
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3149371, IEEE
Transactions on Dependable and Secure Computing

1

Discovery and Identification of Memory
Corruption Vulnerabilities on Bare-metal

Embedded Devices
Majid Salehi, Luca Degani, Marco Roveri,

Danny Hughes, Bruno Crispo, Senior Member, IEEE

Abstract—Memory corruption vulnerabilities remain a prevalent threat on low-cost bare-metal devices. Fuzzing is a popular technique
for automatically discovering such vulnerabilities. However, bare-metal devices lack even basic security mechanisms such as Memory
Management Unit. Consequently, fuzzing approaches encounter silent memory corruptions with no visible effects, making even
discovery difficult. Once discovered, it is also essential to identify the type of observed vulnerability for applying mitigation. Both
discovery and identification remain open challenges in the case of fuzzing firmware binaries. This paper addresses these problems by
proposing an automated instrumentation technique that allows the observation of memory corruption vulnerabilities that are otherwise
not observable and facilitates the automated identification of the observed vulnerability. Additionally, we surveyed state-of-the-art IoT
fuzzers and analyzed their experimental methodologies. We found that existing approaches have fundamental problems that lead to
incorrect or misleading results. To evaluate the effectiveness of IoT fuzzers, it is essential to determine the range and type of
vulnerabilities that these fuzzers can discover. Thus, we propose the first ground-truth benchmark suite for IoT fuzzers that enables
accurate and consistent evaluation of their vulnerability-finding performance. Our instrumentation framework’s efficacy and efficiency in
combination with state-of-the-art IoT fuzzers are assessed using the proposed benchmark.

Index Terms—IoT security, fuzzing, benchmark, memory corruption vulnerability

�

1 INTRODUCTION

THE use of Internet of Things (IoT) technologies has
been increasing in many safety-critical settings, such

as industrial control systems, automotive, unmanned aerial
vehicles (UAVs), implantable medical devices, etc. Recently,
Ericsson [1] predicted that the number of IoT devices will
increase to around 19 billion worldwide by 2022. As IoT
applications and scenarios are getting more mature and
pervasive, they are also becoming a target of malicious and
criminal activities.

A significant portion of deployed IoT devices use low
cost bare-metal devices, called so because without an op-
erating system. Such devices execute a single binary image
(i.e. firmware) in a privileged mode with direct access to the
processor and peripherals. For the reason of efficiency, C and
C++ are the most popular languages used for developing
those firmware. However, such programming languages are
neither type-safe nor memory-safe, and memory corruption
vulnerabilities such as buffer overflows remain a prevalent
threat on such platforms.

Furthermore, compromising these devices is not con-
fined to the device itself, but it can be used to gain access to
higher level systems, as recently shown by Google’s P0 [2]
that exploiting Broadcom’s WiFi SoC in mobile devices en-

• M. Salehi and D. Hughes are with imec-DistriNet, KU Leuven, 3001
Leuven, Belgium.
E-mail: {Majid.Salehi, Danny.Hughes}@cs.kuleuven.be.

• L. Degani is with University of Trento, Trento 38122, Italy, and also
with the Istituto di Informatica e Telematica, Consiglio Nazionale delle
Ricerche, Pisa, Italy. E-mail: Luca.Degani@unitn.it.

• M. Roveri and B. Crispo are with the University of Trento, Trento 38122,
Italy. E-mail: {Marco.Roveri, Bruno.Crispo}@unitn.it.

abled adversaries to gain control over the main application
processor of the mobile device. As a result, it is crucial to
discover vulnerabilities also in bare-metal firmware.

Fuzz-testing or fuzzing is a popular technique for au-
tomatically discovering vulnerabilities in applications. The
main idea of fuzzing is to feed a randomly/guided gener-
ated inputs to the target under test in order to trigger bugs
through crashes or other observable behaviors. Among all
fuzzing techniques, greybox fuzzing is considered state-of-
the-art in both industry and academia due to its applicabil-
ity, lightweight instrumentation and fast coverage feedback,
enabling it to reveal thousands of vulnerabilities in real-
world applications.

Fuzzers developed for general purpose computers enjoy
a wide number of deployed mechanisms for discovery and
identification of memory corruption vulnerabilities such as
segmentation faults and memory sanitizers. On the contrary,
fuzzers for bare-metal devices encounter some obstacles that
make it extremely challenging to apply traditional fuzzing
mechanisms on firmware directly.

First, as pointed out by Muench et al. [3], memory cor-
ruption vulnerabilities are less likely to crash the bare-metal
firmware than general purpose computers, causing fuzzing
techniques to miss some vulnerabilities after encountering
and triggering them. Muench et al. proposed six simple
heuristics for embedded firmware and integrated them with
a blackbox fuzzer in order to make memory corruptions ob-
servable. However, these heuristics suffer from their reliance
on a set of information that can be obtained only by ap-
plying tedious work of advanced static analysis and reverse
engineering techniques on firmware. Second, once a number

Page 1 of 35 Transactions on Dependable and Secure Computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3149371, IEEE
Transactions on Dependable and Secure Computing

2

of crashes is found, it is necessary to identify the location
and root cause of each crash for fixing the underlying bug.
However, crash triaging remains a manual, time-intensive
endeavor for IoT fuzzing. Third, the ability to instrument
binary images is an essential requirement for detection and
identification of memory corruption vulnerabilities. Indeed,
instrumentation tools can be utilized for combining mem-
ory sanitization methods with fuzzers in order to check
every memory access and track (de)allocations for every
memory object. Unfortunately, binary instrumentation tools
are rarely available for bare-metal devices. Fourth, evaluat-
ing fuzzing mechanisms proposed for IoT devices is very
challenging owing to the randomness of the process (i.e.,
each fuzzing run on an application may produce different
results than the last due to the use of randomness) and
domain specialization (e.g., a fuzzing mechanism may only
work for a certain type of vulnerability or in a certain
environment). We surveyed and assessed the experimental
evaluations conducted by recent research literature and
found problems in every one of them. For example, most
of the IoT fuzzers counted the number of crashing inputs
discovered in order to evaluate vulnerability-finding perfor-
mance. Nevertheless, different inputs could cause crashes
by triggering the same vulnerability, leading to misleading
or incorrect conclusions. Some fuzzers employ heuristic-
based approaches [4] with the aim of de-duplicating inputs
that trigger the same vulnerability, obtaining a ”unique”
input for that vulnerability. However, heuristics are ineffec-
tive in identifying unique vulnerabilities [5]. In other words,
disambiguating crashing inputs and correctly counting the
number of discovered vulnerabilities is limited by the lack
of a benchmark suite with ground truth for IoT fuzzers.

In this paper, we present an automatic, static binary
instrumentation framework designed specifically for dis-
covering and identifying memory-corruption flaws in bare-
metal firmware1. A unique property of our proposed frame-
work is that it runs a sanitizer-guided instrumentation to
embed a given memory safety policy; any violation to
the policy triggers an observable warning and causes the
firmware to crash. Therefore, running an IoT fuzzer on the
firmware being sanitized discover previously undiscovered
silent memory corruptions. Furthermore, our framework
utilizes the information collected by monitoring all memory
reads and writes during firmware execution in a chrono-
logical order to identify crashing cause and location. The
proposed analysis method not only identifies the actual
origin of a crash, but also provides context information on
the erroneous behavior that characterizes the crash by the
type of potential memory vulnerability (e.g., buffer overflow
and use-after-free). In addition, we introduce a benchmark
with ground truth to address pressing challenges and lim-
itations in evaluating IoT fuzzers. The benchmark includes
bare-metal firmware ranging from cameras to industrial
control systems featuring several connectivity protocols and
rich interactions with peripherals. In summary, the main
contributions of the paper are as follows:

1. This work is a significant extension of a paper [6] published in 2020
at the 23rd International Symposium on Research in Attacks, Intrusions
and Defenses (RAID). We proceed further in the description without
relying on any prior knowledge of the published paper.

• We present a novel static binary instrumentation
technique that allows discovery and identification
of memory corruption vulnerabilities on bare-metal
firmware.

• We have implemented the technique in a full-
featured framework for the ARM architecture which
is one of the most widely used IoT device architec-
tures.

• We generated the first realistic benchmark suite con-
taining 18 representative firmware, for evaluating
the capability of IoT fuzzers in detecting mem-
ory corruption vulnerabilities. The benchmark suite
along with the framework implementation are open
sourced and available to the research community at
https://github.com/pwnforce/uSBS.

• We evaluated the effectiveness of the proposed in-
strumentation technique using the benchmark suite
and demonstrated that it allows automatic discovery
and identification of memory corruption vulnerabil-
ities otherwise not detected by current IoT fuzzers.
Furthermore, the results also show the efficiency of
instrumented binaries in practice with an average
runtime overhead of about 50% which is an ac-
ceptable overhead since they are only incurred at
the testing time not the actual deployed firmware
on the field. Also, our framework only takes a few
seconds (i.e. in average 334 seconds) to instrument
benchmark firmware.

2 BACKGROUND

In this section, we provide background information on
memory corruption vulnerabilities and fuzzing as an ap-
proach to discover them, and discuss some limitations re-
lated to the architecture of bare-metal devices that motivate
the need to extend and refine the fuzzing approach on such
architectures.

2.1 Memory Corruptions and Fuzzing
Low-level systems software such as embedded devices
firmware is typically written in the C or C++ programming
languages due to the fact that they are efficient and capable
to fully control the underlying hardware. In such languages,
programmers must ensure that every memory access is
valid, that no situation leads to the de-referencing of invalid
pointers. As a matter of fact, programmers frequently fail
to meet these responsibilities and cause memory vulner-
abilities that can be exploited by an adversary to alter
the software behavior or even taking full control over the
software stack.

