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Abstract. We study l-very ample, ample and semi-ample divisors on the

blown-up projective space Pn in a collection of points in general position. We
establish Fujita’s conjectures for all ample divisors with the number of points

bounded above by 2n and for an infinite family of ample divisors with an

arbitrary number of points.

Introduction

Ample line bundles are fundamental objects in Algebraic Geometry. From the
geometric perspective, an ample line bundle is one such that some positive multiple
of the underlying divisor moves in a linear system that is large enough to give a
projective embedding. In numerical terms, a divisor is ample if and only if it lies
in the interior of the real cone generated by nef divisors (Kleiman). Equivalently,
a divisor is ample if it intersects positively every closed integral subscheme (Nakai-
Moishezon). In cohomological terms, an ample line bundle is one such that a twist
of any coherent sheaf by some power is generated by global sections (Serre). Over
the complex numbers, ampleness of line bundles is also equivalent to the existence
of a metric with positive curvature (Kodaira).

The very ampleness of divisors on blow-ups of projective spaces and other vari-
eties was studied by several authors, e.g. Beltrametti and Sommese [8], Ballico and
Coppens [3], Coppens [14, 15], Harbourne [22]. The notion of l-very ampleness of
line bundles on surfaces was introduced by Beltrametti and Sommese [6] and l-very
ample line bundles on del Pezzo surfaces were classified by Di Rocco [18]. Other
notions of higher order embeddings were introduced in [5] by Beltrametti, Francia
and Sommese.

This paper studies ampleness, l-very ampleness and further positivity properties
of divisors on blow-ups of projective spaces of higher dimension in an arbitrary num-
ber of points in general position. The main tools used are the vanishing theorems
for the higher cohomologies of divisors that were proved in [19]. Generalization of
these results to the case of points in arbitrary position were studied in [4].

Vanishing theorems for divisors on blown-up spaces were firstly used in order to
give a solution to the corresponding interpolation problem, namely to compute the
dimension of the linear system of divisors on blown-up projective spaces in points in
general position. The case of linear systems whose base locus consisted only of the
union of the linear cycles spanned by the points with multiplicity was studied in [9]
where, in particular, a formula for the dimension of all linear systems with s ≤ n+2
points was given. The fact that the strict transform of these linear systems via a
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resolution of the base locus is globally generated is proved in a subsequent paper
by the authors [20]. Moreover, in [11] a conjectural formula for the dimension of
all linear systems with n+ 3 points, that takes into account the contributions given
by the presence in the base locus of the (unique) rational normal curve of degree
n through the n + 3 points and the joins of its secants with the linear subspaces
spanned by the points, is given. In [10] linear systems in P3 that contain the
unique quadric through nine points in their fixed locus are studied and, moreover,
Nagata-type results are given for planar linear systems.

In this paper we employ the vanishing theorems to prove a a number of positivity
properties. A first application of the vanishing theorems is the description of l-very
ample divisors, in particular globally generated divisors and very ample divisors
contained in Theorem 2.2.

Moreover we establish Fujita’s conjectures for Pn blown-up in s points when
s ≤ 2n, Proposition 3.6, and for an infinite family of divisors for arbitrary s, with
a bound on the coefficients, Proposition 3.7.

This paper is organized as follows. In Section 1 we introduce the general con-
struction, notation and some preliminary facts. Section 2 contains one of the main
results of this article, Theorem 2.2, that concerns l-very ampleness of line bundles
on blown-up projective spaces in an arbitrary number of points in general position.
In Section 3 we characterize other positivity properties of divisors on blown-up
projective spaces at points such as nefness, ampleness, bigness, and we establish
Fujita’s conjecture.
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EP/S004130/1 and she is a member of GNSAGA-INDAM.

The authors would like to express their gratitude to the referee for several useful
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1. Preliminary results and conjectures

Let K be an algebraically closed field of characteristic zero. Let S = {p1, . . . , ps}
be a collection of s distinct points in PnK and let S be the set of indices parametrizing
S, with |S| = s. Let

(1.1) L := Ln,d(m1, . . . ,ms)

denote the linear system of degree-d hypersurfaces of Pn with multiplicity at least
mi at pi, for i = 1, . . . , s.

1.1. The blow-up of Pn. Assume S consists of points in general position. We
denote by Xs the blow-up of Pn in the points of S and by Ei the exceptional
divisor of pi, for all i. The Picard group of Xs is spanned by the class of a general
hyperplane, H, and the classes of the exceptional divisors Ei, i = 1, . . . , s.

Notation 1.1. Fix non-negative integers d,m1, . . . ,ms and define the following
line bundle on Xs:

(1.2) dH −
s∑
i=1

miEi.
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In this paper we denote by D a general section of (1.2). Notice that the global
sections of OX(D) are in bijection with the elements of the linear system L defined
in (1.1).

Remark 1.2. It is proved in [13, Proposition 2.3] and [12, Lemma 4.2] that every
general divisor D as in Notation 1.1 has multiplicity equal to mi at the point pi.
It is important to mention here that even if it is often omitted in the framework of
classical interpolation problems in Pn, the generality hypothesis of the divisor D is
always assumed.

We denote by s(d) := sD(d) the number of points in S at which the multiplicity
of D equals d; this number depends on L or, equivalently, on D. Let us introduce
the following integer:

(1.3) b = b(D) := min{n− s(d), s− n− 2}.

