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A B S T R A C T

We design a benchmark algorithm that mimics the sequential behavior of users when retrieving information
from the set of alternatives provided by an engine within the first page of online search results. The benchmark
defined by the algorithm is designed to evaluate deviations from the rational retrieval strategies determined
by the subjective preferences and beliefs of users. The algorithm accounts for the 2047 nodes composing the
binary decision tree defined by the ten alternatives ranked within the first page of results. The flexibility
of the algorithm allows to incorporate modifications accounting for search frictions and different degrees of
impatience on the side of users, as well as testing the categorization capacities of machine learning techniques.
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The main intuition on which the algorithms described in this paper
re built is the design of an information retrieval process that is as
lose as possible to the behavior of a standard rational decision maker
DM) formalized in the decision theoretical literature while accounting
or the sequential evaluation structures common to the main empirical
tudies.

In a nutshell, the benchmark algorithm defines an information
etrieval framework where each DM sets out to evaluate the ten al-
ernatives composing the initial page of results provided by a search
ngine. The DM follows a sequential process determined by the obser-
ations retrieved from the alternatives displayed, which condition his
ubsequent retrieval behavior.

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
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Fig. 1 illustrates the retrieval process corresponding to the first
four alternatives from a binary decision tree, where the behavior of
the DM is determined by the value of the realization observed, 𝑥𝑖,
𝑖 = 1, 2,… , 10, relative to a satisfying cutoff value, 𝑐𝑖, 𝑖 = 1, 2,… , 10,
conditioned by his preferences. This latter value is subjectively defined
by the DM based on his beliefs regarding the potential realizations
that may be observed from the characteristics composing the differ-
ent alternatives. Trivially, whenever 𝑥𝑖 > 𝑐𝑖, the DM evaluates the
corresponding alternative before proceeding to observe the next one.
Note how the DM must account for the whole history of evaluations
performed – or omitted – as he proceeds through the ten alternatives
composing the initial set of results provided by the engine.
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Fig. 1. Benchmark information retrieval process: Four initial alternatives composing a binary decision tree.

That is, the benchmark algorithm is a binary decision tree defined
over a total of ten alternatives, accounting for 1023 binary decision
nodes and 1024 final nodes, namely, a total of 2047 nodes. The algo-
rithm allows to consider scenarios where the DM sets out to evaluate
any given number of satisfying alternatives out of the initial page of
results delivered by a search engine. Note that the complexity of the
retrieval process increases substantially with each additional alterna-
tive considered. In this regard, the bound imposed on the benchmark
algorithm is based on the behavior of DMs observed empirically, who
focus on the first ten alternatives provided by search engines [1–3].

From an intuitive viewpoint, a basic algorithm consisting of ten
individual observations, each with its corresponding cutoff value, can
also be defined to describe the retrieval behavior of DMs observed em-
pirically. Indeed, the output obtained from this basic algorithm cannot
be differentiated from that of the benchmark algorithm accounting for
the whole set of potential retrieval paths. However, the basic algorithm
must be extended to formalize a retrieval process where DMs are
asked to identify less than ten alternatives satisfying their subjective
requirements among those provided by the engine. Even in this case,
the basic algorithm does not identify the whole set of retrieval paths
that may be generated by the DM, preventing the analysis of multiple
interactions across the sets of potential observations and evaluations.

We must highlight the fact that the binary decision tree defining
the retrieval process of rational DMs – within an online search environ-
ment – common to the economic, decision theoretical, and operational
research literature had not been previously coded and tested. This is
the case despite the fact that these research branches acknowledge the
formal sequential process on which the algorithm is based and have
validated empirically the retrieval behavior of DMs and their aim to
observe and evaluate a predetermined number of satisfying alternatives
[4].

The benchmark algorithm described in the following papers formal-
izes the sequential retrieval structure and subsequent paths summarized
in Fig. 1 for a total of ten alternatives. The definition of each and
every step that may be taken by the DM allows for the inclusion
of a variety of modifications at specific points through the retrieval
path determined by the observations retrieved. Moreover, alternative

the benchmark scenario were also designed and evaluated. The main
contributions of these algorithms can be summarized as follows:

• Di Caprio et al. [5] illustrated the effect that frictions – triggered
by observations that do not satisfy the subjective requirements of DMs
throughout the different nodes of the decision tree – have on their
retrieval behavior.

• Di Caprio et al. [6,7, Source Code 2021] introduced a set of
complementary algorithms allowing to compare the behavior of DMs as
their impatience grew. Two variants of the main benchmark algorithm
were presented, with impatience determining the stopping behavior
assumed on the DMs, which ranged

◦ from strict scenarios where DMs concluded the retrieval process
as soon as an alternative underperformed relative to their subjec-
tive preferences, that is, as soon as an observation did not satisfy
their cutoff expectations

◦ to more complex environments where DMs proceeded through
underperforming alternatives until a satisfying one was found
and then stopped as soon as a new underperforming alternative
was observed.

• Di Caprio and Santos Arteaga [8],Di Caprio and Santos Arteaga [9,
Source Code 2021] exploited the capacity of the benchmark algorithm
to generate behavioral patterns that can be used to train and validate
the categorization capacity of machine learning (ML) techniques. That
is, the algorithm delivers both the numerical observations retrieved
by DMs as well as the behavioral consequences in terms of evalua-
tions performed. Different algorithms were designed and categorized
according to the order in which the retrieval decisions were reported.
The output vectors obtained from the algorithms were used as training
inputs to highlight the identification and categorization capacities of
ML techniques relative to standard statistical ones.