As a result, it is essential for security analysts to dis-
cover these memory vulnerabilities and fix them before
adversaries. Unlike source code analysis and reverse en-
gineering techniques, fuzzing has been proved as one of
the most effective and widely used software security testing
methodologies for automatically finding vulnerabilities on
a large scale. The main idea of fuzzing is executing the
software in a test environment with random inputs to
look for vulnerability-exposing behaviors such as crashing
or hanging. Indeed, such behaviors are immediate conse-
quences of faulty states, and the ability to observe them is

Page 2 of 35Transactions on Dependable and Secure Computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3149371, IEEE
Transactions on Dependable and Secure Computing

3

TABLE 1
Hardware protection mechanisms supported by representative core families.

Core Family Hardware Protection Mechanism

MPU MMU DEP

ARM

ARM 1 to ARM 7 � � �
ARM 7EJ � � �

ARM Cortex R � � �
ARM Cortex M � � �

PIC PIC 10 to PIC 24 � � �
dsPIC � � �

AVR
ATiny � � �

ATmega � � �
ATxmega � � �

8051
Intel MCS-51 � � �

Infineon XC88X-I � � �
Infineon XC88X-A � � �

MSP430 MSP430x1xx to MSP430x6xx � � �
MSP430FRxx � � �

�: it is supported by all microcontrollers in the given family.
�: it is supported by some microcontrollers in the given family.
�: it is not supported by any of them.

the prerequisite for fuzzing to work. In general purpose
computers, equipped with OS security mechanisms and
hardware features such as stack canaries, Address Space
Layout Randomization (ASLR) and Memory Management
Unit (MMU), memory violations trigger a crash upon a
fault. There are three strategies to observe such crashes:
(1) Observing exit status: the execution of the device or
application under test is terminated and an error message
is generated for tracing. (2) Catching the crashing excep-
tion: the crashing signal can be caught by overwriting an
exception handler. (3) Leveraging mechanisms provided by
the OS: the OS-level debugging interfaces such as ptrace can
be used in order to observe application execution and detect
crashes.

Fuzzing methods could be categorized depending on
how much information is collected and used from the ap-
plication under test to generate the input as: (1) Blackbox
fuzzers, such as Boofuzz [7], which have no information
about the target application and blindly test a large num-
ber of random inputs. However, this approach is not very
effective for uncovering bugs in deep parts of the code. (2)
Whitebox fuzzers, which use expensive program analysis
techniques such as dynamic taint analysis and symbolic exe-
cution for collecting and utilizing feedback from application
execution in order to guide the generation of the inputs. (3)
Greybox fuzzers, which are the most scalable and practical
fuzzers [8], [9], [10], provide a middle ground between
blackbox and whitebox fuzzers by inferring limited infor-
mation about the application extracted with lightweight
analysis techniques like code coverage and feeding that
information back to guide the input generation process.

The best known Greybox fuzzer is the American Fuzzy
Lop (AFL) [8], which leverages execution tracing informa-
tion to tailor input generation. Since collecting and analyz-
ing full application traces incurs high overhead, AFL applies
a more practical strategy by tracking edge-coverage as an
approximation of an application execution trace.

2.2 Bare-metal Embedded Devices

Among different types of embedded devices that are widely
used in cyber-physical systems, bare-metal devices are de-
signed for low cost and low power operations. Such devices
are deployed in many application areas ranging from smart-
home to automotive, from industrial control systems to
medical devices. In bare-metal devices, applications directly
run on the hardware without having any underlying ab-
straction such as an OS. In fact, each executable firmware
of the bare-metal devices is a statically linked binary image
that provides both the low level services and the application
logic. However, given the nature of bare-metal devices, tra-
ditional security mechanisms from general purpose comput-
ers are not readily applicable in such devices. This becomes
clear when one considers that bare-metal devices have tight
constraints on runtime, energy usage, and memory usage.
For instance, this class of devices rarely provide an MMU;
thus any code has access to all memory and peripherals
without any protection. Consequently, compromising one
firmware module enables an adversary to arbitrarily redirect
the control-flow of firmware or directly overwrite sensitive
data with no observable side-effects.

As a more concrete investigation of the hardware se-
curity feature support (i.e., MMU, MPU, and DEP), we
conducted an analysis of 29 SoC core families. Our se-
lection aims to provide a representative sample of major
architectures and vendors in the embedded space across
industry verticals including unmanned aerial vehicle (UAV),
unmanned ground vehicle (UGV), remotely operated under-
water vehicle (ROV), real-time 3D printer controllers and
real-time Internet of Things (IoT) devices.

According to our analysis, none of the SoCs is designed
to employ MMU. A number of SoCs optionally provide
basic memory protections using Memory Protection Unit
(MPU). However, even with the existence of MPU, config-
uring it from the application is not a straightforward task,
leading the developers to ignore using this functionality.
Table 1 summarizes the results of our analysis by mapping
out core families architectural style and hardware security
functionalities.

Page 3 of 35 Transactions on Dependable and Secure Computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3149371, IEEE
Transactions on Dependable and Secure Computing

4

2.3 Challenges of Fuzzing Bare-metal Devices

Binary image of a bare-metal firmware is often tailored to
the microcontrollers with limited computing and memory
resources. In fact, due to its closed source and architec-
tural diversity, it becomes extremely challenging to conduct
fuzzing on such firmware. In what follows, we summarize
four main challenges in fuzzing bare-metal firmware.

Fault Detection. Fault detection in bare-metal devices
remains a challenge [3]. General purpose computers gain
a significant amount of fault detection capability from the
visibility provided by plenty of deployed mechanisms such
as segmentation faults caused by an MMU, making many
memory corruptions much less silent. Most bare-metal de-
vices, instead, do not have such mechanisms owing to
their limited I/O capabilities, constrained cost, and limited
computing power. In fact, most memory corruptions events
are silent and do not lead to any observable and immediate
crash of the firmware. Consequently, the firmware continues
the execution with no visible effect or the fault might only
become noticeable at a later point (i.e., I/O error), which is
very difficult to debug. It is challenging to infer if the crash
was because of an early memory violation or an I/O error.

Memory Corruption Identification. Identifying the root
cause of a crash and type of potential memory corruption
vulnerability is a time-consuming and challenging effort,
causing a disproportion between discovering a crash and
patching the underlying application vulnerability. State-of-
the-art IoT fuzzers only focus on producing crashes as much
as possible with no information about the actual origin
of the crash, sometimes overwhelming security analysts to
patch them. In addition, this situation can be worsened
when one unique vulnerability results in several crashing
inputs: a fuzzer can discover multiple execution paths to a
crash, whereas the vulnerability is always the same. There-
fore, it would be required to investigate a large number of
potential vulnerabilities.

Memory Sanitization. Sanitization techniques [11], [12],
[13], [14], [15] can be combined with fuzzing methods to
improve fault detection capability of fuzzer and discover
memory corruptions as they happen. Furthermore, sani-
tization techniques provide more detailed information on
the location and root cause of the crash. These techniques
instrument applications with the aim of enforcing memory
safety policies. Sanitization techniques detect dereferences
of pointers that either do not access their intended referent
(i.e., spatial memory safety violations), or that access a refer-
ent that is no longer valid (i.e., temporal memory safety vi-
olations). Specifically, sanitization techniques insert inlined
reference monitors (IRMs) into the application and monitor
every memory accesses and memory object (de)allocations
instructions. This can be done either at source code or binary
level. However, owing to the fact that bare-metal firmware
are often proprietary and their source code is not available,
binary sanitization is the only viable solution.

Indeed, binary images of bare-metal firmware are often
available to the analyst since they can be acquired by down-
loading and unpacking update packages available on many
vendors’ websites or directly extracting from the physical
device using debugging port (e.g., JTAG interface). Dynamic
binary sanitization tools [12], [15], [16] transform binaries

as they are executing. In addition to the significant run-
time and space overhead, dynamic binary sanitizers do not
produce a standalone binary and the output instrumented
code is tailored to the tool’s runtime environment. In fact,
the instrumented binary cannot be used for subsequent
executions and the sanitization process has to be done again
each time the application executes. These problems can
essentially be attributed to the dynamic translation process
and they can be addressed by instrumenting applications
statically using a static binary sanitization tool, which we
believe is a promising solution for our requirements. Unfor-
tunately, at the time of writing none of the proposed binary
sanitization tools provides support for bare-metal firmware.

Benchmark Suite. Defining an experimental setup for
evaluating the effectiveness of a fuzzer is challenging.
Specifically, because of the randomness and domain spe-
cialization in fuzzing process, evaluating and comparing
fuzzers by just running them on a set of firmware, without
any other constraint, can produce misleading results. We
point out that fuzzing mechanisms must consider the fol-
lowing observations in order to have adequate evaluations:

(1) All modern fuzzing mechanisms rely on randomness
for input generation procedure. Thus, in every single run,
the fuzzer may discover different number of crashes than
the last since random choices make the fuzzer to explore
different paths. As a result and as mentioned by Klees et
al. [5], it is inadequate if we simply run two fuzzers, A and
B, over the same firmware and compare their performance.
Rather, it is required to run both A and B for a long period of
time so that fuzzers are able to cover all the choices possible.
Of course, this is not a solid solution as the mutation space
of an input is infinite, therefore there are always inputs that
are left out from the experiment. To reduce the chances of
an incorrect result, the evaluation must include sufficiently
many trials such that a statistical test is performed to vali-
date the claims.

(2) Fuzzing effectiveness may vary with the firmware
under test, therefore it is essential to conduct the evaluation
on a diverse, representative benchmark suite. However, the
availability of bare-metal firmware is very limited. Typically,
the ones used for evaluating IoT fuzzers are compiled from
code samples provided by board manufacturers or extracted
from real devices. The former firmware are publicly avail-
able but demonstrate limited functionalities compared to
the realistic firmware deployed in market devices. The latter
ones, instead, present the issue that they cannot be publicly
distributed, making the experiments not repeatable.

