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Abstract

Background: Amyotrophic lateral sclerosis (ALS) is a multifactorial, multisystem motor neuron disease for which
currently there is no effective treatment. There is an urgent need to identify biomarkers to tackle the disease’s
complexity and help in early diagnosis, prognosis, and therapy. Extracellular vesicles (EVs) are nanostructures
released by any cell type into body fluids. Their biophysical and biochemical characteristics vary with the parent
cell’s physiological and pathological state and make them an attractive source of multidimensional data for patient
classification and stratification.

Methods: We analyzed plasma-derived EVs of ALS patients (n = 106) and controls (n = 96), and SOD1G93A and TDP-
43Q331K mouse models of ALS. We purified plasma EVs by nickel-based isolation, characterized their EV size
distribution and morphology respectively by nanotracking analysis and transmission electron microscopy, and
analyzed EV markers and protein cargos by Western blot and proteomics. We used machine learning techniques to
predict diagnosis and prognosis.

Results: Our procedure resulted in high-yield isolation of intact and polydisperse plasma EVs, with minimal
lipoprotein contamination. EVs in the plasma of ALS patients and the two mouse models of ALS had a distinctive
size distribution and lower HSP90 levels compared to the controls. In terms of disease progression, the levels of
cyclophilin A with the EV size distribution distinguished fast and slow disease progressors, a possibly new means for
patient stratification. Immuno-electron microscopy also suggested that phosphorylated TDP-43 is not an
intravesicular cargo of plasma-derived EVs.

Conclusions: Our analysis unmasked features in plasma EVs of ALS patients with potential straightforward clinical
application. We conceived an innovative mathematical model based on machine learning which, by integrating EV
size distribution data with protein cargoes, gave very high prediction rates for disease diagnosis and prognosis.
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Background
Amyotrophic lateral sclerosis (ALS) is a rare and fatal neu-
rodegenerative disorder with an incidence of 3.03 cases
per 100,000 persons [1]. ALS leads to selective loss of
upper and lower motor neurons resulting in progressive
paralysis and death within a few years from onset. About
50% of patients also develop non-motor symptoms with
cognitive and behavioral changes that may appear before
or after motor impairment [2]. ALS’s biggest challenge is
identifying reproducible biochemical biomarkers to pre-
dict the disease in the early phase and that change during
its progression. These biomarkers should reveal an adap-
tive response to a toxic stimulus before the degeneration
starts. For example, the prodromal stage of Alzheimer’s
disease is monitored well by detecting the increase of
amyloid protein peptides in the brain up to 10 years be-
fore the onset of symptoms [3]. In ALS, TDP-43 is a clear
hallmark of the disease; it has been observed as highly
post-translationally modified (cleaved and hyperpho-
sphorylated) in protein inclusions in 97% of post mortem
specimens from patients, but its analysis in biofluids is still
hard to reproduce [4]. A promising assay to detect patho-
logical species of TDP-43 in cerebrospinal fluid (CSF) has
been recently developed [5], however methods for plasma/
serum are lacking.
Neurofilaments are promising biochemical biomarkers

to diagnose ALS even before the onset of clinical symp-
toms [6, 7, 8]. However, a drawback is that neurofila-
ments increase not only in ALS but in other
neurodegenerative conditions too [9]. Moreover, neuro-
filaments are the end-product of a process of degrad-
ation in the axons. Their detection in biofluids
corresponds to damage that has probably started many
years before.
Extracellular vesicles (EVs) are nano- or micro-sized

membranous particles released by any cells and can be
found in biological fluids. There are two types of EVs,
namely exosomes, that originate from late endosome/
multivesicular bodies, and microvesicles that bud dir-
ectly from the plasma membrane [10]. Since circulating
vesicles comprise both exosomes and microvesicles, the
inclusive term EVs is now preferred [11].
EVs carry specific sets of lipids, nucleic acids, and

proteins, some of them common to all EVs, such as
cytosolic proteins and chaperones, while others are
unique and reflect specialized functions of the cell of
origin [12]. In neurodegenerative diseases, there is
emerging evidence that EVs might be involved in the
spread of the disease since several pathogenic mis-
folded proteins are associated with plasma- or CSF-
derived EVs, as reviewed in Basso and Bonetto, 2016
[13]. The presence of alpha synuclein, prion protein,
amyloid protein precursor, and superoxide dismutase

1 (SOD1) in EVs has made them unusually attractive
as a source of biomarkers.
Similarly, nearly all proteins linked to ALS have been

detected in EVs from cell-conditioned media [14]. In 2013
we found that astrocytes from transgenic mice expressing
SOD1 with glycine 93-to-alanine mutation (G93A) re-
leased more EVs in the culture media than controls [15].
These EVs contained SOD1G93A and induced selective
motor neuron death in an astrocyte-spinal neuron co-
culture paradigm. TDP-43, FUS, and SOD1 have also been
found in EVs isolated from ALS patients’ biological fluids
[16]. Because EVs are released by damaged cells in the
central nervous system (CNS) and transported to the per-
iphery [17], they bring the CNS information to the blood.
They may therefore be valuable biomarkers of ALS, espe-
cially, if their size distribution, number, and cargo could
differentiate ALS patients from other conditions and strat-
ify according to the rate of progression, e.g., fast- or slow-
ALS. However, the purification of EVs from plasma re-
mains a challenging task in the clinical setting and there is
still no consensus on a “gold method” to isolate pure EVs
in clinics [18].
We used a charge-based EV purification protocol,

namely nickel-based isolation (NBI), which is low-cost
and allows for a fast enrichment of vesicles [19]. With
our pipeline of analysis, we unmasked certain features in
plasma EVs of ALS patients that might have straightfor-
ward application in a clinical setting. Our data indicate
that EVs are indeed promising biomarkers, and their pa-
rameters can be used to predict the disease and the type
of progression.

Methods
Participants and clinical characterization
The study was approved by the ethics committees of all
the centers involved in the study, ICS Maugeri IRCCS,
Milan; NEuroMuscular Omnicentre (NEMO), Milan;
Casa Cura Policlinico, Milan; and ‘Rita Levi Montalcini’
Department of Neuroscience, Università degli Studi di
Torino, Turin; written informed consent was obtained
from all subjects. The spinal and bulbar muscle atrophy
(SBMA) plasma samples were obtained by the Telethon
Network of Genetic Biobank, University of Padova, Italy.
The study included 106 ALS patients and 96 controls
[36 healthy subjects, including plasma from 5 anon-
ymized healthy volunteers enrolled according to the
protocol 2018–008 approved by the University of
Trento, 28 muscular dystrophies (MD), 32 SBMA]. The
main demographic and clinical characteristics of the
subjects are listed in Table 1. ALS patients were divided
into two groups according to the disease progression
rate, defined by the median ΔALSFRS-R score (48 minus
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the ALSFRS-R score at sampling divided by the disease
duration from onset to sampling): slow/intermediate-
ALS with ΔALSFRS-R < 0.96 (slow-ALS) and fast-ALS
with ΔALSFRS-R > 0.96. All cases were sporadic, and
DNA was available from 90 of the 106 ALS patients and
screened for SOD1, C9orf72, TDP-43, and FUS gene
mutations. All blood samples were drawn within 18
months from the onset of the disease.

Animal model
Mice were maintained at 21 ± 1 °C with relative humidity
55% ± 10% and 12 h of light. Food (standard pellets) and
water were supplied ad libitum. All the procedures in-
volving animals and their care carried out at the Mario
Negri Institute for SOD1G93A mice and at the CIBIO
University of Trento for TDP-43Q331K mice were con-
ducted as described by the institutional guidelines, that
are in accordance with national (D.L. no. 116, G.U.
suppl. 40, February 18, 1992, n. 8, G.U., 14 July 1994)
and international laws and policies (EEC Council Direct-
ive 86/609, OJ L 358, December 12,1987; National Insti-
tutes of Health Guide for the Care and Use of
Laboratory Animals, US National Research Council,
1996). The mice were bred in conventional specific
pathogen-free mouse facilities.
The SOD1G93A mouse line on a homogeneous 129S2/

SvHsd background derives from the B6SJL-TgNSOD-1-
SOD1G93A-1Gur line originally obtained from The
Jackson Laboratory (Bar Harbor, ME, USA); it expresses
about 20 copies of mutant human SOD1G93A [20]. The
use of SOD1G93A mice was authorized in protocol n.
657/2018-PR.
TDP-43Q331K transgenic line 103 mice (stock 17,033)

express a myc-tagged, human TAR DNA binding pro-
tein carrying the ALS-linked Q331K mutation (huTDP-
43Q331K) directed to brain and spinal cord by the mouse
prion protein promoter on the C57BL/6NJ background.
The expression of the protein is 1.5 times that of the

endogenous TDP-43 [21]. The use of TDP-43Q331K mice
was authorized in protocol n. 603/2017-PR.
Mice were deeply anesthetized with ketamine hydro-

chloride (IMALGENE, 100 mg/kg; AlcyonItalia) and
medetomidine hydrochloride (DOMITOR, 1 mg/kg;
Alcyon Italia) by intraperitoneal injection and blood was
drawn and centrifuged to isolate plasma, as described in
‘Blood sampling’. SOD1G93A female mice were analyzed
at 10 and 16 weeks of age (SOD1G93A 10 weeks = 4;
SOD1G93A 16 weeks = 5), corresponding to the pre-
symptomatic and symptomatic stage of disease. Male
TDP-43Q331K mice were analyzed at 10 months, corre-
sponding to the symptomatic stage of the disease (TDP-
43Q331K 10 months = 7) [21].
The corresponding age-matched nontransgenic mice

were used as controls for SOD1G93A (n = 10) and TDP-
43Q331K mice (n = 8). Genotyping for SOD1G93A and
TDP-43Q331K was done by standard PCR using primer
sets designed by The Jackson Laboratory. The number
of animals was calculated on the basis of experiments
designed to reach a power of 0.8, with a minimum dif-
ference of 20% (α = 0.05).

