
Finite element approximation of a phase field model
for tumour growth

Joe Eyles*, Robert Nürnberg� and Vanessa Styles∗

Abstract

We consider a fully practical finite element approximation of a diffuse interface
model for tumour growth that takes the form of a degenerate parabolic system. In
addition to showing stability bounds for the approximation, we prove convergence,
and hence existence of a solution to this system in two space dimensions. Several
numerical experiments demonstrate the practicality and robustness of the proposed
method.

1 Introduction

Mathematical modelling is an important tool in the study and treatment of tumours,
and as such is an area of research that continues to attract a great deal of interest, see
for example [3, 4, 7] and the references therein. The mathematical model we consider is
one in which the tumour is modelled as a continuum using partial differential equations
(PDEs), rather than an individual-based cell model in which a collection of discrete cells
undergo stochastic or deterministic behaviour. There is a wealth of literature on continuum
tumour growth models, with some of the earliest dating from the 1970s, see [17, 18]
in which the models take the form of free boundary problems, with the free boundary
representing the boundary between the interior and exterior of the tumour. Free boundary
problems for tumour growth have been successfully approximated using a number of
diffuse interface approaches, see for instance [6, 8, 14, 16, 15]. In this paper, we analyse
the two dimensional version of the diffuse interface model for tumour growth presented
in [12]. It approximates the following free boundary problem, which is one of the simplest
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mathematical descriptions of the growth and death of a tumour:

∆u = 1, in Ω̃(t), (1.1a)

∇u · n+
u

α
= Q, on Γ(t), (1.1b)

V = βκ+
u

α
, on Γ(t). (1.1c)

Here Γ(t) = ∂Ω̃(t) is an evolving curve in R2, with its interior Ω̃(t) representing the
tumour cells, and u corresponds to the tissue pressure in the tumour. Moreover, V is the
velocity of Γ(t) in the direction of the normal n, while κ denotes the curvature of Γ(t).
The constant Q ∈ R>0 represents a surface source, while α, β ∈ R>0 are regularisation
parameters. The free boundary problem (1.1) was formally derived in [12] as a thin-rim
limit of a reaction-diffusion system involving living and dead tumour cells, a nutrient and
a Darcy’s law for the velocity and pressure. The advantage of the limiting problem (1.1)
is that the number of unknowns is reduced to just the free boundary and the pressure.
Mathematically, (1.1) describes the evolution of the closed curve Γ(t) via forced curvature
flow, where the forcing depends on the solution of an elliptic PDE in its interior.

A possible diffuse interface approximation of (1.1) is given as follows. Let Ω be a fixed,
bounded domain in R2, let ϑ ∈ {0, 1} and let ε ∈ R>0. Then find a phase field ϕε : Ω→ R,
and a pressure uε : Ω→ R such that

ε2ϑ∂tuε −∇ · (ζ(ϕε)∇uε) +
1

ε
δ(ϕε)(

uε
α
−Q) + ζ(ϕε) = 0 in Ω, (1.2a)

ε∂tϕε − εβ∆ϕε +
β

ε
∂W (ϕε)−

cW
α
uε 3 0 in Ω, (1.2b)

ζ(ϕε)∇uε · ν = ∇ϕε · ν = 0 on ∂Ω, (1.2c)

where ν denotes the outer normal on ∂Ω. In the above

ζ(s) =
1 + s

2
and δ(s) =

2

π
(1− s2) s ∈ R, (1.3)

and W denotes the double–obstacle potential

W (s) =
1

2
(1− s2) + I[−1,1](s) s ∈ R, (1.4)

with I[−1,1] denoting the indicator function

I[−1,1](s) :=

{
+∞ for |s| > 1,

0 for |s| ≤ 1,

see [5]. Moreover, cW = 1
2

∫ 1

−1

√
2W (s) ds = π

4
and ∂W denotes the subdifferential of W ,

so that ∂W (s) = −s+ ∂I[−1,1](s).

The model (1.2), with ϑ = 0, has recently been considered in [12]. There it was shown,
using formal asymptotic analysis, that in the sharp interface limit, ε → 0, the original
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problem (1.1) is recovered. Moreover, a finite element approximation of (1.2), with ϑ = 0,
was introduced, and several numerical simulations were presented. In this paper, we are
interested in the numerical analysis of a suitable approximation of (1.2). To this end, we
first of all note that it is a simple matter, on using the results in [9], to extend the formal
asymptotic analysis in [12] to the case ϑ = 1. In particular, (1.1) is recovered as the sharp
interface limit of (1.2) with ϑ = 1, as ε→ 0. Moreover, what makes the analysis of (1.2)
challenging is the presence of the degenerate coefficients δ(ϕε) and ζ(ϕε) in (1.2a). In the
elliptic case, when ϑ = 0, it does not seem to be easily possible to prove convergence for
the finite element approximation introduced in [12]. Hence, in this paper, we consider the
case ϑ = 1, which changes (1.2a) to a parabolic problem. Although there is no bio-physical
basis for the added term ε2∂tuε, it yields additional smoothness for uε that enables us to
derive a convergence proof. However, we note that the model of interest to bio-physicists
is (1.1), which is not impacted by the additional term in the phase field model. We remark
that (1.2) with ϑ = 1 is closely related to the problem studied in [10]. That is why many
of the ingredients for our convergence proof are based on extending the techniques in [10]
to the more complicated problem (1.2).

The remainder of the paper is organised as follows. In Section 2 we present a weak
formulation of (1.2) and introduce a finite element approximation. We prove the well-
posedness and a maximum principle for the discrete system. Convergence of the discrete
solutions to a weak solution of (1.2) is shown in Section 3, and some numerical simulations
are presented in Section 4.

We end this section with a few comments about notation. The L2–inner product on Ω
is denoted by (·, ·). We adopt the standard notation for Sobolev spaces, denoting the
norm of W `,p(Ω) (` ∈ N, p ∈ [1,∞]) by ‖ · ‖`,p and the semi-norm by | · |`,p. For p = 2,
W `,2(Ω) will be denoted by H`(Ω) with the associated norm and semi-norm written, as
respectively, ‖ · ‖` and | · |`. In addition, we adopt the standard notation W `,p(a, b;X)
(` ∈ N, p ∈ [1,∞], (a, b) an interval in R, X a Banach space) for time dependent spaces
with norm ‖ · ‖W `,p(a,b;X). Once again, we write H`(a, b;X) if p = 2. Furthermore, C
denotes a generic constant independent of the mesh parameter h and the time step ∆t,
see below.