(3) Most IoT fuzzers only rely on the number of crashing
inputs as an evaluation metric for fuzzing performance.
However, there is not a one-to-one correspondence between
crashing inputs and actual memory vulnerabilities. More
precisely, the randomness in input mutation may generate
different inputs that cause crashes by triggering the same
memory vulnerability. There are some proposed heuristics
for de-duplicating crashes such as stack hashes [4] and
coverage profiles [20], [21]. As pointed out by Klees et
al. [5], such heuristics are insufficient to identify unique
vulnerabilities.

Alternatively, some researchers manually investigate
crashes to discover unique vulnerabilities in firmware (e.g,
reporting CVEs). However, this evaluation approach re-

Page 4 of 35Transactions on Dependable and Secure Computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3149371, IEEE
Transactions on Dependable and Secure Computing

5

TABLE 2
A summary of conducted experimental evaluations by state-of-the-art IoT fuzzers. Firmware in Benchmark row represents the number of realistic
(Real) and artifictial firmware in the used benchmark. Evaluation Metric represents considered metrics, number of crashing inputs (#CI) or unique,

discovered vulnerabilities (#UV), for evaluating fuzzing performance. Fuzzing Timeout represents the reported time of each fuzzing session in
seconds (S), minutes (M), hours (H), and days (D). Multiple Trials represents number of trials in evaluation. NR means that this item is not reported

in the paper evaluation.

Observations IoTFuzzer [17] Firm-AFL [18] FirmFuzz [19] WCYCWYC [3] P2IM [10] HAL-Fuzz [9]

Firmware in Benchmark 17 Real 51 Real 32 Real 1 Artificial 10 Real 13 Artificial & 5 Real
Evaluation Metric #CI & #UV #CI & #UV #UV #UV #UV #CI & #UV
Fuzzing Timeout 24H 24H 16M:42S 1H 24H 10H-23D:14H

Multiple Trials NR 10 NR 100 NR NR

quires a security analyst with extensive domain expertise. In
addition, suppose that a firmware presents n vulnerabilities
of type x and m of type y, with n > m. If n and m are not
known, a fuzzer A, which is specialized in detecting only
vulnerabilities of type x, may detect n crashes in t seconds,
while a general fuzzer B detects in total less than n crashes in
the same amount of time. In spite of the numbers showing A
performs better than B, in reality, the analyst using A would
not be able to detect type y vulnerabilities while the analyst
using B detects them if B is executed more than t seconds.
As a result, having a benchmark suite with ground truth
allows us to correctly measure how many vulnerabilities
have been missed, giving better insights about the fuzzing
performance.

According to our study, state-of-the-art IoT fuzzers con-
ducted experimental evaluations inadequately that induce
wrong or misleading conclusions. For instance, they car-
ried out the evaluation based on the number of crashing
inputs or unique discovered vulnerabilities without using a
benchmark suite with ground truth. Table 2 summarizes the
results of our study.

3 INSTRUMENTATION FOR VULNERABILITY DIS-
COVERY AND IDENTIFICATION

Figure 1 illustrates a high-level overview of our approach,
with the different components and their interactions. There
are three main components: the static disassembler, the
binary instrumentor, and the reassembler.

The first component of our framework pipeline, the static
disassembler, parses the executable region of the binary file
from beginning to the end and decodes all encountered
bytes into their raw textual representation. Two popular ap-
proaches [22], [23], [24] for disassembling binaries are linear
sweep and recursive descent. Linear sweep goes through
the entire executable section and decodes all encountered
bytes as instructions, while recursive descent disassembles
all reachable code in the binary by following control flow
transfers (e.g., jumps and calls). As shown by Andriesse et
al. [25], the linear sweep approach outperforms tools that
use more sophisticated methods. Therefore, we applied a
linear sweep disassembly algorithm to our evaluation set.

The second component is binary instrumentor that in-
struments the firmware binary statically based on saniti-
zation specifications. Sanitization specification determines
what instructions will be inserted or replaced in order
to enforce memory safety policies by embedding inlined
reference monitors (IRM). In other words, our framework

statically instruments every memory access with a runtime
check to verify if it is an access to an allowed address. If not,
our fault handler raises a crash close to the location of the
vulnerability in order to trigger the fuzzer. Moreover, san-
itization specification provides the analyst with context in-
formation on crashing causes and type of potential memory
corruption vulnerability. The third component, the reassem-
bler, takes the instrumented assembly code and reassembles
it as a working binary using off-the-shelf assemblers.

The proof-of-concept implementation of our framework
provides support for the ARMv7-M architecture, which
covers the widely deployed Cortex-M(3, 4, and 7) microcon-
trollers in embedded platforms [26], [27]. In the following
sections, we describe the most important and challenging
aspects of the proposed framework design and implemen-
tation.

3.1 Binary Instrumentation

The proposed binary instrumentor component takes as in-
put the disassembled firmware and inserts or replaces in-
structions based on the sanitization specification. However,
due to the lack of linkage information, instrumenting the in-
put disassembled firmware is not as straightforward as edit-
ing source code or compiler-generated assembly file. More
precisely, the assembly file that is produced by compilers
maintains symbol and relocation information to ensure that
application elements can correctly refer to each other. There-
fore, when instructions are inserted or replaced, the com-
piler will rearrange code and data in memory and manage
references between them. However, since symbol and re-
location information are discarded and addresses are hard-
coded after the linking process, instrumenting disassembler-
generated assembly causes addresses to change and breaks
the firmware image file.

There are three main challenges in relocation procedure
to avoid breaking the binary file. The first challenge is
recognizing static addresses. There is no syntactic distinc-
tion to disambiguate between reference and scalar type
for immediate values and updating references to the new
targeted addresses. The second challenge is relocating static
addresses after instrumentation. Indeed, insertion of in-
structions into, or removal of instructions from disassembly
code can break these static addresses. The third challenge
is determining dynamically referenced memory addresses.
Contrary to static memory addresses that are explicit, the
target addresses of some references are computed dynami-
cally at runtime and they can not be updated statically.

Page 5 of 35 Transactions on Dependable and Secure Computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3149371, IEEE
Transactions on Dependable and Secure Computing

6

Firmware Binary
Static Binary

Instrumentor

Sanitization

Sanitized
Firmware Binary

Fig. 1. Pipeline of our proposed rmware sanitizer.

The crux of instrumenting binaries is the ability to relo-
cate any binary code without any relocation and meta-data
information. Our approach duplicates the code section, with
the old copy (called .oldtext) as a read-only section and the
new copy (called .newtext) as an executable code section
containing rewritten instructions. It then adjusts all the
target addresses of data/code pointers to ensure that they
point to their targeted locations. Insertion of instructions
may push a referenced instruction/data beyond the reach of
the instruction referencing it. As a remedy, the instrumentor
component expands all referencing instructions with a short
encoding by their substitutes with longer encoding which
allows for larger offsets.

Due to the fact that there is no need to perform in-
strumentation on the original data space, the instrumentor
can preserve .oldtext and data sections at their original
addresses intact. By doing so, we may easily ignore and
handle data pointers in the rewritten code section (i.e.
.newtext) and they continue to behave correctly. Regarding
code pointers, the instrumentor relocates target addresses of
all branch instructions to the new addresses while rewriting
them in the .newtext section. y, direct branch
instructions can be statically rewritten by changing their
offset. However, indirect branch instructions have multiple
possible target addresses and therefore needs some sort of
target-prediction mechanism. In contrast to the related work
[28], [29], [30], we believe that although it is challenging
to statically determine exact target addresses of indirect
branches, we can instead apply an ef t dynamic lookup
at runtime. Indeed, the exact targets of control w transi-
tions are known at runtime.

Our instrumentor component adds a level of indirec-
tion by redirecting the target addresses of indirect branch
instructions to the rewritten new addresses through a map-
ping routine at runtime. Essentially, the mapping table is
created during the rewriting process, and it contains each
possible target address in the .oldtext mapped to the corre-
sponding address in the .newtext section. For example, as
illustrated in Figure 2, the instrumentor rewrites original
instructions from the .oldtext section along new inserted
instructions in the .newtext section with new base address
0x8200000. It replaces every indirect branch instruction (blx
r2) with the mov and direct call instructions. Precisely, the
mov instruction stores the runtime value of indirect branch
target address (0x804816c) into the register r0 and the direct
call (bl mapping) goes to the mapping routine in order to

search for the offset corresponding to the old target address
in the mapping table (0x81d0). At the end, mapping routine
returns new translated target address (0x8200000 + 0x81d0
= 0x82081d0) for jumping (ldr pc, [sp, #-4]) to it accordingly.

Implementation Details. We implemented the binary
instrumentor component on top of Capstone disassembler
framework [31], spanning 1710 SLOC in Python language.
Our instrumentor utilized pyelftools [32] open source
framework to parse the ELF data structures. It leverages
LIEF framework [33] in order to edit the header of re
ELF e and create a new code segment containing the .new-
text section and mapping routine. It also used pwntools [34],
an open-source binary analysis framework, as the platform
for reassembling the instructions.

80481d4: movt r3, #1
80481d8: ldr r3, [r3]
80481dc: mov r0, r3
80481e0: blx r2
...

 82081d0:
 ...

 8208300: ldr r3, [r3]
 8208304: mov r0, r3
 8208308: str r0, [sp,#-64]
 820830a: mov r0, r3
 820830e: bl mapping
 8208312: str r0, [sp,#-4]
 8208314: ldr r0, [sp,#-64]
 8208316: add lr, pc, #4
 8208318: ldr pc, [sp,#-4]

| |

|
|

|
|base = 0x8200000

 r2 = 0x804816c
+-----------------------------+

+-----------------------------+
Values

| |

|
|

|
|...

 0x81d0
+-----------------------------+

+-----------------------------+
Mapping Table

0x804816c

Original Code Section (.oldtext)

+-----------------------------+

+-----------------------------+

Fig. 2. The binary instrumentor component redirects all indirect branch
instructions (e.g., blx r2) to the mapping routine which looks for new
offset (0x81d0) corresponding to the old target address (0x804816c) in
the mapping table.