Theorem 1.3 ([9, Theorem 5.3], [19, Theorem 5.12]). Assume that S ⊂ Pn is a
set of points in general position. Let D be as in (1.2). Assume that

0 ≤ mi ≤ d+ 1, ∀i ∈ {1, . . . , s},
mi +mj ≤ d+ 1, ∀i, j ∈ {1, . . . , s}, i 6= j, (if s > 1),

s∑
i=1

mi ≤ nd+


n if s ≤ n+ 1 and d ≥ 2
1 if s ≤ n+ 1 and d = 1
1 if s = n+ 2
b if s ≥ n+ 3

(1.4)

Then h1(Xs, D) = 0.

2. l-very ample divisors on Xs

Definition 2.1. Let X be a smooth projective variety. For an integer l ≥ 0, a
line bundle OX(D) on X is said to be l-very ample, if for every 0-dimensional sub-
scheme Z ⊂ X of lenght h0(Z,OZ) = l + 1, the restriction map H0(X,OX(D))→
H0(Z,OX(D)|Z) is surjective.

This notion was first introduced in [6] for surfaces.
We will now recall some of the results obtained in the study of positivity of blown-

up surfaces and higher dimensional projective spaces. Di Rocco [18] classified l-very
ample line bundles on del Pezzo surfaces, namely for P2 blown-up at s ≤ 8 points
in general position. For general surfaces, very ample divisors on rational surfaces
were considered by Harbourne [22]. De Volder and Laface [17] classified l-very
ample divisors, for l = 0, 1, on the blow-up of P3 at s points lying on a certain
quartic curve. Ampleness and very ampleness properties of divisors on blow-ups at
points of higher dimensional projective spaces in the case of points of multiplicity
one were studied by Angelini [1], Ballico [2] and Coppens [15].

Positivity properties for blown-up Pn in general points were considered by Cas-
travet and Laface. In particular, for small number of points in general position,
s ≤ 2n, the semi-ample and nef cones, that we describe in this paper in Theorem
3.2, were obtained via a different technique (private communication).

We can describe l-very ample line bundles over Xs, the blown-up projective space
at s points in general position, of the form (1.2) as follows.
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Take l ≥ 0 and n ≥ 1. For every s ≥ n + 3 and d > l + 2 we introduce the
following integer:

bl :=

{
min{n− 1, s− n− 2} − l − 1 if m1 = d− l − 1,mi = 1, i ≥ 2,
min{n, s− n− 2} − l − 1 otherwise,

(2.1)

while for s ≤ n + 2 define bl := −l − 1. We remark that for n = 1, then bl ∈
{−l,−l − 1}.

Theorem 2.2 (l-very ample line bundles). Assume that S ⊂ Pn is a collection
of points in general position. Let l be a non-negative integer. Assume that either
s ≤ 2n or s ≥ 2n+ 1 and d is large enough, namely

(2.2) d > l + 2,

s∑
i=1

mi − nd ≤ bl,

where bl is defined as in (2.1). If n = 1, then D is l-very ample. If n ≥ 2, the
divisor D of the form (1.2) is l-very ample if and only if

l ≤ mi, ∀i ∈ {1, . . . , s},
l ≤ d−mi −mj , ∀i, j ∈ {1, . . . , s}, i 6= j.

(2.3)

Remark 2.3. In the notation of Theorem 2.2, when n ≥ 3 and n + 3 ≤ s ≤ 2n,
then (2.3) implies (2.2). Indeed, the inequality mi +mj − d ≤ −l implies that

s∑
i=1

mi − nd ≤ −nl ≤ min{n− 1, s− n− 2} − l − 1.

The last inequality holds since (n− 1)l + min{n− 1, s− n− 2} ≥ 1 holds.

Remark 2.4. When l = 0 (resp. l = 1), l-very ampleness corresponds to global
generation, or spannedness (resp. very ampleness).

Notice that conditions (2.3) are equivalent to saying that the divisor D and the
class of a line on Ei or, respectively, the strict transform on X of the line of Pn
spanned by the points pi, pj, intersect at least l times.

Corollary 2.5 (Globally generated line bundles). In the same notation of Theorem
2.2, for n ≥ 2, assume that either s ≤ 2n or s ≥ 2n+ 1 and that

d > 2,

s∑
i=1

mi − nd ≤ b0.

Then D is globally generated if and only if

0 ≤ mi, ∀i ∈ {1, . . . , s},
0 ≤ d−mi −mj , ∀i, j ∈ {1, . . . , s}, i 6= j.

(2.4)

Corollary 2.6 (Very ample line bundles). In the same notation of Theorem 2.2,
let n ≥ 2 and assume that either s ≤ 2n or s ≥ 2n+ 1 and that

d > 3

s∑
i=1

mi − nd ≤ b1.

Then D is very ample if and only if

1 ≤ mi, ∀i ∈ {1, . . . , s},
1 ≤ d−mi −mj , ∀i, j ∈ {1, . . . , s}, i 6= j.

(2.5)
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We now present three examples of not globally generated divisors for which the
the bound (2.2) of Theorem 2.2, with l = 0, is not satisfied.

Example 2.7. Consider the following divisor on the blow-up of P3 in 7 points:

D := 2H − E1 − . . .− E7.

It does not satisfy the hypotheses of Theorem 2.2. In fact, the linear system associ-
ated to D is generated by the strict transforms of three linearly independent quadrics
that intersect in eight points. Therefore the divisor D is not globally generated.

Example 2.8. Consider the following divisor on the blow-up of P3 in 8 points:

D := 2H − E1 − . . .− E8.

It is generated by two linearly independent quadrics that intersect along a quartic
curve. Therefore D is not globally generated.

Example 2.9. Let us consider the anticanonical divisor of the blown-up P2 in eight
points in general position

D := 3H − E1 − . . .− E8.