2 Weak formulation and finite–element approxima-

tion

In what follows, we let ϑ = 1, fix a value ε ∈ R>0 and drop the subscript ·ε in (1.2) for
notational convenience. We also fix a final positive time T .

The obstacle nature of (1.4) means that (1.2b) will lead to a variational inequality. To
this end, we introduce the convex subset

K = {η ∈ H1(Ω)| |η| ≤ 1 in Ω}

of H1(Ω). Then a weak formulation of (1.2) is given as follows.
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P Let u(0) = u0 ∈ H1(Ω) and ϕ(0) = ϕ0 ∈ K. Then, for t ∈ (0, T ] find (u(t), ϕ(t)) ∈
H1(Ω)×K such that

ε2 (∂tu, η) + (ζ(ϕ)∇u,∇η) +
1

εα
(δ(ϕ)u, η) =

Q

ε
(δ(ϕ), η)− (ζ(ϕ), η) ∀η ∈ H1(Ω),

(2.1a)

ε (∂tϕ, ρ− ϕ) + εβ (∇ϕ,∇(ρ− ϕ))− β

ε
(ϕ, ρ− ϕ) ≥ cW

α
(u, ρ− ϕ) ∀ρ ∈ K. (2.1b)

We consider the finite element approximation of P under the following assumptions on
the mesh:

(A) Let Ω be a polygonal domain. Let {Th}h>0 be a quasi-uniform family of partitionings
of Ω into disjoint open simplices σ with hσ := diam(σ) and h := maxσ∈Th hσ, so that
Ω = ∪σ∈Thσ. In addition, it is assumed that all simplices σ ∈ Th are acute.

Associated with Th is the finite element space

Sh :=
{
ηh ∈ C0(Ω)

∣∣ ηh|σ is linear ∀σ ∈ Th
}
.

We also introduce
Kh := Sh ∩K.

Let J be the set of nodes of Th and {pj}j∈J the coordinates of these nodes. Let {χj}j∈J ,
be the standard basis functions for Sh; that is χj ∈ Sh and χj(pi) = δij for all i, j ∈ J .
We denote by Ih : C0(Ω) → Sh the Lagrange interpolation operator onto Sh. We denote
the discrete L2–inner product on C0(Ω) by

(u, v)h := (Ih(uv), 1) u, v ∈ C0(Ω),

and we set |v|2h := (v, v)h.

In addition to Th, let 0 = t0 < t1 < . . . < tN−1 < tN = T be a partitioning of [0, T ] into
uniform time steps tn − tn−1 = ∆t = T/N , n = 1, . . . , N . Then we consider the following
finite element approximation of P.

Ph Let u0
h := Ihu0 and ϕ0

h := Ihϕ0. Then, for n = 0, . . . , N − 1, find un+1
h ∈ Sh and

ϕn+1
h ∈ Kh such that

ε2

∆t

(
un+1
h − unh, ηh

)
h

+
(
ζ(ϕnh)∇un+1

h ,∇ηh
)

+
1

εα

(
δ(ϕnh)un+1

h , ηh
)
h

=
Q

ε

(
δ(ϕnh), ηh

)
h
−
(
ζ(ϕnh), ηh

)
h
∀ηh ∈ Sh (2.2a)

ε

∆t

(
ϕn+1
h − ϕnh, ρh − ϕn+1

h

)
h

+ εβ
(
∇ϕn+1

h ,∇ρh −∇ϕn+1
h

)
− β

ε

(
ϕn+1
h , ρh − ϕn+1

h

)
h
≥ cW

α

(
un+1
h , ρh − ϕn+1

h

)
h
∀ρh ∈ Kh. (2.2b)
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We note that the discretisation in (2.2) is chosen such that the linear system (2.2a)
decouples from the variational inequality (2.2b). Hence in practice we can first solve
(2.2a) to obtain un+1

h , and then find ϕn+1
h ∈ Kh solving (2.2b).

In what follows, we will make use of the standard inequality

|vh|20 ≤ |vh|2h ≤ 4|vh|20 vh ∈ Sh. (2.3)

Lemma 2.1. Let unh ∈ Sh and ϕnh ∈ Kh. Then for ∆t < ε2

β
there exists a unique solution

(un+1
h , ϕn+1

h ) ∈ Sh ×Kh to (2.2).

Proof. The existence of a unique solution un+1
h to (2.2a) follows immediately from the

fact that the system is linear, symmetric and positive definite. In addition, there exists
a ϕn+1

h ∈ Kh solving (2.2b) since this is the Euler-Lagrange variational inequality of the
minimisation problem:

min
zh∈Kh

{
εβ

2
|∇zh|20 +

ε

2∆t
|Ih(zh − ϕnh)|20 +

β

2ε
(1− z2

h, 1)h −
cW
α

(
un+1
h , zh

)
h

}
,

for which the existence of a minimiser can be shown by a standard minimisation argument.
For uniqueness we assume there exist two solutions ϕn+1

h,1 and ϕn+1
h,2 and set θ = ϕn+1

h,1 −ϕ
n+1
h,2 .

Taking ηh = ϕn+1
h,2 in the variational inequality (2.2b) for ϕn+1

h,1 and vice versa, then
subtracting one of the resulting inequalities from the other we obtain

ε2

∆t
|θ|2h + ε2β|∇θ|20 − β|θ|2h ≤ 0 ⇒

(
ε2

∆t
− β

)
|θ|2h + ε2β|∇θ|20 ≤ 0,

which yields uniqueness for ∆t < ε2

β
.