3.2 Sanitization

Our framework proposes a static binary sanitization tech-
nique by leveraging its binary instrumentor component. In-
spired by the most widely adopted sanitization techniques,
i.e. AddressSanitizer [13] and Valgrind’s Memcheck [12],
the framework uses a metadata store that maintains the
status for each byte of the addressable memory; it inserts so-
called red-zones between memory object representing out-
of-bounds memory and marks it as invalid memory in the
metadata store. The framework instruments every memory
instruction in order to consult this metadata store whenever

Page 6 of 35Transactions on Dependable and Secure Computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3149371, IEEE
Transactions on Dependable and Secure Computing

7

the firmware attempts to access memory, identifying if the
memory access is valid or not. Any access to a red-zone or to
an unallocated memory region is considered as a potential
memory corruption vulnerability and raises a crash close to
the location of the vulnerability for triggering the fuzzer.

More precisely, our framework surrounds every func-
tion’s stack frame with a redzone, enabling it to detect over-
flows on the stack. Thus, it adds new bytes for the redzone
in the metadata store to disallow access to it. Then, due to
the fact that the stack frame is implicitly freed upon function
return and may be reused by the next function call, we
identify each function exit and unpoison the redzone in the
metadata store prior to exiting the function. Furthermore,
our framework keeps track of all heap blocks issued and
allocates memory for the redzones in the metadata store. It
then marks that allocated memory as inaccessible heap left
and right redzones. Thus, if the firmware attempts to read
or write from those memory addresses, all such attempts
would be detected because they will all land on the left
and right redzones (i.e. heap underflow and heap overflow
respectively). Finally, when we deallocate each heap block,
our framework frees the corresponding part in the metadata
store.

Note that we may miss vulnerabilities when the over-
flow happens inside the function’s stack frame. Unlike
source-based sanitizers, since the firmware binaries are
stripped, our approach does not have access to variable
scope and type information. This limitation is common to
all binary-only approaches. However, our approach granu-
larity on the heap is equivalent to source-based sanitizers,
enabling it to detect overrunning and underrunning heap
blocks.

Additionally, the sanitization records all memory ac-
cesses for crash triaging. When a crash is discovered, it
provides the analyst a chain of executed memory instruc-
tions in chronological order along with the type of potential
memory corruption vulnerability. Indeed, according to the
context information on the erroneous behaviors, our pro-
posed framework identifies different types of spatial and
temporal memory corruption vulnerabilities including: (1)
Overrunning the top of the stack. (2) Overrunning and
underrunning heap blocks. (3) Accessing memory after it
has been freed. (4) Using memory values that have not been
initialized or that have been derived from other uninitial-
ized values. (5) Incorrect freeing of heap memory, such as
double-freeing heap blocks. For example, our framework
keeps track of the blocks allocated and deallocated by the
firmware by calling malloc and new functions. Since these
functions have specific binary pattern in memory, their
locations and instructions calling them can be determined
by our framework. Indeed, our framework records memory
addresses passed to these functions as arguments. Assume
a firmware has freed a block in a specific memory address
twice. The sanitization process makes the firmware to crash
if the vulnerability is triggered. Afterwards, it identifies and
reports a double-free vulnerability by analyzing recorded
memory (de)allocations.

Implementation Details. We implemented our binary
sanitization technique on top of the binary instrumentor
component with 825 SLOC in the Python language. We use
the disassembly extracted from the disassembler compo-

nent to store all memory accesses and object (de)allocations
instructions in the sanitization specification file. Then, the
binary instrumentor interprets the sanitization specification
file in order to instrument all these instructions with mem-
ory check instructions. The memory check instructions con-
sult the metadata store for validating the intended memory
access. More precisely, memory check instruction extracts
the target address of intended memory access and calculates
the address of the corresponding metadata byte to check if
it is an access to an allowed address, i.e., not a redzone. Due
to the fact that checking allocation status for every single
byte of memory is significantly expensive, our approach
applies an efficient metadata management mechanism like
AddressSanitizer. In fact, it maps eight bytes of memory to a
single byte of metadata. By doing so, the metadata mapping
formula can be represented with (1) where meta base is the
base address of the metadata and block addr is the address
of the memory block.

meta addr = meta base+ (block addr >> 3) (1)

4 GROUND-TRUTH BENCHMARK SUITE

In this section, we introduce a ground-truth benchmark
suite that provides a valid and reliable metric to evaluate
and compare IoT fuzzers. Our benchmark framework al-
lows to inject the type of vulnerability for which we want
to evaluate the IoT fuzzer in the position of the program
we choose. Thus, the test suite can assess IoT fuzzers’
capabilities in detecting different types of vulnerabilities.
Furthermore, for each vulnerability, the benchmark can pro-
vide the correct input which triggers it.

Our benchmark framework addresses all the challenges
highlighted in Section 2.3. In particular, it takes a set of
firmware and injects the chosen vulnerabilities in each of
them. Then, it provides an input that allows the execution
of such vulnerable code. Indeed, for evaluating IoT fuzzers,
it is required to have a firmware that has at least a communi-
cation channel with the external world to receive inputs. The
framework can be applied to both open source and binary
firmware. In the former case, the vulnerability injection pro-
cess is automatic and no human effort is required, while, for
the latter, the injection point should be manually indicated.

An overview of the proposed benchmark framework is
shown in Figure 3. It consists of several steps that bring to
the creation of a vulnerable firmware and a set of inputs
that triggers each injected vulnerability. The pipeline is
explained below.

Firmware Selection We selected firmware for the bench-
mark based on the following criteria: (1) The firmware in the
benchmark must be realistic, full-fledged, and deployed in
market devices. (2) The firmware in the benchmark must
be diversified in functionality. (3) The benchmark must
cover the use of various peripherals such as LCD display,
microphone, camera, serial port, Ethernet and SD card to
represent realistic interactions of IoT devices.

The current version of our benchmark suite contains
18 representative firmware, which we summarize in Table
3. All of these firmware images are provided with the
development boards and written by STMicroelectronics [35]

Page 7 of 35 Transactions on Dependable and Secure Computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3149371, IEEE
Transactions on Dependable and Secure Computing

8

Firmware Binary
/ Source Code

Extracting Injectable
Locations

Vulnerability
Injection

Buffer Over ow

Off By One Use After Free

Double Free

Vulnerabilities

Firmware BinaryCode Compilation

Symbolic Execution
Model Construction

Solving and
Solution Generation

Inputs

Fig. 3. Benchmark generation pipeline.

except Drone, CNC, Gateway, Robot, and w Oven
re which are collected from [36], [37], [38], [39], [40]

respectively by P2IM’s authors [10]2.
Audio-Playback is a re that reads and plays audio
s from USB. PLC (Programmable Logic Controller) is

a re for controlling critical processes in an indus-
trial environment. LCD Display is a re for reading
bitmap pictures from an SD card and displaying them
on the LCD display. LCD Animate creates the effect of
animation by displaying multiple layers of bitmap images.
Drone re is used as an autopilot controller in a quad-
copter. TCP/UDP-Echo-Client/Server re implement
four TCP/UDP echo client/server over Ethernet. FatFs-uSD

re implements a FAT e system on an SD card.
LibJPEG Decoding is a re for reading a jpeg le
from SD card memory, decoding it, and displaying the

l BMP image on the LCD, while LibJPEG Encoding is
developed for reading a BMP e from SD card, encoding
it, and saving the jpeg e in SD card. CNC re
implements stepper-motor control routines in several laser
cutters, and 3D printers. Gateway re implements
a communication protocol in a gateway device. Robot is
the motion controlling re in a robot. Camera USB

re leverages the camera module to display pictures
in a continuous mode on LCD and save them in a USB
device. w oven is used in a r w oven controller
that assembles printed circuit boards (PCB). mbed-TLS is
an SSL client re that implements mbedTLS crypto
library and LwIP TCP/IP stack on IoT devices.

Extracting Injectable Locations. Our benchmark frame-
work t s a list of all possible locations in the re
source code to inject vulnerabilities. These injection points
require to be accessed and triggered by c inputs.

2. Regarding the license of the collected re, the ones developed
by STMicroelectronics can be redistributed as a benchmark. However,
they must be used and executed solely and exclusively on or in combi-
nation with a microcontroller or a microprocessor device manufactured
by or for STMicroelectronics. Furthermore, the Gateway, Drone, CNC,
Robot, and w Oven re can be , redistributed and
used in any types of devices.

Therefore, the framework extracts all the functions that re-
ceive inputs from external sources such as network, UART,
GPIO, and other peripherals in general (i.e. input functions).
Since such functions deal with inputs, they are good targets
to inject vulnerabilities. We identify these targets using the
Hardware Abstraction Layers (HAL). Mainly due to the
fact that HALs are usually provided by chip vendors and
various third parties in order to simplify re develop-
ers’ jobs, such abstractions can be leveraged for identifying
input functions. y, we match a set of input func-
tions from HALs’ documents with those implemented in the

re. Every match is a candidate for the injection point.
Vulnerability Injection. Our benchmark framework al-

lows the injection of different types of vulnerabilities by
inserting snippets of self-triggering vulnerable codes. To
evaluate IoT fuzzer performance, the benchmark framework
injects the vulnerability in a way that only a particular input
can trigger it. In other words, the vulnerable code is inserted
in a selection statement where the condition is
crafted to avoid accidental executions requiring a non-trivial
input. Also, this condition can potentially be customized
to assess c fuzzer capabilities such as the capability
of handling search-hampering features in the code (e.g.
magic values and checksums) or the capability of reaching
a desired depth level by concatenating several conjunctive
conditions.

Code Compilation. The proposed framework compiles
re source code after g the vulnerability in-

jection process in order to obtain the vulnerable re
binary.

