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Abstract

Human pose estimation (HPE) from RGB and depth
images has recently experienced a push for viewpoint-
invariant and scale-invariant pose retrieval methods. Cur-
rent methods fail to generalize to unconventional viewpoints
due to the lack of viewpoint-invariant data at training time.
Existing datasets do not provide multiple-viewpoint obser-
vations and mostly focus on frontal views. In this work,
we introduce PanopTOP, a fully automatic framework for
the generation of semi-synthetic RGB and depth samples
with 2D and 3D ground truth of pedestrian poses from
multiple arbitrary viewpoints. Starting from the Panoptic

Dataset [15], we use the PanopTOP framework to gener-
ate the PanopTOP31K dataset, consisting of 31K images
from 23 different subjects recorded from diverse and chal-
lenging viewpoints, also including the top-view. Finally, we
provide baseline results and cross-validation tests for our
dataset, demonstrating how it is possible to generalize from
the semi-synthetic to the real-world domain. The dataset
and the code will be made publicly available upon accep-
tance.

(a) OpenPose front (b) MaskRCNN front (c) HMR front

(d) OpenPose top (e) MaskRCNN top (f) HMR top

Figure 1: OpenPose, MaskRCNN and Human Mesh Recovery baselines (front, top views). All the methods perform very well on front
and side views (Fig. 1a, 1b, 1c). However, when dealing with top-view images, current methods fail to correctly retrieve the human pose
(Fig. 1d, 1f) or to even recognise the object as a human body (Fig. 1e).
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Dataset RGB Depth Top-view Multi-View 2D Pose GT 3D Pose GT Camera parameters

PanopTOP31K Y Y Y Y Y Y Y
ITOP N Y Y Y N Y Y
EVAL N Y N N N Y N
TVPR Y Y Y N N N N

TVPR 2 Y Y Y N N N N
K2HPD N Y N N N Y N
UBC3V N Y N Y N Y Y

Human3.6M Y N N Y N Y Y

Table 1: Reference datasets for multi-view and viewpoint-invariant networks training. Only few datasets propose true top-
view ground truth data, and most of them mainly focus on depth images, discarding the RGB component.

1. Introduction
In the field of human pose estimation (HPE), depth and

RGB sensors are commonly employed in a wide range of
applications, from robotics to immersive entertainment and
from surveillance to smart spaces. [10, 2, 9]. Such a di-
verse application range requires cameras to capture humans
from a wide variety of different angles. Thus, HPE frame-
works should be able to retrieve the body pose from mul-
tiple different viewpoints. Currently, existing human pose
estimation methods [10, 35, 2, 16, 21, 20] achieve good per-
formances from many different camera viewpoints, but the
most challenging ones. As shown in Fig. 1, good perfor-
mances are achieved when retrieving the human pose from
front-view images, and poor results can be obtained when
dealing, for example, with the top-view. In this paper, we
introduce a complete pipeline, called PanopTOP, which is
based on computer graphics and that allows generating new
RGB, depth, and pose samples from arbitrary viewpoints
from the raw point cloud data. Our work aims at solving
the following issues:

• ground truth alignment: we provide pixel-perfect
aligned RGB and depth images regardless of the view-
points, as well as the 2D and 3D ground truth pose;

• we encourage the usage of true multi-view cameras, al-
lowing to obtain ground truth data from virtually every
viewpoint and specifically the top-view one;

• our method employs a full pinhole camera model, al-
lowing us to customize every aspect of the camera pa-
rameters, including intrinsic and extrinsic parameters.
The remaining data (RGB, depth images, and repro-
jected 2D joints ground truth) is automatically changed
according to the changes in the camera parameters.