Blood sampling and plasma isolation
Samples of peripheral venous blood from patients and con-
trols were collected in EDTA pre-coated vials (BD Vacutai-
ner K2EDTA). Blood was centrifuged at 3000 x g for 20
min, frozen and kept at − 80 °C until further analysis.
For animal models, up to 500 μL of blood per mouse

was sampled by intracardiac puncture, collected in
EDTA pre-coated vials and centrifuged at 3000 x g for
10 min. Mouse plasma samples were stored at − 80 °C
until EV isolation. Only samples frozen once were used
in the analyses.

EV isolation
Ultracentrifugation (UC)
Plasma samples (500 μL) were diluted with an equal vol-
ume of PBS and subjected to UC to remove cells, dead

Table 1 Characteristics of ALS patients and controls

Characteristics ALS Slow-ALS1 Fast-ALS2 HC3 MD4 SBMA5

N. 106 60 46 36 28 32

Age at sampling, median (range) 67 (42–89) 65 (42–81) 70 (48–89) 61 (24–78) 53 (25–78) 62 (46–83)

Sex (male/female) 64/42 41/19 23/23 15/21 13/15 32/0

Site of disease onset (bulbar/spinal) 28/77 7/52 21/25 – – –

ALSFRS-R at sampling, median (range) 34 (2–47) 37 (4–35) 27 (2–41) – – –

ΔALSFRS-R6, median (range) 0.86 (0.05–9.0) 0.54 (0.05–0.95) 1.48 (0.97–9) – – –

Disease duration7, median months (range) 14 (3–179) 15 (3–179) 13 (3–46) – – –

Gene mutations
(SOD1/C9orf72/TDP-43/FUS)

10/106 (4/5/1/0) 6/60 (3/2/1/0) 4/46 (1/3/0/0) – – –

1Slow-ALS: ΔALSFRS-R < 0.96; 2Fast-ALS: ΔALSFRS-R > 0.96; 3HC Healthy control; 4MD muscular dystrophy; 5SBMA spinal and bulbar muscular atrophy; 6ΔALSFRS-R:
48– ALSFRS-R score at the plasma collection/time between symptom onset and sampling; 7Disease duration: from symptom onset to plasma collection
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cells and cellular debris (10 min at 200 x g, 10 min at
1000 x g and 25min at 20,000 x g at 4 °C) (rotor type JA
25.50), as already reported [15]. The final supernatant
was then ultracentrifuged for 1 h at 100,000 x g (rotor
type 70i) at 4 °C to pellet EVs. The pellet was washed
twice by suspension in PBS and ultracentrifugation for 1
h at 100,000 x g at 4 °C to eliminate contaminating pro-
teins. EVs were analyzed within 1 week from extraction.

Nickel-based isolation (NBI)
Human (500 μL) and mouse plasma (100 μL) were cen-
trifuged to remove cells, dead cells and cellular debris
(10 min at 2800 x g at RT) and the supernatant was di-
luted in filtered PBS respectively one and ten times. The
diluted plasma was incubated with 25 μL/mL of nickel-
functionalized agarose beads [22] and placed in orbital
shaking for 30 min at RT. The beads with the bound
EVs were gently centrifuged (5 min at 1000 x g at RT)
and the supernatant was discarded. Elution buffer (PBS,
EDTA 3.2 mM, NaCl 2 mM, citric acid 45 μM) [22]
(100 μL/mL) was added to the beads and incubated in a
Thermomixer (10 min at 750 rpm at 28 °C). The beads
were pelleted (1 min at 600–800 x g at RT) and the
supernatant-containing EVs- was transferred to a new
tube. The starting plasma volume per subject was not
more than 500 μL and was enough for the analysis of the
physical and biochemical EV parameters described. EVs
were analyzed within 1 week from extraction.

Transmission electron microscopy (TEM)
Five μL drops of isolated EVs in PBS were left to dry at
room temperature for 30min on a 100 mesh formvar/car-
bon coated copper grid (EMS, Hatfield, PA, USA) and
fixed with 4% paraformaldehyde and 2% glutaraldehyde in
0.12M phosphate buffer (pH 7.4) for 30min. EVs were
then postfixed in OsO4 1% in 0,12M cacodylate buffer
(pH 7.4) for 30min and counterstained with uranyl acetate
(oversatured solution) for 15min. After dehydration by a
graduated scale of ethanols the grids were embedded in
LR White. For immuno-electron microscopy, five μL drop
of EVs were placed to dry at room temperature for 30min
on formvar/carbon coated nikel grid (EMS, Hatfield, PA,
USA) and fixed with 4% paraformaldehyde and 0.25% glu-
taraldehyde in 0.12M phosphate buffer (pH 7.4) for 30
min. EVs were then incubated with a mouse anti-phospho
TDP-43 (pS409/410) (1:100 dilution, Cosmo Bio Co., Ltd.)
overnight at 4 °C, followed by a goat anti-mouse antibody
conjugated to a 12 nm colloidal gold (1:70 dilution, Jack-
son Immunoresearch) in block solution (BSA 0.5%) for 45
min at 37 °C. After post-fixation with 2% glutaraldehyde,
samples were counterstained with uranyl acetate and em-
bedded in LR White. Grids were observed with an Energy
Filter Transmission Electron Microscope (EFTEM, Zeiss
Libra® 120) equipped with an yttrium aluminium garnet

(YAG) scintillator slow-scan CCD camera (Sharp eye,
TRS).

Nanotracking analysis (NTA)
NTA was carried out to detect the size distribution and
concentration of isolated EVs using a NanoSight NS300
(equipped with a sCMOS camera and 532 nm diode
laser; Malvern scientific). Data were acquired and proc-
essed by two operators throughout the study, using
NTA software version 3.00, on the basis of manufac-
turer’s recommendations. Before starting the analysis,
samples were centrifuged at 10,000 x g for 5 min to re-
move remaining beads. Human and mouse samples were
then diluted in filtered PBS respectively 100 and 50
times (final volume of 1 mL), to maintain 20–40 particles
per field of view and 5 × 60 s videos were recorded (at
camera level 11–12); for analysis, at least 1000 com-
pleted tracks were required per measurement. Analyses
were always carried out at the same settings (detection
limit 3). To assess the quality of the analysis, for each
sample we considered the ratio between the total par-
ticle tracks and the valid particle tracks. The analysis
was considered valid when the ratio was less than 5. The
quantification of EVs is described throughout per mL.
NTA analysis was also used to provide the mean and
mode with 95% CI. The D10, D50 and D90, which are
the size points below which 10–50% and 90% of the par-
ticles are contained, were also considered.
We stratified EV populations as small or big EVs on

the basis of a cut-off of 130 nm, which is the median
D50 of all the samples analyzed. For each sample a dis-
tribution curve with the row data of NTA was generated
and set with the same x (from − 2.0E+ 06 to 1.6E+ 07 n.
of particles/mL) and y axis (from 0 to 400 nm) axis, and
the same sizes (39.38 cm × 30.43 cm). The relative abun-
dance of small versus big EVs was calculated from the
area under the curve (AUC) for size distribution curve,
below or above the 130 nm cut-off. The AUC was mea-
sured with ImageJ software [23].
Sample extraction was randomized for human and

mouse plasma. The operators were blinded during the
NTA.

Tunable resistive pulse sensing (TRPS)
TRPS measurements were made with a gold qNano in-
strument (Izon Ltd.) mounting a polyurethane nanopore
membrane NP200 (analysis range 85–500 nm) and
NP400 (analysis range 185–1100 nm) (Izon Ltd). The
electrolyte solution consisted of filtered PBS with Primo
Syringe Filters 30 mm-PES membrane 0.22 μm.

