
OMNITIG LISTING AND CONTIG

ASSEMBLY FOR GENOMIC DE BRUIJN

GRAPHS

Author: Elia Carlo Zirondelli

Advisor: Prof. Romeo Rizzi

Doctoral Thesis

Ph.D. course in Mathematics

University of Trento, Department of Mathematics

University of Verona, Department of Computer Science

December 2021





Contents

1 Basic definitions, motivations and state of the art 9

1.0.1 Bioinformatics Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.0.2 Definitions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Genome assembly, from practice to theory: safe, complete and linear time 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Constant degree and compression . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Constant degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Macronodes and macrotigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Macronodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Macrotigs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Maximal omnitig representation and enumeration . . . . . . . . . . . . . . . . . 40

2.4.1 Maximal omnitig enumeration for non-constant degree . . . . . . . . . . 44

3 The Hydrostructure: a universal framework 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Hydrostructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Safety in Circular Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Safety in Subset Covering Models . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Circular Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Safety in Subset Visibility Models . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.1 Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 3 3





Introduction

The present dissertation offers technical advances in the field of genome assembly, related to

the problem of efficiently finding all safe solutions admitted by the problem modelizations,

and a novel framework, for obtaining safe and complete algorithms, also allowing for easy

characterization of both old and new problems.

The thesis comprises the following two articles:

• Massimo Cairo, Romeo Rizzi, Alexandru I. Tomescu, Elia C. Zirondelli: Genome As-

sembly, from Practice to Theory: Safe, Complete and Linear-Time (full version at

https://arxiv.org/abs/2002.10498). In Nikhil Bansal, Emanuela Merelli, and James Wor-

rell, editors, 48th International Colloquium on Automata, Languages, and Programming,

ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of

LIPIcs, pages 43:1–43:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

• Massimo Cairo, Shahbaz Khan, Romeo Rizzi, Sebastian S. Schmidt, Alexandru

I. Tomescu, Elia C. Zirondelli: The Hydrostructure: a Universal Framework for Safe

and Complete Algorithms for Genome Assembly. CoRR abs/2011.12635 (2020) (preprint

available at https://arxiv.org/abs/2011.12635).

The contents of the first article appear in Chapter 2. The O(n) bound of Theorem 2.25

(from O(m) initially) is due to Sebastian Schmidt.

The contents of the latter article appear in Chapter 3. I had major technical contributions

both on the discovery and initial study of the Hydrostructure, that reached its final form with

Definition 3.2 and in Section 3.3. The writing of the paper mentioned above is mostly due to my

co-author Sebastian Schmidt. To conclude, we chose to omit from this thesis sections where I

did not have any relevant technical contributions (check the paper mentioned above to have the

full version of the results). However, for the sake of completeness, I included Implementation

subsections at the end of each main sections, where my co-author Sebastian Schmidt had major

contributions.

The first chapter of the thesis, Chapter 1, comprises the introductions of the corresponding

two articles to which I contributed in a minor way. In general, my contributions in the article

were related to the mathematical and algorithmic results; however, for the sake of completeness,

I also include, in Chapter 1, the description behind the bioinformatics motivation (Section 1.0.1)
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and the subsection Limitations of the existing theory of safe and complete algorithms (and

Figure 1.2), parts to which I did not contribute in a major way.

Genome assembly asks to reconstruct an unknown string from many shorter substrings of

it. Its hardness stems both from practical issues (size and errors of real data), and from the fact

that problem formulations inherently admit multiple solutions. Given these, at their core, most

state-of-the-art assemblers are based on finding non-branching paths (unitigs) in an assembly

graph. While such paths constitute only partial assemblies, they are likely to be correct. More

precisely, if one defines a genome assembly solution as a closed arc-covering walk of the graph,

then unitigs appear in all solutions, being thus safe partial solutions. Until recently, it was open

what are all the safe walks of an assembly graph. Tomescu and Medvedev (RECOMB 2016)

characterized all such safe walks (omnitigs), thus giving the first safe and complete genome

assembly algorithm. Even though omnitig finding was later improved to quadratic time, it

remained open whether the crucial linear-time feature of finding unitigs can be attained with

omnitigs.