To prove the effectiveness of our PanopTOP framework,
we introduce PanopTOP31K, a training dataset specifically
built for viewpoint invariant human pose estimation from
depth and RGB images, consisting of 31K images of 23

different subjects recorded from diverse and challenging
viewpoints. By using our PanopTOP method, it is possi-
ble to configure virtual cameras while fixing the existing 3D
ground truth. To the best of our knowledge, PanopTOP31K
is the first dataset that provides both top-view RGB images,
as well as the corresponding 3D and 2D pose ground truth.
Annotated poses in top-view RGB datasets are not available
because of the difficulty of annotation, mostly due to occlu-
sions. In Table 1 we show how the PanopTOP31K dataset
provides the most complete and diverse set of poses and
ground truths when compared with similar datasets. We
argue that the complete set of multi-view RGB and depth
images along with 2D and 3D ground truth provide HPE
researchers with the necessary data for the development of
viewpoint-invariant frameworks.

We create the PanopTOP31K dataset starting from
the six-degrees-of-freedom (6DoF) videos of the Panoptic
dataset [15]. The dataset provides the pose ground truth for
each video frame. Since 6DoF videos provide a 3D model
of the scene, it is possible to generate a virtually infinite
number of new 2D semi-synthetic RGB and depth images,
in a bullet time fashion and from multiple viewpoints, si-
multaneously. In this way, we can create realistic videos
on the fly, captured from different angles. To prove the suit-
ability of the dataset for further developments, we show how
baseline algorithms [25] trained on our PanopTOP31K can
generalize on real data leading to improved results on mul-
tiple datasets.

Our contributions can be summarised through the fol-
lowing key steps:

i. We propose a method to generate new RGB and
depth datasets with a virtually infinite number of semi-
synthetic viewpoints, called PanopTOP.

ii. We propose a multi-view dataset, called Panop-
TOP31K, which consists of 31 thousand poses of 23
different subjects, rendered from the front, side, and
top viewpoints in both RGB and depth domains.

iii. We provide baseline results for the novel Panop-
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TOP31K on RGB images.

iv. We show the improvement of performances on multi-
ple views given by our dataset cross-validating on dif-
ferent scenarios and viewpoints.

2. Related Work
In this section, we explore the state-of-the-art for human

pose estimation in both RGB and depth domains, as well
as the available datasets providing multiple viewpoints for
each pose.

2.1. State-of-the-art methods

The most common form of HPE consists of solving
the task of estimating 2D joints and their connection,
starting from RGB images and videos. However, HPE can
be carried out even in different domains, such as depth
images [6, 24, 44], LiDARr [8] or even radio signals [47].
Additionally, human pose estimation has recently shifted
towards 3D estimation, by lifting 2D human poses to 3D
[46, 4, 29], as well as with end-to-end approaches [34, 31].
Among the most recent developments of HPE, we can find
human mesh recovery, which deals with the problem of
retrieving the human pose from images or videos in terms
of a fully rigged 3D mesh [22, 19]. Granularity also plays
an important role in HPE, with an increasing number of
methods extending the pose to hand [12, 42], feet [43] or
even face pose [14]. In recent years, research on human
pose estimation has been focusing largely on single views,
using either RGB [2, 10] or depth images [9, 25], as shown
in Table 1.

HPE from depth images. Viewpoint-invariant HPE
methods have been focusing exclusively on depth images
[9, 25, 42] from top-view and side-view, and only a limited
number of works address this problem. This might be due
to the lack of datasets containing real or synthetic labeled
depth data. Additionally, the majority of the depth-based
datasets are small; this does not match the requirements
of deep learning, which requires large amounts of data for
proper training. In addition, they do not provide an accurate
ground truth most of the time, rather automatic annotations,
i.e. the position of the body joints is predicted using pose
detectors such as [30]. The work by Shotton et al. [30]
has been decisive in the human pose estimation from depth
maps field, especially for its application in many successful
commercial scenarios, such as the Microsoft Kinect and
its SDKs. The authors propose a method for human pose
estimation based on a Random Forest trained on a synthetic
dataset (not publicly available), by classifying each pixel
into body parts. The 3D position of joints is predicted from
the labeled depth map with a local mode-finding approach
based on Mean Shift. In very specific scenarios, such as

