI models

in classification tasks.

The role of facial production seems to be salient in categorizing individuals with ASD

(Drimalla et al., 2018; Grossard et al., 2020; Leo et al., 2018; Li et al., 2019). These

results raise important assumptions in terms of social functioning in ASD. In literature,

the ability to convey appropriate emotional signals is emphasized (Trevisan et al., 2018).

Non-verbal skills are important to modulate social interactions, especially in the early

stages of development. For this reason, it is relevant to consider how expressivity in

ASD may contribute to the broader social phenotype. The atypical appearance of fa-

cial expressions could significantly undermine the establishment of an effective exchange

with the caregiver (Faso et al., 2015; Trevisan et al., 2018). Impairments that are hard

to recognize with the naked eye (Dawson et al., 2018).

Interestingly, this deficit seems to be related to the general level of functioning. Chil-

dren with high-functioning ASD have proven to be less compromised in facial production

(Grossard et al., 2020). One possible explanation for this pattern is that with the in-

crease of cognitive skills, individuals with ASD may develop compensatory strategies

such as reducing the atypical features of facial dynamics (Trevisan et al., 2018).

In support of these assumptions, studies on facial production training have proven its

effectiveness in enhancing the appearance and fidelity of expressions in ASD (Gordon et

al., 2014; Grossard et al., 2020). In this perspective, intervention programs may improve

the expressiveness of children with ASD to help compensate for the deficit and raise the

quality of social interactions. Correcting these irregularities could give children with
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ASD the opportunity to experience adequate social exchanges and contain the atypical

curve in socio-communicative development.

2.1.2 Aim and hypothesis

To summarise, the pursuit of novel early predictors is a priority in autism research. In

pragmatic terms, the detection of precursor warnings for the condition should be (i)

based on quantifiable and condition-specific markers, and (ii) based on ground-breaking

methodologies that are feasible in naturalistic environments and robust to real-world

scenarios (Alvari, Furlanello, et al., 2021).

The present study aims to test the applicative potential of CV models to explore novel

markers of atypical behavior through video analysis. We referenced findings from the

established literature about early impairments in socio-communicative and attentional

components and their integration into initial manifestations of the autistic condition

(E. J. Jones et al., 2016; W. Jones and Klin, 2013; Moore et al., 2018; Trevisan et

al., 2018; Zwaigenbaum et al., 2015). We studied the characteristics of social smiles

(Messinger and Fogel, 2007), which are characterized by being intrinsically linked to

socio-attentive aspects, in the first home interactions between young toddlers with ASD

and caregivers.

We collected retrospective 3-min Home Video (HV) recordings of infants between 6 and

12 months of development for a total of over 3000 usable frames per subject. Facial

dynamics were extracted by embedding a robust coding system relying on a CV model

for refined frame-by-frame analysis (Baltrušaitis et al., 2018), and a post-processing

parsing (Bizzego et al., 2019) to derive salient features and structure a robust encoding

of ecological HVs (Alvari, Furlanello, et al., 2021).

The morphological patterns of positive expressions have been further explored for the

early identification of young infants who later develop ASD. Thus, we hypothesized that

(1) it would be possible to detect early differences between young children with ASD and

38



CHAPTER 2

without through a refined analysis of facial dynamics by Deep Learning (DL), (2) that

it would be possible to design ML models for the classification and prediction of infants

on the autism spectrum based on the same expressive features (Alvari, Furlanello, et al.,

2021).

Building a system that is capable of tagging a new marker at a very early age, within

the first year of development, and robust to unstructured wild video data, would be an

exciting step towards structuring new solutions with translational value and which may

provide concrete support to the clinical setting.

2.2 Methods

2.2.1 Participants

All the analysis procedures and data collection were in accordance with the ethical stan-

dards of the Italian Association of Psychology (AIP) and with the ethical standards of

the Ethics Committee of the APSS (Azienda Provinciale per i Servizi Sanitari, Trento,

Italy) and the up-to-date Declaration of Helsinki (WMA, 2013).

The research sample was recruited at Observation, Diagnosis, and Formation Labora-

tory (ODFLab, University of Trento), a clinical and research center specialized in the

functional diagnosis of neurodevelopmental disorders (Alvari, Furlanello, et al., 2021).

Population characteristics are summarized in Table 2.1. The study involved 18 children

with ASD, with an average age of 8 (SD=1) months. The children had followed a full

clinical assessment performed by specialists from ODFLab. The diagnosis was confirmed

by Autism Spectrum Disorder (ASD) as described according to the criteria outlined in

DSM IV/V (APA, 2013).

As a control sample, 15 children with typical development (TD) with a mean age of 9

(SD=2) months were also included. The TD group was collected outside the ODFLab

by advertising on social networks and the laboratory website. The control sample in-
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cluded children without any identifiable ASD condition according to DSM IV/V criteria

(APA, 2013) and whose parents reported no significant abnormalities in socio-cognitive

development (Alvari, Furlanello, et al., 2021).

The majority of the study population was male (ASD 94%, TD 75%), consistent with

the asymmetrical ratio of gender within the condition (Loomes et al., 2017). All the

children involved in the study were Italian. When the subjects were recruited, the mean

age of the participants was 74 (SD=42) months for the ASD group and 85 (SD=30)

months for the control group (Alvari, Furlanello, et al., 2021).

During the clinical evaluation of children on the autism spectrum, psychological tests to

estimate general cognitive functioning and tests for social skills were administered. For

social abilities, the ADOS-2 (Lord et al., 2012) was used as a criterion, and the average

score was 7 (SD=1.8) for the ASD sample. Also, a measure of cognitive development was

determined by administering two different tests (based on chronological age and level of

development): the Griffiths Mental Development Scales (GMDS-ER, Luiz et al., 2006)

to 8 children and the Wechsler Intelligence Scale for Children (Grizzle et al., 2011) for

the rest of the sample. The average IQ=76 (SD=23) was evaluated over 16 subjects in

the ASD group; for two subjects from the ASD group, an IQ score was missing (Alvari,

Furlanello, et al., 2021).

In the control group, a measure of cognitive development was not available for most, but

all children were reported by their parents as properly functioning for their chronologi-

cal age. The average IQ=96 (SD=6) was assessed over 4 subjects within the TD group

(Alvari, Furlanello, et al., 2021).
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Table 2.1: Population characteristics of TD and ASD groups (Alvari, Furlanello, et al., 2021)

ASD TD t/x2 p

n = 18 n = 15

Gender, N(%) 0.533 0.465

Male 17 (94.4) 13 (86.7)

Female 1 (5.6) 2 (13.3)

Age (months), mean (SD) 74.4 (41.5) 84.5 (29.5) 0.544 0.593

Average Video Age (months), mean (SD) 8.3 (1.2) 8.8 (1.7) 1.153 0.258

ADOS CSS Total Score, mean (SD) 7 (1.8) - - -

IQ Composite Score, mean (SD) 76.2 (22.5)a 95.8 (16.1)b - -

Video Length (sec.), mean (SD) 121.7 (5.9) 123.3 (6.3) 0.723 0.475

Average Interactions number, mean (SD) 3.6 (0.7) 3.3 (0.8) 0.839 0.408

Confidence Score, mean (SD) 0.94 (0.01) 0.95 (0.14) 1.933 0.062

Confidence Percentage (%), mean (SD) 90.5 (5.8) 88.5 (8.3) 0.811 0.424

Note: ADOS CSS: Autism Diagnostic Observation Schedule, 2nd edition, comparison score; IQ
Intelligence Quotient; ASD Autism Spectrum Conditions; TD Typically Developing.
Average Video Age refers to the average age of subjects in the videos. Age refers to the age at the
moment of evaluation. Average interaction number refers to the average number of interactions for each
subject. Confidence Score refers to the average confidence (expressed from 0 to 1) of frames analyzed
by Openface (Baltrušaitis et al., 2018). Confidence Percentage refers to the proportion of frames with
high Confidence Score (>0.75), over the whole interaction video. IQ and ADOS scores were available
only for the ASD group.
a The average IQ score is calculated over 16 subjects from the ASD group.
b The average IQ score is calculated over 4 subjects from the TD group.

Parents were asked to provide video recordings of at-home interactions with their children

during the first year of age during data collection. Multiple HVs were collected for

each subject at different ages ranging from 6 to 12 months of development. Interactive

continuous play sequences were extracted from the HVs at different ages (6-12 months).

To obtain suitable interactive sequences and to optimize the CV-based analysis of the

children facial expressiveness, the HVs were edited (using video editing software, Movavi)

by blurring other faces appearing in the frames and cutting the sequences in which the

child face was covered or not frontally visible.

Subsequently, video interactions were filtered based on several selection criteria: must

41



CHAPTER 2

be continuous (without interruptions of more than 4 seconds), must be positive (that

include play sequences and are free of manifestations of distress or discomfort), must

involve the mother, cannot be shorter than 20 seconds each, and the child face must

be frontally visible (Alvari, Furlanello, et al., 2021). Once selected by the criteria, all

remaining video data were kept. As a result, segments of positive interactions were

collected for each subject. The average number of interactions selected for each subject

was 4 (SD=1) in the ASD group and 3 (SD=1) in the TD group. Finally, for each

subject, the interactive segments were merged into 2-minutes composite videos, with

a total average duration of 122 seconds (SD=6) for the ASD group and 123 seconds

(SD=6) for the TD group (Alvari, Furlanello, et al., 2021).

2.2.2 Methodological considerations

In the context of the autism spectrum, research has shifted from studies based primarily

on retrospective data (through the administration of parental reports or the analysis

of HVs) to analysis designs built on prospective longitudinal studies of children consid-

ered to be at high risk of later being classified on the autism spectrum, most frequently

younger siblings of individuals with ASD (Zwaigenbaum et al., 2013).

In terms of methodology, retrospective surveys measure events that occurred in a pe-

riod before the study design and therefore fall victim to various biases. In particular,

parental questionnaires are severely limited by both the reliability of recall and subjec-

tive judgment. The use of pre-diagnosis HVs, on the other hand, somewhat manages to

correct some of the biases mentioned above, providing more objective information and

the opportunity to use more standardized coding methods.

Nevertheless, analyzing HVs yields data subject to other types of errors related more to

sampling, including the difficulty in containing the internal variability in the content of

the different videos (such as the quantity and quality of recorded and unrecorded behav-

iors); in addition, the experimenter cannot have control over either the influence of the
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environmental context on response or the intrinsic characteristics of the footage, such

as the quality (orientation and graphic quality) or the duration of the videos (Buxbaum

and Hof, 2012; Zwaigenbaum et al., 2015; Zwaigenbaum et al., 2013). Analyses depend

on previously collected data, perhaps in unreliable ways, so the researcher cannot per-

sonally assess the quality of the sampling.

Prospective studies do not fall victim to these systematic errors in the data structure,

but on the other hand, they require high investments in time and resources, and col-

lecting a representative field is a great obstacle, in fact, siblings of subjects with ASD

have a risk rate of around 20% (Ozonoff et al., 2010). Further, while there is a prob-

lem of poor structuring and control in retrospective designs, there is often a bias from

over-structuring in longitudinal studies. The major advantage of HVs is that they offer

raw data with a very high ecological value. To structure translational frameworks is cru-

cial to maintain the data as naturalistic as possible (Dawson et al., 2018; Dawson and

Sapiro, 2019; Sapiro et al., 2018). The real challenge is to design analysis systems that

will compensate for the lack of structure through systematic and sufficiently standard-

ized measurements. For these reasons, in this study, we have chosen this approach to

transform data variability from a limitation into a resource for designating more robust

and generalizable models.

2.2.3 Facial micro-expressions analysis

The systematic analysis of facial behavior was based on the manual Facial Action Cod-

ing System (FACS). Developed by Ekman and Friesen (1978; Ekman et al., 2002), the

FACS is a thorough taxonomy for coding facial expressions systematically and quanti-

tatively. Facial dynamics are described based on the combination of over 70 observable

fine movements of different parts of the face. Since these movements are the expression

of the contraction of the underlying muscles, FACS provides a comprehensive set of fea-

tures that are labeled Action Units (AUs) to represent the basic components of facial
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expressions, allowing each possible display to be decoded and measured without any

interpretation (Ekman and Friesen, 1978; Ekman et al., 2002; Manfredonia et al., 2019).

This way, the analysis is no longer dependent on the definition of discrete emotions and

is structured based on objective and quantifiable motions (Fasel and Luettin, 2003).

FACS has been taken as a standardized reference in many studies for a systematic analy-

sis of facial expressions and is increasingly used in autism research (Grossard et al., 2020;

Trevisan et al., 2018). The major issue is that to minimize the bias of suggestiveness in

expression ratings, the FACS requires expert graders with extensive and specific train-

ing. Furthermore, being very accurate, even if fully systematic, requires time-consuming

human coding.

Several types of positive facial expressions (smiles) are described in FACS, which have a

specific anatomical representation and functional correlation (Ekman and Friesen, 1978;

Ekman et al., 2002). All smiling patterns take shape starting from a shared core AU12

referred to as the lip corner puller, which is formed by the activation of the zygomaticus

major muscle around the corners of the lips (Ekman and Friesen, 1978; Ekman et al.,

2002).

For the purposes of this study, we considered a particular type of smile, the Duchenne

Smile, which is distinguished by the additional activation of AU06, the so-called cheek

raiser, which corresponds to the contraction of the lateral part of the orbicularis oculi

muscle (Ekman and Friesen, 1978; Ekman et al., 2002). This particular morphological

combination has been well studied in the literature and has often been associated with

the functional value of the communicative smile (social smile) in infants, perceived as

more expressive (Bolzani et al., 2002; Dondi et al., 2007; Ekman et al., 1990; Mattson

et al., 2013; Messinger and Fogel, 2007; Messinger et al., 2012).

During the early stages of development, the social smile (combination of AU12 and

AU06) produced by the infant is characterized by being perceived by the caregiver as a

more intense expression than simpler smiles (involving only AU12 activation) (Ekman
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and Friesen, 1978; Ekman et al., 2002; Mattson et al., 2013). Further, in the first dyadic

relationships, the social smile occurs more frequently in salient interactive periods when

the infant attention is focused on the smiling mother face (Fogel et al., 2000; Messinger

and Fogel, 2007; Messinger et al., 2001). From a developmental point of view, this type

of expression emerges very early, from the first weeks of life, and matures during the

first semester of growth in combination with acquiring new patterns of attention to so-

cial stimuli (Lavelli and Fogel, 2005; Messinger and Fogel, 2007). In this critical period,

marked by a shift in attentive preferences, the social smile appears in schemes involving

a sequence of infant smiles preceded by states of focusing on the caregiver face (Lavelli

and Fogel, 2005). Compared to other simpler smile typologies, the social smile seems to

have a strong socio-attentive value and a very important protective role as one of the

first communicative tools.