It does not satisfy (2.2) for l = 0, since bl = 1. Sections of D correspond to planar
cubics passing through eight simple points. All such cubics meet in a ninth point,
therefore D is not a globally generated divisor. However, D is nef.

2.1. Some technical lemmas. In this section we prove a series of technical lem-
mas that will be useful in the proofs of the main theorem, Theorem 2.2. These
will also justify the integer bl appearing in (2.1) and show why we cannot obtain a
better bound than (2.1). The next three lemmas consider the case n ≥ 2.

Lemma 2.10. Let D be the divisor defined in (1.2) and assume that (2.3) holds.
Then sD(d) = 0 unless l = 0, s = 1 and m1 = d, in which case sD(d) = 1.

Proof. Assume sD(d) 6= 0; in particular m1 = d. Equations (2.3) imply d ≥
m1 + mi + l = d + mi + l, that gives mi = 0 for all i ≥ 1 and l = 0. In this case
D = dH − dE1 and sD(d) = 1. �

Let F be the divisor obtained by subtracting a sum of l+ 1 exceptional divisors
Ei, with repetitions allowed, from D:

(2.6) F := D −
s∑
i=1

εiEi, ε :=

s∑
i=1

εi = l + 1,

where the εi’s are positive integers.

Lemma 2.11. Let D and F be divisors defined respectively as in (1.2) and (2.6)
and assume that D satisfies (2.2) and (2.3), then F satisfies (1.4).

Proof. We first prove the following claim: sF (d) = 0 unless m2 = · · · = ms = 1,
m1 = d− l − 1 and ε = ε1 = l + 1, in which case sF (d) = 1.

In order to prove the claim, assume first that εi ≤ l for all i (in particular l ≥ 1).
Then (2.3) implies mi ≥ 1 and d−mi ≥ mj + l for every i, j. Therefore sF (d) = 0.
Otherwise, after permuting the indices if necessary, assume that ε1 = l + 1. Then
(2.3) gives d−(m1+l+1) ≥ mi−1 ≥ 0. Notice that sF (d) = 0, unless m1+l+1 = d.
In the latter case we have mi = 1, for all i ≥ 2, therefore we obtain

D = dH − (d− l − 1)E1 − E2 − . . .− Es
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and

F = dH − dE1 − E2 − . . .− Es.
Finally, using the claim we compute the integer b(F ) defined in (1.3) for the

divisor F : we obtain b(F ) = min{n, s−n−2}, unless the divisor D has m1 = d−l−1
and m2 = 1 and in this case it is b(F ) = min{n − 1, s − n − 2}. It is now a
straightforward computation to prove that the statement holds. �

Let us now introduce the divisors Gj , j = 0, 1, where s̄j := min{s, n − j},
obtained by subtracting l + 1 times from D the strict transform on the blow-up of
a hyperplane of Pn containing p1, . . . , ps̄j :

(2.7) Gj := (d− l − 1)H −
s̄j∑
i=1

(mi − l − 1)Ei −
s∑

i=s̄j+1

miEi.

Lemma 2.12. Let D and Gj be divisors defined respectively as in (1.2) and (2.7)
and assume that D satisfies (2.2) and (2.3). Then Gj satisfies (1.4), for j = 0, 1.

Proof. If sD(d) > 0, then by Lemma 2.10 we have that D = d(H −E1). Therefore
s̄0 = s̄1 = s = 1, Gj = (d − l − 1)(H − Ei), sGj (d − l − 1) = 1 and Gj obviously
satisfies (1.4), for j = 0, 1. Therefore we can assume that sD(d) = 0.

If mi < d− l − 1 for all i’s, then obviously sGj (d− l − 1) = 0. Let us write

Gj = d′H −
d∑
i=1

m′iEi := (d− l − 1)H −
s̄j∑
i=1

(mi − l − 1)Ei −
s∑

i=s̄j+1

miEi.

First of all take j = 0 and set s̄ := s̄0. We now verify that G0 satisfies (1.4). Indeed,
when s̄ = s < n we have

s̄∑
i=1

m′i − nd′ =

s̄∑
i=1

(mi − l − 1)− n(d− l − 1) ≤ 0,

because mi ≤ d. Otherwise, if s̄ = n ≤ s, we compute

s∑
i=1

m′i − nd′ =

s̄∑
i=1

(mi − l − 1) +

s∑
i=s̄+1

mi − n(d− l − 1) =

s∑
i=1

mi − nd.

The above number is bounded above by 0 whenever s ≤ 2n, and by min{n, s−n−
2} − l − 1 whenever s ≥ 2n+ 1, by the hypotheses. Moreover, in all cases one has
m′i +m′j − d′ ≤ 1, for all i 6= j.

Now, take j = 1 and set s̄ := s̄1. We verify that G1 satisfies (1.4) with a similar
computation. Indeed, when s̄ = s < n − 1, then it is the same computation as
before. Whereas if s̄ = n− 1 ≤ s, we have

s∑
i=1

m′i − nd′ =

s̄∑
i=1

(mi − l − 1) +

s∑
i=s̄+1

mi − n(d− l − 1) =

s∑
i=1

mi − nd+ l + 1.

The number on the right hand side of the above expression is bounded above by 0
if s ≤ 2n and by min{n, s− n− 2} if s ≥ 2n+ 1.

Finally, assume that mi = d − l − 1 for some i and assume, without loss of
generality, that i = 1. In this case we have mi = 1 for all i > 0, see the proof of
Lemma 2.11, and sGj (d − l − 1) = 1 provided that d > l + 2. If d = l + 2 then

Gj = H −
∑s
i=s̄+1Ei. In both cases is easy to verify that Gj satisfies (1.4). �
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2.2. Proof of Theorem 2.2. We will discuss the first induction case, n = 1, when
bl ∈ {−l,−l− 1} and we claim that if equation (2.2) holds, then D is l-very ample.
Notice that on P1, we have

D = (d−
s∑
i=1

mi)H.