We answer this question affirmatively: in Chapter 2, it is described a surprising O(m)-time

algorithm to identify all maximal omnitigs of a graph with n nodes andm arcs, notwithstanding

the existence of families of graphs with Θ(mn) total maximal omnitig size. These results have

been presented at the 48th International Colloquium on Automata, Languages, and Program-

ming (ICALP 2021). The main result is based on the discovery of a family of walks (macrotigs)

with the property that all the non-trivial omnitigs are univocal extensions of subwalks of a

macrotig. This has two consequences: (1) A linear-time output-sensitive algorithm enumerat-

ing all maximal omnitigs. (2) A compact O(m) representation of all maximal omnitigs, which

allows, e.g., for O(m)-time computation of various statistics on them. Our results close a long-

standing theoretical question inspired by practical genome assemblers, originating with the use

of unitigs in 1995. We envision our results to be at the core of a reverse transfer from the-

ory to practical and complete genome assembly programs, as has been the case for other key

Bioinformatics problems.

However, all results, from the very first safe and complete genome assembly algorithm [66]

to our most recent result described in Chapter 2, typically used very specific approaches, which

did not generalize, and as a consequence could not handle practical issues. As such, one of the

problems that remained open was whether one could be complete also for models of genome

assembly of more practical applicability. Moreover, despite previous results presenting optimal

algorithms, they were based on avoiding forbidden structures, and hence it was open whether

there would exist any simple characterization to complete the understanding the problem struc-

ture.

We answered these questions in Chapter 3, where we present a universal framework for

obtaining safe and complete algorithms unifying the previous results, while also allowing for easy

generalizations to other assembly problems incorporating many practical aspects. These results
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have been obtained in cooperation with part of the Graph Algorithms team of the Algorithmic

Bioinformatics group at the Department of Computer Science, University of Helsinki, under

the supervision of professor Alexandru Tomescu.

This framework is based on an entirely new perspective for studying safety, and on a novel

graph structure (the hydrostructure of a walk) highlighting the reachability properties of the

graph from the perspective of the walk. The hydrostructure, indeed, allows for simple char-

acterizations of the existing and of new models for safe walks. Moreover, the hydrostructure

serves as a simple YES-certificate for all the studied models. Almost all of our characterizations

are directly adaptable to optimal verification algorithms, and simple enumeration algorithms.

Most of these enumeration algorithms are also improved to optimality using an incremental

computation procedure (see section Incremental Computation of the Hydrostructure in [13])

and an existing optimal algorithm for the basic model.

On the theoretical side, we consider the hydrostructure as a generalization of the standard

notion of a cut, giving a more flexible technique for studying safety of many other types of

covering walks of a graph. On the practical side, we believe that the hydrostructure could also

lead to improvements of practical genome assembly from the point of view of completeness.





Chapter 1

Basic definitions, motivations and state

of the art

General background of genome assembly. Genome assembly is one of the flagship

problems in Bioinformatics, along with other problems originating in—or highly motivated by—

this field, such as edit distance computation, reconstructing and comparing phylogenetic trees,

text indexing and compression. In genome assembly, we are given a collection of strings (or

reads) and we need to reconstruct the unknown string (the genome) from which they originate.

This is motivated by sequencing technologies that are able to read either “short” strings (100-

250 length, Illumina technology), or “long” strings (10.000-50.000 length, Pacific Biosciences or

Oxford Nanopore technologies) in huge amounts from the genomic sequence(s) in a sample. For

example, the SARS-CoV-2 genome was obtained in [70] from short reads using the MEGAHIT

assembler [47].

Other leading Bioinformatics problems have seen significant theoretical progress in major

Computer Science venues, culminating (just to name a few) with both positive results, see

e.g. [22, 69] for phylogeny problems, [8, 41] for text indexing, [26, 9, 42] for text compression,

and negative results, see e.g. [4, 1, 5, 25] for string matching problems. However, the genome

assembly problem is generally lacking major theoretical advances.

One reason for this stems from practice: the huge amount of data (e.g. the 3.1 Billion

characters long human genome is read 50 times over) which impedes slower than linear-time

algorithms, errors of the sequencing technologies (up to 15% for long reads), and various biases

when reading certain genomic regions [57]. Another reason stems from theory: historically,

finding an optimal genome assembly solution is considered NP-hard under several formula-

tions [61, 40, 39, 53, 56, 36, 58], but, more fundamentally, even if one outputs a 3.1 Billion

characters long string, this is likely incorrect, since problem formulations inherently admit a

large number of solutions of such length [44].

Given all these setbacks, most state of the art assemblers, e.g., MEGAHIT [47] (for short

reads), or wtdbg2 [64] (for long reads), generally employ a very simple and linear-time strategy,
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dating back to 1995 [39]. They start by building an assembly graph encoding the overlaps of

the reads, such as a de Bruijn graph [62] or an overlap graph [55] (graphs are directed in this

thesis). After some simplifications to this graph to remove practical artifacts such as errors, at

their core they find strings labeling paths whose internal nodes have in-degree and out-degree

equal to 1 (called unitigs), approach dating back to 1995 [39]. That is, they do not output

entire genome assemblies, but only shorter strings that are likely to be present in the sequenced

genome, since unitigs do not branch at internal nodes.