Considering the rich literature on early impairments in attentional (Barbaro and Dis-

sanayake, 2013; Bryson et al., 2008; W. Jones and Klin, 2013; Maestro et al., 2002;

Rozga et al., 2011) components and reduced expressivity (Czapinski and Bryson, 2003;

Esposito and Venuti, 2009; Shic et al., 2014; Stagg et al., 2014; Trevisan et al., 2018;

Zwaigenbaum et al., 2015) within infants on the autism spectrum, we have considered

these expressive dynamics as a possible novel early marker (Alvari, Furlanello, et al.,

2021).

2.2.4 Automated Action Units encoding

As outlined in the previous section, AUs have largely been used in the literature for

more systematic coding of facial behavior. The quality of the results benefits greatly

from the employment of systematic analyses; more refined coding of facial dynamics can

bring out hidden features (Ekman and Friesen, 1978; Ekman et al., 2002; Manfredonia

et al., 2019). This aspect is particularly relevant in ASD research, in which atypical

behaviors in early development may be subtle and difficult to detect (Dawson et al.,
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2018; Dawson and Sapiro, 2019). However, the bottleneck in facial dynamics analysis is

the cumbersome encoding of mimics through coding systems (Bangerter et al., 2020).

Recently, the development of new AI-based models has allowed the automatic measure-

ment of AUs effectively, highly simplifying the annotation effort. Training automated

CV algorithms solves the cost of manual coding while maintaining objective measure-

ments (Leo et al., 2018; Manfredonia et al., 2019). So far, affect analysis results have

been very promising (Bangerter et al., 2020; Leo et al., 2018; Samad et al., 2019; Sapiro

et al., 2018). The number of studies that have adopted these methodologies in ASD re-

search is growing, although there are not yet many contributions regarding development

age. Overall, findings go in the direction of confirming the presence of atypical features

in facial expressions production. By analyzing refined components of facial muscles, the

expressiveness emerged flatter and less complex in ASD children (Egger et al., 2018;

Samad et al., 2019).

In the present study to encode facial behavior, we referred to Openface: a CV-based

open-source software designed to estimate the real-time activation intensity of AUs from

images and videos (Baltrušaitis et al., 2018). The architecture was based on recent state-

of-the-art models in the AU recognition framework (Baltrušaitis et al., 2015; Gudi et al.,

2015; Valstar et al., 2015; Zhao et al., 2016). In addition, it includes an additional imple-

mentation to make the algorithm more robust to in-the-wild video data (Baltrušaitis et

al., 2018). Openface has been trained on several publicly available datasets (SEMAINE,

McKeown et al., 2010; BP4D, X. Zhang et al., 2014; DISFA, Mavadati et al., 2013) to

predict both the presence and intensity of 17 different AUs.

The model structure is divided into an initial face detection module, followed by a face

landmark detection analysis module. Ultimately, the first two steps are combined for

estimating the intensity and presence of AUs frame-by-frame (Baltrušaitis et al., 2018).

The first step is implemented using a multi-task cascaded Convolutional Neural Network

(CNN) to detect and align faces in the image (K. Zhang et al., 2016). Next, a Convo-
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lutional Experts Constrained Local Model (CE-CLM) is employed for in-the-wild face

landmark detection and tracking (Zadeh et al., 2017). Histograms of Oriented Gradients

(HOGs) are applied to the extracted aligned images to extract facial appearance fea-

tures from the images (Felzenszwalb et al., 2009). At this stage, a Principal Component

Analysis (PCA) model was further applied to reduce the dimensionality of the features

(Baltrušaitis et al., 2018). As a final step, a linear kernel Support Vector Machine (SVM)

was employed for the prediction of AUs presence, and a linear kernel Support Vector

Regression (SVR) was used for AUs intensity estimation, thus providing an analysis of

their presence, co-occurrence, and dynamics in videos (Baltrušaitis et al., 2018). The

model was then validated on the DISFA challenging dataset (Mavadati et al., 2013)

against a set of baselines outperforming the most recent and complex models (CCNF,

Baltrušaitis et al., 2014; IRKR, Nicolle et al., 2016; LT, Kaltwang et al., 2015; CNN,

Gudi et al., 2015; D-CNN, K. Zhang et al., 2016).

Openface has been successfully adopted in several third-party studies, proving its relia-

bility in examining AUs patterns from videos (Kawulok et al., 2021; McDuff and Girard,

2019). Further, it has been tested to map facial dynamics on different clinical sam-

ples including autism (Drimalla et al., 2018; Drimalla et al., 2020; Owada et al., 2018;

Rudovic et al., 2018).

In our study, by working with Openface we have been able to output an intensity vector

for each of the AU in any frame of our video sequences from the HV dataset (over 3500

frames per subject). Afterward, we extracted AU12 and AU06 for the quality control

and signal processing step (Alvari, Furlanello, et al., 2021).

2.2.5 Signal post-processing

After employing Openface, we jumped to a post-processing phase of the resulting matrix

to extract the occurrence of Social (SO) and non-Social Smiles (SI). The regression of

AU intensity consisted of a value that varied frame-by-frame over time expressed on a
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continuous scale between 0 and 5, in which 1 represented the activation threshold of the

AU. Consequently, we considered an AU to be active when its activation intensity was

greater than the threshold. We thus initially considered for further processing all the

frames of the video sequences in which AU12 or 06 were >1. The data post-processing

stage is organized into four distinct steps (Figure 2.1).
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Figure 2.1: Signal Processing for AU12 and AU06 intensities over the interaction (data represent a
subject from TD group). A) AU12/06 raw data; B) AU12/06 peaks extraction step; C) Social (SO) and
Simple (SI) Smiles periods extraction.

By implementing a three-layer CNN trained to predict the detection error of facial land-

marks, Openface provides a self-confidence score (C) of the estimates frame-by-frame
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(Baltrušaitis et al., 2018). As an initial step, (1) we filtered the matrix by including only

frames with high internal reliability (C > 0.75) in the analyses (Baltrušaitis et al., 2018).

As a result, the average percentage of frames with high confidence exceeded 88%, with

an average C of over 0.9 in both the sample with and without ASD (Table 2.1) (Alvari,

Furlanello, et al., 2021).

Subsequently, (2) the matrix was processed using the python library pyphisio, struc-

tured to analyze physiological signals in time-series sequences and built on well-established

libraries for scientific computing (Bizzego et al., 2019). The library includes functions

that provide filtering by removing noise and improving the overall quality of the signal.

We first built EvenlySignal instances that allow storing signal values with a fixed sample

frequency. Then, a 4-frame convolutional filter was applied to smooth the signal and

maximize follow-up analysis (Figure 2.1) (Alvari, Furlanello, et al., 2021; Bizzego et al.,

2019).

As a third step, (3) we filtered the signal based on a minimum activation threshold of

the AUs intensities. Originally from (Baltrušaitis et al., 2018), the activation threshold

value was set to 1, but as a result of the smoothing process, the signal values were over-

all lowered, and accordingly, we recalibrated the minimum activation threshold to 0.8

(Alvari, Furlanello, et al., 2021).

Finally, to extract the activation peaks of the AUs, (4) we then determined a minimum

duration for the expressive events. Consistent with the literature concerning the dura-

tion of facial dynamics, we excluded spikes of AUs intensities too brief to be classified

as fully expressive events (<1 sec.), trying to avoid false positives as much as possible

(Figure 2.1) (Alvari, Furlanello, et al., 2021; Davison et al., 2018; Dondi et al., 2007;

Merghani, Davison, et al., 2018; Merghani, Davison, et al., 2018).

The filtering and smoothing process resulted in a clearer signal, from which we were able

to extract activation peaks corresponding to the contraction of AU12 and AU06 (Alvari,

Furlanello, et al., 2021). Combining the data from the two units, we thus pulled out
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variables corresponding to (i) Social Smiles (SO, AU12 AU06) when the two AUs were

active simultaneously, and (ii) Simple Smiles (SI, AU12) when only AU12 was distinctly

active (with AU06 inactive).

As output, 3 measures were computed based on the peaks extracted for the two smile

types: mean duration, mean intensity of the AUs, and mean frequency (defined by the

mean number of peaks in 120 sec.).

2.2.6 Statistical analysis

The 3 extracted variables (duration, frequency, and intensity) were taken into account

for the analysis of the two smile categories: Social (SO) and Simple (SI). The analysis

phase was divided into two distinct parts.

The first stage (1) focused on testing between-group differences based on the extracted

smile features. Firstly, two series of Spearman’s Rank Order Correlations (rho) control-

ling for IQ scores and sex were applied within the ASD group to ascertain that gender

and the level of general cognitive functioning were unrelated to the smiling features and

that the results were not biased (Alvari, Furlanello, et al., 2021). A one-way Multivari-

ate Analysis of Variance (MANOVA) was performed with groups (ASD vs. TD) as an

independent factor and the 3 measures (frequency, intensity, and duration) as dependent

variables. Follow-up analysis included one-way Analyses of Variance (ANOVAs) for the

dependent variables. Also, a Bonferroni correction test was included to adjust proba-

bility (p) values due to the increased risk of a type I error when performing multiple

statistical tests (Alvari, Furlanello, et al., 2021).

In the second part of the analysis, (2) we explored the effectiveness of predicting di-

agnosis with supervised ML. A Random Forest (RF) classifier was designed to verify

the validity of the social smiling features for ASD classification. Starting from the re-

sults of the previous analyses, to train the model we reduced the dimensionality of the

measures by selecting for training only those features of the social smile that differed
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most between the two groups. We randomly split the dataset into training, validation,

and testing, reserving 30% for the latter. We employed 5-fold cross-validation on the

training and validation datasets to tune hyperparameters by performing a grid search.

Based on the resulting AUC, we selected the top-performing hyperparameters. Finally,

we trained, validated, and tested the RF to classify ASD and TD groups based on social

smiling features. We evaluated the model performance by considering the AUC score and

the Matthews Correlation Coefficient (MCC), which produces a more informative and

truthful score in evaluating binary classifications than accuracy and F1 score (Chicco

and Jurman, 2020).

2.3 Results

2.3.1 Between-group analysis

In the first part of the analysis, the distributions of the two groups were compared by

analyzing the variance. The smiling features extracted were included as dependent vari-

ables: average AUs activation intensity, average duration, and frequency of smiles. Both

Social Smiles (SO, AU12 AU06) and Simple Smiles (SI, AU12) were considered.

Two series of Spearman rank-order correlations were conducted to compute the relation-

ship between IQ, gender, and each of the dependent variables. No statistically significant

correlation was found (Table S1 in Supplementary Materials) (Alvari, Furlanello, et al.,

2021). A one-way MANOVA was applied to test for statistically significant discrimina-

tion between TD and ASD groups based on features of two smile types. Before proceed-

ing with testing, we checked the assumptions of the MANOVA. Preliminary checking

revealed that residuals were not normally distributed for all of the dependent variables,

as assessed by Shapiro-Wilk test (p<.01). Despite the violation of the normality distri-

bution assumption, the MANOVA still stands as an optimal statistical model thanks to

its robustness against deviations from normality. No multivariate outliers were found in
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data distribution, as assessed by Mahalanobis distance. There was no multicollinearity,

as assessed by Pearson correlation (r=0.91, p<.0001). There was homogeneity of vari-

ances, as assessed by Levene’s test (p>.05) (Alvari, Furlanello, et al., 2021).

From MANOVA testing, a statistically significant difference emerged between the group

on the combined dependent variables (ASD vs. TD), (F(6, 22)=14.513, p<.0001). As

follow-up analyses, univariate One-way ANOVAs were performed for each of the depen-

dent variables, with a Bonferroni correction resulting in statistical significance with an

adjusted p-value (p<.007) (Table S2 in Supplementary Materials).

Figure 2.2: A) Social Smile (SO) features (frequency, duration, AU12/AU06 intensity) Boxplots; B)
Simple Smile (SI) features (frequency, duration, AU12 intensity) Boxplots.

There were no statistically significant differences between the ASD and TD groups in

average duration for both Social (F(1, 27)=.219, p=.644, partial η2=.008) and Simple
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smiles (F(1, 27)=.992, p =.328, partial η2=.035) (Figure 2.2).

A statistically significant difference was found in average AUs activation intensity. In

Simple smiles, the activation intensity of AU12 was significantly lower in the ASD group

(F(1, 27)=70.528, p<.0001, partial η2=.723); in the Social smiles, both the AU06 (F(1,

27)=80.293, p<.0001, partial η2=.748) and the AU12 (F(1, 27)=66.925, p<.0001, partial

η2=.713) were hypoactive in the ASD group (Figure 2.2).

About smiling frequency, statistically significant differences emerged only in the case of

Social smiles (F(1, 27)=11.526, p<.00714, partial η2=.299) (Figure 2.2 A). In contrast,

the Simple smiles frequency did not reveal a significant difference between the two groups

(F(1, 27)=3.133, p=.088, partial η2=.104) (Figure 2.2 B).

Ultimately, pairwise comparisons with Bonferroni-adjusted p-values were made for all

dependent variables (Table S3 in Supplementary Materials). Adjusted means were sig-

nificantly different between groups regarding AUs activation intensity (p<.0001) for both

Simple and Social smiles. Besides, a significant difference in the adjusted mean for the

frequency of Social smiles was also found (p<.01). All other pairwise comparisons were

not statistically significant (Alvari, Furlanello, et al., 2021).

2.3.2 Supervised ML

In the second part of the analysis, we implemented an RF classifier to categorize the two

samples according to the social smiling parameters. The dimensionality of the variables

was reduced by taking into account only those features that were found to be statisti-

cally significant in discriminating the two groups from the previous testing: AUs average

intensity and frequency of Social smiles (Figure 2.3).
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Figure 2.3: Social (SO) and Simple (SI) Smiles features pairplot.

For hyperparameter tuning, we employed 5-fold cross-validation with grid-search on the

train-val datasets. A number of estimators =100 and a maximum depth =9 maximized

the model performance in validation, resulting in an AUC=1.0 and an MCC=1.0.

The RF classifier was then tested on the test dataset by initializing the hyperparameters

that emerged, resulting in an AUC=0.9 and an MCC=0.82 for classifying the two groups
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(ASD vs. TD) based on AUs intensity and frequency of Social smiling (Figure 2.4).