3 Convergence of the finite element scheme

In this section, which makes use of many of the techniques in [10], we prove that as h→ 0
the solution of the finite element scheme Ph converges to the solution of P. Here we fix
ε, and assume that ∆t ≤ Ch2. All limits are taken as h → 0 (and thus ∆t → 0). We
introduce the notation

ϕh(t) :=
t− tn

∆t
ϕn+1
h +

tn+1 − t
∆t

ϕnh, t ∈ (tn, tn+1],

ϕ+
h (t) := ϕn+1

h , ϕ−h (t) := ϕnh, t ∈ (tn, tn+1],

and similarly for uh(t), u
+
h (t) and u−h (t). Furthermore we use ·(?) to denote an expression

with or without the superscript ?.
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Rewriting (2.2) using the above notation gives, for n = 0, . . . , N − 1 and for t ∈ (tn, tn+1],

ε2 (∂tuh, ηh)h +
(
ζ(ϕ−h )∇u+

h ,∇ηh
)

+
1

εα

(
δ(ϕ−h )u+

h , ηh
)
h

=
Q

ε

(
δ(ϕ−h ), ηh

)
h
−
(
ζ(ϕ−h ), ηh

)
h
,

(3.1a)

ε
(
∂tϕh, ρh − ϕ+

h

)
h

+ εβ
(
∇ϕ+

h ,∇ρh −∇ϕ
+
h

)
− β

ε

(
ϕ+
h , ρh − ϕ

+
h

)
h
≥ cW

α

(
u+
h , ρh − ϕ

+
h

)
h
,

(3.1b)

for all ηh ∈ Sh and ρh ∈ Kh.

Lemma 3.1. We have
sup
t∈[0,T ]

|uh(t)|20 ≤ C, (3.2)

∫ T

0

(
|
[
ζ(ϕ−h )

] 1
2 ∇u+

h |
2
0 + |

[
δ(ϕ−h )

] 1
2 u+

h |
2
0

)
dt ≤ C, (3.3)

and ∫ T

0

|u+
h − u

−
h |

2
0 dt ≤ C∆t. (3.4)

Proof. Setting ηh = un+1
h in (2.2a) we obtain from (1.3) and ϕnh ∈ K that

ε2

2
|un+1
h − unh|2h +

ε2

2

(
|un+1
h |2h − |unh|2h

)
+ ∆t| [ζ(ϕnh)]

1
2 ∇un+1

h |20 +
∆t

εα
|[δ(ϕnh)]

1
2un+1

h |2h

=
Q∆t

ε

(
δ(ϕnh), un+1

h

)
h
−∆t

(
ζ(ϕnh), un+1

h

)
h
≤ C∆t|un+1

h |2h

Summing over n = 0, . . . , N − 1, using a discrete Gronwall inequality and recalling (2.3)
gives the required results.

Lemma 3.2. We have that

sup
t∈[0,T ]

|∇ϕh(t)|20 +

∫ T

0

|∂tϕh|20 dt ≤ C, (3.5)

and ∫ T

0

|∇(ϕ+
h − ϕ

−
h )|20 dt ≤ C∆t. (3.6)

Proof. Choosing ρh = ϕnh ∈ Kh in (2.2b), re-arranging and using the elementary identity

2r(r − s) = (r2 − s2) + (r − s)2 ∀ r, s ∈ R,

gives

∆t|ϕ
n+1
h − ϕnh

∆t
|2h +

β

2

(
|∇ϕn+1

h |20 − |∇ϕnh|20
)

+
β

2
|∇(ϕn+1

h − ϕnh)|20

+
β

2ε2

(
|ϕn+1
h |2h − |ϕnh|2h

)
+

β

2ε2
|ϕn+1
h − ϕnh|2h ≤

cW
εα

(
unh, ϕ

n+1
h − ϕnh

)
h
.

6



Applying Young’s inequality to the right hand side yields

∆t

2
|ϕ

n+1
h − ϕnh

∆t
|2h +

β

2

(
|∇ϕn+1

h |20 − |∇ϕnh|20
)

+
β

2
|∇(ϕn+1

h − ϕnh)|20

≤ ∆t

2
(
cW
εα

)2|unh|2h +
β

2ε2

(
|ϕn+1
h |2h − |ϕnh|2h

)
.

Summing over n = 0, . . . , N − 1 and noting (2.3), ϕnh ∈ Kh and (3.2) yields (3.5) and
(3.6).

Lemma 3.3. We have ∫ T

0

‖∂tuh‖2
(H1(Ω))′ dt ≤ C.

Proof. Let ψ ∈ H1(Ω) be arbitrary, and let Jhψ ∈ Sh be its L2-projection, defined via

(ψ, vh) = (Jhψ, vh)h ∀vh ∈ Sh.

We have (vh, ψ)((H1)′,H1) = (vh, ψ) = (vh, Jhψ)h for vh ∈ Sh, and and so setting ηh = Jhψ
in (2.2a) yields

ε2

∆t
(un+1

h − unh, ψ)((H1)′,H1) =− (ζ(ϕnh)∇un+1
h ,∇(Jhψ))− 1

εα

(
δ(ϕnh)un+1

h , Jhψ
)
h

+
Q

ε
(δ(ϕnh), Jhψ)h − (ζ(ϕnh), Jhψ)h .

It can be shown that ‖Jhψ‖1 ≤ C‖ψ‖1, for all ψ ∈ H1(Ω) (see, for example, [1]). Using
this fact, together with (3.2) and the bounds on the L∞ norms of δ(ϕnh) and ζ(ϕnh), we
have the following for all ψ ∈ H1(Ω)

ε2

∆t
(un+1

h − unh, ψ)((H1)′,H1) ≤ C| [ζ(ϕnh)]
1
2 ∇un+1

h |0|∇(Jhψ)|0 + C|Jhψ|0

≤ C(1 + | [ζ(ϕnh)]
1
2 ∇un+1

h |0)‖ψ‖1.

We conclude that

‖u
n+1
h − unh

∆t
‖(H1(Ω))′ ≤ C(1 + | [ζ(ϕnh)]

1
2 ∇un+1

h |0).

Squaring, multiplying by ∆t, and summing from n = 0, . . . , N − 1 yields the required
result, on noting (3.3).