Zeta potential
Z–potential measurements were made at 25 °C with a
Zeta Sizer instrument (Nano-ZS, Malvern Instruments).
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Samples were introduced into DTS1070 capillary cells
(Malvern Panalytical) with the diffusion barrier tech-
nique, while data were analyzed with Zetasizer Software.
Phase Analysis Light Scattering (PALS) was used to de-
termine the average zeta potential of vesicles dispersed
in PBS. A fast measurement process (fast field reversal
mode: FFR) was selected, because of the high ionic
strength of the dispersing media (PBS). Sizes were also
measured before and after the zeta potential measure-
ments to check the sample had not changed because of
the measurement.

EV-like liposomes
EV-like liposomes were prepared from a mixture com-
posed of 20% mol egg phosphatidylcholine, 10% mol egg
phosphatidylethanolamine, 15% mol dioleoylphosphati-
dylserine, 15% mol egg sphingomyelin, 40% mol choles-
terol (adapted from [24, 25]). All phospholipids were
acquired from Avanti Polar Lipids. Lipid films were
formed by removing the organic solvent (chloroform)
from a lipid solution by rotary evaporation and vacuum
drying for at least 30 min. Lipids at a final concentration
of 1 mg/mL were swollen in PBS and vortexed vigor-
ously to give multilamellar liposomes, which were then
exposed to six cycles of freezing and thawing. EV-like li-
posomes were obtained by extruding the suspension of
multilamellar liposomes with a two-syringe extruder
(LiposoFast Basic Unit, Avestin Inc.). Thirty-one pas-
sages were done through two stacked polycarbonate fil-
ters (Millipore) with pores of 50 or 100 nm nominal
average diameters. Finally, size and Z-potential of EV-
like liposomes were measured with a Zeta Sizer instru-
ment (Nano-ZS, Malvern Instruments).

Proteomics
Three aliquots (0.5 mL) of a pool of plasma samples
from six healthy subjects were isolated independently by
UC (samples #1UC, #2UC, #3UC) and NBI (samples
#1NBI, #2NBI, #3NBI). EV proteins were extracted using
RIPA buffer (150 mM NaCl, 1.0% Triton, 0.5% sodium
deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0). An equal
amount of proteins for each sample (9 μg) was separated
by 1D 4–12% Nupage Novex Bis Tris Gel (Invitrogen),
stained with Bio-Safe Coomassie (Bio-Rad Laboratories)
and digested with trypsin, using a published procedure
[26]. Two μL of each sample were analysed on a Biobasic
18 column (150 × 0.18 mm ID, particle size 5 μm,
Thermo Scientific) coupled with Q-Exactive (Thermo
Scientific) via a DESI Omni Spray (Prosolia) used in
nanospray mode. Peptides were eluted with a 240 min
gradient of 5–60% buffer B (80% acetonitrile) at a flow
rate of 2 μL/min. The Q-Exactive was operated in data-
dependent mode with a survey scan range of 400–2000
m/z and resolution 70,000 in parallel with low-

resolution MS/MS scans of the 20 most abundant pre-
cursor ions with a charge ≥2. Dynamic exclusion of se-
quenced peptides was set to 15 s to reduce the number
of repeated sequences. Data were acquired using Xcali-
bur software (Thermo Scientific). MaxQuant software
(version 1.6.2.3) was used to analyze MS raw files [27].
MS/MS spectra were searched against the human Uni-
prot FASTA database (Version 2016) and a common
contaminants database (247 entries), using the Androm-
eda search engine [27]. Cysteine carbamidomethylation
was applied as fixed and methionine oxidation as vari-
able modification. Enzyme specificity was set at trypsin
with a maximum of two missed cleavages and a mini-
mum peptide length of 7 amino acids.
A false discovery rate (FDR) of 1% was required for

peptides and proteins. Peptides were identified with an
allowed initial precursor mass deviation of up to 7 ppm
and an allowed fragment mass deviation of 20 ppm. Pro-
tein identification required at least one unique peptide.
A minimum ratio count of 1 was required for valid
quantification events, with MaxQuant’s Label Free
Quantification algorithm (MaxLFQ). Data were filtered
for common contaminants and peptides only identified
by side modification were excluded from further
analysis.
Bioinformatic analysis was done in the Perseus soft-

ware environment [28]. Protein abundance changes were
computed on LFQ peak intensities. Statistical analysis
was done with the non-parametric Wilcoxon-Mann-
Whitney test, using p < 0.05 as cut-off (JMP Pro13 statis-
tical software). Functional enrichment analysis was done
with STRING (https://string-db.org/), using the Gene ID
of the identified proteins.

Protein extraction for EVs
Proteins from EVs isolated by NBI were precipitated
with three volumes of acetone for 2 h at 4 °C with agita-
tion, and centrifuged at 9000 x g for 5 min at 4 °C. Pel-
lets were suspended in 1% boiling SDS and analyzed by
Western blot analyses. The pellets of EVs isolated by UC
were also suspended in 1% boiling SDS and analyzed.
Proteins were quantified by the BCA protein assay
(Pierce).

Antibodies
Antibodies for immunoblot (Western) were as follows:
mouse monoclonal anti-cytochrome C (1:500 dilution; BD
Biosciences; RRID: AB_396417); mouse monoclonal anti-
calnexin (1:1000 dilution; Abcam; RRID: AB_11178981);
rabbit monoclonal anti-syntenin (1:2500 dilution; Abcam;
RRID: AB_11160262); rabbit monoclonal anti-GM130 (1:
2500 dilution; Abcam; RRID: AB_880266); rabbit mono-
clonal anti-CD81 (1:1000 dilution; Cell Signaling; RRID:
AB_2714207); mouse monoclonal anti-flotillin-1 (1:500
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dilution; BD Transduction Laboratories; RRID: AB_
398139); rabbit polyclonal anti-cyclophilin A/peptidyl-pro-
lyl cis-trans isomerase A (PPIA) (1:5000 dilution; Protein-
tech; RRID: AB_2237516); rabbit polyclonal anti-HSP90
(1:1000 dilution; Enzo Life Sciences; RRID: AB_2039287);
rabbit polyclonal anti-TDP-43 (1:2500 dilution; Protein-
tech; RRID: AB_2200505); rabbit polyclonal anti-TDP-43
(1:2500 dilution; Proteintech; RRID: AB_615042); mouse
monoclonal anti-human phospho Ser409/410 TDP-43
antibody (pTDP-43) (1:2000 dilution; Cosmo Bio Co.,
LTD; RRID: AB_1961900); goat polyclonal anti-
apoliprotein B (1:500 dilution; Abcam; RRID: AB_305987);
goat polyclonal anti-apoliprotein AI (1:500 dilution;
Abcam; RRID: AB_2289632); goat anti-mouse or anti-
rabbit peroxidase-conjugated secondary antibodies (re-
spectively 1:20,000 and 1:10,000 dilution, GE Healthcare).

Western blot (WB)
For WB, human and mouse samples (40 μg) were sepa-
rated in 12% SDS-polyacrylamide gels and transferred to
polyvinylidene difluoride membranes (Millipore). For
protein characterization of human EVs, to minimize
inter-assay variability each blot was loaded to hold one
healthy control, three ALS patients, one MD and one
SBMA control, with a total of 36 blots for each protein.
For mouse EVs protein analysis, to minimize inter-assay
variability, each blot was loaded to hold a SOD1G93A

sample at 10 and 16 weeks of age with the respective
controls, and a TDP-43Q331K sample with relative con-
trol, with a total of six blots for each protein. In addition,
for both human and mouse EVs the respective internal
standards (IS) were used for all the blots to favor inter-
assay analysis. The IS is a pool of human or mouse
plasma EV samples. To minimize intra-assay variability,
both human and mouse aliquots were prepared the same
day for all the proteins analyzed and samples were
loaded alternately in the blot. WB membranes were
blocked with 3% (w/v) BSA (Sigma-Aldrich) and 0.1%
(v/v) Tween 20 in Tris-buffered saline, pH 7.5, and incu-
bated with primary antibodies, then with peroxidase-
conjugated secondary antibodies. Blots were developed
with Luminata™ Forte Western Chemiluminescent HRP
Substrate (Millipore) on the ChemiDoc™ Imaging System
(Bio-Rad). Densitometry was done with Image Lab soft-
ware 6.0. Immunoreactivity was normalized to the Red
Ponceau staining (Fluka) and to the immunosignal of
the IS of each membrane. Data are expressed as arbitrary
units (A.U.). Censored data were replaced with L/√2,
where L is the lowest value detected in all samples.

ELISA pNFH
pNFH was measured in human plasma with an ELISA
kit for the human protein (EUROIMMUN #EQ-6561-

9601). Censored data were replaced with L/√2, where L
is the limit of detection of the assay.