Figure 2.4: Random Forest classifier decision boundaries. SO: Social Smiles; SI: Simple Smiles.

Furthermore, the importance of the variables in the performance of the RF model was

calculated using SHAP (SHapley Additive exPlanations) python library to evaluate the

output of ML models. The average intensities of AU12 and AU06 of Social smiles were

the most relevant features for classifying infants with and without ASD (Figure 2.5).
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Figure 2.5: RF classifier feature importance (SHAP). Class 1: TD group; Class 2: ASD group.

2.4 Discussion

In this initial exploratory study, we attempted to tackle the challenge of early detection

in autism research. The study end goal was to explore novel quantitative markers of

atypical social-interactive development in young infants with ASD by developing com-

putational systems for human behavior analysis. In this attempt, we implemented a

combination of a CV-based model and an advanced signal processing system for a fine-

grained and robust analysis of facial dynamics in at-home interactions through video.

Accent on attentive components in the processing of social stimuli has been highlighted

in defining the early markers of atypical neurodevelopment in the autism spectrum (Al-

vari, Furlanello, et al., 2021; Chawarska et al., 2013; E. J. Jones et al., 2016; W. Jones

and Klin, 2013; Moore et al., 2018; Shic et al., 2014). Social smiling involves the dy-

namic combination of an expression (smiling) and an attentive (gazing) component in

terms of behavioral display. This facial display is recognized within early infancy by

having a robust temporal link with the maturation of new orientation patterns towards

the mother face (Lavelli and Fogel, 2005; Messinger and Fogel, 2007; Messinger et al.,

2001).

The social smile has been suggested as a possible early marker of later manifestation

of the autism phenotype (Nichols et al., 2014; Ozonoff et al., 2008). Employing com-
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putational methods, we analyzed fine-grained components of social smiles in early play

interactions among caregivers and infants between 6 and 12 months of life. We com-

pared both social and non-social smiling in young toddlers with and without ASD by

computing the average duration, average intensity, and frequency for each of the two

smiling types (Alvari, Furlanello, et al., 2021). We parsed the variables both through

inferential analysis and using supervised ML.

From the analysis of variance of the two samples, findings seem to suggest that subjects

with ASD smile with significantly lower intensity within the first year of development.

This hypoactivation of facial movements, measured by AUs (Ekman and Friesen, 1978;

Ekman et al., 2002), occurs both from smiles with and without a gazing component, sug-

gesting a general poor positive expressive production during the first social exchanges

in the autism condition, regardless of the socio-attentive valence of the expression (Shic

et al., 2014; Varcin and Jeste, 2017; Zwaigenbaum et al., 2015).

A difference was found in the number of expressions displayed over the exchange between

the two types of smiles from our data. Indeed, while there was a reduced frequency of

social smiling in infants with ASD, simple smiles, which have less communicative value,

have a similar frequency between ASD and TD groups. This result seems to replicate

previous findings of lower rates for social smiling but similar rates for non-social smiling

in children with ASD compared to controls (Alvari, Furlanello, et al., 2021; Nichols et

al., 2014. Furthermore, the expressive deficit did not appear to correlate with the level

of general cognitive functioning in our ASD sample. This finding might be consistent

with previous studies that have suggested a relationship between IQ and compensatory

strategies to reduce expressive deficits in children with ASD (Grossard et al., 2020; Tre-

visan et al., 2018). It is reasonable to assume that this compensatory pattern is not yet

evident in infancy when cognitive functioning does not fully support the maturation of

compensating mechanisms (Alvari, Furlanello, et al., 2021). There was no significant

difference in both social and simple smiles between subjects with and without ASD con-
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cerning average duration.

Finally, by further developing a supervised ML model, it was possible to accurately pre-

dict the diagnosis of ASD based on social smiling features, considering both accuracy

and specificity (Chicco and Jurman, 2020). In particular, according to an analysis of the

weight of features in the classification, expressive intensity emerged as the predominant

factor in discriminating infants with ASD.

Overall, the relevance of the results emerging from this study is significant in two re-

search areas: a context more related to clinical aspects of the condition and the study of

atypical development; and a context related to the contribution of new methodological

solutions for human behavior analysis (Alvari, Furlanello, et al., 2021).

In the clinical scenario, findings seem to suggest that it could be interesting to include

the quantification of expressive dynamics as a potential feature for the early detection of

young infants with ASD. To our knowledge, this study was the first to highlight potential

differences in positive expressive dynamics already within the first year of development

in the autism spectrum. Thus, our findings seem to suggest that fine-grained analysis

of social smiling yields salient cues for early detection of impairments in social devel-

opment as early as 6 months of age (Alvari, Furlanello, et al., 2021). In addition, the

differences that emerged in terms of the smiling frequency help underline the impor-

tance of the attentional components in identifying the condition in the early stages of

development. Compared to simpler smiles, which are less charged with a communicative

social value, social smiles are displayed differently in intensity and frequency. This dis-

crepancy between social and non-social smile dynamics seems to corroborate previous

research emphasizing the importance of the primary attentive components (Chawarska

et al., 2013; E. J. Jones et al., 2016; Lord et al., 2020; Moore et al., 2018; Shic et al.,

2014; Zwaigenbaum et al., 2015; Zwaigenbaum et al., 2019).

Although the nature of the collected data is not adequate to define conclusions about

the specific mechanisms underlying atypical socio-cognitive development, it may have
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a heuristic value to include speculation. Possibly, one hypothesis is that the lack of

access to a powerful communication tool (social smile) may cause the child with ASD to

miss out on the experience of effective interactive exchanges during the first months of

development. This atypical conduct may lead to a deprivation of enough social experi-

ences during a critical period (Messinger and Fogel, 2007) essential to develop adequate

social cognition and lead to the subsequent onset of the autism phenotype (Chevallier

et al., 2012; Dawson, 2008; Landa, 2018; Messinger and Fogel, 2007; Zwaigenbaum et al.,

2015).

On the other side, the innovative contribution of this study is also related to method-

ological aspects. Computational approaches provided high-quality analysis based on

quantitative and objective measurements to categorize behavior, which could be non-

invasive and automated (D. J. Campbell et al., 2014; Dawson and Sapiro, 2019; S. Jacob

et al., 2019). These features make the application of such models extremely promising

in autism research, in which discrete ecological measurements are essential. In the liter-

ature, such technologies have been proposed as alternative tools for measuring behavior

in infants with ASD, targeting many of the markers that were previously identified

through more traditional measures, such as attentional and motor deficits (Barbaro and

Dissanayake, 2013; Chawarska et al., 2013; Esposito and Venuti, 2009; Gima et al., 2018;

W. Jones and Klin, 2013; Moore et al., 2018; Ouss et al., 2018; Purpura et al., 2017;

Rozga et al., 2011; Shic et al., 2014; Varcin and Jeste, 2017). In the present study, devel-

oping a CV-based system allowed the analysis of infant behavior in highly naturalistic

scenarios, offering a systematic and fine-grained measurement (Alvari, Furlanello, et al.,

2021). The analysis of interactions through this approach allowed novel markers to be

identified as had been suggested in the literature. Furthermore, the combination of BI

algorithms to extract subtle variables from the videos and the application of supervised

ML models led to the development of a system capable of early predicting the occurrence

of socio-cognitive developmental impairments in young children on the autistic spectrum.
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Finally, the success in structuring a solution suitable for a naturalistic scenario offers an

interesting contribution towards the definition of more translational approaches.

The present research also carries an important methodological limitation. Home Videos

provide the enormous advantage of early ecological data, but at the cost of data control.

This study intentionally focused on retrospective material, intending to analyze features

in an at-home and natural environment. The literature further suggests investigating

facial expressions in settings as spontaneously as possible (Trevisan et al., 2018). Nev-

ertheless, the more unconstrained the interactions are, the less control there is over the

data. As mentioned before, to develop applicative solutions, it is important to keep the

setup natural, yet there are significant constraints. To manage these limitations, we

adopted strict selection criteria for interactions. However, a certain degree of variability

in the data is still unavoidable, in particular concerning the diversity of parental behav-

ior (Alvari, Furlanello, et al., 2021).

To summarise, the objective of this work was to test AI in eliciting new traits in the

frame of early autism detection. To our knowledge, this was the first reported evidence

to explore novel markers during early dyadic social interactions based on a refined anal-

ysis of smiling. A generally poor positive display in infants with ASD has often been

reported in the research literature. In particular, social smiles have already been raised

as a potential early marker of the ASD phenotype, but only after the second year of life

when impairments related to the condition phenotype emerge more consistently (Nichols

et al., 2014; Zwaigenbaum et al., 2015; Zwaigenbaum and Penner, 2018). We hypoth-

esize that the limitation of these approaches may lie in the analysis of facial dynamics

through generic and unrefined systems, focusing on macro components of smiles, i.e. as

the integration between expression and gaze, without addressing subtle facial elements.

The employment of automated systems for analyzing behavior through images (Bal-

trušaitis et al., 2018) allowed us to effectively extract fine-grained features of facial move-

ments (Action Units), which typically require challenging and time-consuming manual
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coding by experts (Ekman and Friesen, 1978; Ekman et al., 2002). Leveraging these

technologies, we were able to compute a quantitative and systematic measurement of

smiling in very early interactions within the first year of development. In addition, the

structuring of unsupervised ML models has led to these markers also being tested as pre-

dictors for diagnosis, achieving promising results. Beyond the methodological innovation

aspects, the results are consistent with past research that had reported an important

role in early abnormalities in primary social-attentional components in young infants on

the autism spectrum (E. J. Jones et al., 2016; Moore et al., 2018).

From a more comprehensive perspective, this study provides an opportunity to high-

light once again the promising contribution that AI-based methods can bring to clinical

practice. The extensive support of automated techniques enabled to capture of fine fea-

tures and potentially uncover subtle developmental patterns that are hardly detectable

by the naked eye (Dawson et al., 2018; Dawson and Sapiro, 2019; Sapiro et al., 2018).

In autism research, significant effort has been placed on seeking reliable early indicators

that may predict the risk of later diagnosis. The benefit is to start the intervention

earlier and hopefully improve the outcome (Estes et al., 2019; Lord et al., 2020; Vivanti

et al., 2019; Zwaigenbaum and Penner, 2018). In this perspective, CV-based solutions

may offer excellent opportunities to explore new subtle features, taking advantage of

extracting systematic measurements non-intrusively in naturalistic at-home scenarios.
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EYE-C: Eye-Contact Robust Detection and

Analysis during Unconstrained Child-Therapist

Interactions in the Clinical Setting of Autism

Spectrum Disorders 2

2The following chapter is based on:
Alvari, G., Coviello, L., Furlanello, C., (2021). EYE-C: Eye-Contact Robust Detection
and Analysis during Unconstrained Child-Therapist Interactions in the Clinical Setting
of Autism Spectrum Disorders. Brain Sciences, 11 (12), 1555.
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Abstract

In our second study, we focused on tackling spectrum stratification. The high level of

heterogeneity in ASD and the lack of systematic measurements complicate predicting

outcomes of early intervention and the identification of better-tailored treatment pro-

grams. Computational phenotyping may assist therapists in monitoring child behavior

through quantitative measures and personalizing the intervention based on individual

characteristics, yet real-world behavior analysis is still an ongoing challenge. For this

purpose, we designed EYE-C, a system based on Openpose and Gaze360 for fine-grained

analysis of eye-contact episodes in unconstrained therapist-child interactions via a single

video camera. The model was validated on video data varying in resolution and setting,

achieving promising performance. We further tested EYE-C on a clinical sample of 62

preschoolers with ASD for spectrum stratification based on eye-contact features and age.

By unsupervised clustering, three distinct sub-groups were identified, distinguished by

eye-contact dynamics and a distinctive clinical phenotype. Overall, this study highlights

the potential of AI in categorizing atypical behavior and providing translational tools

that might assist clinical practice.
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3.1 Introduction

Designing early intervention programs that can reduce symptom severity may signifi-

cantly enhance the well-being and quality of life of individuals on the autism spectrum

and their families (Bishop-Fitzpatrick et al., 2016; Estes et al., 2019; Lord et al., 2020;

Rodgers et al., 2021). In this respect, the detection of prodromal markers certainly holds

a crucial role in enabling the early treatment. However, we strongly need more effective

tools to identify the best pathway and capitalize on potential improvements (Baldwin

et al., 2021; Fuller and Kaiser, 2020; E. Stevens et al., 2019). Systematic behavioral in-

dicators that help predict the outcome of the intervention are still lacking. Additionally,

studies on the effectiveness of early intervention treatment have shown that, despite a

general improvement, children with autism conditions showed a high rate of individual

variability in their response to the treatment pathway (Bentenuto et al., 2020; Eapen

et al., 2013; Fuller and Kaiser, 2020; Lord et al., 2020; Uddin et al., 2019).

There is still a shortage of a shared framework or systematic behavioral indicators to

analyze and evaluate the intervention. A major cause of this problem is the high hetero-

geneity of the spectrum, both in onset and developmental trajectories (Lombardo et al.,

2019; Lord et al., 2020; Pearson et al., 2018; Wolfers et al., 2019; Zwaigenbaum et al.,

2015). This wide variability complicates the implementation of shared frameworks and

recalls the need to adapt the intervention pathway to individual child characteristics

(Bentenuto et al., 2020; Rudovic et al., 2018; Rudovic et al., 2019). Some prodromal

factors have been considered in the literature as moderators of the impact of treatment,

but the results are mixed, and their specific importance still needs to be investigated

(Bentenuto et al., 2020).

Possible concerns may arise from using behavioral characteristics designated for clini-

cal diagnosis to measure the impact of treatment and monitor long-term improvements

(Bentenuto et al., 2020; Washington, Leblanc, Dunlap, Penev, et al., 2020). Likewise,
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the same approach has been applied in most stratification studies, where data collection

has remained bound to variables derived from the administration of standard psycho-

logical testing. As already pointed out, such metrics may not be sensitive enough to

measure subtle differences in either improvement or sub-group differentiation (Wash-

ington, Park, et al., 2020). The research effort should be directed towards structuring

systematic methodologies based on fine-grained descriptors suitable to measure more

specific behavioral variables. Furthermore, considering the strong connection between

spectrum heterogeneity and varying response to the treatment, a promising strategy

should be by examining behavioral traits that are sensitive to the inter-individual vari-

ability of the autism spectrum and carry applicative value in predicting intervention

effectiveness. Behavior Imaging has proven to have great potential within the context of

refined behavioral analysis, especially for early recognition. However, the application of

AI-based systems on intervention is still underdeveloped and at an experimental step.