strict front viewpoints, these methods obtain reasonable
accuracy results and real-time performance, given the con-
text of the application (gaming, interactive applications). In
[11], Hernandez-Vela et al. propose an object segmentation
framework using depth maps combining the use of Random
Forest and Graph-cuts theory for the segmentation of
human limbs in-depth maps. Firstly, Random Forest
assigns a set of labeled probability for each depth sample
belonging to a set of possible object labels. Then, with the
use of Graph-cuts, the precedent procedure is optimized
both locally, spatially, and temporally. Ye et al. in [45]
extract a point cloud from a depth map, and after the point
cloud has been cleaned, transformed in frame coordinates,
the body pose is predicted.

HPE from RGB images. In literature we can find two
classes of approaches that extract human pose from RGB
images. The bottom-up methods [1, 3, 26] detect firstly
the human parts and then locate them in each object, and
top-down methods [48, 36, 39] locate the key points in the
human body and then compose the single parts into a per-
son. Tekin et al. in [33] recover the 3D pose of people
from consecutive frames of a video. They use at the same
time appearance and motion information and regress di-
rectly from short sequences of frames to 3D poses in the
central one. However, this method is limited to image se-
quences. Most recent methods exploit 2D pose estimation
using CNNs [39, 27, 41, 1, 32]. The well-known work
done by Cao et al.[1] detects the 2D pose of multiple peo-
ple in an image. This approach associates body parts with
individuals through the use of a parametric representation
called Part Affinity Fields. In the context of multi-person
pose estimation, one of the most recent works is the one
proposed by Duan et al. [5] that implements a solution
named location-sensitive network (LSNet) that unifies three
recognition tasks like object detection, instance segmenta-
tion, and human pose estimation. The authors also present
a novel loss function called cross-IOU loss that calculates
the cross-IOU of each anchor-landmark to approximate the
global IOU between prediction and ground-truth.

2.2. Datasets

In the context of RGB images, there is a lack of datasets
providing multiple viewpoints, and in particular the top-
view viewpoint. For example, common large HPE datasets
in literature such as Human3.6M [13] and the Panoptic
Dataset [15] provide RGB images from multiple views, still
lacking the top-view component. Other datasets, such as
K2HPD Body Pose Dataset [38] and ITOP [9] only provide
top-view and side-view depth images, lacking the matching
RGB ground truth data. TVPR and TVPR2 datasets [23, 28]
also provide a top-view point of the scene, but they do not
provide information about 3D joints, making the dataset
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RGB Rendering

Depth Rendering

Virtual cameras 
positioningFiltering, alignment

Raw point cloud

Figure 2: PanopTOP rendering process: the raw point cloud is filtered and aligned with the chosen coordinate system. Virtual
cameras are positioned into the scene for simultaneous RGB + depth rendering.

not suitable to solve HPE-related tasks. The lack of multi-
view datasets in the RGB domain leads to popular out-of-
the-box networks, such as OpenPose [2] and MaskRCNN,
[10] experiencing a big decrease in performance whenever
the viewpoint is changed. A possible solution to the afore-
mentioned annotation problem is to rely on fully synthetic
datasets to generate data from custom viewpoints. How-
ever, many works [7, 37] show that the gap between vi-
sual realism in computer-generated and real-world images
contributes to an even bigger gap in the models’ prediction
performance. Relying on photo-realistic rendering helps to
mitigate this issue. However, many other aspects contribute
to the overall perceived realism, especially when dealing
with humans and human poses. Our perception of reality is
influenced by unrealistic or inconsistent body proportions
through time, fake lighting, physics, and slightly off skele-
tal movements. The same effect is shown when training
HPE models on synthetic data and testing on real-world im-
ages, or vice versa. Other works [40] employ synthetic data
to augment the already available datasets, but the same is-
sues apply, even if to a lesser extent. In this work we adopt
a hybrid solution, relying on real-world 3D human scans
to generate new semi-synthetic data. We thus preserve the
photo-realism of the rendered scene while maintaining all
the advantages typical of fully synthetic approaches.