In this case (2.2) becomes

d−
s∑
i=1

mi ≥ −bl ≥ l.

For every 0-dimensional subscheme Z ⊂ P1, of length h0(Z,OZ) = l + 1, we have

(2.8) h1(P1,OP1(D)⊗ IZ) = h1(P1,OP1(d−
s∑
i=1

mi − l − 1)) = 0,

because condition (2.2) implies d −
∑s
i=1mi − l − 1 ≥ −1. We remark that this

proof holds for bl ∈ {−l,−l − 1}.
If n ≥ 2, Theorem 2.2 states that a divisor D on X satisfying condition (2.2)

is l-very ample if and only if (2.3) holds. The proof of this relies on the following
vanishing theorem, that has its own intrinsic interest.

Let I{ql+1} denote the ideal sheaf of the fat point of multiplicity l+ 1 supported
at q ∈ Pn, where by fat point we mean the subscheme of Pn defined by the (l+1)th
power of the ideal of q.

Theorem 2.13. In the same notation as Theorem 2.2, fix integers
d,m1, . . . ,ms, l ≥ 0, s ≥ 1. Assume that either s ≤ 2n or that s ≥ 2n+ 1 and that
(2.2) is satisfied. Moreover, assume that

l ≤ mi, ∀i ∈ {1, . . . , s},
l ≤ d−mi −mj , ∀i, j ∈ {1, . . . , s}, i 6= j.

(2.9)

Then h1(D ⊗ I{ql+1}) = 0 for every q ∈ Xs.

Proof. If n = 1 the claim follows from (2.8). For the rest of the proof, we assume
n ≥ 2.

Case (1). Assume first of all that q ∈ Ei, for some i ∈ {1, . . . , s}. We claim that

(2.10) h1(D ⊗ I{ql+1}) ≤ h1(D − (l + 1)Ei).

Hence we conclude because the latter vanishes, by Theorem 1.3 and Lemma 2.11
with F = D − (l + 1)Ei. We now prove that (2.10) holds. Let π be the blow-up
of Xs at q ∈ Ei with exceptional divisor Eq. By the projection formula we have
that π∗(π

∗(D) − (l + 1)Eq)) = D ⊗ I{ql+1}. Since Riπ∗(π
∗(D) − (l + 1)Eq) = 0,

for i > 0, invoking the Leray spectral sequence we obtain Hi(D ⊗ I{ql+1}) ∼=
Hi(π∗(D) − (l + 1)Eq), see [23, III.8]. For l = 0, consider the exact sequence of
sheaves

(2.11) 0→ π∗(D)− π∗(Ei)→ π∗(D)− Eq → (π∗(D)− Eq)|π∗(Ei)−Eq → 0.

Notice that π∗(Ei)−Eq is the blow-up of Ei ∼= Pn−1 at the point q: denote by h, eq
the generators of its Picard group. We have (π∗(D) − Eq)|π∗(Ei)−Eq

∼= mih − eq,
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in particular it has vanishing first cohomology group. Hence, looking at the long
exact sequence in cohomologies associated with (2.11), one gets that the map

H1(π∗(D)− π∗(Ei))→ H1(π∗(D)− Eq)

is surjective, therefore h1(π∗(D) − π∗(Ei)) ≥ h1(π∗(D) − Eq). Finally, by the
projection formula and using the Leray spectral sequence, as above, one has
Hi(π∗(D) − π∗(Ei)) = Hi(D − Ei), so we conclude. For l ≥ 1, one can iterate
l+1 times the above argument, with π∗(D)−Eq replaced by π∗(D)− lEq in (2.11);
we conclude noticing that the restricted linear series is mih− leq.

Case (2). Assume q ∈ Xs \ {E1, . . . , Es}. Hence q is the preimage of a point
q′ ∈ Pn \ {p1, . . . , ps}.

We will prove the statement by induction on n. The case n = 1 is obvious.
Indeed, any such D ⊗ I{ql+1} corresponds to a linear series on the projective line
given by three points whose sum of the multiplicities is bounded above as follows
m1 +m2 + (l + 1) ≤ d+ 1. Hence the first cohomology group vanishes. For n ≥ 2,
we will assume that the statement holds for n− 1 and we prove it for n.

Recall that a set of points S of Pn is said to be in linearly general position if
for each integer r ≤ n + 1 we have ](S ∩ L) ≤ r + 1, for all r-dimensional linear
subspaces L in Pn.

Case (2.a). Assume first that the points in S ∪ {q′} are not in linearly general
position in Pn. If s ≥ n, q′ lies on a hyperplane H of Pn spanned by n points of S.
Reordering the points if necessary, assume that q′ ∈ H := 〈p1, . . . , pn〉. If s < n, let
H be any hyperplane containing S ∪ {q′}. Let H̄ denote the strict transform of H
on Xs. Notice that H̄ is isomorphic to the space Pn−1 blown-up at s̄ := min{s, n}
distinct points in general position, so that we can write that H̄ ∼= Xn−1

s̄ . Its Picard
group is generated by h := H|H̄ , ei := Ei|H̄ . The divisor class is H̄ = H−

∑s̄
i=1Ei.

The restriction to H̄ yields the short exact sequence

0→ D − H̄ → D → D|H̄ → 0.