Biobehavioral correlates underlying specific aspects of emotional regulation (Cabibihan

et al., 2018; Jarraya et al., 2020; Masmoudi et al., 2019), joint attention (Alnajjar et al.,

2021), social engagement (Rudovic et al., 2017; Rudovic et al., 2019) and social interac-

tion 2020) have been studied for treatment response (Baldwin et al., 2021; E. Stevens

et al., 2019) and implementation (Washington, Leblanc, Dunlap, Penev, et al., 2020;

Wetherby et al., 2018). Nonetheless, the literature is still limited, and further investiga-

tion is needed.

The primary difficulty with real-world data from intervention sessions is that analysis

is complex and needs much versatility. Within the context of autism, it is well-known

that it is crucial to assess behavior in settings as naturalistic as possible. This be-

comes particularly significant in the framework of assessment and intervention sessions

in which spontaneity is already inevitably partly compromised, both by the non-familiar

environment and by the involvement of a therapist in the interaction. Maintaining a

non-invasive approach is essential to prevent affecting the therapist-child interplay. In
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addition, fine-grained analyses have to deal with the high level of dynamics of the set-

ting, in which both child and adult are constantly moving and which includes periods of

interrupted or low-quality signals. For these reasons, in the literature, the application

of AI models in the intervention scenario is based on heavy interaction and setting re-

structuring, which often compromises the applicative value (Jaliaawala and Khan, 2020;

Voss et al., 2019).

The more the interaction and the environment are structured, the better the quality

of the data collected, but at the high cost of limited flexibility (Leclère et al., 2016).

In most studies, the trade-off has been weighted in favor of more robust model per-

formances, resulting in a lack of translational solutions (Jaliaawala and Khan, 2020).

Research needs to move towards designing more balanced computational methods that

account for data quality yet emphasize the ecology of interactions. Thus, it will be fea-

sible to deliver effective AI-based systems that can be scaled to real-world scenarios and

provide support for clinicians and therapists working across the autism spectrum. The

novel contribution of this study in this field is the implementation of a robust system

for eye contact analysis and its validation in concrete clinical environments.

3.1.1 Gaze patterns

Lack of eye contact is an iconic trait on the autism spectrum (Fonger and Malott, 2019;

Ninci et al., 2013). Maintenance of sustained eye contact may significantly enhance the

quality of the social experience as well as increase the likelihood of success in respond-

ing properly to stimuli and prompts as well as potentially improve the acquisition of

adaptive social competencies (Carbone et al., 2013; Cook et al., 2017; Fonger and Mal-

ott, 2019). As already pointed out, children with autism, even at an early age, show

marked difficulties in gaze integration and an atypical response to adult gaze (Barbaro

and Dissanayake, 2013; Chawarska et al., 2013; W. Jones and Klin, 2013; Madipakkam
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et al., 2017; Rozga et al., 2011). Therefore, gaze integration is already a prominent

goal in early intervention programs (Fonger and Malott, 2019). Learning appropriate

gaze modulation early in social interaction may enhance success in many domains and

potentially improve intervention outcomes of young children with ASD (Fabiano et al.,

2020; Miller et al., 2017).

In this research area, AI has found many applications in both symptom monitoring

(Hashemi et al., 2014; Sapiro et al., 2018) and treatment, especially through robot-

mediated therapy (Chung, 2019; Rudovic et al., 2018; Yun et al., 2017). Notably,

computational approaches introduce the possibility of collecting quantitative and fine-

grained measures with high temporal sensitivity. Most of these approaches were de-

signed upon employing advanced eye-tracking technologies through wearable devices

(i.e., smart-glasses) (Hurwitz et al., 2020; Thorup et al., 2018; Ye et al., 2012), frontal

cameras (Bovery et al., 2019; K. Campbell et al., 2019; Chang et al., 2021; Hashemi

et al., 2018; Li et al., 2019; Yun et al., 2017) or strong interaction structuring (Hashemi

et al., 2018; Sapiro et al., 2018). The major drawback of implementing these techniques,

as highlighted above, remains the constraint of operating in not-so-naturalistic environ-

ments (Jaliaawala and Khan, 2020; Voss et al., 2019). Despite the advances and the

considerable appeal of this area of study, there is still a lack of examples for eye contact

detection with sufficiently ecological methodologies in autism research. Given the rele-

vance of integrating eye gaze into intervention programs, this issue is an important goal.

Additionally, examples of the role of gaze patterns in defining different shadings of the

spectrum also are lacking in terms of a functional perspective. Most studies focused on

discriminating between those diagnosed with ASD and typically developing peers (Fabi-

ano et al., 2020; Georgescu et al., 2019; Ye et al., 2012). To the best of our knowledge,

very few studies have investigated the role of gaze in stratifying the autism spectrum.

Campbell and colleagues (D. J. Campbell et al., 2014) investigated the role of variabil-

ity in attention to direct gaze in differentiating the autism spectrum. They employed
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unsupervised clustering on young children with ASD based on visual response to dyadic

stimuli from videos. The analysis identified three different sub-groups that were com-

pared for verbal, social, and adaptive functioning skills (D. J. Campbell et al., 2014).

The cluster that exhibited limited attention to social scenes subsequently demonstrated

a poor outcome; conversely, the sub-group with good attentional abilities was verbal

and high functioning at three years. The results of this work confirm that gaze analysis

may have an interesting clinical role both in addressing spectrum heterogeneity and as

a predictor of outcome (D. J. Campbell et al., 2014).

In a different approach, Fabiano and colleagues (2020) used a combination of hand-

crafted and raw gaze variables with demographic characteristics, such as age and gender,

to classify multiple levels of ASD risk. They constructed several classifiers showing that

the different classes, low, medium, high, and ASD correspond to different patterns that

can be used to classify risk. The results confirmed the potential of gaze as an indica-

tor that needs to be further investigated. In addition, the analyses showed that age is

an important factor in classifying ASD risk, resulting in an overall accuracy of 93.45%

(Fabiano et al., 2020).

More recently, Latreche and colleagues (2021) investigated the role of social orientation

in modulating treatment outcomes in preschool children with ASD. They employed eye-

tracking technologies to measure subjects attentional patterns while watching videos of

an adult engaging in child-directed speech. The results confirmed that the degree of

attention to the adult face strongly correlated with the severity of autistic symptoms

at baseline and also predicted improvement after treatment. Children with ASD who

stared less at the actress’s face and avoided eye contact suffered more impairment in the

socio-communicative domain and showed less after-treatment improvement, particularly

in the verbal domain (Latrèche et al., 2021).

Overall, the results are very promising and underline the importance of social-attentive

skills within intervention programs, but further work is needed. Behavior Imaging ap-
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proaches may be well suited to address this need by offering interesting alternatives for

the ecological measurement of child behavior.

3.1.2 Current study

The present work is focused on developing an AI-based method for the ecological analysis

of therapist-child interactions through video capable of extracting dyadic gaze coordina-

tion episodes. The purpose of the present work is to test the validity of computational

solutions to systematically analyze the socio-attentional components of the interactions

and identify behavioral indicators that allow for the identification of sub-groups within

the spectrum.

We considered eye contact coding for analysis as it is a major impairment in autism and

for its crucial role in the early intervention (Latrèche et al., 2021; Miller et al., 2017).

We collected video recordings (around 60 min each) of ADOS administration sessions of

children with ASD in preschool age. We included videos at different resolutions, from

low to high, and in different rooms of the same laboratory, from small to large, to ensure

a robust and translational framework.

For gaze analysis, we developed a combined AI-based approach based on a module to

extract multi-person body and head pose keypoints (Cao et al., 2019) and a module to

derive a 3D vector of gaze direction frame-by-frame from wild videos (Kellnhofer et al.,

2019). We further developed a system for robust derivation of eye contact periods expe-

rienced between therapist and child during unconstrained interactions.

The model was validated by matching the output with hand-coded features. Continuous

interactive sequences of about 10 minutes were extracted from 4 different videos (with

different video resolutions and in different lab rooms) for a total of more than 70000

frames. The sequences were hand-coded frame-by-frame, and results were compared

with the model’s output to evaluate the performance and understand under which con-

ditions the data quality stayed too low.
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Finally, we tested the gaze features for autism spectrum stratification and for predicting

the intervention outcome based on machine learning methods. We hypothesized that

based on our metrics, it would be possible to identify sub-groups within the sample

through unsupervised clustering and validation on clinical variables.

3.2 Methods

3.2.1 Data collection

All analyses and data collection were carried out in accordance with the ethical stan-

dards of AIP and the Ethics Committee of the APSS (Trento, Italy). The study in-

volved 85 (11F, 74M) preschool children (< 6 years of age) with a confirmed diagnosis

of Autism Spectrum Disorders (ASD). All the participants were Italian and recruited

within ODFLab patients. All families involved in this study were well informed about

the procedure and agreed to written informed consent. They also were aware of the

possibility of abandoning the procedure at any time.

The diagnosis of ASD was confirmed through a comprehensive assessment of the children

functional profile and validated through a clinical judgment by an independent clinician

based on DSM-V criteria (APA, 2013) and through the administration of the ADOS-2

(Lord et al., 2012). Population characteristics are summarized in Table 3.1.
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Table 3.1: Population characteristics (Alvari, Coviello, et al., 2021).

ASD Sample

n = 85

Age (months), mean (SD) 56.32 (13.8)

GQ, mean (SD) 71.54 (17.4)

ADOS, mean (SD) 14.82 (1.4)

Gender, N (%)

Male 74 (87.1)

Female 11 (12.9)

Note: ADOS: Autism Diagnostic Observation
Schedule, 2nd edition, raw score; GQ: Global
Developmental Quotient (GMDS-ER); ASD:
Autism Spectrum Disorders.

Inclusion criteria required that the subjects were diagnosed as having ASD without dis-

playing other medical conditions and that they had been assessed within 6 years of age.

During the clinical evaluation, psychological tests were administered to assess general

cognitive functioning and social skills. All assessment meetings were video-recorded. In

particular, videos of the ADOS-2 administration sessions were collected. Clinical vari-

ables collected in the study included ADOS-2 raw scores for social abilities and symptom

severity and the Griffiths Developmental Scales (GMDS-ER) for an overall assessment

of cognitive development quotient and related subscales for all the participants.

The ADOS-2 is a golden standard for the diagnosis of autism and is carried out by an

experienced, trained specialist. The administration procedure consists of a sustained

semi-structured play interaction between the clinician and the child to elicit different

socio-cognitive skills. The instrument is structured in 4 different modules according to

the child chronological age and level of expressive language. Each module is divided

into Social Abilities (SA) and Repetitive and Restricted Behaviour (RRB) subscales,

combined into an overall comparison score to classify the severity of the child autistic
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symptoms. In the present study, the raw scores have been included, as for the Toddler

module (suitable for younger children) it is not possible to compute a standardized score

(Lord et al., 2012).

The GMDS-ER are developmental scales (also normalized in an Italian sample) admin-

istered to children in a laboratory setting through semi-structured activities to assess

different domains of mental development in young children. The testing provides a global

developmental quotient (GQ) and specific scoring on six different subscales of cognitive

functioning, including gross motor, hand-eye coordination, communication, social, per-

formance, and practical reasoning abilities. In the present study, the GQ and the subscale

scores were taken into consideration (the practical reasoning scale was excluded because

it is not administered to young children) (Luiz et al., 2006).

3.2.2 Videos specifics

The video recordings considered for the attentional pattern analysis included play inter-

actions between therapists and children during the administration of the ADOS-2. The

average duration of the recordings was approximately 1 hour, but it varied with the child

responsiveness and the quality of the interplay (duration M=63.91 minutes, SD=26.2).

The play activity with the child is kept spontaneous by the therapist, although using

standardized materials and a predefined sequence.

The videos were all recorded in the same laboratory, the ODFLab, but in 4 different

rooms, two of which were larger (around 28 m2) and two were smaller (around 12 m2).

Acquisition of the recording was carried out by using a single environmental camera in

the corner of the room. The location and resolution of the cameras varied based on the

room, which ranged across 384/640/720/1280/1920 pixels of width. Details regarding

video resolution in the sample are shown in Table 3.2.
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Table 3.2: Video resolution for the ASD sample.

Room Size Video resolution (px width)

384 640 720 1280 1920

Small, N (%) 10 (11.8) 5 (5.9) 43 (50.6) 1 (1.2) 0

Large, N (%) 3 (3.5) 10 (11.8) 11 (12.9) 0 2 (2.4)

The resulting data collection were recordings with a high variability of the content,

both in terms of the interaction and the video quality of the material. The data can

vary from high-resolution videos shot in a relatively small room to low-resolution videos

taken in a larger room, where the subjects were more distant and less clearly visible.

Such variability represents both a handicap and a resource. While it complicates testing

and weakens video analysis performance, it also forces the design of a highly robust

system. The study’s primary objective was to define a resilient framework to extract

attentional patterns from our real-world clinical data automatically. Details about the

model development are described in Section 3.2.4.

3.2.3 Related work

The application of AI-based models for the analysis of attentional patterns has recently

advanced, with promising results (Sapiro et al., 2018). The potential again relies on the

opportunity to automatically measure attentional behavior through video and extract

quantitative parameters in a systematic way. However, predicting gaze direction in real-

world scenarios has been proven challenging. The strong variability of the environment,

the occlusion of the image, and the dynamism of the interaction remain difficult variables

to manage.

Most systems have been integrated to analyze gaze with a frontal camera through eye

recognition and geometrical segmentation (Ghosh et al., 2021; Huang et al., 2017). How-

ever effective, the strong limitation of these approaches is that they are based on heavy
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interaction structuring and rely on a fixed light source. They are not suitable for uncon-

strained environments nor for analyzing dynamic interactions within the clinical setting

(Kellnhofer et al., 2019).

An alternative is appearance-based methods that learn more direct gaze mapping using

large annotated datasets (X. Zhang et al., 2015). These methods for gaze estimation

work well in everyday settings, yet most of the state-of-the-art models are still being

developed and evaluated based on datasets collected under controlled conditions in the

laboratory, often acquired with a frontal camera. These conditions are constrained by

limited variability in appearance and little change in head pose (Fischer et al., 2018; X.

Zhang et al., 2015, 2017a; Zhu and Deng, 2017).