From Lemmas 3.2 and 3.3 and the Aubin–Lions lemma, we have that there exist functions
ϕ ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′), u ∈ L∞(Ω × (0, T )) ∩H1(0, T ; (H1(Ω))′) and
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F ∈ L2(0, T ; [L2(Ω)]2) such that, after possibly re-indexing from subsequences, it holds
as h→ 0 that

ϕ
(±)
h

∗
⇀ ϕ in L∞(0, T ;H1(Ω)), (3.7a)

∂tϕh ⇀ ∂tϕ in L2(0, T ;L2(Ω)), (3.7b)

ϕ
(±)
h → ϕ in L2(0, T ;L2(Ω)), (3.7c)

u
(±)
h ⇀ u in L∞(0, T ;L2(Ω)), (3.7d)

∂tuh ⇀ ∂tu in L2(0, T ; (H1(Ω))′), (3.7e)

ζ(ϕ−h )∇u+
h ⇀ F in L2(0, T ; [L2(Ω)]2). (3.7f)

Here (3.7f) follows directly from (3.3) and the bound on the L∞ norm of ζ(ϕ−h ). The
function F will be identified later, see Lemma 3.8.

Theorem 3.4. The functions ϕ and u in (3.7) satisfy (2.1b).

Proof. Using (3.7a)–(3.7d) we show that (2.2b) converges to (2.1b). Starting with (2.2b),
we multiply by an arbitrary ψ ∈ C∞0 (0, T ), ψ ≥ 0, and integrate over t ∈ (0, T ), to obtain

ε

∆t

∫ T

0

ψ
(
ϕ+
h − ϕ

−
h , ρh − ϕ

+
h

)
h

dt︸ ︷︷ ︸
(1)

+ εβ

∫ T

0

ψ
(
∇ϕ+

h ,∇(ρh − ϕ+
h )
)

dt︸ ︷︷ ︸
(2)

− β

ε

∫ T

0

ψ
(
ϕ+
h , ρh − ϕ

+
h

)
h

dt︸ ︷︷ ︸
(3)

− cW
α

∫ T

0

ψ
(
u+
h , ρh − ϕ

+
h

)
h

dt︸ ︷︷ ︸
(4)

≥ 0.

Since ρ ∈ K, there exists a sequence ρh ∈ Kh such that ρh → ρ in H1(Ω) as h→ 0.

For all but the second integral we use the well known inequality,

|(ηh, χ)− (ηh, χ)h| ≤ Ch|ηh|1|χ|0 ∀ ηh, χ ∈ Sh. (3.8)

For (1) we note that ∂tϕh =
ϕ+
h−ϕ

−
h

∆t
on (tn+1, tn), and we can thus apply (3.7b) and (3.7c).

For (2) we use (3.7a), (3.7c), and the weak lower semi-continuity of the L2 norm (which
gives that −|∇ϕ|22 ≥ − lim infh→0 |∇ϕ+

h |22). For (3) we use (3.7c). Finally, for (4), we use
(3.7c) and (3.7d). This yields

ε

∫ T

0

ψ (∂tϕ, ρ− ϕ) dt+ εβ

∫ T

0

ψ (∇ϕ,∇(ρ− ϕ)) dt− β

ε

∫ T

0

ψ (ϕ, ρ− ϕ) dt

− cW
α

∫ T

0

ψ (u, ρ− ϕ) dt ≥ 0.

As ψ ≥ 0 is arbitrary, this gives us the result in the limit as h→ 0.

Lemma 3.5. We have

ζ(ϕ
(±)
h )→ ζ(ϕ) in L2(0, T ;L2(Ω)), (3.9a)

δ(ϕ
(±)
h )→ δ(ϕ) in L2(0, T ;L2(Ω)), (3.9b)

δ(ϕ
(−)
h )u

(+)
h ⇀ δ(ϕ)u in L2(0, T ;L2(Ω)). (3.9c)
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Proof. The statements (3.9a) and (3.9b) follow trivially from ϕh ∈ K and (3.7c). Then
(3.9c) follows by combining (3.7d) and (3.9b).

The following lemma provides us the necessary L∞(0, T ;L∞(Ω)) bound on un+1
h that we

require to prove the convergence results in the subsequent lemma, Lemma 3.7.

Lemma 3.6. Let (unh, ϕ
n
h) ∈ Sh ×Kh and let un+1

h ∈ Sh be the unique solution to (2.2a).
Then it holds that

−|u0
h|0,∞ − ε−2T ≤ un+1

h ≤ max
(
αQ, |u0

h|0,∞
)

in Ω.

Proof. Throughout this proof, we use the shorthand notations un+1
j = un+1

h (pj), and
ϕnj = ϕnh(pj) for j ∈ J . We first use an inductive argument to prove the maximum bound.
We assume that maxj∈J u

n
j ≤ max (αQ, |u0

h|0,∞), which clearly holds for n = 0, and set

un+1
j0

:= maxj∈J u
n+1
j = maxΩ u

n+1
h . Since Th is acute, we have ∇χi|σ ·∇χj|σ ≤ 0 for i 6= j,

and hence(
ζ(ϕnh)∇un+1

h ,∇χj0
)

=
∑
σ∈Th

∑
i∈J

un+1
i ∇χi|σ · ∇χj0|σ

∫
σ

ζ(ϕnh) dx

≥
∑
σ∈Th

un+1
j0

∑
i∈J

∇χi|σ · ∇χj0|σ
∫
σ

ζ(ϕnh) dx = 0. (3.10)

Hence choosing ηh = χj0 in (2.2a) implies

ε2

∆t
(un+1

j0
− unj0)(1, χj0) ≤

(
1

ε
δ(ϕnj0)(Q−

un+1
j0

α
)− ζ(ϕnj0)

)
(1, χj0)

≤ 1

ε
δ(ϕnj0)(Q−

un+1
j0

α
)(1, χj0).

If un+1
j0

> max (αQ, |u0
h|0,∞), then we have un+1

j0
< unj0 ≤ max (αQ, |u0

h|0,∞), which is a

contradiction, and thus un+1
j0
≤ max (αQ, |u0

h|0,∞).
For the minimum bound, we again use an inductive argument. We assume that
minj∈J u

n
j ≥ −n∆t

ε2
− |u0

h|0,∞ and set un+1
j0

:= minj∈J u
n+1
j . Choosing ηh = χj0 in (2.2a)

yields

ε2

∆t
(un+1

j0
− unj0)(1, χj0) ≥

(
1

ε
δ(ϕnj0)(Q−

un+1
j0

α
)− ζ(ϕnj0)

)
(1, χj0), (3.11)

where we used a similar argument to (3.10). If un+1
j0
≥ 0 we have nothing to prove, and

so it is sufficient to consider the case un+1
j0

< 0. Then Q− un+1
j0

α
> 0, which together with

(3.11) and (1.3) implies that

ε2

∆t
(un+1

j0
− unj0) ≥ −ζ(ϕnj0) ≥ −1.

