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ABSTRACT In this work, we introduce a conceptually new approach for designing frequency
reconfigurable wire antennas based on the use of multi-layered wrapping metasurfaces. Specifically,
we demonstrate that the complex-valued input impedance of a wire antenna can be tailored by engineer-
ing the electromagnetic characteristics of a coating metasurface and we discuss how this effect can be
exploited for achieving wide-band frequency reconfigurability. We report the advantages and limitations of
this approach – especially compared to conventional impedance matching techniques - and, as a relevant
example, we discuss the design of a reconfigurable half-wavelength dipole. For this example, the coating
metasurface consists of a three-layer capacitive structure loaded with varactor diodes. It is shown that the
operative frequency band of the antenna can be dynamically and continuously shifted in a quite broad
range of frequencies (2/3 octave bandwidth) while preserving the current distribution of the fundamental
mode and the omnidirectional shape of its radiation pattern on the horizontal plane. The possibility to
allocate the antenna service within continuous sub-bands of operation makes this solution particularly
suited for cognitive radio systems.

INDEX TERMS Frequency reconfigurability, multi-band antenna, multi-layer metasurfaces, reconfigurable
metasurfaces, varactors, cognitive radio, wire antennas.

I. INTRODUCTION

THE EXPONENTIALLY growing demand for wireless
communication systems enabling multiple services

has rapidly increased frequency usage, causing spectrum
congestion [1], [2]. To mitigate this problem, the design of
smart devices enabling maximum efficiency in the spectrum
utilization through an intelligent and dynamic allocation of
the services has been proposed [3], [4]. These systems, often

referred to as cognitive radio systems [5], typically perform
an electromagnetic scan of the surrounding environment in
order to assess the actual spectrum occupancy and, conse-
quently select an available sub-band for operation [6]. For
this purpose, reconfigurable wireless communication devices
combining different methodological paradigms such as signal
processing, artificial intelligence, wideband/multiple antenna
techniques, and information theory are usually required [7].
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However, the physical reconfigurability of the antenna ele-
ment remains a critical challenge, in particular for what
concerns the possibility to reconfigure the frequency of
operation almost continuously within a prescribed range.
Antenna reconfigurability can be achieved in several

ways [8]–[10]. A common and simple solution relies on
the use of external reconfigurable matching networks [11].
However, the implementation of such a strategy becomes
rather complex for multiband operation or continuous tuning,
and its adoption can significantly affect space occupancy. For
these reasons, several electrical reconfiguration techniques
exploiting switches to connect and disconnect various seg-
ments of the antenna metallic parts and redistribute the current
flow have been proposed in the last decades [12], [13].
A completely different approach that makes use of

extremely broadband antennas has been introduced by
exploiting high-Q microwave filters able to alternatively
select the desired frequency band [14]–[16]. However, the
requirement of wideband antennas and bulky and expen-
sive filters severely limits the feasibility of such a solution.
Therefore, reconfigurable antennas with limited instanta-
neous bandwidth and switching or tuning capabilities are
usually preferred [17]–[22].
Among the different radiating devices designed to oper-

ate in multiple bands, omnidirectional antennas play an
important role. In fact, vertically polarized dipole/monopole
antennas are widely employed in various mobile communi-
cations, broadcasting, networking, and sensing applications.
To equip such antennas with unprecedented functional-
ities, one possibility is to surround them with prop-
erly designed metasurfaces [23]. For instance, the use
of lightweight conformal metasurface coatings has been
proposed and successfully demonstrated for the reduc-
tion of the blockage and mutual coupling effects aris-
ing between antennas placed in close proximity, allowing
the design of extremely compact communication systems
for both terrestrial [24]–[27] and satellite [28]–[30] applica-
tions. In [31]–[34], similar metasurface coatings have been
exploited to design array systems with expanded radiat-
ing functionalities. For instance, a metasurface coat able to
selectively hide a dipole antenna to a detecting radar while
allowing communication with a base station has been intro-
duced in [35], [36], paving the way to the design of antenna
systems with both frequency- and time-domain selective
properties [37]. More recently, the possibility to design an
inductive coating metasurface able to hide dielectric support
whilst efficiently radiating in a different frequency band has
been proposed [38].
Despite these recent efforts to achieve mutual coupling and

blockage reduction, to the authors’ best knowledge, there are
very few studies exploiting coating metasurfaces to tailor the
impedance matching of wire antennas [39], [40]. Moreover,
existing results are mainly focused on widening the antenna
impedance bandwidth and, thus, they are not suitable for
cognitive systems where a narrowband operation over a wide
tuning range is required.

