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QSPcc reduces bottlenecks in computational model
simulations
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Mathematical models have grown in size and complexity becoming often computationally

intractable. In sensitivity analysis and optimization phases, critical for tuning, validation and

qualification, these models may be run thousands of times. Scientific programming languages

popular for prototyping, such as MATLAB and R, can be a bottleneck in terms of perfor-

mance. Here we show a compiler-based approach, designed to be universal at handling

engineering and life sciences modeling styles, that automatically translates models into fast C

code. At first QSPcc is demonstrated to be crucial in enabling the research on otherwise

intractable Quantitative Systems Pharmacology models, such as in rare Lysosomal Storage

Disorders. To demonstrate the full value in seamlessly accelerating, or enabling, the R&D

efforts in natural sciences, we then benchmark QSPcc against 8 solutions on 24 real-world

projects from different scientific fields. With speed-ups of 22000x peak, and 1605x arith-

metic mean, our results show consistent superior performances.
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In Natural Sciences, modeling often involves the development
of a mathematical formulation of the time evolution of phy-
sical entities, typically using ordinary differential equations

(ODEs). ODEs are a deterministic representation of the under-
lying structure of the considered system. ODE models are used in
physics, chemistry, biology, engineering, economics and many
other application fields. Among these fields, quantitative systems
pharmacology (QSP) is an emerging discipline, consisting in an
approach to describe pathophysiology of a disease and the
response to pharmacological intervention1,2. In the context of
systems biology, ODEs depict the dynamical properties of the
interaction between the drug and the biological system as a
whole3, an approach that can help the design and the validation
of non-clinical and clinical experiments and can accelerate drug
discovery and development4,5.

Finding solutions to the initial value problem (IVP) is a task
that, apart for a limited number of cases, must be performed
numerically4,6,7. To this aim, different ODE integration algo-
rithms have been developed. Their implementations are available
in mathematical libraries of most programming languages.
However, not all implementations have the same efficiency in
terms of accuracy and integration time. Many different integra-
tion methods can be employed, each of them with its own
parameter set. Models may not necessarily involve ODEs and
may use other algorithmic scripting code. Time performance of
different programming languages is also an issue. With increasing
system size in terms of multi-scale systems, number of simulated
variables, length of simulated time, and numerical stiffness,
execution time can increase up to the point of making the pro-
blem intractable. QSP models can contain multiple biological
scales and large sets of simulated molecules, that may require
years of simulated lifetime and repeated runs for virtual patient
populations. High-level and easy-to-use interpreted languages
such as MATLAB8 and R9 tend to be slower in terms of execution
time than lower-level and compiled languages such as C and
Fortran. However, the former usually offer a more user-friendly
environment for the development of models and are more
familiar among scientists working in different research fields,
while the latter requires programming skills that are usually
beyond the average scientist’s knowledge and are prone to
diverting the research efforts from the modeling activity to coding
and debugging.

The elastic mesh bridging the five pillars of biological reason-
ing, modeling, performance issues, ease-of-use and flexibility has
been woven by multiple solutions, each focusing on specific areas.
Facing the computational complexity of large mathematical
models in rare lysosomal storage disorders (LSDs), in this paper,
we review and systematically benchmark the currently available
solutions allowing to cut down the increasing simulation time of
the modeled pathophysiology. We also contribute a compiler-
based solution, namely QSPcc, delivering flexibility in the variety
of handled models, ease-of-use in the limited or not-required
adaptations to existing code and performance speedup in large
scale projects.