Symbolic Execution Model Construction. After inject-
ing the vulnerability, the benchmark framework constructs
a symbolic execution model that allows the inference of a
valid, triggering input. In particular, the outcome of this step
is a logic formula that considers all the conditions and loops
which the variable, containing the input, undergoes before
reaching the vulnerable code. As mentioned earlier, the
framework supports the injection of multiple vulnerabilities
in the same re. This requires a c model for each

Page 8 of 35Transactions on Dependable and Secure Computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3149371, IEEE
Transactions on Dependable and Secure Computing

9

TABLE 3
Bare-metal firmware, their targeted MCUs, and used peripherals incorporated into our benchmark framework.

Firmware MCU Peripherals Firmware MCU Peripherals

Audio-Playback STMF479I-Eval Clock, GPIO, USB, I2C LibJPEG Encoding STMF4Discovery Clock, GPIO, SD-
CARD, DSI

PLC STMF429ZI Clock, Timer, WiFI,
UART, SPI LibJPEG Decoding STMF4Discovery Clock, GPIO, SD-

CARD, DSI

Drone STMF103RB Clock, GPIO, I2C CNC STM32F429ZI Clock, GPIO, UART,
USB, I2C

TCP echo Client STMF479I-Eval Ethernet, Clock, GPIO,
EXTI Gateway STM32F103RB GPIO, UART, I2C

TCP echo Server STMF479I-Eval Ethernet, Clock Robot STM32F103RB Clock, GPIO, UART,
I2C

UDP echo Client STMF479I-Eval Ethernet, Clock, GPIO,
EXTI Camera-USB STMF479I-Eval Clock, GPIO, USB, DSI

UDP echo Server STMF479I-Eval Ethernet, Clock Reflow Oven STMF103RB GPIO, UART, I2C

FatFs uSD STMF4Discovery Clock, GPIO, SD-
CARD mbed-TLS STMF401RE Ethernet, Clock, GPIO,

EXTI, DSI

LCD Display STMF479I-Eval Clock, GPIO, SD-
CARD, DSI LCD Animate STMF479I-Eval Clock, GPIO, SD-

CARD, DSI

injection so that a specific input can be constructed.
Solving and Solution Generation. In the last step, our

framework checks the satisfiability (SAT) of the symbolic
execution model. SAT is a property of the logic formulas
which is confirmed when an interpretation, that makes the
formula true, exists. If the model is SAT, then the reachability
of the vulnerable code is formally verified. Afterward, in
a successful case, the framework generates a solution that
represents a valid input that leads firmware execution to
the vulnerable code. This solution is the instance of an
interpretation that makes the formula true.

Implementation Details. The benchmark framework
implementation consists of 300 SLOC of Python code. In
addition, the injected vulnerabilities are written in 106 SLOC
of C code. The framework uses two solutions, depending on
the firmware source code’s availability, to find the injection
point and generate the corresponding input for accessing
that. In the following, each step of our implementation is
described.

First, the framework extracts all the input functions
from HALs’ documentations and match them with the ones
implemented in the firmware code. This strategy works well
for most but not all the scenarios. In particular, some HALs
interact with some certain input peripherals as event based
devices, and they implement the input reading mechanisms
by means of callback functions. In fact, input functions
are user-defined as callbacks and get called once an input
is available. Therefore, the framework cannot obtain such
functions directly from standard HALs’ documentations.
Nevertheless, each callback function must be registered to
make the HAL aware of it, and this typically happens by
passing the callback function as an argument to a specific
function. Our benchmark framework leverages this obser-
vation to find callback registration functions and extract
callback function as an input function for vulnerability
injection.

After finding the injection point, our framework injects
one of the supported memory corruption vulnerabilities, i.e.
stack-based buffer overflow, stack off-by-one, double free,
and use-after-free. It is worth noting that the current version
of our framework supports these vulnerabilities since they

represent many of the exploited IoT firmware in the wild
and, in some instances [2], allow the complete takeover of
the device. Finally, the framework adds an assert(FALSE)
statement before the vulnerability location and runs the
CBMC [41] model checker. By doing so, the model checker
will stop at the assertion and provide the inputs which have
brought the execution here.

Alternatively, if the firmware is available only in its
binary form, then the process of finding a suitable injec-
tion point requires manual intervention. In particular, we
manually have to identify the function that reads the input.
Also, in this case, for generating the input that triggers the
injected vulnerability, we use the angr symbolic execution
engine [42], [43] to construct the symbolic execution model
and Z3 [44] as SAT solver.

5 EVALUATION

This section presents the evaluation of various aspects of
our proposed approach. First, we evaluate the correctness
of the instrumentation method against our ground-truth
benchmark in 5.1. Second, we measured the runtime and
space overhead of our instrumented firmware binaries in
5.2. Finally, we demonstrate the effectiveness of sanitization
method for improving fault detection capability and identi-
fication of memory corruption vulnerabilities in existing IoT
fuzzers in 5.3.

5.1 Feasibility and Correctness
We performed an evaluation on the correctness of the
proposed instrumentation method by comparing the out-
put of the original and instrumented firmware binaries.
Particularly, we applied the instrumentation method on
each benchmark firmware and obtained the instrumented
version of them. Afterwards, we executed the instru-
mented firmware by the test suite shipped with the original
firmware in order to show that all instrumented firmware
execute correctly and produce identical output to the orig-
inal one. Using this data, we can be confident of the cor-
rectness of the implementation of our approach design.
Note that, we did not attempt to exhaustively run all the

Page 9 of 35 Transactions on Dependable and Secure Computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3149371, IEEE
Transactions on Dependable and Secure Computing

10

execution paths of the two firmware versions and simply
used the same configuration to run them.

Table 4 also lists the modifications made by instrumen-
tor component to our benchmark firmware. Column Dir.
Inst. reports the number of direct calls and jumps that are
modified by adjusting their target address statically. Beside,
column Ind. Inst. reports the number of indirect calls and
jumps that are modified by redirecting them to the mapping
routine for obtaining new target addresses dynamically.
Furthermore, data shows that our approach has an accept-
able impact on binary size when delivering instrumentation.
Column Size Inc. reports the incurred size expansion on the
code sections of instrumented firmware binaries. Note that
ARM instruction set has a fixed instruction length and all
the instructions are either two or four bytes. This overhead
is positively correlated with the number of indirect calls and
jumps since we instrument them with mapping instructions.
We do not include the mapping table in .newtext column in
the table owing to the fact that it is always four times larger
than the .oldtext column: mapping table keeps 4-byte data
for every single byte in .oldtext.

5.2 Performance

To measure the performance impact of our framework san-
itization, we compare the runtime between an uninstru-
mented benchmark version and a sanitized version. We start
profiling all firmware just before the main function begins
execution and stops at a hard-coded point. Fifteen runs of
each firmware were averaged and in all runs the standard
deviation was less than 2%. As an instance, we run FatFS-
uSD uninstrumented and sanitized firmware for formatting
the SD card, creating a file, writing 2,048 bytes to the file,
and verifying the contents of the file fifteen times. Figure
4 illustrates the performance results. The average runtime
overhead for the sanitized firmware is 53.7%. Our approach
imposes more runtime overhead on Audi-Playback, TCP-
Echo-Server, and mbed-TLS benchmarks compared to the
other cases. This is due to the fact that they are memory-
intensive firmware resulting in a large number of memory
check instructions. Although these runtime slowdowns are
not negligible, we believe that they are acceptable since they
are only incurred at the testing time not the actual deployed
firmware on the field.

Fig. 4. Performance impact of proposed sanitization approach over the
benchmark suite.

We also measure how long it takes our framework to
sanitize benchmark firmware. Figure 5 presents the pro-
cessing time for our benchmark firmware binaries. Indeed,
large firmware images such as mbed-TLS take more time
to process. The median processing time for the sanitization
phase is 334 seconds. We interpret this as an encouraging
result which makes our framework a tool totally practical
for sanitizing bare-metal firmware in the large-scale.

Fig. 5. The proposed framework processing time for the benchmark
suite.

5.3 Effectiveness

This experiment evaluates the effectiveness of proposed san-
itization in discovering and identifying memory corruption
vulnerabilities. To understand how it improves fault detec-
tion and crash triaging capabilities in the state-of-the-art IoT
fuzzing methods, we executed HAL-Fuzz [9], [45] and P2IM
[10] fuzzers over sanitized and original versions of bench-
mark firmware. HAL-Fuzz and P2IM are the state-of-the-
art IoT greybox fuzzers designed and developed atop AFL-
Unicorn and AFL fuzzers respectively. For each firmware,
we injected four vulnerabilities (i.e. one Stack-based buffer
overflow, one Off-by-one, one Double Free, and one Use-
after-free vulnerability) using our benchmark framework
and conducted 10 identical fuzzing sessions lasting 24h
each. In order to have a fair evaluation, fuzzing parameters
were identical across all the sessions. Indeed, each fuzzing
session was configured with the same timeout and memory
limit and bootstrapped with the same set of seeds.

The fuzzer effectiveness is measured in terms of vulner-
abilities reached, triggered, and detected. Our framework
provides some information when the sanitized code is ex-
ercised, allowing us to determine whether a vulnerability is
reached. When the dataflow of the fuzzer-generated input
satisfies the vulnerability’s trigger conditions, the vulner-
ability is triggered. When a vulnerability is triggered, the
fuzzer should report it as a fault or crash, allowing us to
evaluate the fuzzer vulnerability detection capability.

As we already mentioned, simply counting the number
of crashes or found vulnerabilities to evaluate the fuzzing
effectiveness is too coarse-grained. As a result, in our eval-
uation, we make distinctions between reaching, triggering,
and detecting a vulnerability to evaluate IoT fuzzer effec-
tiveness. A reached vulnerability is the one that the fuzzer
reaches its location in the executed path without necessarily

Page 10 of 35Transactions on Dependable and Secure Computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3149371, IEEE
Transactions on Dependable and Secure Computing

11

TABLE 4
Statistics of firmware binaries instrumented by our approach.