Inspired by these works, a new approach for tuning the
electrical properties of vertically polarized antennas based
on the use of multi-layered metasurface coats is proposed.
Depending on the values of the surface impedance of the
coating metasurface layers, independent resonances can be
excited which can be dynamically and continuously shifted
within a broad frequency range. These resonances give rise
to current distributions similar to the one of the funda-
mental mode, thus preserving the vertical-axis symmetry of
the radiated field. As a relevant example, the design of a
coated dipole antenna where the surface impedance values
are tailored through varactor diodes loading the multi-layered
metasurface is illustrated.
The resulting lightweight circuit-loaded coatings are

promising candidates for enabling advanced compact and
low-cost reconfigurable antennas with omnidirectional pat-
terns, and represents an innovative alternative route compared
to conventional reconfigurable antenna technique, to be
potentially adopted in cognitive radio systems operating in
congested spectrum scenarios.

II. COATING METASURFACES FOR FREQUENCY
RECONFIGURABILITY
In this Section, we show that coating metasurfaces can be
used not only to tailor the scattering characteristic of wired
antennas (as discussed in [24]–[34], [36]) but also to tune
its input impedance and its matching to standard feeding
lines at different frequencies. In other terms, we illustrate
how a metasurface coat can be designed to behave as a
generalized matching network implemented at a physical
level, i.e., exploiting the electromagnetic coupling with the
antenna rather than acting on the electrical waves flowing
on the feeding network.
In order to introduce such a concept, a half-wavelength

dipole antenna coated by an ideal conformal metasurface is
considered for illustrative purposes (Fig. 1(a)). The antenna
is designed to resonate at f 0 = 1 GHz, with a length
la = λ0/2.27 and a diameter a = λ0/100. The conformal
metasurface consists of an ideal cylindrical reactive sheet
described by a purely reactive scalar impedance Xs, with a
diameter ac = γ a and a length lm = λ0/1.5.

As it can be appreciated from the magnitude of the reflec-
tion coefficient at the 50 � input port of the antenna, shown
in Fig. 1, the matching frequency band of the antenna can
be shifted within a quite broad range by tuning both the
parameters γ and the surface reactance Xs.
In particular, the resonant frequency significantly moves

towards higher values as γ → 1 and the surface reactance Xs
assumes small negative values (i.e., large capacitance). For
instance, a value of γ = 5 and Xs = −5 �/sq corresponds
to a shift in the resonance equal to 1.4f 0. Conversely, when
both γ and |Xs| increase, the induced shift is quite small, and
the matching frequency approaches f0. As an example, the
resonance is slightly shifted to 1.13f 0 when γ = 13.3 and
Xs = −49 �/sq. It is worthwhile to remark that although
Fig. 1 only reports a selected set of parameter setups (for
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FIGURE 1. Magnitude of the reflection coefficient of the metasurface coated
half-wavelength dipole antenna shown in the inset as a function of the metasurface
parameters γ = ac/a and Xs [�/sq]. The black line refers to the case of the uncoated
antenna. Full-wave simulation results when the dipole is excited by a standard 50 �

source.

the sake of visual clarity), a continuous shift of the antenna
resonance can be achieved, allowing for a smooth frequency
reconfigurability within sub-bands of operation, through a
proper combination of both γ and Xs, Furthermore, although
only capacitive values of Xs have been reported, a more
comprehensive study considering also inductive values has
been performed. However, since inductive metasurfaces have
a poor effect on the antenna resonance and cannot be effi-
ciently exploited to control the antenna response, such results
have been omitted.
To gain a better understanding of the operation principle,

the input impedance (Zin) of the coated antenna is shown in
Fig. 2. Without the coating metasurface, the imaginary part
of Zin at the resonant frequency f0 is almost zero, while the
real part turns out to be around the standard 50 � value. By
coating the antenna with the metasurface and reducing both
the values of |Xs| and γ , the antenna resonance frequency is
progressively increased. At the same time, the real part of Zin
is flattened in a broad frequency range around 50 �, allow-
ing to achieve resonance and impedance matching within a
wide range of frequencies without changing the length of the
dipole.