Safe and complete algorithms. With the aim of enhancing the widely-used practical

approach of assembling just unitigs—as those walks considered to be present in any possible

assembly solution—a result in a major Bioinformatics venue [67] asked what is the “limit”

of the correctly reconstructible information from an assembly graph. Moreover, is all such

reconstructible information still obtainable in linear time, as in the case of the popular unitigs?

Variants of this question also appeared in [32, 10, 56, 65, 45, 11], while other works already

considered simple linear-time generalizations of unitigs [63, 54, 37, 44], without knowing if the

“assembly limit” is reached.

To make this question precise, [67] introduced the following safe and complete framework.

Given a notion of a solution to a problem (e.g. a type of walk in a graph), a partial solution

(e.g. some shorter walk in the graph) is called safe if it appears (e.g. is a subwalk) in all

solutions. An algorithm reporting only safe partial solutions is called a safe algorithm. A safe

algorithm reporting all safe partial solutions is called safe and complete. A safe and complete

algorithm outputs all and only what is likely part of the unknown object to be reconstructed,

synthesizing all solutions from the point of view of correctness. Safety generalizes the existing

notion of persistency : a single node or arc of the graph was called persistent if it appears in

all solutions [33, 20, 15], for example persistent arcs for maximum bipartite matchings [20]. It

also has roots in other Bioinformatics works [68, 16, 27, 72] considering the aligned symbols

appearing in all optimal (and sub-optimal) alignments of two strings.

There are many theoretical formulations of genome assembly as an optimization problem,

e.g. a shortest common superstring of all the reads [61, 40, 39], or some type of shortest walk

covering all nodes or arcs of the assembly graph [63, 53, 54, 38, 36, 58, 56]. However, it is widely

acknowledged [56, 58, 52, 57, 50, 44] that, apart from some being NP-hard, these formulations

are lacking in several aspects, for example they collapse repeated regions of a genome. At

present, given the complexity of the problem, there is no definitive notion of a “good” genome

assembly solution. Therefore, [67] considered as genome assembly solution any closed arc-

covering walk of a graph, where arc-covering means that it passes through each arc at least

once. The main benefit of considering any arc-covering walk is that safe walks for them are

safe also for any possible restriction of such covering walks (e.g. by some additional optimality

criterion: for example, closed arc-covering walks are a common relaxation of the fundamental
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e0 ei�1 ei ej e`

P

Figure 1.1: Walk e0 . . . eℓ is not an omnitig because there is a forbidden path P .

notions of closed Eulerian walk (we now pass through each arc at least once, instead of exactly

once as in Eulerian walks), and of closed Chinese postman walk (i.e. a closed arc-covering walk

of minimum length) [31], which were mentioned in [56] as unsatisfactory models of genome

assembly. Put otherwise, safe walks for all arc-covering walks are more likely to be correct

than safe walks for some particular type of arc-covering walks.

Prior results on safety in closed arc-covering walks. It is immediate to see that

unitigs are safe walks for closed arc-covering walks. A first safe generalization of unitigs con-

sisted of those paths whose internal nodes have only out-degree equal to 1 (with no restriction

on their in-degree) [63]. Further, these safe paths have been generalized in [54, 37, 44] to those

partitionable into a prefix whose nodes have in-degree equal to 1, and a suffix whose nodes

have out-degree equal to 1. All safe walks for closed arc-covering walks were characterized

by [67, 66] as being exactly those that are omnitigs, see Definition 1.1, Figure 1.1, and Theo-

rem 1.7. This leads to the first safe and complete genome assembly algorithm (obtained thus 20

years after unitigs were first considered), outputting all maximal omnitigs in polynomial time

(maximal omnitigs are those which are not sub-walks of other omnitigs). See Section 1.0.2, to

have detailed definitions of structures presented next.

Definition 1.1 (Omnitig). Let W = e0 . . . eℓ be a walk. We say that a non-empty path P is a

j-i forbidden path for W , for some 1 ≤ i ≤ j ≤ ℓ, if the first arc of P has the same tail as ej

and is different from ej, and the last arc of P has the same head as ei−1 and is different from

ei−1. We say that W is an omnitig if for no 1 ≤ i ≤ j ≤ ℓ there exists a j-i forbidden path for

W .