Results
We used 24 real-world projects to demonstrate QSPcc’s ability to
translate a wide set of different models and algorithms and to
improve their time performance. We extensively searched the
literature using databases such as PubMed and Google Scholar for
modeling papers describing a MATLAB implementation. From
the results we identified, we considered only those satisfying these
criteria: (1) the source was available as a set of MATLAB scripts,
(2) it was of a significant dimension, (3) the code ran as-is on
MATLAB. In Supplementary Table 1, we provide the

comprehensive list of 62 test cases, including the 24 real-world
projects, with running times and performance gains, including
additional benchmarks. QSPcc automatically generated equiva-
lent C code for every test. Results involving numerical integra-
tions may contain negligible differences in the order of, or smaller
than, the relative and absolute tolerances. This happens because
MATLAB and C use different underlying algorithms and tem-
poral adaptivity strategies to perform the integration (see Sup-
plementary Tables 4 and 6). In Fig. 1a, we summarize the
solutions available to execute standardized SBML representations
and the performance gain of 8 mathematical models. In Fig. 1b,
we summarize the solutions available to execute MATLAB-only
model representations and the performance gain of 16 real-world
mathematical models. These models cannot be handled by SBML
solutions, while the topology optimization10 works only in QSPcc,
other than MATLAB. The figures show the speedup, i.e., how
many times each solution simulates faster than MATLAB, used as
baseline (in gray).

It is worth noting that SBML representations can be easily
converted to MATLAB due to their standardized form, while the
vice-versa is not true in general. Further, the speed-ups depend
mainly on the integrator used and the modeled biological reac-
tions, while in general MATLAB code speed-ups can depend
heavily on the model implementation. Table 1 summarizes the
biological models of considerable size and relevance that have
been directly developed by the authors using QSPcc.

Each model was executed 5 times. The bar chart of Fig. 2
reports the median value and the MAD for each model. We
observe that the C translation significantly improves the execu-
tion time in all the presented models. The R example of ASMD,
provided as a demonstration of the compiler’s ability to work
with multiple languages, runs much slower than the corre-
sponding MATLAB case. This could be because MATLAB par-
allelize several operations automatically, while the R core
functionality is intrinsically single-threaded. A full-stack R sup-
port can be openly pursued by the research community.

In the next section, we introduce the clinical lysosomal storage
disorders research project11 where QSPcc was conceived, devel-
oped, and successfully applied. We then present in depth three
use-cases from published literature. (1) Acid Sphingomyelinase
Deficiency (ASMD)12, a deterministic QSP model based on a
system of ODEs; (2) The Spatiotemporal development of gran-
ulomas in tuberculosis (GranSim)13, a hybrid Agent-Based/ODE
framework; and (3) Covariance Matrix Adaptation—Evolution
strategy (CMA-ES)14–16 a state-of-the-art evolutionary algorithm
for the minimization of a target function used in optimization
problems and model calibration. A visual overview of the test
cases is presented in Fig. 2. For these complex models, a SBML
counterpart is not available.

Lysosomal storage disorders models. We developed the QSPcc
compiler to enable an ambitious research project focused on
creating an integrated computational platform to support
research and therapeutic development for the sphingolipidoses11.
The QSP platform was created incorporating three different large
models of ASMD (described in the next section)17, Gaucher
disease type 118 and Fabry disease. Each model in turn had been
developed incorporating and describing clinical trial and experi-
mental data from approved and in-development drugs, bio-
markers dynamics, metabolic and transport mechanisms. The
integrated platform models organ-level clinical manifestations,
genotype-phenotype relations, molecular metabolisms and drugs’
effects. As a counterpart for this level of details, the integrated
platform has more than 300 equations and 500 parameters,
resulting in a long simulation runtime in MATLAB. The use of
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QSPcc for the simulation provided a significant speedup (more
than 100x, see Fig. 2) allowing the smooth progress of the
research project.