It is worth noting that this effect cannot be observed in
a bare uncoated dipole. In fact, as well known and shown
in Fig. 2 (green line), the real part of Zin of a conven-
tional dipole changes significantly as the frequency changes.
Therefore, the coating metasurface allows to control not only
the imaginary part of Zin but also its real part, behaving as
an equivalent complex matching transmission-line network
that can be tuned by acting on its surface impedance and/or
its diameter. Indeed, the described behavior is unprecedented
and is enabled by the peculiar characteristics of electromag-
netic cloaking when applied to antenna systems [34]–[36].
The current distribution in the coated cases for γ = 5;

Xs = −5 �, and for γ = 13.3; Xs = −49 � evaluated at their

FIGURE 2. Complex input impedance of the metasurface coated antenna as a
function of the metasurface parameters γ = ac/a and Xs [�]. In the insets, Current
magnitude distributions on the antenna with (w/ ) and without (w/o) the coating
metasurface at various frequencies. Full-wave simulations.

own resonant frequencies (1.4f 0 and 1.13f 0, respectively) are
shown in the inset of Fig. 2, for completeness. These plots
demonstrate that the fundamental mode of the bare antenna
and the modes induced by the metasurface exhibit the same
current distributions, even if the electrical length of the dipole
is considerably different at the different frequencies. Such
a result indicates that, unlike standard dipole antennas, an
omnidirectional pattern analogous to the one of the uncoated
case is expected within the entire tuning band in the coated
scenario. From a physical point of view, this behavior is
consistent with the fact that the coating metasurface reflects
part of the radiated waves back to the antenna, inducing a
secondary current that modifies the original current distri-
bution and compensates for its variations. Depending on the
values of Xs and γ , the interference between the currents can
be tailored to achieve the desired complex input impedance
Zin and, thus, the desired resonance frequency.

The intriguing possibility of tuning both the imaginary and
real parts of the input impedance is a major advantage of the
proposed approach compared to conventional reconfigurable
matching techniques based on reactive lumped elements, as
shown in Fig. 3. To prove this point, the performances of
the proposed approach are compared to the ones exhibited
by a conventional capacitive antenna tuner. In particular, we
compare the scenario of the coating metasurface with γ = 5
and Xs = −5 �/sq with the case of the same dipole loaded
with a variable capacitor at its input port. As it can be
appreciated, in the latter case (dashed curves), the obtained
antenna frequency reconfigurability is very limited, due to
the impossibility of engineering the real part of the dipole
input impedance, since the reactive elements can compensate
just the imaginary part of the impedance. Conversely, in
the coated antenna scenario proposed in this work (orange
continuous curve), a tuning range up to 1.4f0 is obtained.

This behavior confirms the nature of the coating meta-
surface as an advanced matching network implemented at
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FIGURE 3. Magnitude of the reflection coefficient of the metasurface coated dipole
antenna (γ = 5 and Xs = −5 �/sq) compared to the ones exhibited by a conventional
capacitive antenna tuner. The black line refers to the case of the uncoated antenna.
Full-wave simulations.

a physical level. In principle, indeed, a similar huge res-
onant shift could be also achieved by implementing a
complex matching network at the antenna input port but
this would require the design of a complicated network able
connecting/disconnecting matching stubs and reactive loads.
The above discussion suggests that the proposed metasur-

face should be able to change in real-time both its radius
and its surface reactance to enabling tuning of the match-
ing frequency of the coated dipole. While the latter quantity
can be easily controlled by implementing an electric tun-
ing mechanism, reconfiguring the radius of the metasurface
would require a complex mechanical system. Therefore, the
proposed approach to avoid this complication by replacing
the single-layer metasurface with a multi-layered structure
is shown next.