There are no benchmark designs regarding the specific analysis of eye contact episodes

in dynamic interactions. This is because eye contact recognition not only requires an

accurate estimation of gaze direction and information about the position and orienta-

tion of the target. A few examples attempted to address this issue by offering advanced

solutions also using standard cameras in literature (Müller et al., 2018).

Smith and colleagues (2013) employed a classification approach to determine eye contact

from a camera video. Yet, their methodology required a priori knowledge about the size

and pose of the target (Smith et al., 2013). Similarly, Parekh and colleagues (2017) de-

veloped a CNN architecture that recognized eye contact. Their method performed well

but demanded the subject to be stationary in front of a camera (Parekh et al., 2017).

Muller and colleagues (2018) developed a novel approach to recognizing eye contact in

multi-person interactions to address this issue. The setting consisted of a setup of 8

different environmental cameras installed around 4 adults interacting while sitting. The

model combined both gaze direction information and speech (determined by analysis of

facial Action Units), assuming that people tend to look at the person who is talking dur-

ing conversations (Ho et al., 2015; Müller et al., 2018). The model was further evaluated

on datasets of natural group interactions and performed better against more standard
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approaches (Müller et al., 2018; X. Zhang et al., 2017a).

Preliminary interesting examples are available also in the context of multi-person in-

teractions (Müller et al., 2018; Parekh et al., 2017). Although robust, these solutions

stay constrained to highly structured environments and are not suitable for naturalis-

tic clinical settings, where children and therapists often rapidly change both position

and orientation. Designing a system suitable for dynamic interactions and real-world

scenarios is the primary goal of the present study.

3.2.4 Model design

We attempted to develop a robust eye contact detection system (EYE-C) well suited to

analyze collected clinical videos. The first objective was to implement a computational

solution for extracting multi-person gaze directions in naturalistic videos. To address

this problem, we designed a system based on state-of-the-art pre-trained algorithms

composed of (1) a module for extracting the head position of targets in the image (Cao

et al., 2019) and (2) a module for estimating a frame-by-frame gaze direction vector

(Kellnhofer et al., 2019).

For step (1), we used Openpose, which is a CV model that can do real-time multi-person

2D pose estimation from in-the-wild videos (Cao et al., 2019). The model takes as in-

put the colored image and produces the 2D coordinates of the anatomical keypoints for

each person in the image. The Openpose pipeline consists of a first step in which the

input RGB image is fed to a multi-stage CNN architecture, initialized with the VGG-19

model, and then fine-tuned (Simonyan and Zisserman, 2014). In the first set of stages, a

feedforward network predicts the 2D confidence map of the body keypoints. In the sec-

ond stage, part affinity fields (PAFs) are predicted, representing a degree of association

between the keypoints and enabling body parts to integrate into a full-body pose (Cao

et al., 2019; Cao et al., 2017). In the end, the confidence map and PAFs are parsed

through inference to produce 2D keypoints of all people in the image (Cao et al., 2019).
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The model was evaluated on multiple datasets (Andriluka et al., 2014; Lin et al., 2014)

and compared against Mask R-CNN (He et al., 2017) and Alphapose (Fang et al., 2017),

achieving the best performance considering the trade-off between speed and accuracy

in the COCO Challenge 2017. The output of the model consists of a JSON file of 135

landmarks of different body parts divided into 3 blocks: body+foot, hand, and face

detection.

We employed Openpose to extract the features from the first main block (body+foot)

and then computed the head bounding boxes of the targets by using the keypoints of

ears, eyes, nose, and neck. Once we extracted the therapist and child head coordinates

in the video frames, we can apply the gaze estimation module.

In the second module, (2) we used Gaze360, an appearance-based model capable of ex-

tracting a 3D gaze vector from 2D videos in-the-wild (Kellnhofer et al., 2019). Given the

absence of real-world datasets to estimate gaze, the authors first collected a large-scale

dataset for gaze-tracking in unconstrained images. The dataset is the largest publicly

available set and consists of 238 subjects in both indoor and outdoor environments with

labels of 3D gaze coordinates in many head poses and distances (Kellnhofer et al., 2019).

Based on the dataset, the authors further implemented a model for gaze direction esti-

mation. The architecture of Gaze360 is based on bidirectional LSTM capsules, which

provide an average of the modeling sequences in which the output depends on both pre-

vious and future inputs (Kellnhofer et al., 2019).

Thus, a window of 7 consecutive frames of head crops is used as input (centered around

the target frame) to predict gaze. In the first stage, the head crop of each frame is

processed individually through a CNN, which produces 256-dimensional features. The

features are fed to the bidirectional LSTMs to produce compact representation vectors in

the second step. Finally, vectors are concatenated into fully connected layers to predict

both 3D gaze coordinates and a quantile error estimate (Kellnhofer et al., 2019). The

architecture was evaluated cross-dataset using several benchmark datasets of high- and
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low-resolution 3D gaze (Fischer et al., 2018; Kellnhofer et al., 2019; Smith et al., 2013;

X. Zhang et al., 2017b). The model was further fine-tuned into new domains using a

self-supervised approach and improved performance across all datasets.

The large variability of the Gaze360 dataset and the cross-domain adaptation of the

model allowed for excellent performance even in unseen videos from uncurated online me-

dia sources, such as Youtube videos, demonstrating flexibility and robustness (Kellnhofer

et al., 2019). The final output of the model is represented by a coordinate matrix of the

gaze vector g for any head crop in each frame of the video. The coordinates in Gaze360

are computed in a spherical system and expressed in observing the camera Cartesian

perspective system g = [x, y, z]. The origin of the vector represents the center of

the head (based on the coordinates of the eyes, mouth, and nose), and the coordinates

(expressed between 1 and -1) define its direction. For example, if g = [0, 0,−1] the

target is looking directly at the camera, regardless of its position. In this manner, the

estimation of gaze vectors is based only on head crop appearance and without any other

global information from the environment (Kellnhofer et al., 2019).

In summary, in our study we first combined the two modules using (1) Openpose to ex-

tract head crops and then fed them to (2) Gaze360 to compute therapist and child gaze

vectors in our dataset. We rendered all clinical videos by drawing the headboxes and

gaze vectors to double-check the result. From video inspection, it was evident that the

model’s performance dropped during periods of high interaction dynamism, i.e. when

the child moved around the room and frequently changed distance and head orientation

relative to the camera. In these cases, the head recognition module failed, producing

head boxes that were generally smaller and varied a lot in size during short sequences.

The results of Gaze360 are based upon the information of multiple consecutive frames

(Kellnhofer et al., 2019). Thus, headboxes that vary a lot in size over a few seconds

compromised gaze direction estimation, often resulting in faulty vector predictions. In

addition, this effect was more noticeable in videos recorded in larger rooms, where the
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distance to the camera was higher and the headboxes smaller. Overall, the performance

suffered heavily in the most dynamic periods of the session, both for the size variability

and the reduced dimension of the head crops.

We proceeded in two directions to try to solve these problems. To better handle larger

settings, (i) we increased the size of the headboxes by 50%, providing bigger input im-

ages for gaze estimation. In addition, to cope with moments of high mobility of the

subjects, we (ii) forced a matched dimension of the headboxes for continuous sequences

from a single target, normalizing the shape of the head crops according to the largest

size recorded in short consecutive frame sequences. In practice, we increased the overall

size of the head crops fed to the gaze estimation module, and we normalized the headbox

shape in consecutive frames keeping the size constant in video sequences to manage the

headbox variability in dynamic contexts. Model validation is discussed in more detail in

Sections 3.2.4.1 and 3.2.4.2.

3.2.4.1 Eye-contact detection

Once the 3D gaze coordinates of the child with ASD and the therapist were extracted,

the challenge was to successfully build a function to extract the periods of eye contact

between targets in wild 2D clinical videos. The system needed to be robust to variance

in predictions and flexible to different setting conditions to accomplish this task. Eye

contact periods were defined based on the relationship between therapist and child frame-

by-frame gaze estimations. One subject was looking at the other if the gaze vector was

directed toward the other head. If both subjects were looking at each other for a certain

amount of time, then eye contact was present.

To operationalize this dynamic, first, we computed the 2D coordinates [x, y] of the

intersection p between the line passing through the coordinates of the gaze vector g, and

the line passing through the center g0 of the other target headbox and perpendicular

to the x-axis. Namely, we were able to establish the point p where the gaze of subject
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A crossed the position of the head of subject B on the ordinate (Figure 3.1 B). We then

calculated the distance d (in pixels) between the intersection point p and the origin g0

to understand the proximity of a subject gaze to the target head, as follows 3.1:

dA = |pB − g0B| (3.1)

The smaller the distance d with respect to the therapist head, the more the child gaze

will be oriented towards the face. To understand whether the child was looking at the

adult face, we established a maximum distance threshold Td (in pixels). We adopted a

threshold rather than the precise center to attempt to contain slight inaccuracies in gaze

prediction.

When both distances dA and dB were below threshold Td we would potentially get eye

contact. However, this first step is constrained to a bidimensional representation of data.

The outputs of Openpose are two-dimensional coordinates of the landmarks (Cao et al.,

2019). On the other hand, Gaze360 provides a three-dimensional vector (Kellnhofer

et al., 2019). An issue of considering only the 2D coordinates is to recognize as episodes

of eye contact some moments without such coordination, for instance, situations when

the heads of the subjects are located at very different depths or more often when they

are very close to each other. Neglecting depth may result in many scenarios where gaze

directions appear to cross but only from a 2D perspective. This approach would lead to

include several false positives in the analysis and compromise the quality of the data as

well as lose information.
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Figure 3.1: Eye-contact detection model (EYE-C). The images represent the output of the model run
on a video example from YouTube (the video is licensed under a CC licence, and was kindly offered
by White, R. [Good Behavior Beginnings]. (2015, May 15). How to Redirect Escape Behavior in 2
year olds [Video]. YouTube. https://www.youtube.com/watch?v=GzGLF8GlPmo); A) Openpose body
keypoints output (Cao et al., 2019); B) Gaze360 gaze vectors output (Kellnhofer et al., 2019) and eye-
contact detection system; g0A/g0B : headbox center of subject A/B; gA/gB : gaze vector of subject
A/B; pB : intersection point between gaze of subject A and headbox x-axis coordinates of subject B;
dA: distance (pixels) between pB and g0B .
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To address this problem, we used a simple but effective approach. The output of Gaze360

is a 3D vector in which depth is expressed through a z value that varies between -1 and

1 (Kellnhofer et al., 2019). When z assumes a negative value, the subject is looking

toward the camera, conversely, it assumes a positive value when the subject looks away

from the camera. Whenever child and therapist look at each other and are on the same

depth level in the room, their gaze vectors will have a value of z close to 0. This means

the therapist gaze will be fully oriented towards the right or left side of the room, vice-

versa for the child. Conversely, when subjects look at each other from two different

depths of the room, the z value of each of the two gaze vectors will be different from 0

and with opposite signs. Therefore, the z value of the therapist gaze vector will start to

increase (if the direction of the vector points away from the camera) or decrease (if the

direction of the vector points toward the camera) according to its direction. Similarly,

the z value of the child gaze vector will change, but with an opposite sign. If z of subject

A increases, then z of subject B decreases below 0. This is because if vectors are aligned

at different depths, they will always have opposite signs. In this way, to recognize eye

contact between child and therapist, both gazes need to be close enough to each other

head and need opposite depth direction.

Lastly, a rarer situation to consider is when both subjects stay at the same depth po-

sition, and z is close to 0. In such circumstances, little fluctuations and errors in gaze

prediction might vary vector orientation, compromising the analysis and including possi-

ble false negatives. To solve this problem, we again established a threshold Tz by setting

a maximum degree of tolerance for the absolute value of z. When z was close enough

to 0, and therefore the gaze directions had nearly no depth, it was unnecessary for the

two gaze vectors to have opposite signs. In this way, we were able to control all cases

in which subjects were looking at each other closely and at the same depth level of the

room.

In summary, conditions for discriminating eye contact periods included that (1) the gaze
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vectors were both oriented toward the headbox of the other within a threshold distance,

(2) the eye contact period had a minimum duration, and (3) that the vectors had oppo-

site directions when the absolute value of z exceeded a certain value.

This pipeline enables a dyadic eye contact detection system resilient to common varia-

tions in terms of video resolution and ecological clinical setting, with enough flexibility

to handle interactions with high levels of dynamism.

3.2.4.2 Model evaluation

Following the design and method definition part, we evaluated the performance of EYE-

C using hand-crafted features. We picked five videos from the sample matching different

video resolutions and room settings. A continuous interactive dyadic sequence of about

10 minutes was extracted from each selected video, for a total of more than 70000 frames

(M=14173.4, SD=261.7 frames for video) for the model testing (a total of 4360 positive

frames, labelled with eye-contact).

The 10-minute videos were subsequently hand-coded frame-by-frame using a software

for observational video coding (BORIS, https://github.com/olivierfriard/BORIS). The

interactive periods in which there was eye contact between therapist and child were

noted for each frame. In parallel, the same sequences were further encoded using the

eye-contact detector according to the pipeline described in the previous sections.

Finally, the output of the model was evaluated using the hand-crafted features as ground

truth (eye-contact present/absent) for each frame. The parameters described in Section

3.2.4.1 were fine-tuned to maximize matching using the Matthews Correlation Coefficient

(MCC) to evaluate the model’s performance (Chicco and Jurman, 2020).

Overall, the best performance was achieved by using a maximum distance threshold

Td corresponding to 80% of the target headbox size, a depth threshold Tz=.3 , and a

minimum length of 30 consecutive frames second) for eye-contact sequences. The results

are described in Table 3.3, for increasing size of the videos.
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Table 3.3: Model evaluation results.

Video Frames (N) Res (px) Room Acc Pre Rec MCC

1 13786 640 Small 0.96 0.65 0.80 0.70

2 13955 1280 Small 0.95 0.53 0.76 0.61

3 14317 720 Large 0.96 0.79 0.65 0.69

4 14497 720 Small 0.99 0.94 0.94 0.93

5 14312 384 Small 0.93 0.34 0.71 0.46

Note: Res: Resolution; Acc: Accuracy; Pre: Precision; Rec: Recall; MCC:
Matthews Correlation Coefficient.

As expected, the EYE-C performance decreases in conditions where at the same time

the video had lower quality and the interaction occurred in larger rooms achieving an

MCC=.46, which corresponds to high accuracy but low precision. In these borderline

cases, the shapes of people are too small in the frame sequences preventing a correct

analysis of body landmarks and gaze direction. By excluding the video with the latter

characteristics, the model performed well across all the other conditions with an average

MCC=.74.