In addition, QSPcc has also been successfully applied to
support the development of an unsupervised stratification
methodology19, which is also tested on the Gaucher disease18.
The algorithm is based on a mathematical model description of a
disease of interest and involves a global sensitivity analysis and
multiple model calibration steps, requiring generally hundreds of
thousands of model simulations. Thus, the computational effort

of the method is strictly connected with the simulation runtime of
the model. In the clinical test case described in the paper, the use
of QSPcc allowed the authors to seamlessly employ a custom
MEX function to simulate a QSP model of Gaucher disease type
I18 while keeping the rest of the methodology in the MATLAB
language. The MEX function halved the simulation runtime of
the model, thus reducing the execution of the complete
methodology from nearly one month to twelve days. More
numerical details about the computational efforts can be found in
the Supplementary Material of19.
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Fig. 1 QSPcc consistently delivers superior performances of different orders of magnitude compared to other solutions. The gradient violet to yellow
depicts how many times the given combination model/translator is faster than MATLAB (the lighter, the better). The running time of each model was
measured averaging five different executions. White blocks represent models that cannot be translated to C even after a significant hands-on effort (see
Comparison with other tools for further details). a Comparison of 5 SBML-based model simulation solutions on 8 real-world published SBML models
retrieved from BioModels, b comparison of 3 MATLAB-based modeling solutions on 16 real-world models for which no SBML exist. They come from
published literature retrieved from Pubmed (“PAPER”) or as benchmarks of the tool “MOCASSIN”, from “MATLAB” samples, from the Lysosomal Storage
Disorders family of models (“LSD”), or in-depth “Case Study” discussed in the text 39–46.

Table 1 Models of significant biological complexity and clinical relevance the authors developed leveraging the QSPcc compiler.

Model

Metric ASMD Fabry Gaucher LSD platform Tuberculosis (GranSim) GBA-PD Capuani2015

No. of equations 54 154 82 312 13 ODEs + rule-based interaction
of cells

105 212

No. of parameters 117 234 83 506 44 150 16
Matlab time (s) 21.5 1168.2 74.9 25.7 166.2 1.6 12.5
QSPcc time (s) 1.41 3.1 2.5 0.2 68.3 0.003 0.2
Speedup 15x 377x 30x 128x 2.43x 533x 63x

Typical real-world complexity and challenges lie in the number of simulated equations, parameters, the overall stiffness of the system and the complexity in the code to meet the biological objectives. The
EGFR Early Activation Model published in Capuani38 did not benefit of QSPcc. However, currently ongoing extensions do. For public reproducibility, the reported benchmark refers to the BioModels’
public version.
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Acid sphingomyelinase deficiency. The development of QSPcc
was initially aimed at enabling QSP model simulations in the LSD
platform made of ASMD, Gaucher, and Fabry sub-models. Here,
we analyze the ASMD model17, a recently published QSP fra-
mework describing non-neurological Acid Sphingomyelinase
Deficiency (ASMD)12,17,20. ASMD is a rare lysosomal storage
disorder caused by the reduced functional enzyme acid sphingo-
myelinase, leading to accumulation of sphingomyelin in multiple
tissues resulting in clinical manifestations such as organomegaly
and decrease in lung function. ASMD is a serious and potentially
fatal disease. In17, the ASMD model is presented in detail and
tested on different preclinical and clinical studies, including two
human studies. Olipudase alfa (recombinant human acid sphin-
gomyelinase, rhASM) is an enzyme replacement therapy under
development for the treatment of the non-neurological manifes-
tations of ASMD. The replacement of the deficient enzyme can
clear the accumulated substrate and alleviate the symptoms of the
disease. To model the action of rhASM, a system of 52 ODEs was
implemented in MATLAB. QSPcc translated the ASMD model in
C and R. To compare the results, we performed time-course
simulations and collected timeseries of 200,000 steps for each
variable of the ODE system. Then, we computed the relative error
between MATLAB and R, and MATLAB and C, averaged over all
the 52 variables at each time steps of the integration. We

computed the relative error using the following formula.

abs A� Bð Þ
10�6 þmin abs Að Þ; abs Bð Þð Þ

where A and B are values of each variable computed by the source
or target code, abs() is the absolute value and min the minimum
between two values. The expression 10−6 at the denominator
avoids the explosion of the relative error when the values are
extremely small and does not affect the computation since it is
significantly smaller than the relative tolerance, which was set to
10−3.