Since H̄ is a closed subvariety of Xs containing the point q, the following is a short
exact sequence of sheaves

(2.12) 0→ (D − H̄)⊗ I{ql} → D ⊗ I{ql+1} → (D ⊗ I{ql+1})|H̄ → 0,

that is commonly referred to as the Castelnuovo sequence. We iterate this restriction
procedure l + 1 times.

For 0 ≤ λ ≤ l, set Dλ := (D − λH̄) ⊗ I{ql+1−λ}. The restricted series in the

(λ+ 1)st exact sequence, Dλ|H̄ , is the complete linear series on Xn−1
s̄ given by

(2.13)

(
(d− λ)h−

s̄∑
i=1

(mi − λ)ei

)
⊗ I{ql+1−λ}|H̄ .

We leave it to the reader to verify that it satisfies the hypotheses of the theorem, for
every 0 ≤ λ ≤ l. Hence we conclude, by induction on n, that the first cohomology
group vanishes.
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The kernel of the (λ+ 1)st sequence is D− (λ+ 1)H̄ ⊗I{ql−λ}. In particular the
kernel of the last sequence is the line bundle associated with the following divisor:

(2.14) d′H −
d∑
i=1

m′iEi := (d− l − 1)H −
s̄∑
i=1

(mi − l − 1)Ei −
s∑

i=s̄+1

miEi,

that equals the divisor G0 introduced in (2.7) for i = 0. It satisfies the condition
of Theorem 1.3 by Lemma 2.12, hence we conclude that h1(G0) = 0. Putting
everything together we obtain the series of inequalities h1(D) = h1(D0) ≤ h1(D1) ≤
· · · ≤ h1(Dλ) ≤ h1(Dλ+1) ≤ · · · ≤ h1(Dl) = h1(G0) = 0, that allows us to conclude
in this case.

Case (2.b). Lastly, assume that S ∪ {q′} is in linearly general position in Pn. If
s ≥ n − 1, let H denote the hyperplane 〈p1, . . . , pn−1, q

′〉. If s < n − 1, let H be
any hyperplane containing S ∪{q′}. In both cases such H exists by the assumption
that points of S are in general position. As in the previous case, let H̄ denote
the strict transform of H on Xs. It is isomorphic to the space Pn−1 blown-up
at s̄ := min{s, n − 1} distinct points in general position, that we may denote by
H̄ ∼= Xn−1

s̄ .
We iterate the same restriction procedure shown in (2.12) l + 1 times as in case

(2.a). As before the restriction of the (λ+ 1)st exact sequence, that is of the form
(2.13) with s̄ differently defined here, verifies the hypotheses of the theorem, so it
has vanishing first cohomology group by induction on n.

Furthermore, the kernel of the last sequence, that is in the shape (2.14), with
s̄, d′,m′i as defined here, is the divisor G1 of (2.7) with i = 1. It satisfies the
condition of Theorem 1.3 by Lemma 2.12. Indeed, when s̄ = s < n − 1, it is the
same computation as before. While, if s̄ = n− 1 ≤ s, we have

s∑
i=1

m′i − nd′ =

s̄∑
i=1

(mi − l − 1) +

s∑
i=s̄+1

mi − n(d− l − 1) =

s∑
i=1

mi − nd+ l + 1.

The number on the right hand side of the above expression is bounded above by 0
if s ≤ 2n and by b if s ≥ 2n+ 1. This concludes the proof.

�

Theorem 2.13 shows that, under the assumptions, if we tensor the sheaf OX(D)
by the ideal sheaf of a fat point {ql+1} with support anywhere within X, we have
vanishing of H1. In the next two corollary, we generalise the statement to every
0-dimensional subscheme of X given as the union of a collection of fat points. In
particular in Corollary 2.14 we cover the case where such points have support away
from the exceptional divisors Ei’s. Corollary 2.15 is the further extension of the
above to the case where the fat points can lie both on or off the Ei’s. To prove the
corollaries we generalise the arguments used in case (2) and (1) respectively of the
proof of the theorem.

Corollary 2.14. Assume that D satisfies the same hypotheses as in Theorem 2.13.
Then h1(D ⊗

⊗
j I{qµjj }) = 0, for every finite collection of points {qj}j ⊂ Xs \⋃s

i=1Ei and integers µj ≥ 0 with
∑
j µj = l + 1.

Proof. The statement is proved by iterating the procedure of Case (2) of the proof of
Theorem 2.13. Let us consider an arbitrary collection of points, S0 = {q1, . . . , qs0},
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with s0 := |S0|, all of them lying off the exceptional divisors of Xs. Consider the
following union of fat points

Z0 = qµ1

1 ∪ · · · ∪ q
µs0
s0 ⊂ Xs \

⋃
i=1

Ei.

Further, assume that
∑s0
j=1 µi = l + 1. For every j, let q′j ∈ Pn be the point whose

pull-back is qj .
The proof is by induction on n and the base step n = 1 is trivial. We assume

the statement holds for n− 1 and we prove it for n. For every index j = 1, . . . , s0,
starting from j = 1 and then increasing, we choose a suitable hyperplane of Pn,
H(j), with q′j ∈ H(j) and, as in the proof of Theorem 2.13, we consider restric-
tion sequences to that hyperplane. We will distinguish the two following cases,
according to whether q′j is or is not in linearly general position with respect to
S = {p1, . . . , ps}. Now set j = 1.

Case (a). Assume first that the points in S ∪ {q′1} are not in linearly general
position in Pn. Let H = H(1) be a hyperplane containing q′1 and s̄ := min{s, n}
distinct points of S. Notice that {q′1} ⊆ S0 ∩H might be a proper subset, namely
there could be some integer j > 1 such that q′j ∈ S0 ∩H too. Let µH := max{µj :
q′j ∈ S0 ∩H}.