For these reasons, videos with lower quality and recorded in larger rooms were filtered

out. Based on the analysis of e gaze vectors and subject headboxes, we removed 23

subjects among those with interactions recorded in larger rooms at lower quality. The

sample was accordingly downsized from 85 to 62 subjects. As a result, the sub-sample

with re-evaluation after the intervention was reduced from 25 to 18 subjects.

Finally, EYE-C was run on the filtered dataset after the evaluation to extract fine-

grained features of the eye contact periods between therapists and children with ASD.

The metrics mined and employed in subsequent analyses included: average duration,

average child distance d, number, and frequency of the eye-contact episodes.
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3.2.5 Data analysis plan

For dataset analysis, we considered the eye-contact features as independent variables:

average duration (dur), total number (num) and frequency (freq, number per minute)

of eye-contact episodes, and the overall average distance d of the child gaze from the

therapist face during the interaction.

As dependent variables, we included the scores of psychological testing from the clinical

evaluation. Concerning cognitive functioning, we considered the general developmental

quotient (GQ) and 5 relative subscales: gross motor (Motor), hand-eye coordination

(Coordination), communication (Language), social (Social), and performance (Perform)

abilities. Also, we included the ADOS-2 total raw score (ADOS) and the sub-score of

the social abilities subscale (SA) for the socio-communicative dimensions

We did not consider the single item scores of the ADOS-2 as they are rated on a qualita-

tive scale with little variance (0-2). Indeed, in our sample, 78 (91.8%) of the 85 subjects

received the maximum score (=2) in the item related to gaze modulation during the first

evaluation. Therefore we chose to keep only the overall raw score of the ADOS-2.

Accordingly, we considered developmental quotient (GQ) for cognitive functioning and

raw ADOS-2 scores (ADOS) for social-communication skills within the re-evaluation

phase of the intervention sub-sample.

The analysis procedure was further divided into two separate parts: correlation and

stratification.

Correlation - As a first step, we explored the correlation between our eye contact

features and the clinical variables. We first converted all variables into z-scores to nor-

malize the standard deviation to 1 (using Standard Scaler from the scikit-learn library).

Subsequently, we employed Multiple Linear Regressions (MLRs) and checked the as-

sumptions to analyze the relationship between the independent variables jointly against

each dependent variable.
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Stratification - To investigate spectrum heterogeneity, we then employed unsuper-

vised clustering based on eye-contact features. We first standardized the variables and

then employed Uniform Manifold Approximation and Projection (UMAP) for mani-

fold learning and dimensionality reduction Allaoui et al., 2020. Further, for clustering,

we employed Hierarchical Density-Based Spatial Clustering of Applications with Noise

(HDBSCAN), which assumes clusters based on density regions and leaves scattered back-

ground classified as noise. HDBSCAN is a suitable algorithm for data-driven approaches

because it does not need to determine the number of clusters a priori and thus is more

robust in exploratory analysis design than deterministic partitioning algorithms such as

K-Means (Schubert et al., 2017). Finally, we externally validated the clusters by test-

ing for differences in clinical variables based on the resulting sub-groups. We applied

a One-way MANOVA using cluster membership as an independent variable. Then we

applied One-way ANCOVAs, with video length and resolution as covariates, and Tukey

Tests for post-hoc analysis, pairwise comparisons, and an adjusted p-value. Finally, we

further analyzed the duration and number of eye-contact episodes over time in a mixed

design to see if there were any differences between the sub-groups over the course of the

interaction.

3.3 Results

3.3.1 Correlations

Before proceeding with the definition of MLRs, we checked for the assumptions. Mul-

ticollinearity occurs when you have two or more independent variables that are highly

correlated with each other. We computed the Variable Inflation Factor (VIF) to deter-

mine the correlation between eye-contact features by obtaining a score for each variable

of how well it is explained by the others.

A VIF score above 5 indicates high multicollinearity. As expected, a strong correlation
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between frequency and number of eye-contact episodes was found (Table 3.4). For these

reasons, we decided to eliminate frequency (freq) and keep number (num) in the follow-

ing analysis.

Table 3.4: Model evaluation results.

Variable VIF

freq 5.6

num 5.42

d 1.07

dur 1.34

Note: freq: eye-contact periods frequency;
num: eye-contact periods total number; d:
average child gaze distance d; dur: average
eye-contact periods duration.

In addition, to have more control over the independent variables, we applied Pearson

Correlation Coefficient to control the association between the eye-contact features and

the length of the videos to avoid a bias due to the duration of the interactions. No

significant correlation emerged.

Then we checked the distributions of the variables to check that they followed a normal

distribution. We initially used Q-Q Plots to test the distribution of the variables. From

a visual inspection of the diagnostic plots, the distance (dist) and number (num) of eye

contacts, and the communication abilities quotient (Language) did not follow a normal

distribution (Figure S1 in Supplementary Materials).

We converted the two variables with a logarithmic transformation. Then we conducted

Shapiro Wilk tests to check for normality of distributions. All variables resulted nor-

mally distributed after the conversion (Figure S2 in Supplementary Materials). Next, we

standardized all the measurements and computed an MLR for each dependent variable,
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using our eye-contact features as independent variables (excluding frequency) (Figure

S3 in Supplementary Materials).

The assumption of homoscedasticity is that the residuals are equal for all values of the

predicted dependent variable (i.e., the variances along the line of best fit remain similar

as you move along the line). We checked for homoscedasticity by controlling the plots

of studentized residuals versus unstandardized predicted values and by performing the

Breusch-Pagan test for heteroscedasticity (Figure S4 in Supplementary Materials). For

each of the MLRs, homoscedasticity of the residuals was confirmed by visual inspection

and non-significant test results. Finally, we checked the distribution of residuals by again

using the Shapiro-Wilk test and found the normality of the error distributions for all

MLRs (Figure S5 in Supplementary Materials). The results of all MLRs for each of the

dependent variables are summarized in Table S4 in Supplementary Materials.

A significant regression equation with a non-robust negative correlation was found for

the ADOS-2 total score (F(3,58)=2.718, p<.05), with an R2=.123, and the related

Social Abilities subscale (F(3,58)=2.866, p<.05), with an R2=.129. No significant re-

gression was found for the general developmental quotient, but a significant regression

equation with a non-robust positive correlation was found for the related subscales of

communication (F(3,58)=2.795, p<.05), with an R2=.126, and hand-eye coordination

(F(3,58)=2.783, p<.05), with an R2=0.126 abilities. All remaining MLRs for the sub-

scales of the GQ were non-significant.

The average duration (dur) and distance (d) of eye contact episodes were not significant

predictors for all regression models. Otherwise, the total number (num) of eye contacts

during child-therapist interactions was a significant predictor of ADOS (p<.01), SA

(p<.01), Language (p<.05), and Coordination (p<.05) scores.
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3.3.2 Stratification

The second part of the analysis design further explored the findings by investigating the

effectiveness of gaze patterns (num, dur, freq, d) for spectrum stratification and iden-

tifying the possible occurrence of sub-groups within the sample. Given recent findings

regarding the importance (Fabiano et al., 2020), we also considered age as a factor for

clustering . We initially normalized the variables by converting them into z-scores.

We employed the Uniform Manifold Approximation and Projection (UMAP) for non-

linear dimensionality reduction and improved data visualization (Allaoui et al., 2020;

McInnes et al., 2018). A 2-component UMAP was applied on the 4 scaled eye-contact

features and age jointly to reduce data structure using 5 nearest neighbors and a mini-

mum distance of 0 as hyperparameters of the algorithm. The output is a 2D projection

of the data structure into low-dimensional space, based on a transformation (embedding)

of the selected features (Figure 3.2 A). The resulting data embedding was further pro-

cessed for unsupervised clustering. We used HDBSCAN algorithm by setting a minimum

cluster size of 10, equal to twice the number of features used (2*5 dim), as suggested in

the literature (Schubert et al., 2017).

In the dataset, three different clusters were identified (sub-groups 0/1/2), and two single

data points were classified as noise (sub-group -1) (Figure 3.2 B).
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A

B

Figure 3.2: A) HDBSCAN clusters on 2-components UMAP output; B) Eye-contact metrics and
age pairplot; freq: frequency of eye-contact episodes; num: total number of eye-contact episodes; dur:
average duration of eye-contact episodes; d: average distance of children gaze vectors from therapists
headboxes during interaction; age: children age at first assessment.
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We computed the Silhouette Coefficient (SC) to assess the consistency and homogeneity

of the resulting clusters and achieved a score of SC=0.56. The characteristics and pop-

ulation size of the clusters are summarised in Table 3.5.

Table 3.5: Sub-groups characteristics.

Sub-group 0 Sub-group 1 Sub-group 2 F / x2 p

n = 23 n = 21 n = 16

Gender, N (%) 3.572 0.734

Male 22 (95.7) 17 (80.9) 12 (75)

Female 1 (4.3) 4 (19.1) 4 (25)

Video Resolution (px) - - - 11.069 0.748

Age (months), mean (SD) 37.9 (10.2) 43.9 (10.1) 60.9 (10.1)

Eye-contact num, mean (SD) 9 (6.2) 40.7 (6.2) 11.6 (6.1)

Eye-contact freq (N/min), mean (SD) 0.2 (0.1) 0.7 (0.1) 0.2 (0.1)

Eye-contact dur (sec), mean (SD) 1.6 (0.3) 1.9 (0.3) 1.7 (0.3)

Eye-contact d (px), mean (SD) 308.9 (152.1) 301 (152.1) 649.4 (152.1)

GQ, mean (SD)a 69.7 (15.4) 77.1 (15.4) 65 (15.4)

Coordination, mean (SD) 69.6 (14.5) 82.2 (14.5) 64.8 (14.5)

Language, mean (SD) 55.7 (26.6) 67.8 (26.6) 60.4 (26.6)

Motor, mean (SD) 78.4 (13.8) 79.1 (13.8) 71.5 (13.8)

Social, mean (SD) 64.6 (16.6) 75.8 (16.6) 58.7 (16.6)

Perform, mean (SD) 89.9 (18) 88.1(18) 72.6 (18)

ADOS, mean (SD)a 15.6 (3.5) 13.1 (3.5) 15.4 (3.5)

SA, mean (SD) 12.2 (3.5) 10.2 (3.5) 11.8 (3.5)

Note: freq: eye-contact periods frequency; num: eye-contact periods total number; d: average child
gaze distance d; dur; average eye-contact periods duration. GQ: Global Developmental Quotient; SA:
Social Abilities subscale.

Comparison of sub-groups characteristics showed no significant differences in gender,

video resolution, and duration of therapist-child interaction.

Finally, clustering was evaluated by comparing the differences between the groups, con-

sidering both clinical and eye-contact features (Figure 3.3). A One-way MANOVA was

applied with group membership as the independent variable and clinical metrics as the

dependent variables. A statistically significant difference emerged between the sub-
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groups on the combined dependent variables, (F(13,46)=6.393, p<.0001).

As follow-up analyses, univariate One-way ANCOVAs and Tukey’s Tests were performed

for post-hoc pairwise comparisons of each dependent variable.
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Figure 3.3: Boxplots of each dependent and independent variable for resulting sub-groups; num: eye-
contact periods total number; freq: eye-contact periods frequency (N/min); dur: eye-contact periods
average duration (sec); d: average distance of children gaze vectors from therapists headboxes during
interaction (px); age: children age at first assessment (months); length: video total duration (min).

Concerning our eye-contact features, we found a significant difference in total num-

ber (F(2,57)=31.82, p<.0001), frequency (F(2,57)=55.577, p<.0001), average duration

(F(2,57)=5.815, p<.01), and the overall average distance (F(2,57)=6.618, p<.01) be-
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tween the sub-groups. A significant difference between the sub-groups was also found in

terms of the children age (F(2,57)=23.597, p<.0001).

Comparing the sub-groups based on clinical variables revealed significant differences

concerning the ADOS (F(2,57)=3.549, p<.05) total score and the cognitive develop-

ment subscales of social (F(2,57)=3.207, p<.05), hand-eye coordination (F(2,57)=5.803,

p<.01), and performance (F(2,57)=3.238, p<.05) abilities.

We further tested the significant results achieved through pairwise comparisons with an

adjusted p-value (Table S5 in Supplementary Materials). Tukey post-hoc tests showed

that sub-group 1 showed a significantly higher number and frequency of eye contact than

both sub-groups 0 (num p<.001, freq p<.001) and 2 (num p<.001, freq p<.001). Con-

versely, sub-groups 0 and 2 did not differ either in number (p=.82) or frequency (p=.9).

In terms of duration, sub-group 1 showed significantly longer episodes of eye contact

than sub-group 0 (p<.01), but no difference emerged either between sub-groups 1 and

2 (p=.096) or 0 and 2 (p=.595). In addition, sub-group 2 showed a significantly higher

overall distance d than both sub-groups 1 (p<.01) and 0 (p<.01); the latter showed no

difference in distance (p=.9).

Regarding the clinical variables, a difference emerged between the ADOS-2 total scores

of sub-groups 0 and 1 (p<.05), the latter having significantly lower scores. In contrast,

there were no significant differences between the other sub-groups (2 vs. 0 p=.9, 2 vs. 1

p=.1).

In terms of hand-eye coordination abilities, sub-group 1 showed a significantly higher

mean quotient compared to both sub-groups 0 (p<.05) and 2 (p<.01), whereas sub-

groups 1 and 2 did not differ (p=.063). Sub-group 1 showed a significantly higher

score in the social abilities subscale than sub-group 2 (p<.05), but not sub-group 0

(p=.195); there was no difference between sub-groups 0 and 2 (p=.653). Concerning

the performance subscale, pairwise comparisons showed no significant differences among

sub-groups. When comparing age, sub-group 2 was significantly older than sub-groups
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1 (p<.001) and 0 (p<.001), which also did not differ in age (p=.152).

We also compared the three sub-groups based on the resolution of the videos, the du-

ration of the video, the room where the interaction occurred, and the gender of the

subjects as controls and found no significant differences.

Figure 3.4: Eye-contact periods total number (num) over time.

As the last step of clustering exploration, we divided interactions into 4 equivalent time-

points to check whether there was any difference in gaze patterns over time between

the sub-groups. We measured both the number and duration of eye contact periods

at 4 consecutive time points. Mixed Two-way ANOVAs were performed with number

and duration over time as the within factors and sub-group membership as the between

factor (Figure 3.4).