3. The PanopTOP framework
In this section we present PanopTOP, a fully automated

pipeline for creating multi-view HPE datasets, starting from
real-world 3D data and ground truth joints. Next, we em-
ploy the PanopTOP framework to create the PanopTOP31K
dataset. The main advantages of our method are: (i) it auto-
matically provides RGB and depth images, along with the
2D and 3D ground truth, requiring the user’s input only
when positioning the virtual cameras; (ii) it is highly cus-

tomizable, meaning that it allows to precisely tune each
camera, including their intrinsic and extrinsic parameters,
as well as the desired RGB and depth output quality; (iii)
it outputs data suitable for multiple tasks, such as 2D/3D
human pose estimation, detection, segmentation, view syn-
thesis and others in both RGB and depth domain.

The proposed framework generates RGB, depth, 2D and
3D joints ground truth data, starting from raw point clouds.
We used the Panoptic dataset [15], although similar datasets
can also be used. The complete pipeline is shown in Fig. 2
and includes the following steps:

1. point cloud retrieval and coordinate system setup;

2. skeleton-based point cloud filtering;

3. mesh reconstruction;

4. virtual cameras positioning;
5. hidden points removal;

6. rendering.

Each processing step is further detailed in the next sub-
sections. The proposed method allows for a manifold of
different configuration parameters, such as the number of
virtual cameras to be used for the image generation and their
global position, the density of point clouds and meshes, and
the resolution of the output images. Furthermore, it also
takes care of all the steps required to generate the dataset,
from fetching the raw point clouds to saving the desired
dataset to memory. Moreover, since our architecture lever-
ages high-speed GPU operations, it could be used to auto-
matically generate new batches on-the-fly, and directly use
them as input to train a neural network, without saving them
to memory in advance.
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3.1. Point cloud retrieval and coordinate system
setup

Starting from the Panoptic dataset [15], each point cloud
is retrieved and then transformed to a center of origin, scale,
and coordinate system of choice. For consistency, we adopt
the same coordinate system and scale used in the ITOP
dataset [9] by default. The center of origin is selected based
on the ground truth pose data associated with the point
cloud. At this stage, no additional filtering is employed, the
output is a raw point cloud with many outliers and aligned
to a chosen coordinate system.

3.2. Skeleton-based point cloud filtering

The ground truth 3D pose data is used to compute an
axis-aligned 3D bounding box containing the subject. All
the points that do not belong to the subject (Fig. 2) are
outside of the bounding box, and are thus removed. An
additional skeleton-based point cloud filtering based on the
L2 distance d between the closest joint j in the 3D skeleton
and each 3D point pi is then applied:

d =

√√√√ P∑
i=0

(pi − j)2 (1)

Subsequently, statistical and sphere radius outliers are
removed, only keeping the points that belong to the subject,
thus greatly reducing noise.

3.3. Mesh reconstruction

Here we describe how 3D meshes can be reconstructed
from the filtered point clouds if needed. They can be use-
ful as ground truth for a more efficient 3D model analysis
since the mesh provides more structured information and a
smoother texture. The point cloud’s vertex normals are es-
timated by looking for adjacent points and using covariance
analysis to calculate their principal axis. Then the normal-
ized point cloud is converted into a 3D mesh via Screened
Poisson Surface Reconstruction [18]. Finally, surface sub-
division and mesh smoothing are employed. These steps
allow to obtain a smoother surface and thus a better render-
ing of both the RGB and depth outputs.