Hence we have that

un+1
j0
≥ −∆t

ε2
+ unj0 ≥ −

(n+ 1)∆t

ε2
− |u0

h|0,∞,

which proves the inductive assumption and hence yields the desired lower bound.
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Lemma 3.7. We have δ(ϕ)u, ζ(ϕ)u ∈ L2(0, T ;H1(Ω)) and

δ(ϕh)uh → δ(ϕ)u in L2(0, T ;L2(Ω)), (3.12a)

ζ(ϕh)uh → ζ(ϕ)u in L2(0, T ;L2(Ω)). (3.12b)

Proof. We first obtain a bound on δ(ϕh)uh in L2(0, T ;H1(Ω)) and then we obtain a bound
on ∂t(δ(ϕh)uh) in L2(0, T ; (W 1,p(Ω))′), for p ∈ (2,∞). To bound |∇(δ(ϕh)uh)|20 we first
note that from Lemma 3.2 we have |∇δ(ϕh)|20 ≤ C, and thus noting Lemma 3.6, we have

|∇(δ(ϕh)uh)|20 ≤ |∇δ(ϕh)|20|uh|20,∞ + |δ(ϕh)∇uh|20 ≤ C + |δ(ϕh)∇uh|20.

Noting that, for t ∈ (tn, tn+1),

δ(ϕh) ≤ δ(ϕnh) + C|ϕn+1
h − ϕnh|,

and using the bound on the L∞ norm of δ(ϕh), we have, for t ∈ (tn, tn+1),

|δ(ϕh)∇uh|20 ≤ C|δ(ϕnh)∇uh|20 + C|(ϕn+1
h − ϕnh)∇uh|20

≤ C|δ(ϕnh)∇un+1
h |20 + C|δ(ϕnh)∇(un+1

h − unh)|20 + C|(ϕn+1
h − ϕnh)∇uh|20

≤ C| [δ(ϕnh)]
1
2 ∇un+1

h |20 + C|∇(un+1
h − unh)|20 + C|∇uh|20,∞|ϕn+1

h − ϕnh|20,

≤ C| [δ(ϕnh)]
1
2 ∇un+1

h |20 + Ch−2(|un+1
h − unh|20 + |uh|20,∞|ϕn+1

h − ϕnh|20)

≤ C| [ζ(ϕnh)]
1
2 ∇un+1

h |20 + Ch−2(|un+1
h − unh|20 + |ϕn+1

h − ϕnh|20),

where we have used the fact that δ(s) = 2
π
(1 + s)(1− s) = 4

π
(1− s)ζ(s), recall (1.3) and,

noting that we are restricting ourselves to R2, the inverse estimate

|∇vh|0,p ≤ Ch−1|vh|0,p vh ∈ Sh, for p ∈ [1,∞]. (3.13)

Summing over n, multiplying by ∆t and recalling that ∆t ≤ Ch2 yields, in light of the
bounds from Lemmas 3.2 and 3.1, that∫ T

0

|δ(ϕh)∇uh|20 dt ≤ C

∫ T

0

|
[
ζ(ϕ−h )

] 1
2 ∇u+

h |
2
0 dt+ Ch−2

∫ T

0

|u+
h − u

−
h |

2
0 dt

+ Ch−2

∫ T

0

|ϕ+
h − ϕ

−
h |

2
0 dt ≤ C + Ch−2∆t ≤ C.

In what follows, we fix p > 2, and bound∫ T

0

‖∂t(δ(ϕh)uh)‖2
(W 1,p(Ω))′ dt. (3.14)

Let ψ ∈ W 1,p(Ω) be arbitrary. Then, noting Lemma 3.6, we have

(∂t(δ(ϕh)uh),ψ)((W 1,p)′,W 1,p) = (∂t(δ(ϕh)uh), ψ) ≤ C |(ϕh∂tϕhuh, ψ)|+ C |(δ(ϕh)∂tuh, ψ)|
≤ C|ψ|0|∂tϕh|0 + ‖∂tuh‖(H1(Ω))′‖ψδ(ϕh)‖1

≤ C|ψ|0|∂tϕh|0 + ‖∂tuh‖(H1(Ω))′ (‖ψ‖1 + ‖ψ‖0,∞‖δ(ϕh)‖1)

≤ C‖ψ‖1,p

(
|∂tϕh|0 + ‖∂tuh‖(H1(Ω))′(1 + ‖ϕh‖1)

)
.
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Using bounds from Lemmas 3.2 and 3.3, and the continuous embedding W 1,p(Ω) ↪→
C0(Ω), we deduce a bound on (3.14). This, combined with the bound |∇(δ(ϕh)uh)|20 ≤ C
and a well-known compactness results yields the desired strong convergence result (3.12a).
The proof for ζ(ϕ)u and (3.12b) is analogous.

We define the set
U := { (x, t) ∈ Ω× (0, T ) | ζ(ϕ(x, t)) > 0 } .

As u ∈ L∞(Ω × (0, T )), the regularity theory for parabolic variational inequalities, see
[13], gives

ϕ ∈ Lp(0, T ;W 2,p(Ω)), and ∂tϕ ∈ Lp(0, T ;Lp(Ω)), for 1 ≤ p <∞.

Thus, by the Aubin–Lions lemma, ϕ ∈ C0(Ω× (0, T )), and hence the set U is open.

Lemma 3.8. The function F in (3.7f) satisfies F = χ(U)ζ(ϕ)∇u almost everywhere in
Ω× (0, T ), where χ(U) is the characteristic function of U .

Proof. In order to identify F on U we show that (ζ(ϕ)2u)xi ∈ L2(0, T ;L2(Ω)) and

(ζ(ϕ)2u)xi = ζ(ϕ)uϕxi + Fiζ(ϕ), i = 1, 2. (3.15)

By Lemma 3.7 we have ζ(ϕh)uh → ζ(ϕ)u in L2(0, T ;L2(Ω)), so that∫ T

0

(ζ(ϕ)2u, ψxi) dt = lim
h→0

∫ T

0

(ζ(ϕh)
2uh, ψxi) dt, ∀ψ ∈ C∞0 (Ω× (0, T )).