Firmware Dir. Inst. Ind. Inst. Mem. Read Mem. Write .oldtext (KB) .newtext (KB) Size Inc. (%)

Audio-Playback 5,290 259 14,529 5,777 110 533 384
LCD Display 2,107 103 2,097 1,440 30 141 370
LCD Animate 2,097 103 2,100 1,436 30 140 366
FatFs uSD 1,654 79 1,379 978 21 98 366
TCP Echo Client 3,728 132 4,341 2,219 52 223 328
TCP Echo Server 3,566 132 7,132 6,762 51 218 327
UDP Echo Client 3,471 132 4,142 2,144 49 215 338
UDP Echo Server 3,381 130 4,036 2,075 48 208 333
Camera-USB 2,906 161 2,725 1,270 41 187 356
mbed-TLS 8,256 341 8,904 4,293 116 462 267
PLC 1,451 190 1,850 1,057 22 110 400
LibJPEG Encoding 4,586 639 6,867 3,762 81 367 353
LibJPEG Decoding 3,580 447 4,995 2,850 61 277 354
CNC 2,845 174 3,882 1,542 45 163 262
Gateway 3,253 315 3,412 1,723 40 183 357
Robot 2,457 136 3,610 1,770 39 164 320
Reflow Oven 1,912 206 2,299 1,270 28 135 382
Drone 2,052 113 1,595 900 28 105 275

triggering a fault. For example, consider that we have a
buffer overflow vulnerability in our firmware binary; the
fuzzer can generate an input to reach that vulnerability but
cannot overflow the buffer. While, a fuzzer triggers a vul-
nerability by satisfying its triggering conditions and causes
a faulty state. However, this faulty state can be not detected
by the fuzzer. This is the case for most of the IoT fuzzer
that do not sanitize the firmware and face silent memory
corruption vulnerabilities. In our benchmark framework, we
evaluate the IoT fuzzers regarding reaching, triggering, and
detecting a vulnerability by IoT fuzzers and improve their
detection capability with our sanitization framework.

The proposed framework instrumented and sanitized
vulnerable firmware binaries from our benchmark. As il-
lustrated in Table 5, the framework made all faulty states
caused by memory corruption vulnerabilities detectable.
More precisely, it triggers crashes upon faults caused by
stack-based buffer overflow, stack off-by-one, double free,
and use-after-free, allowing HAL-Fuzz and P2IM detect
them. It is worth mentioning that for the un-sanitized
firmware that fuzzers could not detect the vulnerabilities,
since we already obtained the triggering input by symbolic
execution and fed the fuzzer with them, the vulnerabil-
ities are reached and triggered but not detected by the
fuzzers. For example, as no memory protection is provided
in our bare-metal device, most firmware containing stack-
based buffer overflow vulnerability continue the execution
as usual unless they were sanitized with our proposed
framework, which spots the out-of-bounds write. Further-
more, it automatically identified all the locations and types
of memory corruption vulnerabilities correctly which helps
security analysts to patch them.

Note that, different fuzzing results between original
HAL-Fuzz and P2IM are due to the different approaches
that they used for their fuzzing procedure such as security
policies used for detecting crashes and differences between
AFL and AFL-Unicorn fuzzers used by these frameworks.
However, we refer readers interested in a detailed explana-
tion on the different aspects of HAL-Fuzz and P2IM to their
original papers since the aim of this work is not to compare

these two fuzzing frameworks together, and we demon-
strated these results to show that how the effectiveness of
the state-of-the-art IoT fuzzers can be improved if they will
be combined with our proposed static binary sanitization
approach.

6 RELATED WORK

In this section, we systematically analyze related work that
are both complementary and orthogonal to fuzzing embed-
ded devices.

6.1 IoT Fuzzing & Firmware Re-hosting
Nowadays, fuzzing becomes one of the most effective vul-
nerability detection methods for IoT devices. For instance,
Zheng et al. proposed Firm-AFL [18], built atop AFL [8]
and Firmadyne [46], in order to fully emulate embedded
firmware and perform greybox fuzzing on them. Similarly,
FirmFuzz [19] provides an emulation mechanism for dy-
namic analysis and fuzzing embedded firmware. However,
instead of bare-metal firmware, these solutions support only
Linux-based firmware images that are closer to general-
purpose computers than low-power IoT devices. Addition-
ally, FirmFuzz relies on some manual validation by the an-
alyst that limits the scalability. IoTFuzzer [17] is a blackbox
fuzzer aiming at finding memory corruption vulnerabilities
in IoT devices without access to their firmware images and
through their companion mobile applications. Nevertheless,
it is a ”hardware-in-the-loop” approach and requires the
presence of the IoT device, limiting the ability to scale
fuzzing. HAL-Fuzz [9] is a greybox fuzzer that is built on
top of HALucinator emulator [45]. HAL-Fuzz utilizes AFL-
Unicorn [47] to perform fuzzing process.

Emulation, also known as firmware re-hosting, takes
the firmware out of its original execution environment and
provides the ability for executing it at scale through the use
of general purpose computers. There have been a number of
firmware re-hosting methods [48], [49] that provide a hybrid
execution environment by forwarding peripheral operations
to physical target devices while running firmware on a

Page 11 of 35 Transactions on Dependable and Secure Computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3149371, IEEE
Transactions on Dependable and Secure Computing

12

TABLE 5
Comparison of fuzzing original and sanitized bare-metal firmware in HAL-Fuzz [9] and P2IM [10]. Each entry represents detected Stack-based

buffer overflow (S), Off-by-one (O), Double Free (D), and Use-after-free (U) vulnerabilities in the target firmware.

Memory Corruptions HAL-Fuzz HAL-Fuzz with Sanitization P2IM P2IM with Sanitization

Audio-Playback � (S, O, D, U) � (S, O, D, U)
LCD Display (S) (S, O, D, U) (S, U) (S, O, D, U)
LCD Animate (S) (S, O, D, U) (S, U) (S, O, D, U)
FatFs uSD � (S, O, D, U) (S) (S, O, D, U)
TCP Echo Client � (S, O, D, U) � (S, O, D, U)
TCP Echo Server � (S, O, D, U) � (S, O, D, U)
UDP Echo Client � (S, O, D, U) � (S, O, D, U)
UDP Echo Server � (S, O, D, U) � (S, O, D, U)
Camera-USB (U) (S, O, D, U) (S) (S, O, D, U)
mbed-TLS (S, U) (S, O, D, U) (U) (S, O, D, U)
PLC (U) (S, O, D, U) � (S, O, D, U)
LibJPEG Encoding � (S, O, D, U) (S) (S, O, D, U)
LibJPEG Decoding � (S, O, D, U) (U) (S, O, D, U)
CNC � (S, O, D, U) � (S, O, D, U)
Gateway � (S, O, D, U) � (S, O, D, U)
Robot � (S, O, D, U) � (S, O, D, U)
Reflow Oven � (S, O, D, U) � (S, O, D, U)
Drone (U) (S, O, D, U) � (S, O, D, U)

standard emulator (e.g. QEMU). However, such re-hosting
methods have heavy hardware dependence, and only one
fuzzing session is possible per-device, which essentially
limit the scale of the fuzzing. Furthermore, resetting the
firmware execution, which frequently happens to generate a
clean state for the next test case, can incur a significant over-
head due to the need for a full reboot of the physical device.
Along similar lines, Pretender [50] and P2IM [10] provide
a fully emulated environment for IoT firmware by directly
modeling the MMIO peripherals, while HALucinator [45]
instead utilizes HAL libraries for firmware re-hosting.

6.2 Binary Rewriting

Binary rewriting refers to the process of modifying one
binary into another by optionally inserting one or more
new instruction, either statically or dynamically, to pro-
vide new features or behaviors while maintaining orig-
inal functionality. Dynamic binary rewriting mechanisms
[16], [51] transform stripped binaries that are loaded into
memory while they are executing. However, they are not
practical for instrumenting bare-metal firmware due to the
high performance overhead and special software/hardware
requirements.

There are a number of static mechanisms that transform
binaries before execution. These mechanisms differ from
each other in how they transform binaries without breaking
their functionality and semantics. Trampoline-based rewrit-
ers such as Bistro [52] and STIR [53] replace original instruc-
tions at a target instrumentation point with a new branch
instruction. This new branch instruction redirects applica-
tion control flow from the original location to the trampoline
block containing both the added instrumentation logic and
the original instructions replaced by the branch instruction.
Such rewriters are able to preserve application semantics af-
ter instrumentation, at the cost of considerable performance
and memory penalties.

Uroboros [29] and Ramblr [28] present a set of heuristics
to convert a binary into their own internal representations

and perform instrumentation on those. However, heuristics-
based approaches suffer from false positives and negatives
that result in broken reassembled binary. RetroWrite [54]
and Egalito [55] instrument executable binaries by lever-
aging relocation information which is only available in
position independent codes. Unfortunately, this is not an
applicable solution for bare-metal firmware that are stati-
cally linked. Multiverse [56] proposes a new disassembling
technique by disassembling instructions from every offset
of code section to create a superset of all possible disassem-
blies. Multiverse binary rewriter is built upon this disassem-
bler to instrument all superset instructions. As pointed out
by Miller et el. [57], superset disassembly technique incurs
a substantial code size overhead (763% on SPECint 2006
benchmarks). In addition, experimental results [55] show
that Multiverse does not support statically linked binaries.

All the above binary rewriters only target x86 architec-
ture. RevARM [30] is the only static binary rewriter that pro-
vides support for the ARM architecture. However, RevARM
is designed and developed for instrumenting mobile ap-
plications, not bare-metal firmware which have significant
resource constraints. Furthermore, RevARM uses unsound
heuristic-based approach for rewriting binaries statically.
Indeed, RevARM leverages a similar approach to Uroboros
[29] for recognizing pointer-like data and identifying code
pointers, an approach which is proved to be unsound in [28]
and [54]. Moreover, RevARM instruments applications at a
higher-level intermediate representation (IR). Dinesh et al.
[54] noted that lifting disassembly to a higher-level interme-
diate language requires precise modeling of the instruction
set architecture (ISA), which is an error-prone process.