Table 1 presents the output obtained from the benchmark algorithm
when the satisfying cutoff values equal 𝑐𝑖 = 0.5, for all 𝑖 = 1, 2,… , 10.
Each column represents a query that accounts for the ten alternatives
described in the first page of results provided by the engine. The
output per query corresponds to the stochastic realizations describing
the characteristics of each alternative and the subsequent pages clicked
algorithms designed to test specific behavioral strategies relative to by the DM.

2



D. Di Caprio and F.J. Santos-Arteaga Software Impacts 12 (2022) 100248

i
D
t
r
a
t
t

t
d
f
t
t
t
r
D

b
m

Fig. 2. CTR differences relative to the frictionless scenario for 𝑐𝑖 = 0.5, 𝑖 = 1, 2,… , 10.

Table 1
Output delivered by the benchmark algorithm for 𝑐𝑖 = 0.5, 𝑖 = 1, 2,… , 10.

Search Queries

Stochastic evaluations

0.758 0.823 0.490 0.498 0.959
0.743 0.695 0.446 0.960 0.547
0.392 0.317 0.646 0.340 0.139
0.655 0.950 0.709 0.585 0.149
0.171 0.034 0.755 0.224 0.258
0.706 0.439 0.276 0.751 0.841
0.032 0.382 0.680 0.255 0.254
0.277 0.766 0.655 0.506 0.814
0.046 0.795 0.163 0.699 0.244
0.097 0.187 0.119 0.891 0.929

Pages clicked

1 1 3 2 1
2 2 4 4 2
4 4 5 6 6
6 8 7 8 8
0 9 8 9 10
0 0 0 10 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

As stated above, the benchmark decision-tree algorithm allows to
ncorporate any potential modification to the subjective behavior of
Ms defined within its main retrieval structure. Each node describes

he implementation of a decision rule conditioned by the random
ealization of the corresponding characteristic. In this regard, the rules
pplied at each node can be modified to incorporate any of the strategic
raits determining the different types of decision processes described in
he literature.

For instance, we may consider the introduction of frictions within
he search process of DMs [5,7]. That is, whenever a realization un-
erperforms relative to the corresponding satisfying value, DMs may
eel that the ranking provided by the engine does not accommodate
heir preferences as correctly as expected, decreasing their willingness
o click on any subsequent alternative, i.e., increasing the value of
he subsequent cutoffs. In this case, the strength and duration of the
esulting effects can be defined according to the subjective features of
Ms.

As an illustrative example, we consider two scenarios determined
y the cumulative frictions introduced to account for the underperfor-
ance of the alternatives

• a unique friction, 𝑓1 = 0.1, is added to all remaining cutoffs after

Table 2
CTR differences across friction scenarios.

Frictions

CTR None 𝑓1 = 0.1 [f1 = 0.1; f2 = 0.2]

1 50.02 50.09 50.00
2 50.02 45.02 45.05
3 50.01 42.53 39.56
4 49.96 41.22 35.62
5 50.02 40.65 33.06
6 50.05 40.38 31.58
7 50.07 40.17 30.85
8 50.00 40.07 30.44
9 50.00 39.99 30.29
10 49.92 39.91 30.12

• two different frictions are added: 𝑓1 = 0.1, after DMs face the first
𝑥𝑖 < 𝑐𝑖 realization, and 𝑓2 = 0.2, to all remaining cutoffs after DMs
face the second 𝑥𝑗 < 𝑐𝑗 realization, 𝑗 = 2,… , 10.

Clearly, additional friction values could be introduced based on the
number of underperforming realizations. Table 2 presents the CTRs
obtained through the different scenarios, while Fig. 2 describes the
differences in CTRs per alternative between the frictionless benchmark
and each scenario. Each simulation is composed by one million queries,
within which DMs proceed through the ten alternatives ranked by the
engine.

The effect that an increase in frictions has on the CTRs is deter-
mined by both the number of frictions introduced and the position of
the alternatives within the ranking. At the same time, the non-linear
incremental effect on the CTRs highlights its concentration within the
lower half of the ranked alternatives.

All in all, different extensions and modifications of the benchmark
algorithm would allow to consider multiple evaluation scenarios based
on a variety of behavioral strategies implemented at each node of the
decision tree and through any potential path that may be followed by
a DM. Note that, besides describing the behavior of DMs, the algorithm
provides a benchmark to analyze how they may deviate from a rational
setting as modifications are introduced to the retrieval framework.

Among the main shortcomings, the size of the algorithm constitutes
a binding limit – as is generally the case with binary decision trees
–, with the coding requirements increasing considerably as additional
alternatives are incorporated to the retrieval process. In this regard,
algorithms based on simpler retrieval strategies can be designed to
deliver similar results to those of the complex benchmark framework,
highlighting the importance of bounded rationality on the assimilation
capacities and subsequent behavior of DMs.
DMs face the first 𝑥𝑖 < 𝑐𝑖 realization, 𝑖 = 1, 2,… , 10;
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