III. DESIGN OF VARACTOR-LOADED MULTI-LAYERED
METASURFACES FOR FREQUENCY
RECONFIGURABILITY
A realistic design of a frequency reconfigurable dipole
antenna exploiting the operation principle discussed in the
previous Section is shown in the following. For this purpose,
let us consider an ideal multi-layered coating metasurface
wrapped around a dipole antenna, like the one depicted in
Fig. 4. The antenna has the same dimensions of the case
discussed above, while the multi-layered metasurface is com-
posed of three separate layers with diameters and surface
reactance equal to (from inner to outer): aA = γAa, aB = γBa,
aC = γCa, and XA, XB, XC. The idea is to tune the reso-
nant frequency of the antenna through a proper modulation
of the surface impedance of each layer, i.e., by varying the
values of XA, XB, and XC. The described geometry is compli-
ant with the current fabrication techniques, which allow the
realization of thin curved metasurfaces loaded with electronic
elements [41].
As demonstrated above, only a specific combination of Xs

and γ allows inducing a secondary current on the antenna

FIGURE 4. Half-wavelength dipole antenna coated by the multi-layered metasurface,
composed of three different layers (A, B, C), characterized by different values of the
surface reactance and radius (XA , XB , XC and aA , aB , aC ).

FIGURE 5. Magnitude of the reflection coefficient of the coated antenna as a
function of different combinations of the layers surface reactance XA , XB , and XC
[�/sq]. Full-wave simulations results.

able to properly interfere with the fundamental mode and,
thus, to shift the resonance frequency. Therefore, only a
specific value of Xs introduces the desired effect once the
value of γ is defined.

In Fig. 5, the amplitude of the reflection coefficient of
the coated antenna for the cases with γA = 5, γB = 7.5,
and γC = 13.3 is reported. Four distinct resonances can
be noticed, depending on the combination of XA, XB, and
XC. Specifically, in order to excite the fundamental mode
of the antenna at f0, the surface impedances of all the lay-
ers should be characterized by an extremely large absolute
value (XA = XB = XC = −5000 �/sq), i.e., the meta-
surfaces behave as transparent layers. From an equivalent
transmission-line point of view, the large impedances of the
metasurfaces are connected in parallel to the antenna input
impedance in this case, thus they do not affect the reflection
coefficient at the input port [36].
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FIGURE 6. Final design of the varactor-loaded metasurface coat for a dipole
antenna. Slice and perspective view of the device.

Conversely, different resonant frequencies can be obtained
when one of the metasurfaces is characterized by lower val-
ues of the surface reactance (e.g., XC = −51 �/sq). It
is worth noting that the value of XC required to induce
the resonance at 1.13f 0 is slightly different compared to
the value required in the single-layer coating metasurface
(Xs = −49 �/sq) because of the mutual coupling effects
arising between the metasurface layers. Once the desired
values of XA, XB, and XC are obtained from optimization,
a practical implementation of the proposed multi-layered
frequency reconfigurable antenna can be designed.
As shown in Fig. 6, simple horizontal metallic strips can

be used to implement each metasurface layer. In fact, consid-
ering the TMz field radiated by the antenna, the metallic rings
can be used to synthesize capacitive metasurfaces with sur-
face impedance values depending on the distance (g) and the
width (w) of the strips [42], [43]. To take into account also
the practical feasibility of the metasurfaces, each of the three
layers is printed on a thin dielectric substrate (t = 0.003 λ0,
εr = 2.9, tanδ = 0.0025).
In order to equip the system with reconfigurability capa-

bilities, each of the metallic rings has been loaded with a set
of three varactor diodes (CA, CB, CC, from inner to outer),
able to control the distributed equivalent capacitance of the
rings themselves. As shown in Fig. 7, to properly set the
voltage across them, a resistive bias network is used to con-
nect the varactor in an anti-series configuration [44]. Since
the DC current biasing the varactors is very low, the value of
the resistors connecting the metallic rings to the biasing lines
through vias is quite large to prevent the microwave-induced
currents from flowing into the bias network (Rbias = 4 k�).
It is worth mentioning that a careful design of the network

was required to minimize the interfering effect between the
metallic strips and the biasing lines. In particular, a mirrored-
rotated configuration of the +/− biasing lines implemented
through thin and short vertical metallic lines has been
used, as it can be appreciated in Fig. 7(b). An alternat-
ing distribution of the biasing lines between the metasurface

FIGURE 7. (a) Detail of a section of the outer layer of the coating metasurface
showing the structure of the biasing lines. (b) Sketch of a quarter section of an
unwrapped metasurface layer. All lengths are expressed in millimeters.