Machine learning
In view of the limited number of samples and the
presence of unbalanced classes, we built and com-
pared two different machines learning frameworks,
that is the basic one, represented in Fig. 6a, and the
advanced one, in Fig. 6b. Both frameworks are divided
into three different steps: data handling (see detailed
description in section “Data preprocessing and over-
sampling”), training of the models (see detailed de-
scription in sections “Classification models” and “K-
fold cross validation”) and testing of the models on
an independent cohort (see details in section “Classifi-
cation accuracy of prediction models”). The main dif-
ference between the two frameworks is in the first
part, that is data handling. Indeed, in the basic one
we just perform some simple preprocessing to clean
up the training data, while in Fig. 6b, we further use
some tailored oversampling strategy that enables us to
better handle unbalanced training data, thus getting
better performances in the end.
Model training, internal validation and testing were

done on the NTA curve distributions and on the data on
HSP90 and PPIA values for all the EV plasma. We used
Python 3.7.4 downloaded at https://www.python.org/
downloads/ release/python-374/ running in a Windows
10 PC × 64, with Intel(R) Core (TM) i5-4200M CPU with
2.5 GHz and 4 GB of RAM. To write this Python code we
used PyCharm version 2019.2, an IDE (Integrated Devel-
opment Environment) developed by JetBrains https://
www.jetbrains. com/pycharm/download/other.html. We
embedded some Scikit-learn tools into our software.
Scikit-learn (https://scikit-learn.org/stable/) is a Python
open-source library that embeds simple, efficient tools for
predictive data analysis and machine learning. We also de-
veloped a specific software library for analysis of the NTA
curve distributions (https://github.com/tety94/rbfn, tag
v1.0.0).

Distribution curve compression
As a preliminary step we normalized all the distribution
curves (Supplementary Fig. 3f). Then we used machine
learning tools to compress the signal. Specifically, we
considered a distribution curve as a set of noisy samples
picked from an unknown function, and approximated it
with a fixed number of Radial Basis Functions (RBFs)
[29]. We used 30 RBFs in the experiments. An example
of an approximated curve is reported in Supplementary
Fig. 3 g. The reconstructed curve fits the original one
very well. Since the coefficients related to the RBF model
represent an implicit description of the approximated
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signal, we used them as the set of features that map the
curve into a smaller dimensional space [30].

Data preprocessing and oversampling
As a first step we had to preprocess and suitably split
the samples in two independent sets, that is the training
and the test set (respectively indicated with TR and TS
in both Fig. 6a and b). When dealing with the dataset
that includes the biomarkers, we had some missing
values so, in order to impute those missing data, we used
feature average when needed. In view of the limited
number of samples and the presence of unbalanced clas-
ses, we built and compared two different learning ma-
chines. As mentioned above, the first one was simply
obtained by using the original training data (indicated
with TR in Fig. 6a). The second one was instead built up
using oversampled data (indicated with OTR in Fig. 6b).
We used a synthetic oversampling algorithm called
MWMOTE [31] and a specific procedure to avoid over-
optimistic predictions (see Fig. 6b), similar to the one
proposed in [32]. This approach allowed us to avoiding
overfitting, which might occur when oversampling is
used the wrong way.

Classification models
The distribution curve features were used to feed a trained
learning machine to distinguish ALS patients from others.
Since our dataset consists of input-output samples, we
used a supervised training approach. Supervised learning
techniques are specific algorithms that train a predictor
using data that consist of inputs paired with the correct
outputs. We used Random Forests to build up our classifi-
cation models. We used binary classification models to
compare ALS with the other diseases (MD and SBMA)
and HC. We also split ALS patients into two groups ac-
cording to the disease progression rate (fast- vs slow-ALS)
and built up classification models using those data. In
addition to the distribution curve features, we included
specific biomarkers to check for any improvement in the
performance of the classifiers. We built models to com-
pare ALS with one of the other classes based on plasma
EV size distribution and HSP90 amount. We used EV size
distribution and PPIA amount to distinguish fast from
slow-ALS.

K-fold cross validation
Cross validation is a resampling procedure used to
evaluate machine learning models on limited data sam-
ples. The k refers to the number of groups that a given
data sample is to be split into. In our tests, k = 5. A k-
fold cross validation strategy was used to assess the per-
formances of the different learning machines [33] and
select the best parameter settings for the models. We

chose a stratified algorithm as the generated folds pre-
serve the percentage of samples for each class.

Classification accuracy of prediction models
In order to assess the performances of our prediction
models, we used an independent cohort as a test set in
both machine learning frameworks (see TS in Fig. 6a
and b) and considered two different measures: Precision
(the fraction of relevant instances among the retrieved
instances) and Recall (the fraction of relevant instances
that were actually retrieved). Precision-recall curves were
plotted to display performances of the different classi-
fiers. Those curves show the trade-off between precision
and recall for different thresholds. Our target/positive
class in the experiments is the ALS patients.

Statistical analyses
Different EV parameters were compared between ALS
patients, MD, SBMA and HC, using one-way ANOVA.
For parameters showing a significant (p < 0.05) differ-
ence in the distribution among the four categories, pair-
wise comparisons were made using the Dunnett’s
multiple comparisons post hoc test, to identify the cat-
egories showing the difference. Pairwise comparisons
were limited only to comparisons involving ALS patients
(ALS versus MD, ALS versus SBMA, ALS versus HC).
Significant and differentially expressed EV parameters
between fast and slow progressing ALS patients were se-
lected using Student’s t test, with p < 0.05 as cut-off. The
same analyses were used to compare the EV parameters
in the two isolation procedures NBI and UC. Different
EV parameters were compared between controls and
SOD1G93A mice at 10 and 16 weeks of age, using one-
way ANOVA. For parameters showing a significant (p <
0.05) difference in the distribution among the three cat-
egories, pairwise comparisons were made using the
Tukey’s multiple comparisons post hoc test. Significant
and differentially expressed EV parameters between
TDP-43Q331K and controls mice were selected using Stu-
dent’s t test, with p < 0.05 as cut-off. Univariable and
multivariable linear models were used to assess if EV pa-
rameters were associated with demographic (age and
sex) and clinical characteristics of ALS patients (ALSF
RS-R, site of onset, disease duration, ΔALSFRS-R).

Results
High-yield isolation of intact, pure and polydisperse
plasma EVs by NBI
To test whether ALS plasma EVs could be employed as
biomarkers of disease diagnosis and progression, we
looked for EV isolation methods that would be fast and
reproducible. We isolated plasma EVs by NBI, a cost-
effective procedure that exploits the net charge of mem-
brane vesicles in a physiological pH [19] (Fig. 1a) to
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capture them in a short turn-round time (< 1 h) [34]. Re-
covered EVs were characterized according to the guide-
lines of the International Society of Extracellular
Vesicles [11, 35]. EV samples were analyzed by immuno-
blotting for the presence of three positive markers (flotil-
lin-1, syntenin, and CD81) and the absence of three
negative markers (GM130, calnexin, and cytochrome C).
All positive markers were enriched in EV samples com-
pared to EV-depleted plasma, and there were no nega-
tive markers (Fig. 1b). Isolation of EVs was confirmed by
TEM, which detected mostly rounded membrane parti-
cles in the 23–150 nm size range (Fig. 1c), and by TRPS,
which analyzed the concentration and diameter of the
particles (Supplementary Fig. 1c-f). The sizes of EVs
varied, confirming that NBI recovers polydisperse parti-
cles [19].
We assessed the performance of NBI in comparison

with UC, which is one of the most widely used methods
with relatively high yield and purity, to isolate EVs [34,
36]. We used equal volumes of plasma from 15 subjects
with ALS, processed by both methods in parallel follow-
ing well established protocols [12, 22]. We analyzed the
EV markers and performed the TEM for plasma EVs
purified with UC (Supplementary Fig. 1a-b). Then, we
measured the amount of particles/mL with the TRPS;
NBI recovered respectively four and 1.5 times more par-
ticles than UC when small and big vesicles were

measured, (NP200 measured show 5.2E+ 09 ± 6.9E+ 08
versus 1.2E+ 09 ± 1.6E+ 08 particles/mL; NP400 detected
8.8E+ 07 ± 1.2E+ 07 versus 5.7E+ 07 ± 1.1E+ 07) (Supple-
mentary Fig. 1c-d).
We calculated the particles-to-μg of proteins ratio

as a measure of protein contamination, and NBI gave
a significantly higher value than UC (123.2 ± 9.9 ver-
sus 51.8 ± 6.5), indicative of a lower level of protein
contamination (Supplementary Fig. 1g) [37]. In our
settings, EVs isolated by NBI had on average a
smaller diameter than those isolated by UC (NP200
recorded 84.4 nm ± 1.7 versus 98.5 nm ± 1.0; NP400
gave 210.5 nm ± 3.8 versus 275.5 nm ± 7.4) (Supple-
mentary Fig. 1e-f) likely due to a difference in the
pre-clearing protocols that favors the selection of dif-
ferent EV populations [38]. To evaluate the NBI re-
producibility, we generated liposomes with an EV-like
lipidic composition (EV-like liposomes), and we di-
luted 1.0E+ 10 particles/mL in one mL of EV-depleted
plasma. We ran three independent experiments in
which we purified EV-like liposomes by either NBI or
UC. We quantified the amount and size of each repli-
cate by TRPS. As shown in Supplementary Fig. 1h,
the EV-like liposomes purified with NBI had similar
size-distribution curves among replicates (CV 8.9%).
The average mean and mode diameters were 140 ± 11
and 102 ± 4 for the bigger and smaller EVs,