Case (b). Assume that the points in S ∪ {q′1} are in linearly general position in
Pn. Let H = H(1) be a hyperplane containing q′1 and s̄ := min{s, n − 1} distinct
points of S. Let µH := max{µj : q′j ∈ S0 ∩H}.

We restrict D ⊗
⊗s0

j=1 I{qµjj } to H iteratively µH times. In either cases (a)

and (b), for each sequence, the restricted series satisfies (2.9) and therefore it has
vanishing first cohomology group by induction on n, as we are assuming that the
statement holds for n − 1. Moreover the kernel obtained in each exact sequence
still satisfies the assumptions (2.9).

Next, we consider the last kernel obtained with this procedure and the point q′j ,
with j ≥ 2 minimal with respect to the property that q′j /∈ H(1). We proceed as
above, point by point, using case (a) or (b) according to the position of q′j with
respect to S, until we exhaust the set S0. The last kernel is:

G2 = (d− δ)H −
s∑
i=1

(mi − ci)Ei,

where δ is the total number of restrictions to hyperplanes performed and ci is
the number of restrictions to hyperplanes containing pi. Notice that the following
holds: ci ≤ δ ≤

∑s0
j=1 µj = l + 1. These inequalities imply that G2 satisfies all the

hypotheses of Theorem 1.3; this can be shown using computations similar to those
in the proof of Lemma 2.12.

�

Corollary 2.15. Assume that D satisfies the same hypotheses as Theorem 2.13.
Then h1(D ⊗

⊗
i I{qµjj }) = 0, for every finite collection of points {qj}i ⊂ Xs and

integers µj ≥ 0 with
∑
j µj = l + 1.

Proof. As in the proof of Corollary 2.14, let S0 = {q01, . . . , q0s0} be an arbitrary
collection of points away from the exceptional divisors, and consider the union of
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fat points

Z0 = qµ01

01 ∪ · · · ∪ q
µ0s0
0s0
⊂ X \

⋃
i

Ei,

with sum of multiplicities µ0 :=
∑s0
j=1 µ0j . Similarly, for each i = 1, . . . , s, let us

consider a union of infinitely near points (i.e. on Ei),

Zi = qµi1i1 ∪ · · · ∪ q
µisi
isi
⊂ Ei,

whose sum of multiplicities is µi =
∑s1
j=1 µij ≥ 0. Finally, assume that µ0 +∑s

i=1 µi = l + 1.
Iterating the idea of Case (1) of the proof of Theorem 2.13, we can conclude that

h1

((
D ⊗

s⊗
i=1

IZi

)
⊗ IZ0

)
= h1

F ⊗ s0⊗
j=1

I{qµ0j
0j }

 = 0,

where F = D −
∑s
i=1 µiEi. The latter vanishes by Corollary 2.14; we leave it to

the reader to verify that F satisfies the hypotheses.
�

Let L = Ln,d(m1, . . . ,ms) be the linear system of the form (1.1).

Corollary 2.16. Assume that L = Ln,d(m1, . . . ,ms) satisfies the conditions of
Theorem 2.13. Then the linear sub-system of elements of L that vanish with mul-
tiplicity l + 1 at an arbitrary extra point, Ln,d(m1, . . . ,ms, l + 1), is non-special.

Proof. As in the proof of Theorem 2.13, the projection formula together with
the Leray spectral sequence, implies that, for all i ≥ 0, Hi(Xs, D ⊗ I{ql+1}) ∼=
Hi(Pn,Ln,d(m1, . . . ,ms, l+1)). Therefore Ln,d(m1, . . . ,ms, l+1) has the expected
dimension. �

Before we proceed with the proof of Theorem 2.2, we need the following lemma.

Lemma 2.17. Let X be a complex projective smooth variety and OX(D) a line
bundle. Let Z1 ⊆ Z2 be an inclusion of 0-dimensional schemes. Then h1(OX(D)⊗
IZ1

) ≤ h1(OX(D)⊗ IZ2
).

Proof. The proof of the statement is well known to experts. We include it here for
the sake of completeness.

If Z1 = Z2, the statement is trivially holds. Assume Z1 ( Z2 and consider the
short exact sequence:

0→ OX(D)⊗ IZ2

φ−→ OX(D)⊗ IZ1
→ coker(φ)→ 0.

Consider the corresponding long exact sequences in cohomology. Since the coker(φ)
has vanishing first cohomology because it has 0-dimensional support, the map
H1(OX(D) ⊗ IZ2

) → H1(OX(D) ⊗ IZ1
) is surjective and this concludes the

proof. �

Lemma 2.17 will allow to reduce the proof of l-very ampleness for divisors D
to the computation of vanishing theorems of the first cohomology group of OX(D)
tensored by the ideal sheaf of a union of fat points, Z2, whose multiplicities sum
up to l + 1. In fact every 0-dimensional scheme Z1, with h0(Z1,OZ1

) = l + 1, is
contained in a union of fat points.
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Proof of Theorem 2.2. We first prove that (2.3) are sufficient conditions for D to
be l-very ample. For every 0-dimensional scheme Z ⊂ Xs of lenght l + 1, consider
the exact sequence of sheaves

(2.15) 0→ OXs(D)⊗ IZ → OXs(D)→ OXs(D)|Z → 0.

We will prove that h1(Xs,OXs(D) ⊗ IZ) = 0. This will imply the surjectivity of
the map H0(Xs,OXs(D))→ H0(Z,OXs(D)|Z), by taking the long exact sequence
in cohomology associated with (2.15).