The comparison of the results and a graphical representation of
the model, designed with the executable Visual QSP modeling
platform bStyle21, are illustrated in Fig. 3. By default, the
MATLAB ODE solver has a relative precision of 10−3, used also
for the other modeling languages. The results of the translated
models are in good agreement with the original results.

Spatiotemporal development of granuloma in Tuberculosis.
QSPcc can be applied beyond pure ODE-based models. For
instance, GranSim13 is a hybrid Agent-Based/ODE model that
describes the spatiotemporal development of granulomas. The
model describes the growth of intracellular and extracellular

Fig. 2 Runtime analysis of the case studies and lysosomal storage disorder models (LSD). Median running times, with the corresponding median
absolute deviation (MAD) of the original MATLAB implementations, and the QSPcc-generated C and R benchmark models. Each model was run 5 times.
From left to right. The three clinical lysosomal disease models, benefitting of 15x, 377x, and 30x speed-ups each, that we integrated in the fourth LSD
platform11, which ran 128 times faster in the intensive model optimization phase. The R simulation is consistently slower than MATLAB. It is provided only
for ASMD, one of the three representative in-dept case studies part of the LSD platform, as a demonstration of the compiler’s ability to work with multiple
languages. On the right, the two in-depth case studies described in the text for Tuberculosis agent-based modeling and CMA-Es evolutionary optimization
algorithm.
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Mycobacterium tuberculosis, and the containment efforts of
several immune cell types within the broad categories of macro-
phages and T cells. The model was originally published in 2013,
and subsequently several extensions (i.e., including other cell
types, incorporating treatment effects, etc.) have been published.
The model itself has been distributed as an executable, not in

code. Supplementary documents describing the ABM rules and
ODE structure were used to implement GranSim in the MATLAB
environment13. The MATLAB implementation was then trans-
lated to C using QSPcc. For each agent of the model, the system
modeled in this example consists of 13 ODEs describing the
production of TNF-α and IL-10 cytokines, the binding of ligand-

Fig. 3 Model diagram of the acid sphingomyelinase deficiency (ASMD) with QSPcc model translation simulation accuracy. ASMD is a rare lysosomal
storage disorder, here modeled treated with the investigational olipudase alfa enzyme replacement therapy. a ASMD model represented as a biological
pathway in the bStyle environment21. b Relative error for each time step of integration, averaged over all variables of the target R model compared to the
source MATLAB model. c Relative error for each time step of integration, averaged over all variables of the target C model compared to the source
MATLAB model.
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receptor, and the release into the extracellular space. Each agent
follows then a set of rules describing the movement on the
simulated grid.

Since GranSim is partially based on random moves, we
simulated eight times both the original implementation and C
translation and collected the statistics of two variables of the
model (Total Bacterial Load and the number of Activated
Macrophages) at several time steps, following the example of
Fig. 4 in13. As shown in Fig. 4, the statistics show agreement
between the two versions of the model.

Covariance matrix adaptation—evolution strategy (CMA-ES),
a non-linear, non-Newton evolutionary optimization algo-
rithm. Another example that shows how QSPcc can be applied
beyond the field of modeling and systems biology is the trans-
lation of the popular, state-of-the-art, CMA-ES algorithm, widely
used in model parameters optimization. CMA-ES14,15 is an
evolutionary algorithm for non-linear, non-convex black-box
optimization problems. In contrast to quasi-Newton methods,
CMA-ES does not use or approximate gradients and does not
even require their existence. This makes the method feasible on
non-smooth and even non-continuous problems, as well as on
multimodal and/or noisy problems. It turns out to be a particu-
larly reliable and highly competitive evolutionary algorithm for
local optimization14 and for global optimization15,16. Even if C
implementations of CMA-ES already exist (https://github.com/
CMA-ES/c-cmaes), they are implemented from scratch.