Using integration by parts on the right hand side integral we have∫ T

0

(ζ(ϕh)
2uh, ψxi) dt = −

∫ T

0

(ζ(ϕh)
2uh,xi , ψ) dt−

∫ T

0

((ζ(ϕh)
2)xiuh, ψ) dt

= −
∫ T

0

(ζ(ϕh)(ζ(ϕh)uh,xi), ψ) dt−
∫ T

0

(ζ(ϕh)uhϕh,xi , ψ) dt.

Since ζ(ϕh)uh → ζ(ϕ)u in L2(0, T ;L2(Ω)) (by Lemma 3.7), the dominated convergence
theorem implies that ζ(ϕh)uhψ → ζ(ϕ)uψ in L2(0, T ;L2(Ω)). Using this, and ∇ϕh ⇀ ∇ϕ
in L2(0, T ; [L2(Ω)]2) from (3.7a), we have∫ T

0

(ζ(ϕh)uhϕh,xi , ψ) dt→
∫ T

0

(ζ(ϕ)uϕxi , ψ) dt, ∀ψ ∈ C∞0 (Ω× (0, T )).

By (3.7f) and (3.9a) we have∫ T

0

(ζ(ϕh)(ζ(ϕh)uh,xi), ψ) dt→
∫ T

0

(ζ(ϕ)Fi, ψ) dt, ∀ψ ∈ C∞0 (Ω× (0, T )).

Thus, as ψ is arbitrary, we have (3.15) almost everywhere.

11



We now identify F on U . Let ψ ∈ C∞0 (U) be arbitrary. Using integration by parts we
have

−
∫
U

uxiψ dx dt =

∫
U

uψxi dx dt =

∫
U

ζ(ϕ)2u
1

ζ(ϕ)2
ψxi dx dt

= −
∫
U

(ζ(ϕ)2u)xi
ψ

ζ(ϕ)2
dx dt+

∫
U

1

ζ(ϕ)
uϕxiψ dx dt.

Substituting in (3.15), we have

−
∫
U

uxiψ dx dt = −
∫
U

Fi
1

ζ(ϕ)
ψ dx dt.

Since ψ is arbitrary, this gives us that uxiζ(ϕ) = Fi almost everywhere on U .

It remains to identify F on U c := Ω × (0, T ) \ U . Let ψ ∈ C∞0 (Ω × (0, T )) be arbitrary.
We use that 1− χ(U) = 0 on U to give∣∣∣∣∫

Uc

ζ(ϕ−h )u+
h,xi

ψ dx dt

∣∣∣∣ =

∣∣∣∣∫ T

0

∫
Ω

ζ(ϕ−h )u+
h,xi

(1− χ(U))ψ dx dt

∣∣∣∣
≤
(∫ T

0

∫
Ω

ζ(ϕ−h )|∇u+
h |

2 dx dt

) 1
2
(∫ T

0

∫
Ω

ζ(ϕ−h )(1− χ(U))2ψ2 dx dt

) 1
2

,

≤ C

(∫ T

0

∫
Ω

ζ(ϕ−h )(1− χ(U))2ψ2 dx dt

) 1
2

, (3.16)

where we have recalled (3.3). By (3.9a)(∫ T

0

∫
Ω

ζ(ϕ−h )(1− χ(U))2ψ2 dx dt

) 1
2

→ 0.

Thus, from (3.16), we have ∫
Uc

ζ(ϕ−h )u+
h,xi

ψ dx dt→ 0.

Recalling (3.7f), we have∫ T

0

∫
Ω

ζ(ϕ−h )u+
h,xi

ψ dx dt→
∫ T

0

∫
Ω

Fiψ dx dt.

Thus we conclude that Fi = 0 almost everywhere in U c, i = 1, 2.

Theorem 3.9. The functions ϕ and u in (3.7) satisfy

ε2

∫ T

0

ψ(∂tu, η)((H1)′,H1) dt+

∫ T

0

ψ

∫
{ ζ>0 }

ζ(ϕ)∇u · ∇η dx dt+
1

εα

∫ T

0

ψ(δ(ϕ)u, η) dt

=
Q

ε

∫ T

0

ψ(δ(ϕ), η) dt−
∫ T

0

ψ(ζ(ϕ), η) dt (3.17)

for an arbitrary η ∈ H1(Ω) and ψ ∈ C∞0 (0, T ).
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Proof. Choosing arbitrary functions η ∈ H1(Ω) and ψ ∈ C∞0 (0, T ), we know that there
exists a sequence (ηh) ⊂ Sh such that ηh → η in H1(Ω) as h → 0. Multiplying (3.1a) by
ψ, and integrating over t gives

ε2

∫ T

0

ψ (∂tuh, ηh)h dt︸ ︷︷ ︸
(1)

+

∫ T

0

ψ
(
ζ(ϕ−h )∇u+

h ,∇ηh
)

dt︸ ︷︷ ︸
(2)

+
1

εα

∫ T

0

ψ
(
δ(ϕ−h )u+

h , ηh
)
h

dt︸ ︷︷ ︸
(3)

=
Q

ε

∫ T

0

ψ
(
δ(ϕ−h ), ηh

)
h

dt︸ ︷︷ ︸
(4)

−
∫ T

0

ψ
(
ζ(ϕ−h ), ηh

)
h

dt︸ ︷︷ ︸
(5)

. (3.18)

For all but (2) we use the well known inequality (3.8). For (1) we use (3.7e). For (2) we
use (3.7f) and Lemma 3.8. For (3) we use (3.9c). For (4) we use (3.9b). For (5) we use
(3.9a).

Remark 3.10. Due to the inverse inequality (3.13) that is used in the proof of Lemma
3.7, our proof of the convergence result in Theorem 3.9 does not extend to R3.