Fig. 1 Plasma EVs are efficiently purified by NBI. a Schematics of the purification strategy and validation. b Immunoblot for flotillin-1, syntenin, CD81
(markers of EVs) and GM130, calnexin and cytochrome C (contaminants of EVs) in plasma EV samples (EV1, EV2, EV3) isolated by NBI, and EV-depleted
plasma (Surn1, Surn2, Surn3). Loading control represented by Red Ponceau. c TEM analysis of the plasma EV purified with NBI: one representative
image from three independent experiments. Bar, 500 nm in the main panel; 200 nm, 100 nm, 200 nm in the insets from top to bottom
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respectively. We confirmed a similar level of reprodu-
cibility in the plasma EV samples (Supplementary Fig.
1i).
We did label-free proteomic profiling to assess whether

NBI was enriching for EVs and compared NBI and UC
isolated EVs. We identified 107 proteins, 60 of them over-
lapping (~ 56% of the total) between NBI and UC samples
(Supplementary Table 1 and Supplementary Fig. 2a). With
both purification strategies about 70% of identified pro-
teins were annotated as extracellular vesicle components
(GO cellular component, Supplemental Table 2). Twenty-
four proteins were differentially enriched either in NBI or
UC (p < 0.05, Wilcoxon-Mann-Whitney test). Interest-
ingly, 7 out of the 24 were apolipoproteins, which were
enriched in UC. Lipoprotein particles are very abundant
in blood and biophysically very similar to EVs; therefore
they co-isolate in standard isolation procedures, and are
considered contaminants in the EV analysis [39–41]. We
detected twelve apolipoproteins in the UC-EVs, but only
Apo-AI, Apo-AII, and Apo B-100 in the NBI-EVs, and
there were significantly fewer than UC-EVs (Table 2). We
also validated the decreased amount of co-purified Apoli-
poprotein B and AI in NBI compared to UC purification
by immunoblotting (Supplementary Fig. 2c and d). Over-
all, the NBI method gave an 86% reduction in apolipopro-
tein content, indicating that it minimizes the lipoprotein
particle co-isolation issue. Heat shock cognate 71 kDa pro-
tein (HSC70) and Heat shock protein HSP 90-alpha
(HSP90A), two EV luminal markers, were instead, signifi-
cantly higher in NBI-EVs, confirming that NBI enriches
rather pure EVs (Supplementary Fig. 2b and Supplemen-
tary Table 1).
We conclude that NBI is a fast, high-yield procedure

to isolate polydisperse circulating EVs that are almost

lipoprotein-free with preserved biochemical and bio-
physical properties. Therefore, we implemented this pro-
cedure to isolate EVs from the plasma of our ALS
patients and controls to identify possible biomarkers of
disease.

The peculiar size distribution of polydisperse plasma EVs
in ALS patients
Using the purification protocol with NBI we isolated
EVs from the plasma of 106 ALS patients and 96 con-
trols (Table 1), 36 healthy controls (HC) and 60 disease
controls: 28 patients with MD that generally do not
imply nerve damage, and 32 patients with SBMA, an
ALS-mimic motor neuron disease. First, we investigated
whether ALS patients could be distinguished from con-
trols on the basis of the EV concentration and diameter.
We calculated the zeta potential of EVs, the measure of
the net charge of EV membranes and transmembrane
proteins, and found no significant differences among the
groups (values between − 7.8 and − 9.8 mV; Supplemen-
tary Fig. 3a). To detect the EV number and size distribu-
tion, we did a nanotracking analysis (Nanosight,
Malvern). We analyzed the size distribution of plasma
EVs within the 50–300 nm range in ALS patients and
controls (Fig. 2a). HC presented two peaks (blue line)
that were not preserved in all three diseases (ALS, MD,
and SBMA). The average curve of the SBMA patients
had a higher peak in the distribution (green line), while
ALS and MD showed similar distribution (red and yel-
low line, respectively).
Looking at the total amount of particles per mL, we

saw a significant difference in EV number between
the two motor neuron diseases, ALS and SBMA, with
an average between 1.1E+ 10 and 2E+ 10 particles/mL

Table 2 Differential expression data for apolipoproteins in EV samples isolated by UC or NBI

Protein name Accession number UC, average LFQ(107)a NBI, average LFQ(107)a Fold change
UC/NBIb

Apolipoprotein A-I APOA1_HUMAN 249 ± 21 57 ± 5.5 4.37*

Apolipoprotein A-II APOA2_HUMAN 2.8 ± 0.4 0.1 ± 0.0 18*

Apolipoprotein A-IV APOA4_HUMAN 6.9 ± 1.5 ND –

Apolipoprotein B-100 APOB_HUMAN 628 ± 14 64 ± 8.2 9.8*

Apolipoprotein C-I APOC1_HUMAN 0.6 ± 0.0 ND –

Apolipoprotein C-II APOC2_HUMAN 0.1 ± 0.0 ND –

Apolipoprotein C-III APOC3_HUMAN 4.0 ± 0.3 ND –

Apolipoprotein D APOD_HUMAN 4.7 ± 0.7 ND –

Apolipoprotein E APOE_HUMAN 7.0 ± 0.7 ND –

Apolipoprotein L1 APOL1_HUMAN 0.4 ± 0.0 ND –

Apolipoprotein M APOLM_HUMAN 0.1 ± 0.0 ND –

Apolipoprotein(a) APOA_HUMAN 0.5 ± 0.1 ND –

(a) Label-free quantification (LFQ) based on average normalized peak intensity ± SEM of samples isolated by UC (3: #1UC, #2UC, #3UC) or NBI (3, #1NBI, #2NBI,
#3NBI); (b) fold-changes in expression between the samples isolated by UC and NBI; *, p < 0.05, by Wilcoxon-Mann-Whitney test. ND not determined, proteins not
found in NBI samples
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(Fig. 2b). We wondered whether the number of small
vesicles could distinguish the different groups. We
considered the median of all the samples as the cut-
off (130 nm) between the smaller and bigger popula-
tions. The number of particles/mL below the cut-off
differed significantly in the four groups, with the
highest number of EVs in samples from ALS and
SBMA (2.7E+ 04 ± 2.1E+ 03 and 5.4E+ 04 ± 7.5E+ 03,
respectively) (Fig. 2c).
Finally, we compared the sizes of EVs and, surprisingly,

MD EVs had the largest mean diameter (174 ± 7 nm) differ-
ing significantly from ALS EVs and SBMA EVs (mean di-
ameters respectively 151 ± 3 nm and 137 ± 3 nm) (Fig. 2d).
D50 was also higher in MD than ALS and SBMA (Supple-
mentary Fig. 3d). ALS mean diameter and D50 were signifi-
cantly larger than SBMA EVs, so SBMA EVs were the
smallest of these different conditions (Fig. 2d, Supplemen-
tary Fig. 3d). The mode diameter, D10 and D90 presented a
similar pattern (Supplementary Fig. 3b, c, e).

The distinctive size distribution of polydisperse plasma
EVs in two ALS mouse models
To test whether the differences in size distribution
in ALS plasma EVs were recapitulated in

experimental models, we analyzed the plasma-
derived EVs purified from two transgenic ALS
mouse models expressing either SOD1G93A [20] or
TDP-43Q331K [21]. These two mouse models of
motor neuron disease are pathologically very differ-
ent, in particular for their rate of disease progres-
sion, which is fast and slow respectively, and offer
the opportunity to study plasma EVs independently
from genotype and phenotype. SOD1G93A mice show
early symptoms at 10 weeks of age, and become
symptomatic with loss of body weight, muscular
weakness, and motor impairment at 16 weeks. TDP-
43Q331K mice present 30% loss of L5 motor axons
and 30–45% loss of lower motor neurons by 10
months of age. We analyzed the size distribution of
particles in control and transgenic mice at different
ages (Fig. 3a and e). The peak of the plot was sub-
stantially higher and shifted toward smaller size. In
fact, the mean number of particles was significantly
larger (1.7 times) in symptomatic mice expressing ei-
ther SOD1G93A or TDP-43Q331K, suggesting similar
changes in EV production or in the rate of elimin-
ation in both genetic models (Fig. 3b and f). There
was already a tendency to an increase in number of

Fig. 2 ALS plasma EVs are differentially distributed in size and amount compared to HC, MD and SBMA plasma EVs. a Representative average
curve of size distribution of ALS, HC, MD and SBMA. b Box-plots showing the number of particles per mL (n. particles/mL) of plasma EV in the
four groups; ALS, HC, MD, SBMA; one-way ANOVA, p = 0.0006; ***p = 0.0004 for ALS versus SBMA by Dunnett’s multiple comparisons test. c Box-
plots showing the number of particles per mL below 130 nm; one-way ANOVA, p < 0.0001; ****p < 0.0001 for ALS versus SBMA by Dunnett’s
multiple comparisons test. d Box-plots showing the mean diameter (nm) of EVs in the four groups; one-way ANOVA, p < 0.0001; ***p = 0.0005 for
ALS versus MD and *p = 0.037 for ALS versus SBMA by Dunnett’s multiple comparisons test. b-d Only significant pairwise comparisons, ALS versus
HC/MD/SBMA, were indicated
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Fig. 3 (See legend on next page.)
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particles and particles/mL below the 130 nm cut-off
at a presymptomatic stage of the disease in
SOD1G93A mice (Fig. 3c). In TDP-43Q331K mice,
there is also a significant difference in number of
particles/mL below the 130 nm cut-off (Fig. 3g). As
in the sporadic patients, the mean diameter was
smaller in both ALS mouse models, 11% less in
symptomatic SOD1G93A mice and 14% in the TDP-

43Q331K mice (Fig. 3d and h), further indicating a
possible association of this parameter with motor
neuron degeneration and denervation.
These results suggest that the size distribution and the

mean size of ALS EVs in two in vivo models of the path-
ology and in patients are parameters that can be used to
distinguish ALS from other conditions, possibly already
at an early stage.