3.4. Virtual cameras positioning

A configuration file is designed to create virtual cam-
eras with user-defined intrinsic and extrinsic parameters, for
later rendering of both RGB images and depth maps. Users
can also manually adjust the camera position in an interac-
tive visualization window containing a preview of the ren-
dering.

3.5. Hidden points removal

Optional hidden points removal is performed via Direct
Visibility of Point Sets [17]. Since the input point cloud

may be a combination of multiple viewpoints clouds, as
in the Panoptic dataset, it may be necessary to remove oc-
cluded points to replicate the standard format of the major-
ity of the other datasets. By default, we keep this option
enabled to promote consistency with the ITOP dataset [9].

3.6. Rendering

RGB and depth images are finally rendered for each
camera and for each point cloud sample in the dataset. The
2D and 3D ground truth of the scene is automatically gen-
erated starting from the 3D pose matrices and the extrinsic
and intrinsic camera matrices. By default, we also convert
the 19-joints skeleton to the 15-joints model to be consistent
with the ITOP dataset [9].

4. The PanopTOP31K dataset
Our method shown in Sec. 3 allows for the generation

of an arbitrary number of viewpoints for each point cloud.
Starting from the Panoptic dataset, we apply our pipeline to
generate a new dataset, called PanopTOP31K. The dataset
contains approximately 30K RGB images, 30K depth
maps, 10K filtered point clouds, and 10K 3D meshes from
23 different subjects recorded from the front, side, and top
view (∼ 10K RGB images for each viewpoint). Each RGB
image and depth image have size 256 × 256 with depth 3.
The provided pose ground truth employs the 15 joints skele-
ton model as in [9].

5. Experiments
In this section, we show the results obtained by some

popular out-of-the-box human pose estimation networks,
both for the front, side, and top view on our PanopTOP31K
dataset on RGB images. Then, we validate our semi-
synthetic dataset showing how it achieves good results when
used for data augmentation and domain adaptation on depth
images.

5.1. Baselines on RGB images

OpenPose [2, 1], MaskRCNN [10] and HMR [16, 22]
are three popular methods for HPE in the RGB domain.
We take the off-the-shelf pre-trained networks of all the
baseline algorithms for testing on our new dataset, Panop-
TOP31K. As shown in Figs. 1a, 1b, 1c, we obtain good
results on the side views. However, when dealing with top
view images, all the methods fail in detecting the pose from
more than 90% of the dataset images. For example, MaskR-
CNN misclassifies as ’cake’ a subject as seen from the top
view (Fig. 1e), while OpenPose fails to produce a coher-
ent skeletal structure (Fig. 1d), despite being trained on the
Panoptic dataset. A similar issue is encountered in HMR,
which fails to correctly fit a mesh to the top-view image
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Experiment Head Neck Shoulders Elbows Hands Torso Hips Knees Feet
(a) [I],[I],[I] 99.50 99.60 99.05 97.90 90.80 100.00 98.55 95.20 87.15
(b) [I],[I],[P] 96.60 97.90 93.80 76.10 63.60 97.80 89.90 84.60 46.50
(c) [I],[I+P],[P] 97.20 98.10 95.45 77.15 59.10 98.00 90.25 70.20 35.80
(d) [I+P],[I+P],[P] 98.50 99.70 99.70 98.20 90.90 99.70 99.40 95.80 95.55
(e) [P],[P],[P] 98.50 99.70 99.70 97.80 90.85 99.60 99.35 96.30 95.45
(f) [P],[P],[I] 99.50 99.50 98.10 93.90 61.45 99.30 94.85 75.45 26.80
(g) [P],[I+P],[I] 99.60 99.80 97.95 94.00 66.60 99.50 94.45 83.55 59.20
(h) [I+P],[I+P],[I] 100.00 100.00 100.00 97.80 90.35 100.00 99.55 96.30 89.35

Table 2: Percentages of correctly detected joints for the ITOP and PanopTOP31K datasets in our 8 conducted experiments.
Each experiment is identified by a letter (a-h) and a data split [train],[validation],[test] (P = PanopTOP31K, I = ITOP).
Each value represents the percentage of joints with L2 distance smaller than a threshold T = 0.2m from the ground truth.
The top scores for each joint regarding tests on the ITOP dataset are highlighted in blue, while the PanopTOP31K ones are
highlighted in green. The top overall scores for each joint are in italic.