6.3 Fault Detection
Muench et al. [3] proposed a fault detection method in em-
bedded systems by integrating a black-box fuzzer Boofuzz
[7] with a set of six heuristics such as heap object tracking in
order to detect faulty states caused by memory corruptions.
However, these heuristics’ effectiveness relies on various in-
formation, including memory accesses, memory mappings,

Page 12 of 35Transactions on Dependable and Secure Computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3149371, IEEE
Transactions on Dependable and Secure Computing

13

executed instructions, register state, and (de)allocation func-
tions. Such information must be extracted from applying
reverse engineering techniques and additional annotations
provided manually by the analyst, adding both imprecision
and complexity. Furthermore, experimental results show
that applying heuristics for fault detection still has false
positives and false negatives.

6.4 Fuzzing Benchmark

Google FuzzBench [58] is a fuzzer benchmarking service
that considers coverage profiles as a metric for evaluating
fuzzers’ effectiveness. However, this metric is inappropri-
ate for evaluating fuzzers’ bug-finding capability [5], [59].
LAVA-M test suite [60] creates a ground-truth corpora which
are used as evaluation metrics for fuzzing performance.
LAVA injects vulnerabilities in different execution paths
and, using taint-analysis techniques, provides inputs to trig-
ger them. Magma [59] is an open ground-truth benchmark
containing real vulnerable applications for evaluating and
comparing fuzzing mechanisms’ performance. However,
all these benchmarks contain vulnerable applications that
are developed for general-purpose computers. Therefore,
such benchmark suites are not practical for evaluating IoT
fuzzers.

7 DISCUSSION

While our approach improves the feasibility of fault detec-
tion in fuzzing bare-metal firmware, there are still some
challenges for future improvements. In this section, we
discuss the existing limitations in the current design and
explore how they could be handled in the future.

7.1 Supported Firmware

Our prototype implementation relies on static binary instru-
mentation to sanitize bare-metal firmware. As such, it is
unable to instrument code that is generated dynamically. In-
deed, dynamically generated code can only be instrumented
using dynamic instrumentation methods. Also, our proto-
type implementation is presently compatible with widely
used ARM based bare-metal devices. However, since our
proposed approach is platform-independent, supporting
other architecture requires a small extra engineering effort.

7.2 Sanitization

Our approach does not sanitize global variables since per-
forming arbitrary transformations on the layouts of data
sections requires recovering semantic information that was
lost during compilation. Indeed, information about global
data section layouts is lost at the binary level, which makes
it impossible to insert a fully precise spatial memory safety
sanitizer using binary instrumentation. However, it is worth
noting that in comparison to the number of heap or stack
allocations, the number of global objects in a firmware
is fixed and relatively small. Therefore, in comparison to
source-based sanitizers like AddressSanitizer, our approach
may miss a fixed number of faults if a global overflows into
adjacent memory.

7.3 Fuzzing Approach
This paper aims to propose a static binary sanitizer mecha-
nism for improving IoT fuzzers capabilities in observing and
identifying memory corruptions. However, other aspects of
fuzzing such as input generation process and code coverage
are orthogonal to our domain and do not affect our work.

7.4 Vulnerability Injection Location
Our benchmark framework can only inject vulnerabilities
inside input functions. This is a simplification we consider to
avoid the path explosion problem during the triggering in-
put generation by symbolic execution. Indeed, this problem
is inherited from symbolic execution analysis and associated
constraint solvers. However, despite the increasing amount
of research [61], [62], [63] dedicated to this topic, the ability
to cover execution paths effectively is still an open problem
and orthogonal to our work. However, this does not totally
limit the effectiveness of our benchmark to control how deep
into execution the vulnerabilities are injected. Specifically,
protecting the vulnerability with conjunctive conditional
statements leads to the creation of dependent basic blocks,
i.e. equivalent to nested ifs.

In conclusion, our benchmark framework goal is to
evaluate the bug finding capability of IoT fuzzers and raise
awareness about the impact of binary sanitization when
encountering silent memory corruptions, and it is limited
to evaluate the coverage exploration capabilities of IoT
fuzzers. However, we provide the building blocks to solve
this problem, and will hopefully stimulate new research in
this important direction.

7.5 Firmware Emulation
In order to effectively take advantage of fuzzing, contempo-
rary general purpose computers execute multiple instances
of the same application at scale through the use of multi-
processing or virtualization. Indeed, throughput is a key
factor for the effectiveness of fuzzing methods [18].

However, due to the lack of standardized hardware,
diverse firmware, and opaque functionality, bare-metal de-
vices present unique challenges to execute firmware in
emulated or virtualized environments. More precisely, due
to the rise of highly-integrated chip designs, bare metal
firmware interact with an enormous selection of external
peripherals customized by the MCU vendors. Therefore,
it is often required to design and implement a specially
customized emulator for a new bare metal firmware.

8 CONCLUSION

In this paper, we distill the key challenges in fuzzing bare-
metal devices and emphasize the necessity of observing
faulty states caused by memory corruptions. We proposed
a novel static binary instrumentation solution to automati-
cally sanitize bare-metal firmware binaries with memory ac-
cess validations. Using static binary sanitization, we achieve
not only fault detection capability in fuzzing bare-metal
firmware, but also the identification of the location and the
root cause of memory corruptions. Moreover, we proposed
a ground-truth fuzzing benchmark that enables uniform IoT
fuzzer evaluation and comparison.

Page 13 of 35 Transactions on Dependable and Secure Computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3149371, IEEE
Transactions on Dependable and Secure Computing

14

Combining our sanitization mechanism with state-of-
the-art IoT fuzzers enables us to identify previously undis-
covered memory corruptions in the proposed benchmark.
Also, the evaluation shows that our approach is able to
automatically identify the type of discovered memory cor-
ruptions where previous approaches fail. Our framework
and the benchmark suite are available as open-source at
https://github.com/pwnforce/uSBS.

ACKNOWLEDGMENTS

This research is partially funded by the Research Fund KU
Leuven, and by the Flemish Research Programme Cyber-
security. The work of the fifth author has been partially
supported by the EU H2020-SU-ICT-03-2018 Project No.
830929 CyberSec4Europe. We are grateful to anonymous
reviewers for assisting us with their helpful comments and
criticisms.

REFERENCES

[1] Ericsson, “Internet of things forecast,” https://www.ericsson.
com/en/mobility-report/internet-of-things-forecast, 2019, ac-
cessed: February 2021.

[2] Google Project Zero, “Over The Air: Exploiting Broad-
coms Wi-Fi Stack,” https://googleprojectzero.blogspot.com/
2017/04/over-air-exploiting-broadcoms-wi-fi 4.html, 2017, ac-
cessed: February 2021.

[3] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What you corrupt is not what you crash: Challenges in fuzzing
embedded devices,” in Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2018.

[4] D. Molnar, X. C. Li, and D. A. Wagner, “Dynamic test generation
to find integer bugs in x86 binary linux programs,” in Proceedings
of the 18th Conference on USENIX Security Symposium, ser. SSYM’09.
USENIX Association, 2009, p. 67–82.

[5] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the ACM Conference on Computer
and Communications Security (CCS). Association for Computing
Machinery, 2018.

[6] M. Salehi, D. Hughes, and B. Crispo, “μSBS: Static Binary Saniti-
zation of Bare-metal Embedded Devices for Fault Observability,”
in Proceedings of the International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2020, pp. 381–395.

[7] J. Pereyda, “BooFuzz source code repository,” https://github.
com/jtpereyda/boofuzz, 2016, accessed: February 2021.

[8] M. Zalewski, “American fuzzing lop (afl),” http://lcamtuf.
coredump.cx/afl/, 2014, accessed: February 2021.

[9] A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz,
C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, “HALucinator-
fuzzer source code repository,” https://github.com/ucsb-seclab/
hal-fuzz, 2020, accessed: February 2021.

[10] B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and hardware-
independent firmware testing via automatic peripheral interface
modeling,” in Proceedings of the 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, 2020.

[11] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen,
and M. Franz, “SoK: Sanitizing for security,” in Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2019, pp. 1275–1295.

[12] J. Seward and N. Nethercote, “Using Valgrind to detect undefined
value errors with bit-precision,” in Proceedings of the USENIX
Annual Technical Conference (USENIX ATC). USENIX Association,
2005.

[13] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dressSanitizer: A fast address sanity checker,” in Proceedings of the
USENIX Annual Technical Conference (USENIX ATC), 2012, pp. 309–
318.

[14] G. J. Duck, R. H. C. Yap, and L. Cavallaro, “Stack bounds pro-
tection with low fat pointers,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2017.

[15] D. Bruening and Q. Zhao, “Practical memory checking with Dr.
Memory,” in Proceedings of the International Symposium on Code
Generation and Optimization (CGO), 2011, pp. 213–223.

[16] N. Nethercote and J. Seward, “Valgrind: a framework for heavy-
weight dynamic binary instrumentation,” in Proceedings of the
Programming Language Design and Implementation (PLDI), 2007.

[17] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. Lau,
M. Sun, R. Yang, and K. Zhang, “Iotfuzzer: Discovering memory
corruptions in iot through app-based fuzzing,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2018.

[18] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun,
“FIRM-AFL: High-throughput greybox fuzzing of iot firmware via
augmented process emulation,” in Proceedings of the 28th USENIX
Security Symposium (USENIX Security 19). USENIX Association,
2019, pp. 1099–1114.

[19] P. Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer,
“Firmfuzz: automated iot firmware introspection and analysis,” in
Proceedings of the 2nd International ACM Workshop on Security and
Privacy for the Internet-of-Things, 2019, pp. 15–21.

[20] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled
search,” in Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2018, pp. 711–725.

[21] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’16. Association for Computing Machinery, 2016, p.
1032–1043.