Assuming to take the MATLAB implementation as a reference, a
change in the original algorithm will make them outdated and
will require a manual intervention to update the code. With
QSPcc, we were able to automatically translate the CMA-ES
algorithm directly from its MATLAB implementation, meaning
that any manual update of the MATLAB algorithm can be simply
followed by re-running QSPcc to automatically obtain the
updated C translation.

Tests of the CMA-ES translation were executed on some
popular benchmark functions (Rastrigin, Rosenbrock, Schwefel,
and elliptic functions)22. We ran the algorithm ten times and
compared the average fitness (the minimum of the target
function) between the MATLAB and the C results in Fig. 5.
Again, the dynamics of the translated version of the model agrees
with one of the original models.

Comparison with other tools. Sixteen real-world, MATLAB-only
models are listed in Fig. 1b, in which we compare the runtime
improvement of QSPcc C translation with MATLAB and
MATLAB Coder (https://www.mathworks.com/products/matlab-
coder.html). We also tested, and excluded from the figure,
AMICI23, CVOde Wrapper24 and matlab2cpp25 because they
require the MATLAB code to be entirely rewritten to fit their own
format/coding style. We tested Sbaddon26 in a previous version
with similar outcomes, but we were unable to install it on a recent
MATLAB installation. The compiler-based approach in QSPcc
allows to read the normal MATLAB syntax without changes.

Fig. 4 Correctness of the tuberculosis GranSim model translation. The error bars represent the standard deviation of the average over five simulation
runs. a Total bacterial load and (b) number of activated macrophages at selected timepoints compared for MATLAB and QSPcc-generated C code.
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Further, considering the interoperability value, we compared
eight manually curated SBML model representations with a wide
range of alternative solutions: MATLAB, MATLAB Coder, AMICI,
libRoadRunner and COPASI. Our results are depicted in Fig. 1a.
The MATLAB code for the models was downloaded from the
BioModels web portal (https://www.ebi.ac.uk/biomodels/).

MATLAB is a comprehensive framework and a programming
language that expresses matrix and array mathematics easily. It is
currently a de-facto standard in the field. It provides a C interface
named C/MEX (https://www.mathworks.com/help/matlab/ref/
mex.html), a C dialect that can be compiled and run within
MATLAB to speed up critical computations. The drawback of C/
MEX is that the user should be able to hand-write correct C code
and correctly interface it with the MATLAB libraries.

Another solution is MATLAB Coder (https://
www.mathworks.com/products/matlab-coder.html), a MATLAB
module that can automatically translate the MATLAB language
and some built-in MATLAB functions to C/MEX code as well as
standalone C++ code. The main drawback is that some common
functions (such as ODE solvers for stiff problems), are still not
supported in standalone mode, while the alternatives (such as
ode23 or ode45) are too slow in the LSD diseases we were
modeling, as well as in the benchmarks, see Fig. 1. Further, it does
not support scripts, structured projects (addpath is not
supported), does not handle comparisons between scalars and
matrices, does not allow to write output directly in standalone
mode (disp is ignored, writematrix, load, save are unsupported),
requires variables to (1) be always initialized in the main function
block before use (2) that matrices should not be resized during

execution (this can be circumvented by adding specific code for
every dynamic variable). To successfully translate LSD models
with Coder, we had to heavily change the MATLAB code, and it
took an expert engineer who knew the models an average of
3 hours per model with a peak of 6 hours trying to translate
GranSim.

SBaddon is an extension package to the Systems Biology
Toolbox for MATLAB, focusing on parameter estimation
problems. It allows to speedup integration by exploiting the
Sundials library, but it is discontinued since 2006, and we were
not able to install it on a recent MATLAB release.

Other solutions, such as CVode wrapper, AMICI and
matlab2cpp provide means to semi-automatically translate from
MATLAB to C/MEX but requires ad-hoc engineering of the
MATLAB code to adhere to a specific code format or to manually
complete the translation, thus preventing translation of large,
complex or already-existing models. Matlab2cpp is a semi-
automatic translation tool, where user should manually fill all
data types required by C++ code.