4 Numerical results

In this section we display some computational simulations of tumour growth. In all com-
putations we use the finite element approximation Ph that results from taking ϑ = 1
in (1.2). We use the finite element toolbox Alberta 2.0, [20], to implement our approx-
imation (2.2). In order to increase the efficiency of the computations, we employ the
mesh refinement strategy presented in [12], which gives rise to a fine mesh in the in-
terfacial region where |ϕnh| < 1, a coarse mesh exterior to the tumour where ϕnh = −1
and a standard sized mesh in the interior of the tumour where ϕnh = 1, for more de-
tails on a similar mesh refinement strategy see [2]. The result of this refinement strategy
can be seen in Figure 1, which displays enlarged sections of the computational meshes
associated with the simulations presented in Figure 2 at t = 45 (left) and Figure 3 at
t = 7 (right). We denote the maximum diameter of the triangles in the three meshes by
hmax,f = maxσ∈T n

f
hσ, hmax,m = maxσ∈T n

m
hσ and hmax,c = maxσ∈T n

c
hσ, where

T nf := {σ ∈ Th | |ϕnh(x)| < 0.99 ∀x ∈ σ}, T nm := {σ ∈ Th |ϕnh(x) = 1 ∀ x ∈ σ},

and
T nc := {σ ∈ Th |ϕnh(x) = −1 ∀x ∈ σ}.

In all our computations we fix hmax,f ≤ hmax,m ≤ hmax,c with hmax,m/hmax,f ≤ 24 and
hmax,c/hmax,m ≤ 27. The linear system resulting from (2.2a) was solved using a precondi-
tioned conjugated gradient solver with diagonal preconditioning, while a projected SOR
method, see [11], was used to solve the system resulting from the variational inequality
(2.2b). The results are visualised in Paraview [19].
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Figure 1: Enlarged sections of the meshes associated with the results in Figure 2 at t = 45
(left) and Figure 3 at t = 7 (right).

Noting Lemma 2.1, in all simulations we take ∆t < ε2

β
. In addition we set hmax,c ≈ 2.5

and hmax,m ≈ 0.02 and we take the the initial pressure to be u0(x) = 0 for all x ∈ Ω.
Unless otherwise stated we take the initial geometry Γ(0) to be an ellipse with length 0.5
and height 1, that is we choose the initial profile ϕ0 as

ϕ0(x) =


1 r(x) ≥ επ

2
,

sin r(x)
ε
− επ

2
< r(x) < επ

2
,

−1 r(x) ≤ − επ
2
,

where r(x) = 1 −
√

4x2
1 + x2

2. The values of Q, α, β, ε, ∆t and hmax,f used in all our
simulations are stated in Table 1. Due to the symmetry of the problems we consider, in
all simulations we only solve in the positive quadrant and apply homogeneous Neumann
boundary conditions on the boundaries xi = 0, i = 1, 2.

Q α β ε ∆t hmax,f

Figure 2 1 1 0.1 0.04 10−3 0.0048

Figure 3 1 0.1 0.1 0.01 10−4 0.0024

Figure 4 {0.5, 0.75, 1.5} 1 0.1 0.04 10−3 0.0048

Figure 5 1 {0.5, 2, 7} 0.1 0.04 10−3 0.0048

Figure 6 1 1 {0.1, 0.2, 0.5} 0.04 10−3 0.0048

Table 1: Parameters values for Figures 2 – 6.

4.1 Radially symmetric solutions

In the first set of experiments we investigate the accuracy of the numerical scheme as: (i)
∆t varies, (ii) ε is reduced, (iii) β is increased. To this end, we consider radially symmetric
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solutions by setting Γ(t) ⊂ R2 to be a circle with radius R(t), and we express u in polar
coordinates such that u(r, θ) = u(r). In this setting (1.1) reduces to

u(r) =
1

4
r2 + αQ− α

2
R− 1

4
R2, (4.1)

R′(t) = − β
R

+
1

α
u(r) = − β

R
+Q− R

2
, R(0) := R0. (4.2)

For each of the simulations we compute the following error

Er :=
50∑
n=0

|Rh(tn)−R(tn)|2,

which is the error between the radii, Rh(tn), for tn = 0.01n, obtained from the finite
element approximation (2.2a), (2.2b) and the radii, R(tn), of the corresponding analyti-
cal solution, solved using MATLAB’s standard solver for ordinary differential equations,
ode45.

We first investigate an appropriate choice of ∆t, relative to hmax,f . To this end, we set
α = Q = R0 = 1.0, β = 0.1 then, for ε = 0.02 and ε = 0.01, we consider two val-
ues of hmax,f and four values of ∆t. The resulting errors are displayed in Table 2 (for

∆t = 0.5hmax,f ∆t = 0.2hmax,f ∆t = 0.1hmax,f ∆t = 0.05hmax,f

hmax,f ≈ 0.25ε 0.0101793 0.0106555 0.0107909 0.0139744

hmax,f ≈ 0.125ε 0.00339958 0.00225313 0.00200782 0.00435587

Table 2: Er: ε = 0.02 with α = Q = R0 = 1.0, β = 0.1, ∆t = 0.2hmax,f

∆t = 0.5hmax,f ∆t = 0.2hmax,f ∆t = 0.1hmax,f ∆t = 0.05hmax,f

hmax,f ≈ 0.25ε 0.0252947 0.0201578 0.0184133 0.0181777

hmax,f ≈ 0.125ε 0.00494710 0.00438694 0.00434753 0.00494933

Table 3: Er: ε = 0.01 with α = Q = R0 = 1.0, β = 0.1, ∆t = 0.2hmax,f

ε = 0.02) and Table 3 (for ε = 0.01). From these tables we see that there is very little
difference in the errors for the four values of ∆t, thus for the remaining radially symmetric
computations, unless otherwise specified, we set ∆t = 0.2hmax,f .

Remark 4.1. The convergence result in Section 3 relies on the requirement that ∆t ≤
Ch2, however from Tables 2 and 3 we see that it is sufficient to take ∆t ≤ Ch in practice.
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ε = 0.04 ε = 0.02 ε = 0.01 ε = 0.005

ε ≈ 4hmax,f 0.00929059 0.0106555 0.0201578 0.0304609

ε ≈ 8hmax,f 0.0181973 0.00225313 0.00438694 0.008757458

Table 4: Er: α = Q = R0 = 1.0, β = 0.1, ∆t = 0.2hmax,f

Next we consider the accuracy of the scheme as ε, and subsequently hmax,f and ∆t =
0.2hmax,f , are reduced. To this end we set α = Q = R0 = 1.0, β = 0.1 and consider
four values of ε. For each value of ε we consider two values of hmax,f . The errors Er are
displayed in Table 4, from which we see that taking ε ≈ 4hmax,f yields, for all values of ε,
errors that are of the same order of magnitude. Whereas taking ε ≈ 8hmax,f yields errors
that are the same order of magnitude for ε = 0.02 and ε = 0.01, but gives larger errors
for ε = 0.04 and ε = 0.005.