Figure 3: Mean per-joints errors in meters for ITOP and PanopTOP31K datasets, respectively, with (green, blue) and without
(red, orange) training-wise augmentation. Red, green, yellow and blue bars correspond to experiments (a), (h), (e) and (d)
respectively.

(Fig. 1f). This incorrect behavior explains that most hu-
man pose estimation networks are not trained to handle ex-
treme viewpoints and thus they do not achieve viewpoint-
invariance. Our method allows creating multi-view datasets
for human pose estimation, that could be used to develop
viewpoint invariant HPE networks in the RGB or depth do-
main.

5.2. Dataset validation on depth images

We have shown how state-of-the-art methods for HPE
on RGB images work on the PanopTOP31K dataset, failing
in the case of top-view images. In this section, we focus
on validating our dataset on depth images. Since human
pose estimation already works well enough on front-view
images, we focus our attention on a most difficult scenario,
namely top-view. We use a vanilla version of the V2V net-

work [25] on depth images for training and validating.
In the remainder of this section and in table 2 we

use the following notation: I and P identify the ITOP
and our PanopTOP31K dataset respectively. We use
[train],[validation],[test] to indicate on which datasets the
network has been trained, validated and tested.

We perform 8 different cross-validation experiments,
from (a) to (h), as shown in Tab. 2. In Fig. 4 we show
some qualitative results for the HPE task, while Tab. 2 and
Fig. 3 report the percentage of correctly detected joints and
the mean per-joint error respectively.

Experiment (a) shows how the network performs well
when trained, validated, and tested on the ITOP dataset. At
the same time, in (b), the same training and validation split
shows a poor ability to generalize on a new dataset.
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(a) [I],[I],[I] (b) [I],[I],[P]

(c) [I],[I+P],[P] (d) [I+P],[I+P],[P]

(e) [P],[P],[P] (f) [P],[P],[I]

(g) [P],[I+P],[I] (h) [I+P],[I+P],[I]

Figure 4:
Qualitative results on multiple [train],[validation],[test] data splits, corresponding to quantitative results in Table 2. As an example, the
notation [P],[I+P],[I] means that the network has been trained on PanopTOP31K, validated on both ITOP and PanopTOP31K and tested

on ITOP. Each experiment is identified by a letter (a-h).
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In (c), we provide a diverse validation set, but we achieve
a small gain and in some cases, we even worsen the per-
formances on hands and feet estimation, as shown in Tab.
2. This happens because the ITOP dataset is not diverse
enough and it tends to overfit the training data. Experiment
(d) shows how adding our PanopTop31K split to the train-
ing set results in a substantial improvement in performances
with respect to previous cases (a)(b)(c). The PanopTOP31K
dataset is thus suitable for augmenting a real-world dataset
and it leads to a performance improvement.

Experiment (e) proves that the network can correctly
process our PanopTOP31K dataset with good results. In
(f), we obtain much better results than (b), and in some
cases, they are also comparable with (a). This proves how
the PanopTOP31K dataset is more able to generalize to dif-
ferent data than the ITOP one, without overfitting. Adding
the ITOP validation split as in (g) allows the network to im-
prove its performances with respect to (f), thus proving the
robustness to the overfitting of the network trained on our
dataset. Finally, experiment (h) shows how the best per-
formances on real data are obtained by augmenting a real-
world dataset with our semi-synthetic one. Both (f) and (h)
validate the ability of our semi-synthetic dataset to provide
samples that are realistic enough for the network to gener-
alize well on real-world depth images.