Let
Z0 ∪ Z1 ∪ · · · ∪ Zs

be the decomposition of Z in s+ 1 components (some of which might be the empty
set) with the property that Supp(Z0) ⊂ Xs \ {E1, . . . , Es} and Supp(Zi) ⊂ Ei, for
i = 1, . . . , s. For every i, let Supp(Zi) = {qi1, . . . , qisi}, where qij are distint points.
Let

Zi = Zi1 ∪ · · · ∪ Zisi
be the decomposition of Zi in irreducicle components where we have Supp(Zij) =
qij . Set µij to be the lenght of Zij , and µi :=

∑si
j=1 µij . We have µij ≥ 0 and∑s

i=0 µi = l + 1. We shall prove that

h1

OX(D)⊗
s⊗
i=0

si⊗
j=1

IZij

 = 0.

Assume first of all that Z has support in a single point q = qi1, for some i. As
we have the following inclusion of schemes Z ⊂ {ql+1}, the statement follows by
Lemma 2.17 and Theorem 2.13.

Assume now that Z is supported in several points. To conclude, it is enough to
prove that

hi(Xs, D ⊗ IZ) ≤ hi
Xs,

(
D −

s∑
i=1

µiEi

)
⊗

s0⊗
j=1

I{q0j}µ0j }

 = 0.

The first inequality follows from (2.10) and by Lemma 2.17. The equality follows
from Corollary 2.15; we leave it to the reader to verify that the hypotheses on the
coefficients are indeed satisfied.

We now prove that (2.3) are necessary conditions for D to be l-very ample, by
induction on l.

Let us first assume l = 0, namely that D is base point free. If mi < 0 then miEi
would be contained in the base locus of D. If mi + mj > d for some i 6= j, then
the strict transform of the line 〈pi, pj〉 ⊂ Pn would be contained in the base locus
of D. In both cases we would obtain a contradiction.

Assume that l = 1, namely that D is very ample. If mi ≤ 0 (or 0 ≤ d−mi−mj

for some i 6= j), then Ei (resp. the strict transform of the line through pi and pj)
would be contracted by D, a contradiction.

More generally, assume that D is l-very ample and l ≥ 2. Then conditions (2.3)
are satisfied. Indeed, if mi ≤ l− 1 for some i, we can find a 0-dimensional scheme,
Z, of lenght l + 1 such that h1(D ⊗ IZ) > 0. Let Z ⊂ Ei be an l-jet scheme
centred at q ∈ Ei (see [27]). Consider the restriction D ⊗ IZ |Ei ∼= m1h ⊗ IZ ,
where h is the hyperplane class of Ei ∼= Pn−1. We have h1(Ei, D ⊗ IZ |Ei) ≥ 1,
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hence h1(Xs, D⊗IZ) ≥ 1. To see this, let x1 . . . , xn−1 be affine coordinates for an
affine chart U ⊂ Ei and let Z be the jet-scheme with support q = (0, . . . , 0) ∈ U
given by the tangent directions up to order l along x1. The space of global sections
of D ⊗ IZ |Ei is isomorphic to the set of degree-mi polynomials f(x1, . . . , xn−1),
whose partial derivatives ∂λf/∂xλ1 vanish at q, for 0 ≤ λ ≤ l. On the other hand,
H1(Ei, D⊗IZ |Ei) is the “space of linear dependencies” among the l+ 1 conditions
imposed by the vanishing of the partial derivatives to the coefficients of f . Since
mi ≤ l − 1 then f is a polynomial of degree at most l − 1, therefore ∂lf/∂xl1 ≡ 0
for every such a polynomial, and we conclude.

Similarly, if d − mi − mj ≤ l − 1 for some i, j, i 6= j, then one finds a jet-
scheme Z contained in the pull-back of the line through pi and pj , L, for which
h1(Xs, D⊗IZ) ≥ 1. Indeed, if Z is such a scheme, then the restriction is D⊗IZ |L ∼=
(d −mi −mj)h ⊗ IZ |L, where in this case h is the class of a point in L, and Z|L
is a fat point of multiplicity l in L. One concludes by the Riemann-Roch Theorem
that h1(L,D ⊗ IZ |L) ≥ 1 because χ(L,D ⊗ IZ |L) = (d −mi −mj) − l ≤ −1 and
h0(L,D ⊗ IZ |L) = 0.

�

2.3. l-jet ampleness. From now on we will consider the case n ≥ 2.
In Definition 2.1 we recalled a notion of higher order embedding, the j-very

ampleness. In [5], Beltrametti, Francia and Sommese introduced other notions of
higher order embeddings with the aim of studying the adjoint bundle on surfaces.

Definition 2.18. In the same notation as Definition 2.1, if for every fat point
Z = {ql+1}, q ∈ X, the natural restriction map to Z, H0(X,OX(D)) →
H0(Z,OX(D)|Z), is surjective, then D is said to be l-jet spanned.

Moreover, if for every collection of fat points Z = {qµ1

1 , . . . , qµσσ } such that∑σ
i=1 µi = l + 1, the restriction map to Z is surjective, then D is said to be l-jet

ample.

Remark 2.19. Theorem 2.13 can be restated in terms of l-jet spannedness. Namely
every divisor D satisfying the hypotheses is l-jet spanned.

Proposition 2.20 ([7, Proposition 2.2]). In the above notation, if D is l-jet ample,
then D is l-very ample.

The converse of Proposition 2.20 is true for the projective space Pn and for
curves, but not in general. In this section we prove that the converse is true for
lines bundle OXs(D) on Xs, that satisfy the hypotheses of Theorem 2.2.