We conclude our radially symmetric results by considering the accuracy of the scheme
when β is increased from β = 0.1 to β = 1. In these computations we set Q = R0 = 1.5,
α = 1 and consider two values of ε. We note that increasing Q and R0 from 1 to 1.5
ensures growth of the initial circle, recall (4.2). For each value of ε we consider three
values of hmax,f . In all computations we set ∆t = 0.05hmax,f , since this results in the

restriction ∆t < ε2

β
, recall Lemma 2.1, always being satisfied. By comparing Table 5 with

Table 4 we see that for β = 1, even when the value of hmax,f is half the size of the values
used when β = 0.1, the errors for β = 1 are larger than the errors for β = 0.1. We infer
from Tables 4 and 5 that in order to maintain the accuracy of the scheme, a relationship
of the form ε = Λhmax,f should be used, with Λ increasing as β increases.

ε = 0.04 ε = 0.02

ε ≈ 4hmax,f 0.0891700 0.0844617

ε ≈ 8hmax,f 0.0468858 0.0253982

ε ≈ 16hmax,f 0.0350065 0.0164192

Table 5: Er: β = 1, Q = R0 = 1.5, α = 1, ∆t = 0.05hmax,f

4.2 Comparison with results in [12]

In the second set of experiments, Figures 2 and 3, we investigate the effect of using ϑ = 1
in (1.2), which we included for the numerical analysis in this paper. We recall that a
discretisation of (1.2) with θ = 0 was considered in [12], and so we compare our numerical
results with those obtained in that paper. In particular, in Figures 2 and 3 we display
results that correspond to the ones presented respectively in Figures 10 and 12 of [12].
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For both simulations we set Ω = (−5, 5)2, Q = 1 and β = 0.1. The values of α, ε, ∆t
and hmax,f , which differ for the two simulations, are stated in Table 1. For each figure we
display plots of the solution ϕnh in the top row and the pressure unh, restricted to the region
in which ϕnh > −1, i.e. the interior of the tumour, in the bottom row. To be consistent
with Figures 10 and 12 in [12], the plots in Figure 2 are displayed at t = 0, 30, 45 and
the plots in Figure 3 are displayed at t = 0, 3, 7. For both sets of results we see a close
resemblance to the results in [12], with the geometries being visually indistinguishable and
only small differences in the values of the discrete pressures. Overall we are satisfied that
choosing ϑ = 1 in (1.2), compared to ϑ = 0, only has a negligible effect on the numerical
results for the evolutions we are interested in.

4.3 The influence of Q, α and β

In the remaining figures, Figures 4 – 6, we present some parameter studies that investigate
the influence of the parameters Q, α and β, respectively. In all the simulations we set
Ω = (−10, 10)2 and we display the pressure unh in the region in which ϕnh > −1. Associated
with this parameter study we note that in Section 3.1.2 of [12] a linear stability analysis
on a more complicated version of the model (1.1), that includes an additional curvature
term on the left hand side of (1.1b), yields steady state circular solutions if 3αβ > 2Q3.

Figure 4 displays unh obtained by setting α = 1, β = 0.1 and Q = 0.5 (top row), Q =
0.75 (middle row) and Q = 1.5 (bottom row). From this figure we see that for Q =
0.5 the ellipse evolves to form the expected steady state circular solution, since 3αβ =
0.3 > 0.25 = 2Q3. For Q = 0.75 the ellipse extends in the x2 direction to produce an
elongated geometry that is rounded at both ends. This geometry is reminiscent of the
simulation displayed in Figure 8 of [12] that relates to the thin film evolution analysed in
the Appendix of [12]. When Q = 1.5 the ellipse evolves into a more complex geometry,
with a rounded and compact structure.

From Figures 2 and 3 we saw the effect that varying α has on the solution, with α = 1
giving rise to a geometry with four distinct branches, while α = 0.1 leads to more rounded
and compact structure. We investigate the effect of varying α further in Figure 5 in which
we set Q = 1 and β = 0.1. We display α = 0.5 (top row), α = 2 (middle row) and α = 7
(bottom row). From this figure we see that α = 0.5 gives rise to a rounded and compact
structure similar to the one seen in the bottom row of Figure 4, while for α = 2 four
branches are present at t = 125 and by t = 170 these have split and evolved into eight
branches. Taking α = 7 yields the expected steady state circular solution, since we have
3αβ = 2.1 > 2 = 2Q3.

Finally, in Figure 6 we see the effect that varying β has on the solution. We set Q = α = 1
and display β = 0.5 (top row) and β = 0.2 (middle row), together with β = 0.1 (bottom
row). Here we display β = 0.1 solely for comparison purposes, since it is the same as the
solution from Figure 2 except that here Ω = (−10, 10)2 rather than Ω = (−5, 5)2. In this
figure we see that when β = 0.5 the curvature term dominates the motion and the ellipse
evolves to a shrinking circle that has almost disappeared by t = 2. When β = 0.2 an
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elongated geometry with rounded ends is observed that is similar to the one displayed in
the middle row of Figure 4.

(a) t=0 (b) t=30 (c) t=45

(d) t=0 (e) t=30 (f) t=45

Figure 2: Simulations with Ω = (−5, 5)2, α = 1, β = 0.1 and Q = 1: ϕh (upper row) and
uh (lower row).
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Figure 4: Simulations of uh with Ω = (−10, 10)2, α = 1, β = 0.1 and Q = 0.5 (top row),
Q = 0.75 (middle row), Q = 1.5 (bottom row).
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Figure 5: Simulations of uh with Ω = (−10, 10)2, Q = 1, β = 0.1 and α = 0.5 (top row),
α = 2 (middle row), α = 7 (bottom row).
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Figure 6: Simulations of uh with Ω = (−10, 10)2, Q = 1, α = 1 and β = 0.5 (top row),
β = 0.2 (middle row), β = 0.1 (bottom row).
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