Visual tools21,27 allows to draw and manipulate models
represented as a network of reactions. As such they can be
exported to, and/or imported from, SBML or any other reaction-
based model representation. The drawback is that not all models
can be represented as a network of reactions (for example, the
use-case GranSim is not even an ODE model). There are systems
biology solutions that allow us to convert from MATLAB to
SBML28, but in general, code cannot be automatically understood
and represented as a network of reactions other than in a reduced
number of cases28.
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Fig. 5 Correctness of the evolutionary optimization CMA-ES algorithm translation. Average and standard deviation over ten executions of the CMA-ES
fitness algorithm for some typical benchmark functions ran in MATLAB and QSPcc-generated C code. The times of the three benchmark functions of the
right are multiplied by 10−10 to keep them all on the same scale.
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Finally, some solutions, such as libRoadRunner, AMICI and
COPASI, directly execute a reaction-based representation, such as
SBML, and does not require changes to the code to run. We
benchmarked QSPcc against manually curated models repre-
sented in SBML by downloading their MATLAB equivalent from
the BioModels website.

The results summarized Fig. 1 demonstrate the general
applicability of QSPcc even on standardized SBML representa-
tions, and at the same time shows a significant speedup compared
not only to MATLAB, but also to any other alternative solution.

From the results, we can draw three main conclusions: (1)
QSPcc-generated C always outperforms MATLAB, and the other
solutions, in most of the cases and (2) Existing solutions are able
to handle fewer cases compared to QSPcc (3) Existing solutions
require manually tweaking of the original code, while QSPcc is
able to work out of the box. For these reasons, QSPcc is better
suited for large, already existing, MATLAB models, where re-
implementing the model in another language or heavily adapting
the existing one is not desirable or feasible.

Another goal of QSPcc is to improve the time performance of
model simulation and in the Supplementary Table 1 file we report
the results on 62 test models. QSPcc can leverage different ODE
solvers and libraries to speedup the computation, including the C
ODE solver library sundials from version 2.7 to 5. Since QSPcc is
being actively developed, it defaults to the latest sundials
version29. Highly efficient math library MKL30 version 2020
can be also used to speedup matrix-based operations.

Discussion
In several research fields, including natural science and QSP, the
runtime of modeling and simulation is becoming a crucial issue.
Mathematical modeling is the art of simplifying a complex phe-
nomenon in terms of a mathematical description that is both
easily understood by humans and computationally tractable by
machines. In recent years, however, models have increased in
complexity to capture the phenomenological realism required to
describe the dynamical properties of the modeled biology. The
execution time may become a bottleneck for more detailed and
complex mathematical models, which demand more computa-
tional resources, especially using higher-level modeling languages.
To mitigate these issues we were facing, to enable the simulation
of previously intractable problems by speeding up the simulation,
and allowing seamless translation between modeling languages,
we developed and present QSPcc, a new compiler-based
translation tool.

QSPcc translates models from a source language, in our test
cases MATLAB, to another programming language, in our test
cases C or R. We demonstrated with several examples that the
results of the translated models are as accurate as the source,
whereas the running time improvement often enables the
execution of previously intractable problems. In addition, we
compared and benchmarked QSPcc against the currently avail-
able solutions proving QSPcc to be significantly faster and com-
prehensive than other state-of-the-art methods. Moreover, QSPcc
allows modelers to quickly translate part of their MATLAB code
into efficient C/MEX that can be seamlessly included in other
MATLAB projects.

QSPcc works out of the box on the source code and does not
require code manipulation or a specific syntax prior to the
translation. QSPcc can automatically translate a large set of
mathematical expressions, such as linear algebra operators and
mathematical functions. Furthermore, even complex functions
such as load, setdiff, union, interp1 in MATLAB are seamlessly
translated to equivalent target language code (the full list of
constructs currently supported is reported in Supplementary

Table 3). On the contrary, many existing solutions demand to
manually tweak the source code, and thus, to maintain two ver-
sions of the same model, one for MATLAB and one for the
translator. The far greater number of programs that QSPcc
translates with respect to competitors demonstrates that our tool
is more flexible and general-purpose than other tools available.
QSPcc runs on all modern Operating Systems thanks to our pre-
configured Docker container31. In this way, it does not require
strong programming skills to optimize arbitrary models execution
nor system administrators’ assistance to install Java, C compilers
and configure C libraries.