Theorem 2.21. Assume that s ≤ 2n, or s ≥ 2n+ 1 and (2.2). Assume that D is
a line bundle on Xs of the form (1.2). The following are equivalent:

(1) D satisfies (2.3);
(2) D is l-jet ample;
(3) D is l-very ample.

Proof. We proved that the natural restriction map of the global sections of D to
any fat point of multiplicity l + 1 is surjective in Theorem 2.13, see also Remark
2.19. We showed that the same is true in the case of arbitrary collections of fat
points whose multiplicity sum up to l+ 1 in the first part of the proof of Theorem
2.2. This proves that (1) implies (2). Moreover, (2) implies (3) by Proposition 2.20.
Finally, that (3) implies (1) was proved in the second part of the proof of Theorem
2.2. �
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3. Other positivity properties of divisors on Xs

In this section we will apply Theorem 2.2 to establish further positivity properties
of divisors on Xs. All results we prove in this section apply to Q−divisors on the
blown-up projective space.

3.1. Semi-ampleness and ampleness. A line bundle is ample if some positive
power is very ample. It is known that for smooth toric varieties a divisor is ample
if and only if it is very ample and nef if and only if it is globally generated. From
Corollary 2.5 and Corollary 2.6, we obtain that this holds for a small number of
points s ≤ 2n too, as well as for arbitrary s under a bound on the coefficients.

A line bundle is called semi-ample, or eventually free, if some positive power is
globally generated. By (2.4), one can see that a divisor is semi-ample if and only if
it is globally generated.

Theorem 3.1. Let Xs be defined as in Section 1. Assume s ≤ 2n.

(1) The cone of semi-ample divisors in N1(Xs)R is given by (2.4).
(2) The cone of ample divisors in N1(Xs)R is given by (2.5).

Assume s ≥ 2n+ 1.

(1) Divisors satisfying (2.2) with l = 0 are semi-ample if and only if (2.4).
(2) Divisors satisfying (2.2) with l = 1 are ample if and only if (2.5).

3.2. Nefness. For every projective variety, Kleiman [24] showed that a divisor is
ample if and only if its numerical equivalence class lies in the interior of the nef
cone (see also [25, Theorem 1.4.23]).

For a line bundle, being generated by the global sections implies being nef, but
the opposite is not true in general, see e.g. Example 2.9. However for line bundles
on Xs, with s ≤ 2n, or with arbitrary s under a bound on the coefficients, these
two properties are equivalent.

Theorem 3.2. In the same notation as Theorem 2.2, assume that for D of the
form (1.2) we have that either s ≤ 2n or s ≥ 2n+1 and (2.2) with l = 0 is satisfied.
Then D is nef if and only if is globally generated.

Proof. If D is nef, then for effective 1-cycle C, D · C ≥ 0. In particular the divisor
D intersects positively the classes of lines through two points and classes of lines
in the exceptional divisors. This means inequalities (2.4) hold and therefore the
divisor D is globally generated by Corollary 2.5. �

Remark 3.3. If s ≤ 2n, the nef cone of Xs is given by (2.4), This follows from the
description of the Mori cone of curves of Xs, see [16, Prop. 4.1]. Notice that for
s ≤ 2n, the description of the nef cone also follows from Theorem 3.2. Moreover
the latter result shows that in this range every nef divisor is semi-ample, which does
not hold in general.

Corollary 3.4. The nef cone and the cone of semi-ample divisors on Xs, for
s ≤ 2n, coincide.

3.3. Fujita’s conjectures for the blown-up Pn in points.

Conjecture 3.5 (Fujita’s conjectures, [21]). Let X be an n-dimensional projective
algebraic variety, smooth or with mild singularities. Let KX be the canonical divisor
of X and D an ample divisor on X. Then the following holds.
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(1) For m ≥ n+ 1, mD +KX is globally generated.
(2) For m ≥ n+ 2, mD +KX is very ample.

Fujita’s conjecture hold on every smooth variety where all nef divisors are semi-
ample. In particular it holds on Xs with s ≤ 2n.

Proposition 3.6. Let Xs be the blown-up Pn at s points in general position with
s ≤ 2n. Conjecture 3.5 holds for Xs.

Proof. For Xs, s ≤ 2n, global generation (very ampleness) is equivalent to nefness
(resp. ampleness), by Theorem 3.1 and Theorem 3.2. This concludes the proof. �

Using the results from this article, we can extend the above to an infinite family
of divisors with arbitrary s.

Proposition 3.7. Let Xs be the blown-up Pn in an arbitrary number of points in
general position, s, and let D be a divisor on Xs such that

(3.1)

s∑
i=1

mi ≤ nd

Then Conjecture 3.5 holds for D.

Proof. It is enough to consider the case s ≥ 2n + 1. Write X = Xs. Notice that
the divisor mD +KX has the following properties

s∑
i=1

(mmi − n+ 1)− n(md− n− 1) = m(

s∑
i=1

mi − nd) + n(n+ 1)− s(n− 1)

≤ −m+ n(n+ 1)− (2n+ 1)(n− 1)

= −m+ (−n2 + n) + (n+ 1)

≤ −2 + n+ 1

= n− 1.

Notice that bl(mD+KX) = n− l− 2, for s = 2n+ 1 and bl(mD+KX) = n− l− 1
for s ≥ 2n+ 2, using the definition (1.3). Therefore mD+KX satisflies conditions
of Theorem 3.1.

To prove that if D is ample then the divisor mD+KX satisfies conditions (2.4)
and (2.5) is an easy computation that we leave to the reader. �
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