As expected from previous analyses, there was an overall significant difference between

the sub-groups in both number (p<.0001) and duration (p<.0001). There was no sig-

nificant difference within the number (p=.195) and duration (p=.246) of eye-contact
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episodes over periods of the interaction. Finally, there was no significant interaction

between the sub-groups and the duration (p=.41) or number (p=.725) over time.

3.4 Discussion

The study aimed to develop and test an efficient computational phenotyping method

to study the interactive behavior of young children with ASD for ecological exploration

of gaze patterns during therapy. Identifying a marker sensitive to individual differences

is an important goal in the perspective of personalized treatment. Despite promising

results in the literature, the major bottleneck is the development of generalizable and

flexible methods into real-world scenarios. For this reason, we implemented a method

that is resilient to variability in data structure with added applicative value. Our ap-

proach combined unsupervised machine learning analysis with a data collection based

on fine-grained features acquired by Behavior Imaging solutions.

Eye contact was studied both for its central role in the diagnostic framework as well as

its value as an indicator of the severity of social-communicative symptoms in the autism

spectrum (D. J. Campbell et al., 2014; Carbone et al., 2013; Cook et al., 2017; Fabiano

et al., 2020; Fonger and Malott, 2019; Latrèche et al., 2021; Madipakkam et al., 2017).

Indeed, it has recently been suggested in the literature that attentional patterns should

be further investigated in the context of outcome prediction (Latrèche et al., 2021e) and

stratification of the condition (D. J. Campbell et al., 2014; Fabiano et al., 2020).

The first part of our study addressed the development of EYE-C, the eye-contact de-

tection model. Our main goal was to offer a more robust solution trying to overcome

the translational limitations of previous implementations of CV-based systems in the

clinical setting (Jaliaawala and Khan, 2020; Voss et al., 2019). Towards this end, we

implemented a state-of-the-art model-based design for behavior analysis in wild videos

(Cao et al., 2019; Kellnhofer et al., 2019). Our system performed well during valida-
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tion in clinical scenarios with an average MCC=.74 across different interaction videos,

proving to be robust to variability in both setting and video quality. We were able to

identify with good precision and accuracy episodes of eye contact in highly dynamic

interactions between child and therapist. To the best of our knowledge, ours is the first

solution for eye contact detection in non-structured clinical settings. We implemented a

method to deliver more reliable and quantifiable measurements of a behavioral feature

that is very important in clinical practice on the autism spectrum. Previously developed

solutions were based on a heavy structuring of interaction, which often limited the value

of subsequent analysis and application aspects (Bovery et al., 2019; K. Campbell et al.,

2019; Chang et al., 2021; Hashemi et al., 2018; Hurwitz et al., 2020; Li et al., 2019;

Sapiro et al., 2018; Thorup et al., 2018; Yun et al., 2017). Considering the importance

of integrating eye contact into intervention programs (Fonger and Malott, 2019), our

method offers a solution with high potential to support the real clinical context of ASD.

Our system can better decompose the dynamics of gaze and eye contact than commonly

used testing techniques, i. e. ADOS-2 scores, which are not suitable to accurately quan-

tify behavior.

In the second part of the study, we employed EYE-C to explore the dynamics of dyadic

gaze coordination in child-therapist interactions. The need for more refined measure-

ments of behavior has been highlighted in the literature to address major challenges

such as stratification and outcome prediction (Leblanc et al., 2020; Washington, Park,

et al., 2020). Traditional psychological testing, which is generally used in this area of

research, is rather designed to diagnose and detect differences from typical development.

Therefore, it is not well suited to recognize the subtle variability within the spectrum

(Bentenuto et al., 2020; Washington, Leblanc, Dunlap, Penev, et al., 2020; Washington,

Park, et al., 2020). In our study, more than 90% of the sample had the same maximum

score in the item of ADOS-2 concerning eye contact abnormalities. Behavior Imaging

offers an excellent opportunity in this perspective by allowing quantitative and refined
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measurements to study behavior in a more systematic way (Sapiro et al., 2018). Con-

sistently, in the present work, we have employed eye-contact features collected in this

manner combined with data-driven analysis of unsupervised and supervised ML.

The first step of the analysis covered a preliminary exploration of the gaze features ex-

tracted. We examined the correlation between our metrics and the clinical variables

collected during the assessment of preschool children with ASD. The results of the re-

gression models confirmed the presence of associations, although not robust, between

the eye-contact features and the rates of symptom severity, and some subscales of cogni-

tive functioning. As hypothesized, a negative correlation emerged between ADOS scores

together with the relative subscale of social impairments (SA) and the number of eye

contact episodes. Children with a higher degree of interactive deficits and higher sever-

ity of social symptoms displayed less eye-contact coordination with the therapist. These

data are consistent with findings in the literature regarding the association between the

degree of attention to the adult face and the severity of autistic symptoms in preschool

children (Latrèche et al., 2021). No correlation was found concerning general cognitive

functioning, suggesting a stronger association between attentional patterns and socio-

interactive rather than cognitive aspects. However, taking into account the individual

subscales, positive correlations emerged within the domains of hand-eye coordination

and communication abilities. These findings are also coherent if we consider the im-

portance of motor coordination aspects in the integration of attentive schemas and the

critical role of eye contact in the later development of socio-communicative skills (Crippa

et al., 2013; Fonger and Malott, 2019; Miller et al., 2017; Nebel et al., 2016). Contrary

to expectation, there was no significant association with the social abilities subscale.

This might be explained in part by better understanding that the social subscale of the

GMDS-ER includes both items related to interactive skills and items related to the child

level of autonomy, which is less related to social abilities, yet this will need to be further

investigated.
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In the second stage of data analysis, we stepped forward to address the challenge of

autism heterogeneity. We employed unsupervised clustering based on eye-contact fea-

tures to check whether sub-groups would emerge within the spectrum. Unsupervised

approaches applied to computational phenotyping can also facilitate the development of

fine-grained instruments and the identification of novel specifiers that may help detect re-

liable subtypes. Along with attentional metrics, we also considered age as a factor given

the findings regarding its importance in stratification (Fabiano et al., 2020). Three dif-

ferent homogeneous clusters were found, which differ in gaze coordination and age. Sub-

group 1 (high-coordination) is characterized by including toddlers who showed improved

gaze coordination, including a higher number, frequency, and duration of eye contact

episodes. In contrast, the other two sub-groups (low-coordination, 0 and 2) were charac-

terized by lower and similar eye contact features. Considering age, the low-coordination

cluster 2 (old-low-coordination) was distinguished by including children with significantly

higher age than the low-coordination cluster 0 and the high-coordination cluster 1.

To summarize, two low- and high-coordination sub-groups (0 and 1) of age-matched

toddlers were found, which differed significantly in terms of number, frequency, and du-

ration of eye-contact episodes with the therapist during the interaction. In addition, a

smaller third old-low-coordination sub-group (2) was identified, which was characterized

by a quality of gaze coordination comparable to the other low-coordination sub-group,

but a higher age. Interestingly, the children in the old-low-coordination cluster also

differed from the others in displaying a higher overall distance d, which measures the

distance of the child’s gaze from the face of the therapist. This may be explained by the

fact that also in typical development, older children generally tend to be less focused on

dyadic interaction and explore the environment more by gazing at objects and paying

less attention to adults in general.

Afterward, the clustering was validated by taking into account the clinical variables

collected during children diagnostic assessment, which included both symptom sever-
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ity (ADOS-2, SA), and level of functioning scores (GQ, Coordination, Social, Motor,

Language, Perform). When comparing the clinical characteristics of the sub-groups, the

high-low distinction remained consistent, with high-coordination children showing higher

levels of general cognitive functioning, social abilities, and hand-eye coordination along

with lower scores on the symptom severity and social impairment. In comparison, the

two low-coordination clusters showed comparable clinical features, including a higher

degree of symptom severity and social impairments and lower cognitive functioning, so-

cial abilities, and coordination.

In a statistical analysis of the distributions, the two age-matched sub-groups of low- and

high-coordination were significantly distinguished for symptom severity and hand-eye

coordination abilities. The older low-coordination cluster did not differ in any clinical

variable from the other low-coordination sub-group but showed differences in hand-eye

coordination and social abilities compared to the high-coordination sub-group.

Altogether, some interesting data emerged from stratification. Findings seem to support

the hypothesis that the autism spectrum could be stratified into two major levels of

functioning, consistent with what was found in previous studies (D. J. Campbell et al.,

2014; M. C. Stevens et al., 2000; Wolfers et al., 2019). Two core age-matched sub-groups

emerged, one cluster consisting of autistic children with a milder symptom phenotype,

better hand-eye coordination skills, and showing a higher number and duration of eye-

contact episodes with the therapist, while the other cluster included autistic children

with lower eye-contact features, lower hand-eye coordination abilities and a higher de-

gree of symptom severity.

When observing data distributions, high and low functioning profiles remained stable

in the three sub-groups also across the social impairments subscale of the ADOS-2.

Nonetheless, no significant differences emerged as we expected, but further investi-

gation is necessary. In addition, differences in hand-eye coordination abilities were

also found significant between the high-coordination and the old-low-coordination sub-

100



CHAPTER 3

groups. These persistent differences across clusters corroborate the results of prior anal-

yses and are consistent with previous studies that supported a strong link between

fine-motor coordination and social competencies (Crippa et al., 2013; Flori and Angeli,

2021; Johnson et al., 2016; Nebel et al., 2016; Sumner et al., 2016).

Overall, this work highlights once again the major potential of Behavior Imaging for

the analysis of behavior in clinical practice (Dawson et al., 2018; Dawson and Sapiro,

2019; Sapiro et al., 2018). To provide concrete support, it is necessary to develop ro-

bust, translational approaches that are flexible to the dynamics of interaction and that

take into account the variability of settings (Jaliaawala and Khan, 2020). In our study,

structuring an effective system to measure gaze patterns in a refined and ecological way

yielded interesting results in the field of stratification within the autism spectrum. A

flexible analytical system was developed by employing advanced AI-based models with

high potential for translational applications to real-world clinical scenarios (Cao et al.,

2019; Kellnhofer et al., 2019). The limited number of data collected constrained the

impact of the results achieved, yet it provides a promising starting point for further

studies. As outlined in the literature, with increased sample size the reported number of

clusters in the spectrum tends to grow (Fonger and Malott, 2019; Wolfers et al., 2019).

It would be interesting to include new data to examine whether new subgroups emerge

from the patterns of eye contact and to further analyze stratification in the context of

personalized early intervention to investigate the role of these variables in outcome pre-

diction.
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Machine Learning analysis of Eye-Contact

features for predicting Early Intervention

Outcomes in ASD 3

3The following chapter describes analyses based on the clinical sample from (Alvari,
Coviello, et al., 2021).
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Abstract

This brief chapter provides an analytical extension of the data collected in (Alvari,

Coviello, et al., 2021). We further explored eye-contact features in the framework of

outcome prediction after early intervention. From the second study sample, we selected

a sub-sample of 25 preschool children with ASD undergoing an early intensive interven-

tion to predict symptom severity and general cognitive functioning after 1 year. Random

Forest (RF) regressors were employed to predict GQ and ADOS scores at re-evaluation.

Adding eye-contact features to the clinical measures as predictors improved the perfor-

mance of the models in forecasting the outcome of the intervention. We further explored

eye-contact features in the framework of outcome prediction after early intervention.

The preliminary results of these analyses are only exploratory but represent a promising

avenue that leads that prompts more in-depth investigations.
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4.1 Introduction

As emphasized in the previous chapter, there is still a lack of adequate tools to measure

and predict the outcome of the intervention (Baldwin et al., 2021; Bentenuto et al.,

2020; Fuller and Kaiser, 2020; E. Stevens et al., 2019). While certain factors have been

addressed as moderators of treatment impact, the results are not consistent (Bentenuto

et al., 2020). In the clinical practice context, there is an urgent need to identify more

reliable behavioral markers that can be easily monitored and can help clinicians to max-

imize the effectiveness of treatment.

Already widely highlighted, the application of AI-based solutions offers promising alter-

natives in the systematic investigation of interactive behavior (Alvari, Coviello, et al.,

2021; Alvari, Furlanello, et al., 2021; Jaliaawala and Khan, 2020; Sapiro et al., 2018).

In this brief exploratory study, we tested the validity of computational solutions in iden-

tifying markers that have a predictive value for intervention outcomes. We extended the

analyses of the previous study by taking into account the patterns of eye contact, which

plays a very important role in the intervention and can be predictive of the acquisition of

subsequent social-communication skills (Cook et al., 2017; Fabiano et al., 2020; Fonger

and Malott, 2019; Miller et al., 2017).

Therefore, we hypothesized that predicting cognitive functioning and symptom severity

after 12 months of intervention would be more accurate by combining gaze features and

clinical variables compared with employing clinical variables alone.

4.2 Methods

4.2.1 Data collection

From the previous study sample (Chapter 3), we selected a sub-sample of 25 (3F, 22M)

preschoolers with ASD. Some of the families included in the sample from our second
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work agreed to undertake an intervention pathway for their child at ODFLab.

The Laboratory currently delivers early intensive intervention with a developmental

approach in the local community in line with Naturalistic Developmental Behavioral In-

terventions (NDBI) (Tiede and Walton, 2019) as well as in accordance with the Italian

sanitary system (Venuti and Bentenuto, 2017; Venuti, 2012). Intervention is comprehen-

sive and integrates behavioral, developmental, and relational principles. The program is

intensive (4-6 hours per week), including child-specific activities (speech therapy, music

therapy, cognitive activities, and social play) and parental involvement. The therapists

may shift during the course of therapy, but they are all trained and specialized in the

same protocols and goals. Child improvement is constantly monitored and supervised.

After about 1 year of treatment, the children were reassessed to measure their progress

by collecting data on cognitive functioning (GQ) and social skills (ADOS-2 raw score,

Lord et al., 2012). Inclusion criteria required that the subjects had a diagnosis of ASD

without presenting other medical conditions, assessed within 6 years of age, and that sub-

jects started an intensive intervention program with a re-evaluation at least 10 months

later (M duration=14.96 months, SD=5).

For each of the subjects, we collected the eye-contact features (freq, num, dur, d) and

clinical variables (GQ, Coordination, Motor, Social, Perform, Language, ADOS, SA)

during the first assessment from the previous study (Alvari, Coviello, et al., 2021), and

in addition, the clinical variables (GQ, ADOS) measured after the intervention (T1).