QSPcc is modular as it allows any developer to easily extend its
functionalities in many ways. For example, new functions of the
source language can be easily included by either providing the
code for the function in the source language or by providing a
translation in the target language. It is also possible to add new
languages previously unsupported such as Julia32 or Python,
either as a source language or as a translation target. Analogously,
the implementation of existing languages could be further
extended to add new language constructs or increase time effi-
ciency. As an example, we developed the R language support
necessary to translate the ASMD model in R. The QSPcc R
backend already correctly executes 35 out of the 62 test models
and is provided as a demonstration of the compiler’s flexibility
and an occasion for further extension. See the QSPcc doc-
umentation (https://github.com/cosbi-research/QSPcc) for fur-
ther instructions.

Furthermore, QSPcc is open-source under the BSD3-Clause
license. Currently, we support the open-source languages C and
R, thus allowing users to choose between licensed software and
open-source applications to run their simulation or algorithms.
Commercially licensed software such as MATLAB ease develop-
ment and debugging but they require a MATLAB license to run
the model. On the other hand, QSPcc allows researchers to exe-
cute MATLAB code in a non-MATLAB environment, and inte-
grate multiple languages (e.x. R and MATLAB) in a single
translated executable such as C or MEX. Refer to Supplementary
Tables 3, 4, 5 and 6 for the mappings among them.

Among the complete list of benchmarked cases (see Supple-
mentary Table 1), we have selected a MATLAB implementation
of a computationally intensive engineering algorithm named
topology optimization, refer to10 for the details. The QSPcc-
generated C translation produced the correct result, but the
running time execution of the C code resulted in only a 5%
improvement over the original MATLAB model (2.8 secs for C
versus 2.93 secs in MATLAB) even when using the hardware-
accelerated Intel MKL library sparse matrices and related
operations implementation. The exact motivation is to be inves-
tigated further and is most probably related to either a suboptimal
C implementation of matrix operations or to fast built-in matrix
operations in MATLAB.

As a future improvement, we are planning to optimize even
further the C code generation, to expand the number of sup-
ported constructs, and to gradually expand the coverage and
efficiency of the R support as well.

Finally, QSPcc increases the portability of the models and
algorithms by easing the transition between languages. An algo-
rithm in MATLAB could be made accessible to researchers
familiar with a different scientific language such as R, C or pro-
vided that a corresponding language module was developed,
Octave, Python or Julia. QSPcc generates code providing a side-
by-side comparison of languages, helping people learn and
understand less familiar languages used by the collaborators.
After the translation, the model can be extended with libraries
belonging to the target language that are not present in the source
language.
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We sincerely hope to support the wider community’s research
efforts until new disruptive computational platforms become a
readily accessible reality.

Materials and Methods
QSPcc is a language translator tool, empowering researchers with state-of-the-art
compiler technologies. It implements a source-to-source compiler able to build an
abstract representation of the input language and to generate the target language
output from the abstract representation itself. The tool can be logically divided into
three main blocks organized in a workflow as illustrated in Fig. 6, namely (1)
Front-end language analysis (2) Middle-end Abstract Syntax Tree enrichment, (3)
Backend target language generation. Here, we describe in detail the operations
performed by each block of the QSPcc pipeline.

Front-end. The aim of the front-end block is to perform lexical syntax analyses. At
the beginning, the front-end splits the input files in tokens that are relevant for the
input language. The front-end is able to recognize variable identifiers, assignments
and keywords corresponding to reserved statements of the source language. Then,
the front-end performs a syntax analysis. The token list is organized in a tree
structure called Abstract Syntax Tree (AST)33. The process of organizing the tokens
is called parsing. Parsing follows the rules defined in a formal grammar that defines
the syntactical structure of the input language. Every front-end builds a Directed
Acyclic Graph of ASTs called Program to be used by the middle-end for the
subsequent analysis phase.