(See figure on previous page.)
Fig. 3 Mouse plasma EVs from two ALS mouse models have peculiar size distribution, similarly to human ALS plasma EVs. a, e Representative
average curve of size distribution of SOD1G93A mice at 10 and 16 weeks and of TDP-43Q331K mice at 10 months and age-matched controls. b Box-
plot showing the number of particles per mL in plasma of SOD1G93A mice at 10 and 16 weeks, compared to controls. One-way ANOVA, p = 0.029;
*p = 0.028 between SOD1G93A 16 weeks and controls by Tukey’s multiple comparisons test. c Box-plots showing the number of particles per mL
below 130 nm of SOD1G93A EVs at 10 and 16 weeks compared to controls; one-way ANOVA, p = 0.069. d Box-plot showing the mean diameter of
plasma EVs of SOD1G93A EVs at 10 and 16 weeks compared to controls. One-way ANOVA, p = 0.57. f Box-plot showing the number of particles per
mL in plasma of TDP-43Q331K mice at 10 months compared to controls. Student t-test, **p = 0.0063. g Box-plots showing the number of particles
per mL below 130 nm of TDP-43Q331K mice at 10 months compared to controls. Student t-test, *p = 0.012. h Box-plot showing the mean diameter
of plasma EVs of TDP-43Q331K EVs at 10 months compared to controls. Student t-test, *p = 0.039

Fig. 4 HSP90, but not PPIA, shows specific enrichment in relation to the disease in human and mouse plasma EVs. a, b Representative immunoblotting for
HSP90 (a), and PPIA (b) and relative Red Ponceau in human EV samples. IS means internal standard. c Box-plot showing the levels of HSP90 in the plasma EVs
of ALS, HC, MD and SBMA. One-way ANOVA, p<0.0001; ***p=0.0003 ALS versus HC and **p=0.0047 ALS versus SBMA by Dunnett’s multiple comparisons
test. d Box-plot showing the levels of PPIA in the plasma EVs of ALS, HC, MD and SBMA. one-way ANOVA, p=0.22. e Box-plot showing the levels of HSP90 in
SOD1G93A plasma EVs at 10 and 16weeks of age compared to controls. One-way ANOVA, p=0.29. f Box-plot showing the levels of HSP90 in TDP-43Q331K

plasma EVs at 10months of age compared to controls. Student t-test, *p=0.037. c-f A.U.: arbitrary units
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Analysis of a panel of EV-associated proteins in ALS
patients and mouse models
To determine whether specific proteins, previously asso-
ciated with ALS, are differentially enriched in plasma-
derived EVs of ALS patients compared to the other
groups, we set up immunoblotting for two candidate
proteins: human and mouse HSP90 and PPIA (Fig. 4a
and b, Supplementary Fig. 4).
HSP90 is a highly abundant, ubiquitous molecular

chaperone that supports protein folding. In ALS it has
been detected in protein inclusions in SOD1G93A mice
and sporadic patients [42], with a consequent decrease
in the soluble fraction; it was also unusually low in ALS
patients and mouse models with early disease onset and
a severe phenotype [43]. It is present in EVs, but its
levels have never been analyzed in plasma-derived EVs
of ALS patients. HSP90 is significantly less present (52%
lower) in the plasma-derived EVs of ALS patients com-
pared to HC and SBMA (Fig. 4c). HSP90 is also low in
plasma-derived EVs of symptomatic SOD1G93A (41%
less) and TDP-43Q331K mice (73% less) (Fig. 4e and f),
suggesting that low levels of HSP90 in plasma EVs could
characterize several forms of ALS, sporadic and genetic.
Future studies in human genetic forms are now required
to confirm this association.
We looked at PPIA, also known as cyclophilin A, a

highly abundant, ubiquitous foldase and chaperone

involved in TDP-43 trafficking and function [44]. We
have previously shown that PPIA is enriched in protein
inclusions in SOD1G93A mice and patients [42]. Soluble
PPIA is particularly low in ALS patients compared to
healthy individuals and subjects with other neurological
diseases [45]. However, in contrast with HSP90, PPIA
levels did not change among groups, indicating that EV-
enriched PPIA may not be useful for differential diagno-
sis of ALS from other diseases (Fig. 4d).
Finally, to characterize our patients’ cohorts better, we

measured phosphorylated neurofilament heavy chain
(pNFH) in plasma. As expected, pNFH was substantially
higher in ALS than in all other experimental groups, es-
pecially fast-progressing patients (Fig. 5a and Fig. 7f).
We attempted to measure pNFH in EVs, but we could
not detect a reliable signal (data not shown), suggesting
that pNFH is probably not loaded in EVs or only at very
low concentrations.
We also investigated whether TDP-43, the hallmark of

ALS, is detectable in plasma-derived EVs. Previous reports
showed insoluble TDP-43 in plasma EVs isolated by UC
from ALS patients [16]. Using our approach, we observed
a small amount of TDP-43 in human plasma-derived EVs,
as indicated by two different antibodies directed toward
the N or the C terminus of the protein, strongly cross-
reacting in these conditions with plasma protein contami-
nants, immunoglobulins, and albumin (Supplementary

Fig. 5 Phosphorylated neurofilaments in plasma and phosphorylated TDP-43 in plasma EVs. a Plasma levels of pNFH in ALS, HC, MD and SBMA.
One-way ANOVA, p = 0.033; *p = 0.043 ALS versus HC by Dunnett’s multiple comparisons test. b Representative immunoblotting for
phosphorylated TDP-43 antibody (pTDP-43) and relative Red Ponceau in human EV samples. IS means internal standard. c Immunogold TEM
analysis of plasma EVs purified with NBI and stained with pTDP-43 (left panel) or negative control (right panel). Phosphorylated TDP-43 is
indicated with a line (12 nm gold nanoparticles)
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Fig. 5a and b). We tested whether the anti-phosphorylated
TDP-43 antibody was a better tool to analyze TDP-43 in
EVs. Surprisingly, in several cases the antibody revealed a
specific and distinct doublet at 45 kDa in ALS patients
and healthy controls (Fig. 5b, Supplementary Fig. 5c and
e). To prove that phosphorylated TDP-43 is contained in
the EVs, we performed immunogold TEM in three inde-
pendent ALS samples. Unexpectedly, no signal for phos-
phorylated TDP-43 was revealed inside the EVs,
suggesting that phosphorylated TDP-43 is not an intrave-
sicular cargo in recovered plasma EVs (Fig. 5c).
We conclude that among our candidate protein markers,

only HSP90 is differentially represented in ALS EVs than
other diseases and can be used in a panel of markers to de-
fine the fingerprint of ALS plasma-derived EVs.

The ability of EV parameters alone and in combinations
to distinguish ALS from MD, SBMA and healthy controls
To test whether the parameters we analyzed can be used
to distinguish ALS patients from other groups, we
employed machine learning techniques. First, we tested
whether the size distribution of plasma EVs can distin-
guish ALS patients from others. As a preliminary step,
we normalized all the distribution curves (Supplemen-
tary Fig. 3f). Then we used machine learning tools to
compress the signal [29, 30] (Supplementary Fig. 3g),
and used the compressed data to build a machine learn-
ing model based on Random Forests (Fig. 6a). We evalu-
ated the model’s ability to distinguish ALS patients from
the others (HC, MD, and SBMA). The Precision-recall
curves provided the AUC, ranging between 0.92 and
0.95 (Fig. 6c). We oversampled our datasets with
MWMOTE (Fig. 6b) [31] and the prediction increased
to between 0.93 and 0.94 (Fig. 6d).
We wondered whether combining the size distribution

parameters with the values obtained for HSP90 in the
EVs would improve the disease classification. The new
models showed an AUC of 0.93 for ALS versus HC, 0.93
for ALS compared to MD, and 0.95 for ALS compared
to SBMA. The oversampling only enhanced the classifi-
cation of ALS when tested with HC (AUC = 0.93 vs.
0.95) and with SBMA (AUC = 0.95 vs 0.96) (Fig. 6f).
The machine learning approach indicates that the size

distribution of EVs can be used to classify patients and
controls, with relatively good prediction. Oversampling
slightly improved the AUC in almost all comparisons.
The models combining the size distribution and HSP90
reached excellent AUC values, particularly for distin-
guishing ALS from SBMA.