Following the data filtering according to the model evaluation as described in the second

study (Section 3.2.4), the sub-sample was reduced from 25 to 18 subjects.

Population characteristics are summarized in Table 4.1.
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Table 4.1: Population characteristics..

T0 T1

n = 18 n = 18

Age (months), mean (SD) 41.1 (12.8) 54.5 (13.3)

GQ, mean (SD) 75.39 (15.4) 82.29 (18.6)

ADOS, mean (SD) 14.1 (3.1) 12.9 (3.8)

Intervention duration (months), mean (SD) 13.5 (3.5)

Note: ADOS: Autism Diagnostic Observation Schedule, 2nd edition, raw
score; GQ: Global Developmental Quotient; ASD: Autism Spectrum Disor-
ders; T0: first assessment; T1: re-evaluation after the intervention.

4.2.2 Data analysis

To analyze the predictive power of eye-contact features, we employed supervised ML RF

regressors. We randomly split the dataset into training, validation, and testing, leaving

30% for the latter. Leave-One-Out cross-validation (LOOCV) was then applied to the

train-val dataset for hyperparameter tuning by grid search. The best-performing model

according to Mean Squared Error (MSE) score was then selected. We first employed the

RF to predict ADOS and GQ scores at re-evaluation (T1) based on clinical variables and

age at first evaluation (T0). Subsequently, we re-run the procedure by adding eye-contact

features as predictors to check for improvement in the performance of models.

4.3 Results

The predictive power of eye-contact features was tested in the intervention sub-sample

to assess the prediction of ADOS and GQ at re-evaluation after treatment (T1) (Figure

4.1).
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Figure 4.1: ADOS and GQ change after treatment (T0 vs. T1). ADOS T0/T1: ADOS raw score at
T0/T1; GQ T0/T1: general developmental quotient at T0/T1.

We employed RF regressors using first the clinical variables with age at T0 as predictors

and then adding eye-contact metrics to check for changes in performance.

Regarding the GQ in T1, the model with the best performance (16 trees, 2 maximum

depths) obtained an MSE=60.08 in validation and MSE=229.2 in testing. By further

exploring the weight of the features in the prediction, the Motor subscale achieved the

highest importance score (Figure 4.2 A1). When adding eye-contact features to the pre-

dictors, the model (16 trees, 2 maximum depth) obtained an MSE=64.86 in validation

and an MSE=127.93 in testing. The Motor subscale maintained a high importance score

along with the frequency of eye-contact periods (Figure 4.2 A2).

Concerning the ADOS-2 score in T1, the RF with the best performance (16 trees, 2 max-

imum depth) obtained an MSE=4.23 in validation and an MSE=22.44 in testing. The

predictors with a higher importance score were the subscale of motor and social abilities

(Figure 4.2 B1). When we added eye-contact features to the predictors, the best model

(16 trees, 3 maximum depth) achieved an MSE=3.88 in validation and an MSE=16.23
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in testing. Components with a higher importance in prediction included the Motor sub-

scale along with the frequency of eye-contact periods during interactions (Figure 4.2 B2).

Figure 4.2: Random Forest regressor feature importance in the prediction of GQ (A) and ADOS (B)
at T1; A1) results for GQ with only clinical variables; A2) results for GQ with both clinical variables
and eye-contact features; B1) results for ADOS with only clinical variables; B2) results for ADOS with
both clinical variables and eye contact features.

Finally, we further analyzed the predictive power of our gaze features by applying them
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alone in predicting both GQ and ADOS after the intervention (T1). Concerning GQ, the

RF with the best performance (64 trees, 2 maximum depth) obtained an MSE=87.92

in validation and an MSE=249.74 in testing. Frequency was the feature with the high-

est weight in the prediction (Figure 4.3 A). As for ADOS, the best model (16 trees,

2 maximum depth) obtained an MSE=4.49 in validation and an MSE=7.41 in testing.

Both frequency of eye-contact periods and the overall distance of the child gaze during

interaction scored high in feature importance (Figure 4.3 B).

Figure 4.3: Random Forest regressors (1) feature importance and (2) prediction results for A) GQ; B)
ADOS.
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4.4 Discussion

In this latter exploratory study, we extended the analyses of previous work (Alvari,

Coviello, et al., 2021) by testing our eye-gaze features to predict early treatment out-

comes on 18 cases after 12 months. Including gaze metrics among the predictors im-

proved the performance of the ML models for both general cognitive functioning and

symptom severity. The combination of eye-contact features and clinical measurements

resulted in improved MSE scores of around 30% in predicting ADOS-2 and 40% in pre-

dicting the GQ at re-evaluation, respectively.

Compared to clinical variables, we did not achieve better results in predicting general

cognitive functioning (GQ) when using eye contact metrics alone. In this respect, the

highest scores are still obtained by combining clinical and eye-contact data. However,

we performed much better (near 70%) in predicting the symptom severity (ADOS) after

the intervention when using eye contact metrics versus clinical variables.

Given the limited sample size, the results of this study should only be interpreted from an

exploratory perspective. Nonetheless, fine-grained eye contact measurements appear to

have a predictive value concerning treatment outcomes, especially in the degree of condi-

tion impairments. The results seemed to confirm what already emerged in the literature

regarding the role of socio-attentive patterns in the impact of treatment and acquisition

of social competencies (D. J. Campbell et al., 2014; Latrèche et al., 2021), highlight-

ing the importance of sustained eye contact in early intervention programs (Fonger and

Malott, 2019). Nonetheless, fine-grained eye contact measurements appear to have a

predictive value concerning treatment outcomes, especially in the degree of condition

impairments.

Along with findings from the previous study (Alvari, Coviello, et al., 2021), these anal-

yses corroborate the potential of computational phenotyping for providing systematic

analyses that may have an important role in the clinical framework of ASD. The appli-
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cation of AI-based methodologies may deliver proper solutions to address the challenges

of personalized intervention (Jaliaawala and Khan, 2020). Designing methods capable of

monitoring behaviors sensitive to spectrum heterogeneity and have predictive value for

treatment outcomes may support clinicians in tailoring intervention programs to children

characteristics and maximizing the impact.
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Conclusions & Future Directions

This project aims to highlight the potential of advanced computational solutions for

addressing the ongoing challenges in clinical practice of the autism spectrum. Our first

study focused on developing methods to elicit new early behavioral markers for early de-

tection of the condition within a diagnostic framework (Alvari, Furlanello, et al., 2021).

Other works focused on early intervention, trying to address the issues of heterogene-

ity and lack of behavioral predictors of outcome related to the design of personalized

intervention programs (Alvari, Coviello, et al., 2021). The twofold approach shared by

all studies was on the one hand to develop advanced methods that could systematically

and ecologically analyze atypical child behavior, and on the other hand to show the

feasibility of such tools in a real clinical environment, addressing the needs of clinicians

for more practical solutions with applicative value.

Behavioral Imaging and computational phenotyping now represent possible solutions to

support clinical practice (Dawson et al., 2018; Dawson and Sapiro, 2019; de Belen et al.,

2020; Sapiro et al., 2018). Although related literature is still experimental in the psy-

chiatric domain, the findings are very promising. Our studies represent further evidence

of the potential of AI-based methods (Alvari, Coviello, et al., 2021; Alvari, Furlanello,

et al., 2021).
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The autism spectrum is a very complex but widely studied condition. Perhaps the un-

derlying nature of the issues persisting in ASD research is less a matter of asking the

wrong questions and more a matter of using the wrong methods. This project explored

ways to address clinicians needs for systematic and refined behavioral measures (Lord

et al., 2012). The objective was to develop effective solutions with translational value,

as this is a leading concern between clinical and research environments (Jaliaawala and

Khan, 2020).

Therefore, we prioritized efforts to provide methods that were quantitative, refined, eco-

logical, and robust to the high variability of dynamic interactive scenarios. As well as

offering automatic alternatives that are cheaper in terms of cost and time, these ap-

proaches can allow clinicians and researchers to observe otherwise inaccessible subtle

behaviors (i.e., infrequent, hard-to-detect, or triggered at-home behaviors) in more nat-

ural scenarios (Dawson et al., 2018; Nazneen et al., 2015). Further, our approaches

relied on paradigms involving rule-based Behavior Imaging models to extract a quanti-

tative set of features from images and then leverage supervised or unsupervised ML for

classification or clustering (Alvari, Coviello, et al., 2021; Alvari, Furlanello, et al., 2021;

Washington, Park, et al., 2020). Combining these techniques allowed us to categorize

atypical infant behavior according to more systematic and fine-grained metrics and over-

come the limitations of more traditional methods of observation (Bentenuto et al., 2020;

Dawson and Sapiro, 2019; de Belen et al., 2020; Hyde et al., 2019; Sapiro et al., 2018).

The results we achieved through this project may offer novel insights both from a method-

ological standpoint, highlighting the application potential of state-of-the-art technolo-

gies, and from a more clinical perspective in terms of the relevance of specific social

behaviors (i.e., facial expressions, eye contact) for early diagnosis and intervention (Al-

vari, Coviello, et al., 2021; Alvari, Furlanello, et al., 2021).

The interpretation of the findings from the studies we conducted is restricted by the

limited size of the clinical samples, which in turn complicates drawing reliable theo-
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retical inferences about the underlying behavioral processes. Nonetheless, the major

contribution of our work is related to the approach and methods employed. Another

critical limitation refers to the scarce control over data, i. e. the lack of structuring of

interactions between child and therapist/caregiver or the high variability in settings and

quality of the videos. This wide variance of data may compromise the quality of the

analysis and the reliability of the methods employed yet promote the generalizability of

the results. The gap between research and stakeholders is mainly due to a preference for

more structured data favoring better performing models (Jaliaawala and Khan, 2020;

Voss et al., 2019). The nature of our approach is oriented towards developing more

applicative solutions and greater attention to the needs of the clinical practice. Hence,

the results of the studies must also be interpreted by taking into account this reasoning

and the inherent limitations of adopting this strategy.

Implementing AI-based models in the clinical framework represents the new frontier and

can give valuable support to children with ASD and their environment. An interesting

outlook derives from the opportunity to offer telehealth solutions that may allow clini-

cians to monitor behavior remotely through parent-recorded materials (Nazneen et al.,

2015). This viewpoint becomes even more relevant if we consider socio-cultural scenarios

where access to healthcare services is limited, such as during a pandemic.

Overall, the studies we have carried out in this doctoral project yield some encouraging

insights (Alvari, Coviello, et al., 2021; Alvari, Furlanello, et al., 2021). Future per-

spectives of our research are manifold and include both a more in-depth analysis of the

results as well as the implementation of these solutions in more concrete systems. The

models we developed represent an initial step towards structuring technologies capable

of analyzing social behavior more comprehensively. It will be interesting to design more

advanced models that can capture more complex interactive dynamics, i.e., by including

elements of object-based attentional triangulation, which is another significant factor in

the diagnosis and intervention of toddlers with ASD (Bentenuto et al., 2020; Rodgers
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et al., 2021; Rogers and Talbott, 2016; Venuti and Bentenuto, 2017; Venuti, 2012).

A further step is to combine multiple behavioral features by acquiring a multimodal per-

spective about child behavior, which has proven to be a successful strategy in Behavior

Imaging (Rudovic et al., 2018). From the other side, it will also be important to evaluate

how advanced AI-based solutions can be embedded into interactive systems which can

be employed within clinical practice. In this perspective, the focus will be to design

concrete applications solutions in cooperation with families and clinicians, leading to

increasingly adaptive user interfaces.

115



Bibliography

Abbas, H., Garberson, F., Glover, E., & Wall, D. P. (2018). Machine learning approach

for early detection of autism by combining questionnaire and home video screen-

ing. Journal of the American Medical Informatics Association, 25 (8), 1000–1007.

Achenbach, T. M., & Dumenci, L. (2001). Advances in empirically based assessment:

Revised cross-informant syndromes and new dsm-oriented scales for the cbcl,

ysr, and trf: Comment on lengua, sadowski, friedrich, and fisher (2001).

Allaoui, M., Kherfi, M. L., & Cheriet, A. (2020). Considerably improving clustering

algorithms using umap dimensionality reduction technique: A comparative study.

International Conference on Image and Signal Processing, 317–325.

Alnajjar, F., Cappuccio, M., Renawi, A., Mubin, O., & Loo, C. K. (2021). Personal-

ized robot interventions for autistic children: An automated methodology for

attention assessment. International Journal of Social Robotics, 13 (1), 67–82.

Alvari, G., Coviello, L., & Furlanello, C. (2021). Eye-c: Eye-contact robust detection and

analysis during unconstrained child-therapist interactions in the clinical setting

of autism spectrum disorders. Brain Sciences, 11 (12), 1555.

Alvari, G., Furlanello, C., & Venuti, P. (2021). Is smiling the key? machine learning

analytics detect subtle patterns in micro-expressions of infants with asd. Journal

of clinical medicine, 10 (8), 1776.

Andriluka, M., Pishchulin, L., Gehler, P., & Schiele, B. (2014). 2d human pose estimation:

New benchmark and state of the art analysis. Proceedings of the IEEE Conference

on computer Vision and Pattern Recognition, 3686–3693.

APA. (2013). Diagnostic and statistical manual of mental disorders: Dsm-5. Arlington,

VA.

Association, W. M. et al. (2013). World medical association declaration of helsinki:

Ethical principles for medical research involving human subjects. Jama, 310 (20),

2191–2194.

116



Azhari, A., Gabrieli, G., Bizzego, A., Bornstein, M. H., & Esposito, G. (2020). Probing

the association between maternal anxious attachment style and mother-child

brain-to-brain coupling during passive co-viewing of visual stimuli. Attachment

& Human Development, 1–16.

Baio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., Warren, Z.,

Kurzius-Spencer, M., Zahorodny, W., Rosenberg, C. R., White, T., et al. (2018).

Prevalence of autism spectrum disorder among children aged 8 years—autism

and developmental disabilities monitoring network, 11 sites, united states, 2014.

MMWR Surveillance Summaries, 67 (6), 1.

Baldwin, M. M., Xiao, Z., & Murray, A. (2021). Temporal synchrony in autism: A

systematic review. Review Journal of Autism and Developmental Disorders, 1–

22.

Baltrušaitis, T., Mahmoud, M., & Robinson, P. (2015). Cross-dataset learning and

person-specific normalisation for automatic action unit detection. 2015 11th IEEE

International Conference and Workshops on Automatic Face and Gesture Recog-

nition (FG), 6, 1–6.
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