For the MATLAB front-end, we wrote the grammar with the parser generator
ANTLR version 334 to perform the tokenization and the AST tree generation.

Middle-end. The middle-end is the core part of QSPcc that performs the semantic
analysis on the AST. The middle-end takes as input the un-annotated AST built by
the front-end and returns the same AST enhanced with type information for the
different nodes of the tree. We refer to this enhanced version as Annotated AST
(AAST).

The annotation process includes three main sub-operations that together
generates the AAST. (1) Type inference, namely the automatic detection of the
variable types, the identification of the function parameters and output values. (2)
Type checking, namely checking the compatibility between the variables and the
operators they are applied to. For instance, the MATLAB quotient ‘/’ between two
1-dimensional vectors is an undefined operation, as the point-wise quotient is
already defined by ‘./’. (3) Environment checking, namely checking if used variables
and functions belong to their scope. For instance, a function g defined inside a
function f, will be available for use only inside the function f, any call to g outside f
will be undefined.

The middle-end acts as a full multi-pass compiler that collects type information
for variables and functions refining type and scope information at every subsequent
step until every variable and function is fully defined.

In this way, eventually, every function and every variable will get its type, and in
some cases even more than one possible type since limited polymorphism is
allowed. The iteration stops when all the variables and all the functions in the tree
are fully defined. This mapping is independent on the order the variables are
defined given that every variable is defined before use. The AAST built in this way
is equivalent to the Intermediate Representation (IR)33 of the program that many
compilers, such as the gcc C compiler, write as an iterative sequence of low-level

commands. The advantage of having a tree shaped AAST versus an IR is the
readability and ease of debugging and visualization.

The AAST produced by the middle-end can be either passed along the
translation chain to the configured backend or rendered in SVG using the dot
visualization tool35 that belongs to the graphviz library bundled within QSPcc. This
allows developers to debug easily the middle-end behavior, and users to understand
what type is assigned to variables in the source code.

Backend. The backend translates the AAST to code in the target language. Thanks
to a careful translation, the input Program does not need to be in static single
assignment form like other MATLAB compilers require36, and also limited type
polymorphism is allowed (Ex. matrices can be used as scalars and vice-versa). This
flexibility allows modelers to focus on developing the model rather than on
translation issues.

C backend. C backend generates C code, compatible with all the main C
compilers such as gcc (GNU C Compiler), clang (llvm C compiler), icc (intel C
compiler) and pgc++ (NVIDIA C compiler), and with C/MEX that can be used as
a building block in a MATLAB project. Since C is more verbose than MATLAB,
comments reporting the source line are copied above each translated statement,
making it easy to inspect and modify the output. Furthermore, the generated C
code is also automatically parallelized on CPU with openMPI37 and hardware-
optimized implementations can be used whenever possible with the Intel Math
Kernel Libraries (MKL). ODE models are simulated with the Sundials solver29.
During the simulation, QSPcc C translation can automatically recognize out-of-
bound variables (such as NaN, Infinity ecc) and report to the user the current time
step and the variable(s) out of bounds.

R backend. Another backend included in QSPcc is the R backend. In the current
implementation, this module is able to translate a good subset of MATLAB models
to R. However, this module was developed as an example and has not been brought
to the level of the C backend.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data supporting the findings in this study are available as mathematical models either
in the public GitHub repository or in the discussed referenced articles. The source data
underlying all figures and tables are available at https://www.cosbi.eu/fx/298319232/
qspcc_source_data.zip.

Code availability
QSPcc is publicly available under the BSD-3 license at https://github.com/cosbi-research/
QSPcc. https://doi.org/10.5281/zenodo.5036945.
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