FIGURE 8. Equivalent circuit model of the metasurface unit cell. (a) Unloaded
scenario. (b) Loaded scenario considering a first-order varactor circuit model.
(c) Loaded scenario also considering the varactor parasitic effects.

layers has been also introduced to further minimize possible
interactions.
This configuration allows controlling the value of the surface

impedance of each metasurface layer by a judicious variation
of the varactor capacitance, i.e., by changing the DC voltage
applied to the metasurface rings. From a circuital point of
view the metasurface unit cell is in fact represented by an
equivalent capacitance CMTS, and its surface reactance is
XMTS = −1/ωCMTS, as can be seen from Fig. 8 (a). When
introducing the loading varactor, its equivalent impedance
appears in parallel to CMTS. Since the varactor impedance
can be modeled through a variable capacitance Cj in a first
approximation (Fig. 8 (b)), the equivalent surface impedance
of the loaded metasurface is given by Xs = −1/ωCTOT, where
CTOT = CMTS+Cj. Thus, increasing the value of theCj allows
reducing the value of the XMTS up to the target values.
Moreover, for the numerical simulations a more realistic

model of the varactors taking into account also the varactor
package parasitic effects have been considered. Specifically,
the varactor diodes have been modeled through the equivalent
circuit reported in Fig. 8 (c), where Rs is the series resistance
of the varactors, Lpkg and Cpkg are the parasitic package
reactance, while Cj is the variable junction capacitance.
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FIGURE 9. Magnitude of the reflection coefficient of the half-wavelength dipole
antenna coated by the multi-layered metasurfaces in Fig. 5, for different combinations
of the equivalent junction capacitances CA, CB , CC of the varactors loading each
metasurface layer. Junction capacitances are expressed in pF. Full-wave simulations
results.

Assuming that the values of the parasitic reactances are
small enough to be neglected, the expression for the equiv-
alent surface impedance of the loaded metasurface can be
derived as:

Xtots = −j
(
Rs − j/ωCj

)

CMTS
(
Rs − j/ωCj − j/ωCMTS

)
ω

Thus, from the equation, the value of the junction capaci-
tance Cj required to meet the targeted value of the equivalent
surface impedance able to tune the antenna resonance can
be evaluated.
As a first step of the design process, the horizontal

strips have been designed to return a large equivalent reac-
tance (i.e., Xs = −5000 �/sq). Towards this end, an
analytical design procedure [23] and a full-wave numerical
optimization through the commercial solver CST Microwave
Studio aiming at considering the non-idealities due to the
curvature of the strips have been exploited. It is worth point-
ing out that different combinations of g and w can be used
to achieve the desired surface reactance. The combination
ensuring the minimum number of rings (and, thus, of varac-
tors) and, at the same time, geometrical values compatible
with the standard electronic lumped elements dimensions
have been selected. The optimized values turn out to be
g = λ0/25 and w = λ0/120.

The different combinations of Cj needed to achieve the
target values of XA, XB, and XC and, thus, able to induce
the distinct resonances, have been subsequently analytically
derived through the model of Fig. 8 (c). Also, in this
case, a numerical optimization procedure was required to
take the non-idealities of the model into account, since
four varactors are required for a correct homogenization of
the distributed capacitance along the strips. Moreover, the
values of Cj available from a commercial varactor diode
(GC15006 Microsemi, with Rs = 2.65 �, Lpkg = 0.4 nH,
and Cpkg = 80 fF) have been considered for the final choice
of the optimal CA, CB, CC.

FIGURE 10. Realized gain radiation diagrams of the designed half-wavelength
dipole antenna coated by a multi-layered metasurface evaluated at the four different
resonant frequencies. For comparison, the left panel shows the radiation diagrams of
the uncoated half-wavelength dipole. Full-wave simulations results.