Specific parameters like the number of particles, size, and
PPIA distinguish fast from slow patients
We wondered whether the parameters we analyzed
could distinguish slow from fast progressors. We found

no significant correlation between EV parameters and
clinical variables (ALSFRS-R, disease duration, site of
onset, ΔALSFRS-R) by univariable and multivariable lin-
ear models. However, ALS patients stratified according
to disease progression (slow- and fast-ALS) showed a
shift in the peaks of the plot of the average size distribu-
tion (Fig. 7a).
We stratified the data on EV particles/mL, the parti-

cles smaller than 130 nm, HSP90, and PPIA. Slow-ALS
patients had a significant, 1.3-fold increase in EV parti-
cles/ml compared to fast-ALS, indicating that average
EV concentration might be a selective biomarker of
slow-ALS (Fig. 7b). This was confirmed for particles
smaller than 130 nm (1.6-fold increase) (Fig. 7c). We
then decided to test whether HSP90, and PPIA were dif-
ferentially enriched in slow-ALS and fast-ALS plasma-
derived EVs. HSP90 did not show any difference, sug-
gesting that its protein level is useful for distinguishing
ALS from other diseases, but does not change with the
rate of progression (Fig. 7d).
While PPIA did not change across different diseases

(Fig. 4d), it was 32% lower in fast-ALS than slow-ALS,
confirming our previous finding that patients with a
smaller amount of PPIA present earlier onset and faster
progression of the disease [43, 45] (Fig. 7e). Interestingly,
fast-progressing patients had high pNFH plasma levels,
though not significantly different from slow-progressing
patients, indicating that at least in our patients, pNFH
cannot distinguish between fast and slow progression
(Fig. 7f).
We built a new mathematical model with the stratified

data according to the rate of ALS progression, for size
distribution and PPIA. When we oversampled the data
the AUC for fast and slow-ALS ranged between 0.84 and
0.95, suggesting that these three parameters could be
exploited for ALS prognosis (Fig. 7g).

Discussion
Several approaches have been reported to successfully
purify EVs from plasma, like ultracentrifugation, filtra-
tion, precipitation, chromatography, immunocapture,
microfluidics, but there is still no consensus on which of
these techniques give the best results in terms of yield,
purity and physical integrity [46]. In the clinical setting,
fast, reproducible, easy protocols are needed. Here we
showed that NBI, a recently established purification
method requiring fast, simple procedures, allows the re-
covery of a larger number of plasma-derived EVs. There-
fore, NBI is suitable for large and complex clinical
studies in which multiple outcomes are measured. In
fact, few hundreds μL of plasma per subject are enough
to perform an array of downstream analyses for EV
characterization.
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Plasma EVs are contaminated by the abundant plasma
proteins, especially lipoproteins (HDL, LDL, VLDL, and
chylomicrons), which are much more abundant than
EVs and biophysically very similar in terms of density
and size [41], substantially affecting downstream ana-
lysis. Combined isolation approaches are generally used
to ensure the purity of EVs, but the continuous sample
manipulation may affect the EV integrity and their bio-
physical features [47]. Here we report that EVs purified
with NBI had minimal lipoprotein contamination, offer-
ing a new strategy for plasma EV purification and

analysis. EV-like liposomes also retained their mean and
mode diameter when isolated with NBI. It is probably
essential to use a technique that preserves EV integrity,
minimizing EV aggregation [19]. This observation
stresses the differences in mean diameter, mode, D10,
D50, and D90 between ALS and control samples.
We did not examine different plasma-EV subpopula-

tions, so we can only speculate that different proportions
of EV subclasses, deriving from different organs or cell
populations, may be present in ALS samples, compared
to the other conditions, resulting in a peculiar size

Fig. 6 The size distribution and the amount of HSP90 in EVs help to correctly classify ALS patients. a-b machines learning frameworks used in the
experiments. Scheme a is related to the basic framework, while scheme b is related to the advanced one. They both consist of three main steps:
data handling, training of the models and testing of the models on an independent cohort. Those schemes differ in the data handling phase.
The basic framework only preprocesses data, while the advanced one uses a tailored oversampling strategy to handle unbalanced data. TR is
training set; TS is test set. c Precision-recall curves on size distribution for a binary comparison. d Precision-recall curves on oversampled data on
size distribution for a binary comparison. e Precision-recall curves on size distribution and HSP90 for a binary comparison. f Precision-recall curves
on oversampled data on size distribution and HSP90 for a binary comparison
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distribution of human and mouse plasma EVs. Further-
more, the actual EV size depends not only on the type of
membrane phospholipid but also on the presence or ab-
sence of particular membrane proteins [48]. EVs vary
widely in molecular composition, and their surface pro-
teins bear characteristics of their tissues of origin [49],
suggesting that in each pathological condition plasma
EVs released from the damaged tissue may have a

specific size distribution. Brain-derived EVs in plasma
have already been reported in Alzheimer’s disease pa-
tients up to 10 years before the onset of the disease [50],
however there is no specific characterization of their
mean size yet. Similarly, muscle-derived EVs have been
studied for their contribution to MD [51], but no direct
comparison between brain and muscle in degenerative
conditions has been made yet in terms of their specific

Fig. 7 EV parameters distinguish fast and slow-ALS progressors. a Representative average curve of size distribution for slow and fast-ALS. b Numbers
of particles per mL in slow and fast-ALS; Student t-test, *p = 0.017. c Number of particles per mL below 130 nm in slow and fast-ALS; Student t-test,
**p = 0.0053. d Levels of HSP90 in slow and fast-ALS; Student t-test, p = 0.46. A.U.: arbitrary units. e Levels of PPIA in slow and fast-ALS; Student t-test,
*p = 0.015. A.U.: arbitrary units. f Plasma levels of pNFH in slow and fast-ALS; Student’s t-test, p = 0.09. g Precision-recall curves on stratified data for ALS
progression showing the AUC for each comparison
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contribution to plasma EVs. Here we show that the EVs
in ALS differ substantially from patients with MD and
SBMA, which is a neuromuscular disease with early
muscle degeneration and motor neuron loss.
Another important aspect of EVs is the proteomic and

genomic material in the lumen. EVs have been consid-
ered means of intercellular disease spread both in cancer
and in neurodegenerative diseases, where they contrib-
ute to the formation of metastasis and the seeding of
protein inclusions, respectively [52, 53]. Proteins directly
involved in ALS, like TDP-43, SOD1, FUS and the di-
peptide repeat proteins derived from C9orf72 aberrant
repeats were detected in EVs from in vitro and in vivo
models, but no functional role in the disease spread
in vivo has been provided yet [14, 15, 54–57]. Neverthe-
less, insoluble mutant proteins were observed in plasma-
derived microvesicles of ALS patients, suggesting that
there may be ALS-associated proteins in plasma-derived
EVs [16]. Here we report a clear-cut signal for
phosphorylated TDP-43 in plasma EVs using a
phosphorylation-dependent antibody that stains patho-
logical ubiquitin-positive inclusions in ALS and fronto-
temporal lobar degeneration (FTLD) patients [58]. In
our analysis the signal for the phosphoprotein was high
even when TDP-43 was hardly detectable by two pan
antibodies, both in ALS and controls, suggesting that
there was a significant enrichment of hyperphosphory-
lated TDP-43 in EVs isolated from plasma. However,
phosphorylated TDP-43 was not observed inside the
EVs by immunogold TEM suggesting that is not an
intravesicular cargo. We can assume that phosphorylated
TDP-43 may have a certain affinity for the EV “protein
corona”, which comprises a variety of plasma proteins
such as apolipoproteins, immunoglobulins, complement
factors and coagulation factors that are bound to EV
membranes as much as to any nanomaterials in contact
with biofluids [59, 60]. This phenomenon has been
clearly observed independently from the EV isolation
method. Although EV-associated TDP-43 does not dis-
tinguish ALS patients from controls and cannot be con-
sidered a useful marker, it may be interesting to study
the effect of phosphorylated TDP-43 on EV external
membrane for the EV cellular uptake and pathophysio-
logical role. Furthermore, whether TDP-43, phosphory-
lated or not, is an intra- or an extravesicular cargo in
EVs isolated from CSF has not been demonstrated
yet along with a robust method for TDP-43 quantifica-
tion in biofluids [4, 61].
HSP90, a critical molecular chaperone of the protein

quality control complex [62], is significantly lower in
ALS EVs in patients and two genetic ALS mouse
models. This agrees with our previous findings, that
HSP90 is entrapped in insoluble proteins in the spinal
cord of sporadic patients and late symptomatic