6. Conclusions

We presented PanopTOP, a new method for fully au-
tomatic multi-view datasets creation along with Panop-
TOP31K, the first multimodal RGB and depth dataset ex-
hibiting challenging viewpoints for HPE. Our dataset al-
lows for the training of viewpoint-invariant HPE networks
from a manifold of data inputs (RGB images, depth im-
ages, point clouds, 3D meshes). Experiments on our semi-
synthetic PanopTOP31K dataset show promising results on
top-view HPE, obtaining comparable results with popular
real-world datasets and improving network accuracy when
used for data augmentation.
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Wasenmüller, and Didier Stricker. HPERL: 3d human pose
estimation from RGB and lidar. CoRR, abs/2010.08221,
2020.

[9] Albert Haque, Boya Peng, Zelun Luo, Alexandre Alahi, Ser-
ena Yeung, and Li Fei-Fei. Towards viewpoint invariant 3d
human pose estimation. In Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling, editors, Computer Vision – ECCV
2016, pages 160–177, Cham, 2016. Springer International
Publishing.

[10] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017.

[11] Antonio Hernandez-Vela, Nadezhda Zlateva, Alexander
Marinov, Miguel Reyes, Petia Radeva, Dimo Dimov, and
Sergio Escalera. Graph cuts optimization for multi-limb hu-
man segmentation in depth maps. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pages 726–
732, 2012.

[12] Weiting Huang, Pengfei Ren, Jingyu Wang, Qi Qi, and
Haifeng Sun. AWR: adaptive weighting regression for 3d
hand pose estimation. CoRR, abs/2007.09590, 2020.

[13] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6m: Large scale datasets and predic-
tive methods for 3d human sensing in natural environments.
IEEE Trans. Pattern Anal. Mach. Intell., 36(7):1325–1339,
July 2014.

[14] Aaron S. Jackson, Adrian Bulat, Vasileios Argyriou, and
Georgios Tzimiropoulos. Large pose 3d face reconstruction
from a single image via direct volumetric CNN regression.
CoRR, abs/1703.07834, 2017.

[15] Hanbyul Joo, Tomas Simon, Xulong Li, Hao Liu, Lei
Tan, Lin Gui, Sean Banerjee, Timothy Scott Godisart, Bart
Nabbe, Iain Matthews, Takeo Kanade, Shohei Nobuhara, and
Yaser Sheikh. Panoptic studio: A massively multiview sys-
tem for social interaction capture. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 2017.

[16] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. In Computer Vision and Pattern Regognition (CVPR),
2018.

[17] Sagi Katz, Ayellet Tal, and Ronen Basri. Direct visibility of
point sets. 26(3):24–es, July 2007.

241



[18] Michael Kazhdan and Hugues Hoppe. Screened poisson sur-
face reconstruction. ACM Trans. Graph., 32(3), July 2013.

[19] Muhammed Kocabas, Nikos Athanasiou, and Michael J.
Black. VIBE: video inference for human body pose and
shape estimation. CoRR, abs/1912.05656, 2019.

[20] Muhammed Kocabas, Nikos Athanasiou, and Michael J.
Black. Vibe: Video inference for human body pose and
shape estimation. In The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2020.

[21] Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and
Kostas Daniilidis. Learning to reconstruct 3d human pose
and shape via model-fitting in the loop. In ICCV, 2019.

[22] Nikos Kolotouros, Georgios Pavlakos, Michael J. Black,
and Kostas Daniilidis. Learning to reconstruct 3d hu-
man pose and shape via model-fitting in the loop. CoRR,
abs/1909.12828, 2019.

[23] Daniele Liciotti, Marina Paolanti, Emanuele Frontoni, Adri-
ano Mancini, and Primo Zingaretti. Person Re-identification
Dataset with RGB-D Camera in a Top-View Configuration,
pages 1–11. Springer International Publishing, Cham, 2017.
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