As shown in Fig. 9, distinct resonances appear depending
on the different combinations of CA, CB, CC. In particular,
the fundamental mode resonance at f 0 is excited when all
the varactors on the three layers exhibit the lowest possible
Cj value allowed from the varactor datasheet, i.e., CA, CB,
CC = 0.01 pF. A small resonance shift to 1.15f0 appears
instead when CC = 1.3 pF and CA = CB = 0.01 pF. Whilst,
for combinations of CA, CB, CC ranging from 0.01 to 1.7 pF,
the antenna resonance can be moved continuously up to 1.5f0,
for CA = 1.3 pF and CB = CC = 0.01 pF.
Please note that the curves of the reflection coefficient

magnitude are slightly different with respect to those in
Fig. 5. This outcome is mostly due to the lowest value
exhibited by the Cj of the varactors, which slightly alters
the original surface reactance of the layers compared to their
unloaded values. It is also worth mentioning that the res-
onances exhibited by the antenna allow covering adjacent
frequency bands within a quite broad frequency spectrum
(from f0 up to 1.6f0 – 50% fractional bandwidth), which is
an essential feature in cognitive radio systems.
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FIGURE 11. Antenna system efficiency (i.e, ratio of the antenna radiated power to
the power at the antenna input port) when considering the combination of CA, CB ,
CC [pF] exciting the resonance curves in Fig. 10. The star symbols mark the antenna
resonant frequency for the specific capacitance combinations. Full-wave simulations
results.

In Fig. 10, the realized gain radiation patterns at four dif-
ferent resonant frequencies are reported. As expect, because
of the stable current distributions on the dipole antenna,
the radiation diagrams at the different frequencies exhibit a
uniform omnidirectional pattern. In Fig. 11, we report the
antenna system efficiency (i.e., the ratio of the radiated power
to the power at the antenna input port) for the same combina-
tions of CA, CB, CC used in Fig. 10. As it can be appreciated,
the antenna efficiency keeps higher than 80% for all the con-
sidered scenarios. It is worth emphasizing that the presence
of the biasing network and a realistic model for the varac-
tors has been fully considered in these simulations. Indeed,
the good efficiency performance is mainly related to the use
of simple non-resonance metasurfaces, which support weak
secondary currents, and to the minimization of the number
of diodes required for the frequency reconfigurability.
Finally, it is worth remarking that the use of tunable varac-

tor diodes to modify the values of the surface impedances of
the metasurface layers offers dynamic spectrum management
through the possibility of exciting neighboring bands of oper-
ation within a large frequency spectrum. In fact, Fig. 9 shows
that the resonances excited can be slightly shifted in the
frequency band f0 – 1.6f0 by a proper variation of CA, CB,
and CC within the varactor capacitive range, hence allow-
ing an almost continuous allocation of the bandwidth of
operation within the frequency range from f 0 up to 1.6f 0.

IV. CONCLUSION
We have introduced a new approach to modify the resonance
frequency of wire antennas exploiting flexible coating meta-
surfaces. By properly engineering the metasurface response,
the complex-valued input impedance of the antenna can be
tailored to match one of a standard 50 � feeding lines at
different frequencies, enabling frequency reconfigurability.
This innovative design solution has been exploited to

design a dipole antenna coated by multi-layered metasur-
face loaded by varactor diodes able to shift its resonant

frequency within continuous and adjacent sub-bands of oper-
ation. At first, the radii of the metasurface layers have been
numerically optimized to maximize the reconfigurable band-
width and still guarantee continuous sub-bands of operation
through feasible values of the surface impedances. Then,
proper unit cells loaded with varactor diodes have been
designed and the required values of the junction capacitances
identified through analytical formulas. The final results show
that a stable and efficient omnidirectional radiation pattern
was ensured despite the presence of an integrated biasing
line network and a realistic model for the varactor diodes,
which have been accounted for in the full-wave numerical
simulations.
In contrast to conventional matching networks, the

proposed approach holds intrinsic advantages. In particu-
lar, it allows tuning both the real and the imaginary part
of the complex input impedance, enabling, thus, wideband
reconfigurability capabilities. The proposed approach does
not require large values of the reactive and resistive load-
ing or switches to achieve impedance matching. Moreover,
since the designed coating material is based on conformal
and lightweight multi-layered metasurfaces, it can be easily
applied to preexisting antenna systems and, more in gen-
eral, in all the scenarios where feasible reconfigurability is
desired for cognitive radio purposes.
The use of reconfigurable electromagnetic structures,

such as the metasurface considered here whose response
is controlled through an integrated biasing network, further
expands the field of engineered materials embedding “intel-
ligence” at the physical layer, which will play a significant
role for the next generation telecommunication systems.
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