SOD1G93A mice [42]. We also observed low levels of
HSP90 in SOD1G93A astrocytes [15] and PBMCs, and in
ALS sporadic patients [43], suggesting that HSP90 could
be measured in plasma-derived EVs to distinguish ALS
patients from other conditions involving motor neurons,
like SBMA.
The levels of PPIA did not change across diseases, but

they were significantly lower in fast-ALS than slow pro-
gressors. PPIA is a multifunctional protein with foldase
and molecular chaperone activities and is one of the
most commonly identified proteins in EVs. PPIA is also
an interacting partner of TDP-43 and regulates its traf-
ficking and function [44]. PPIA is significantly enriched
in the insoluble fraction of spinal cords of ALS patients
and mice [42], and its soluble form is reduced in PBMC
of sporadic ALS patients [43]. Therefore, it is not sur-
prising that in fast-ALS, a severe condition associated
with diffuse TDP-43 pathology, PPIA is less present in
EVs, possibly stacked intracellularly while contrasting
protein aggregation. We recently reported that low PPIA
soluble levels in ALS PBMC were associated with 6
months earlier death [45], indicating that EVs reflect
pathological intracellular alterations and supporting
plasma-derived EVs as promising predictors of ALS dis-
ease progression.
Neurofilaments are generally increased in acute and

chronic neurodegenerative conditions [9]. They are re-
leased into the biofluids as the final event that leads to
the degeneration of motor neurons. Their levels correl-
ate well with the severity of the axonal degeneration,
presenting a smaller increase in motor neuron diseases
with a milder phenotype, like SBMA [63]. Despite their
lack of specificity, they are considered the best bio-
markers to diagnose and predict ALS progression [64,
65]. We measured pNFH in the plasma of all our sam-
ples and confirmed the significant higher levels in ALS
compared to HC, confirming its value as a diagnostic
biomarker. However, when we stratified our samples, EV
concentration, size and PPIA significantly distinguished
fast- and slow-ALS, but HSP90 and pNFH did not.
There was only a trend towards higher pNFH in fast-
ALS, indicating that plasma pNFH is not a robust prog-
nostic biomarker. This was confirmed very recently in a
large longitudinal study in which, in contrast with neu-
rofilament light, pNFH has shown little prognostic value
[66]. We did not detect neurofilaments in EVs, suggest-
ing that neurofilaments mainly reflect axonal damage
and are released freely in the biofluids.
Machine learning models offer unprecedented oppor-

tunities to evaluate the potential of specific targets as
biomarkers, even with considerable sample size limita-
tions. Machine learning techniques have already been
applied to ALS clinical and imaging data sets and re-
sulted in promising diagnosis and prognosis models [67].
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They have been exploited for ALS progression and sur-
vival ranking [68–70], for predicting the outcome of spe-
cific treatments (e.g., riluzole) based on the patient’s
characteristics [71], and the use of candidate protein
amounts in the CSF as pharmacodynamic biomarkers
[72, 73]. Here we describe the first model built on EV
biophysical parameters that offers great potential for dif-
ferential diagnosis of ALS compared to MD and SBMA.
We also report that including the amount of plasma EVs
HSP90 and PPIA in the mathematical model increases
its predictive power.

Conclusions
ALS is clinically, genetically, and neuropathologically
highly heterogeneous and biomarkers for diagnosis,
prognosis and stratification are lacking [74]. This makes
it difficult to develop effective therapies. We set up a
biomarker analysis in plasma EVs that is at the same
time methodologically robust and easy-to-perform,
which makes the translation to the clinics of our findings
straightforward. We show that EV biophysical parame-
ters and protein cargoes are promising means to
characterize disease’s complexity. Our mathematical
model integrating EV size distribution data with protein
cargoes can distinguish ALS from healthy and diseased
controls, and classify ALS patients with variable disease
progression with high accuracy, confirming the consider-
able potential of machine learning techniques in improv-
ing clinical trial design toward the development of
personalized therapies [75]. Validation studies in longi-
tudinal cohorts of patients, starting in proximity of
symptom onset are now necessary to verify their applic-
ability in early diagnosis and monitoring treatment
efficacy.
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Additional file 1: Supplementary Fig. 1. NBI enriches for a higher
number and a smaller average diameter plasma EVs than classical
ultracentrifugation (UC). a Immunoblotting for flotillin-1 in a pool of hu-
man plasma and relative Red Ponceau. ‘1°-2°-3°UC’ stands for first, second,
third ultracentrifugation. ‘EVs’ and ‘Sur’ are the pellet and supernatant
after the UC. b TEM of EVs purified with UC. Bar, 200 nm on the left; 100
nm and 200 nm in the insets on the right. c TRPS analysis for the particle

amount per mL (n. particles/mL) with the NP200 nanopore of control
plasma EVs (n = 15) extracted with either NBI or UC. Student t-test;
****p < 0.0001. d TRPS analysis with the NP400 nanopore of control
plasma EVs (n = 15) for the particle amount per mL (n. particles/mL) ex-
tracted with either NBI or UC. Student t-test; *p = 0.037. e TRPS analysis
with the NP200 nanopore of control plasma EVs (n = 15) for the mean
diameter (nm) extracted with either NBI or UC. Student t-test; ****p <
0.0001. f TRPS analysis with the NP400 nanopore of control plasma EVs
(n = 15) for the mean diameter (nm) extracted with either NBI or UC. Stu-
dent t-test; ****p < 0.0001. g Purity index for samples extracted with NBI
and UC, calculated by the ratio between the number of particles and the
total micrograms of proteins detected in the relative EV samples; Student
t-test; ****p < 0.0001. h Size distribution of liposomes isolated with three
independent NBI extractions (Liposomes rep1, 2, 3). i Size distribution of
plasma isolated with three independent NBI extractions (Plasma rep1, 2,
3). Supplementary Fig. 2. EVs isolated with classical ultracentrifugation
(UC) enriches for apolipoproteins than NBI. a Venn diagram of the unique
and shared EV identified proteins isolated by NBI and UC methods. Num-
bers in brackets refer to the number of proteins belonging to each class.
b-d Levels of HSP90 (b), Apolipoprotein B (c) and Apolipoprotein AI (d) in
EVs isolated by NBI and UC methods (n = 3). Student t-test; ***p = 0.0002
for HSP90; **p = 0.0063 for Apolipoprotein B; *p = 0.0208 for Apolipopro-
tein AI. A.U.: arbitrary units. Supplementary Fig. 3. Zeta potential and
additional size parameters for EV plasma of ALS, HC, MD and SBMA. a
Box plot for the average zeta potential (z-potential) for ALS, HC, MD and
SBMA. b Box plot presenting the mode diameter (nm) of EVs purified
from ALS, HC, MD and SBMA plasma. One-way ANOVA, p = 0.0001; **p =
0.0042 between ALS and MD by Dunnett’s multiple comparisons test. c
Box plot showing the D10 (nm) of EVs purified from ALS, HC, MD and
SBMA plasma. One-way ANOVA, p = 0.0002; **p = 0.001 between ALS and
MD by Dunnett’s multiple comparisons test. d Box plot showing the D50
(nm) of EVs purified from ALS, HC, MD and SBMA plasma. One-way
ANOVA, p < 0.0001; **p = 0.002 between ALS and MD, *p = 0.021 between
ALS and SBMA by Dunnett’s multiple comparisons test. e Box plot show-
ing the D90 (nm) of EVs purified from ALS, HC, MD and SBMA plasma.
One-way ANOVA, p < 0.0001; **p = 0.0014 between ALS and MD by Dun-
nett’s multiple comparisons test. f Normalized curves. g Representative
image of the compressed size distribution using RBF. The green points
are selected center, the black line is the initial signal, and the red line is
the RBF-output signal. Supplementary Fig. 4. a, b Complete immuno-
blotting for HSP90 (a), and PPIA (b) and relative Red Ponceau in human
EV samples. IS means internal standard. The numbers appearing next to
the different samples represent the actual number we assigned to each
sample. The dashed box represents the blots reported in Fig. 4. Supple-
mentary Fig. 5. Set up for the immunoblotting against TDP-43 and
phosphorylated TDP-43, representative experiments. a Immunoblotting
for anti-TDP-43 (C-terminus) in ALS. b Immunoblotting for anti-TDP-43 (N-
terminus) in ALS samples. c Immunoblotting for anti-phosphorylated
TDP-43 (pTDP-43) in ALS samples. d Red Ponceau relative to a, b and c. e
Immunoblotting for anti- phosphorylated TDP-43 (pTDP-43) in human
samples and relative Ponceau, referred to Fig. 5b (cropped area); F: fast-
ALS; S: slow-ALS. f Immunogold TEM analysis of plasma EVs purified with
UC and stained with phosphorylated TDP-43 antibody (left panel) or
negative control (right panel). Phosphorylated TDP-43 is indicated with a
line (12 nm gold nanoparticles).
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