[22] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley,
“BYTEWEIGHT: Learning to recognize functions in binary code,”
in Proceedings of the 23rd USENIX Security Symposium (USENIX
Security 14). USENIX Association, 2014, pp. 845–860.

[23] B. Schwarz, S. Debray, and G. Andrews, “Disassembly of exe-
cutable code revisited,” in Proceedings of the 9th Working Conference
on Reverse Engineering (WCRE), 2002.

[24] J. Kinder and H. Veith, “Jakstab: A static analysis platform for
binaries.” in Proceedings of the 20th International Conference on
Computer Aided Verification (CAV). Springer, 2008, pp. 423–427.

[25] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and
H. Bos, “An in-depth analysis of disassembly on full-scale x86/x64
binaries,” in Proceedings of the 25th USENIX Security Symposium
(USENIX Security 16). USENIX Association, 2016, pp. 583–600.

[26] M. Salehi, D. Hughes, and B. Crispo, “Microguard: Securing bare-
metal microcontrollers against code-reuse attacks,” in Proceedings
of the IEEE Conference on Dependable and Secure Computing (DSC),
2019.

[27] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu,
“Securing real-time microcontroller systems through customized
memory view switching,” in Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), 2018.

[28] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen,
P. Grosen, C. Kruegel, and G. Vigna, “Ramblr: Making Reassembly
Great Again.” in Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2017.

[29] S. Wang, P. Wang, and D. Wu, “Reassembleable disassembling,”
in Proceedings of the 24th USENIX Security Symposium (USENIX
Security 15). USENIX Association, 2015, pp. 627–642.

[30] T. Kim, C. H. Kim, H. Choi, Y. Kwon, B. Saltaformaggio, X. Zhang,
and D. Xu, “RevARM: A platform-agnostic ARM binary rewriter
for security applications,” in Proceedings of the 33rd Annual Com-
puter Security Applications Conference (ACSAC). ACM, 2017, pp.
412–424.

[31] Capstone, “Capstone: The ultimate disassembler framework,”
http://www.capstone-engine.org/, 2020, accessed: February 2021.

[32] E. Bendersky, “Pyelftools: Parsing ELF and DWARF in Python,”
https://github.com/eliben/pyelftools/, 2012, accessed: February
2021.

[33] Quarkslab, “Quarkslab Lief project,” https://lief.quarkslab.com/,
2020, accessed: February 2021.

[34] Pwntools, “CTF framework and exploit development li-
brary,” https://github.com/Gallopsled/pwntools/, 2020, ac-
cessed: February 2021.

[35] “Stm32cube mcu packages,” https://www.st.com/en/
embedded-software/stm32cube-mcu-mpu-packages.html,
accessed: September 2021.

[36] “Quad-copter drone source code,” https://github.com/
heethesh/eYSIP-2017 Control and Algorithms development
for Quadcopter, 2017, accessed: September 2021.

[37] “CNC grbl stm32f4 source code,” https://github.com/deadsy/
grbl stm32f4, 2016, accessed: September 2021.

Page 14 of 35Transactions on Dependable and Secure Computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3149371, IEEE
Transactions on Dependable and Secure Computing

15

[38] “Firmata library,” https://github.com/firmata/arduino, 2018, ac-
cessed: September 2021.

[39] “Self-balancing robot source code,” https://github.com/
mbocaneg/Inverted-Pendulum-Robot, 2020, accessed: September
2021.

[40] “Reflow oven source code,” https://github.com/rocketscream/
Reflow-Oven-Controller, 2012, accessed: September 2021.

[41] D. Kroening and M. Tautschnig, “Cbmc–c bounded model
checker,” in Proceedings of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2014, pp. 389–391.

[42] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, and C. Kruegel,
“Sok:(state of) the art of war: Offensive techniques in binary
analysis,” in Proceedings of the IEEE Symposium on Security and
Privacy (S&P). IEEE, 2016, pp. 138–157.

[43] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice – automatic detection of authentication bypass vul-
nerabilities in binary firmware,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2015.

[44] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in
Proceedings of the International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. Springer, 2008.

[45] A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz,
C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, “HALucinator:
Firmware re-hosting through abstraction layer emulation,” in Pro-
ceedings of the 29th USENIX Security Symposium (USENIX Security).
USENIX Association, 2020.

[46] D. D. Chen, M. Egele, M. Woo, and D. Brumley, “Towards auto-
mated dynamic analysis for linux-based embedded firmware,” in
Proceedings of the Network and Distributed System Security Sympo-
sium (NDSS), 2016.

[47] N. Voss, “Afl-unicorn,” https://github.com/Battelle/afl-unicorn,
2017, accessed: February 2021.

[48] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “AVATAR:
A framework to support dynamic security analysis of embedded
systems’ firmwares,” in Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2014.

[49] K. Koscher, T. Kohno, and D. Molnar, “Surrogates: Enabling near-
real-time dynamic analyses of embedded systems,” in Proceed-
ings of the 9th USENIX Conference on Offensive Technologies, ser.
WOOT’15, 2015.

[50] E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry,
Y. Fratantonio, D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel,
and G. Vigna, “Toward the analysis of embedded firmware
through automated re-hosting,” in Proceedings of the 22nd Inter-
national Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2019). USENIX Association, 2019, pp. 135–150.

[51] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building cus-
tomized program analysis tools with dynamic instrumentation,”
in Proceedings of the Programming Language Design and Implementa-
tion (PLDI), 2005.

[52] Z. Deng, X. Zhang, and D. Xu, “Bistro: binary component ex-
traction and embedding for software security applications,” in
Proceedings of the European Symposium on Research in Computer
Security (ESORICS), 2013.

[53] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,”
in Proceedings of the ACM Conference on Computer and Communica-
tions Security (CCS). ACM, 2012.

[54] S. Dinesh, N. Burow, D. Xu, and M. Payer, “RetroWrite: Statically
instrumenting COTS binaries for fuzzing and sanitization,” in
Proceedings of the 41th IEEE Symposium on Security and Privacy
(S&P’), 2020.

[55] D. Williams-King, H. Kobayashi, K. Williams-King, G. E. Pat-
terson, F. Spano, Y. J. Wu, J. Yang, and V. P. Kemerlis, “Egal-
ito: Layout-agnostic binary recompilation,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[56] E. Bauman, Z. Lin, and K. W. Hamlen, “Superset disassembly:
Statically rewriting x86 binaries without heuristics.” in Proceedings
of the Network and Distributed System Security Symposium (NDSS),
2018.

[57] K. Miller, Y. Kwon, Y. Sun, Z. Zhang, X. Zhang, and Z. Lin,
“Probabilistic disassembly,” in Proceedings of the IEEE/ACM 41st

International Conference on Software Engineering (ICSE). IEEE, 2019,
pp. 1187–1198.

[58] Google, “Fuzzbench,” https://google.github.io/fuzzbench/,
2020, accessed: February 2021.

[59] A. Hazimeh, A. Herrera, and M. Payer, “Magma: A ground-truth
fuzzing benchmark,” 2020.

[60] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti,
W. Robertson, F. Ulrich, and R. Whelan, “Lava: Large-scale au-
tomated vulnerability addition,” in Proceedings of the IEEE Sympo-
sium on Security and Privacy (S&P), 2016, pp. 110–121.

[61] T. Avgerinos, , A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with veritesting,” in Proceedings of the Interna-
tional Conference on Software Engineering, 2014, pp. 1083–1094.

[62] D. Engler and D. Dunbar, “Under-constrained execution: making
automatic code destruction easy and scalable,” in Proceedings of
the international symposium on Software testing and analysis, 2007,
pp. 1–4.

[63] D. A. Ramos and D. Engler, “Under-constrained symbolic execu-
tion: Correctness checking for real code,” in Proceedings of the 24th
USENIX Security Symposium (USENIX Security), 2015, pp. 49–64.

Majid Salehi is a Ph.D. researcher with the KU
Leuven Computer Science Department, where
he is a member of the imec-DistriNet research
group. He received the M.Sc. degree from Sharif
University of Technology, in 2016. His research
interests include Internet of Things (IoT) se-
curity. He is particularly interested in issues
concerning memory-based attacks in bare-metal
embedded devices.

Luca Degani is a Ph.D. student in Computer
Science at the University of Trento, Italy, where
he is working on IoT systems security. He re-
ceived his master’s degree with a thesis on
evaluation metrics of bare-metal IoT firmware
fuzzing. Other research interests include vulner-
ability detection and software testing.

Marco Roveri received a Ph.D. degree in Com-
puter Science from the University of Milano,
Italy in 2002. He is an Associate Professor in
the Information Engineering and Computer Sci-
ence Department of the University of Trento,
Italy. He was Senior Researcher in the Em-
bedded Systems Unit of Fondazione Bruno
Kessler in Trento, and before a researcher in the
Automated Reasoning Division of the Istituto
Trentino di Cultura also in Trento. His research
interests include automated formal verification

of hardware and software systems, formal requirements validation of
embedded systems, model based predictive maintenance, and auto-
mated model based planning, and application of such techniques in
industrial settings.

Page 15 of 35 Transactions on Dependable and Secure Computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3149371, IEEE
Transactions on Dependable and Secure Computing

16

Danny Hughes is a Professor with the De-
partment of Computer Science of KU Leuven,
Belgium, where he is a member of the imec-
DistriNet (Distributed Systems and Computer
Networks) research group and leads the Net-
worked Embedded Software taskforce. His cur-
rent research is on distributed software systems
and the Internet of Things.

Bruno Crispo holds a Ph.D. from Cambridge
University, UK. He is full professor of computer
science with the University of Trento, Italy, and
visiting professor with KU Leuven, Belgium.
His research interests include IoT security, net-
work security, web security, biometric authen-
tication and access control. He is an associate
editor of the ACM Transactions on Privacy and
Security and a senior member of the IEEE.

Page 16 of 35Transactions on Dependable and Secure Computing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