Furthermore, through experiments on “perfect” human read datasets, [67] also showed that

strings labeling omnitigs are about 60% longer on average than unitigs, and contain about 60%

more biological content on average. Thus, once other issues of real data (e.g. errors) are added

to the problem formulation, omnitigs (and the safe walks for such extended models) have the

potential to significantly improve the quality of genome assembly results. Nevertheless, for this

to be possible, one first needs the best possible results for omnitigs (given e.g. the sheer size of

the read datasets), and a full comprehension of them, otherwise, such extensions are hard to

solve efficiently.

Cairo et al. [14] recently proved that the length of all maximal omnitigs of any graph with n

nodes and m arcs is O(nm), and proposed an O(nm)-time algorithm enumerating all maximal
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omnitigs. This was also proven to be optimal, in the sense that they constructed families of

graphs where the total length of all maximal omnitigs is Θ(nm). However, it was left open if

it is necessary to pay O(nm) even when the total length of the output is smaller. Moreover,

that algorithm cannot break this barrier, because e.g. O(m)-time traversals have to be done for

O(n) cases.

Significance of our results. The results we show in Chapter 2 shows that all the strings

that can be correctly assembled from a graph can be obtained in output-sensitive linear time,

a time feasible for being implemented in practical genome assemblers. It closes the issue of

finding safe walks for a fundamental model of genome assembly (any closed arc-covering walk),

a long-standing theoretical question and originating with the use of unitigs in 1995 [39].

This theoretical question is crucial also from the practical point of view: assembly graphs

have the number of nodes and arcs in the order of millions, and yet the total length of the

maximal omnitigs is almost linear in the size of the graph. For example, the compressed (see

Definition 2.6) de Bruijn graph of human chromosome 10 (length 135 million) has 467 thousand

arcs [14, Table 1], and the length of all maximal omnitigs (i.e. their total number of arcs, not

their total string length) is 893 thousand. Moreover, even though this chromosome is only

about 4% of the full human genome, the authors of [14] obtained that the running time of the

quadratic algorithm on the compressed de Bruijn graph of the genome was about 30 minutes.

We envision a reverse transfer from theory to practical and complete genome assembly

programs, as in other Bioinformatics problems. For example, trivially, safe walks for all closed

arc-covering walks are also safe for more specific types of arc-covering walks. Moreover, while

a genome solution defined as a single closed arc-covering walk does not incorporate several

practical issues of real data, in Chapter 3 we show that omnitigs are the basis of more advanced

models handling many practical aspects. For example, to allow more types of genomes to be

assembled, one can define an assembly solution as a set of closed walks that together cover

all arcs [2], which is the case in metagenomic sequencing of bacteria. For linear chromosomes

(as in eukaryotes such as human), or when modeling missing sequencing coverage, one can

analogously consider one, or many, such open walks [66, 67]. Safe walks for all these models are

subsets of omnitigs [2, 13]. Moreover, when modeling sequencing errors, or mutations present

e.g. only in the mother copy of a chromosome (and not in the father’s copy), one can require

some arcs not to be covered by a solution walk, or even to be “invisible” from the point of view

safety. Finding safe walks for such models is also based on first finding omnitigs-like walks [13].

Notice that such separation between theoretical formulations and their practical embodi-

ments is common for many classical problems in Bioinformatics. For example, computing edit

distance is often replaced with computing edit distance under affine gap costs [23], or enhanced

with various heuristics as in the well-known BLAST aligner [3]. Also text indexes such as the

FM-index [26] are extended in popular read mapping tools (e.g. [48, 46]) with many heuristics
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handling errors and mutations in the reads.

Finally, our results show that safe partial solutions enjoy interesting combinatorial prop-

erties, further promoting the persistency and safety frameworks. For real-world problems ad-

mitting multiple solutions, safe and complete algorithms are more pragmatic than the classical

approach of outputting an arbitrary optimal solution. They are also more efficient than enu-

merating all, or only the first k-best, solutions [24], because they already synthesize all that can

be correctly reconstructed from the input data.

State-of-the-art in genome assembly. Most problems in Bioinformatics are based at their

core on some theoretical computational problem. After initial progress based on heuristics, sev-

eral such Bioinformatics problems witnessed a drastic improvement in their practical solutions

as a consequence of a breakthrough in their theoretical foundations. A major example is

how the FM-index [26] revolutionized the problem of read mapping, being central in tools such

as [49, 48, 46]. Other such theoretical breakthroughs include computing quartet distance [22, 69]

motivated by phylogenetics, or fine-grained complexity lower bounds for edit distance computa-

tion [4] motivated by biological sequence alignment. However, despite this successful exchange

of problems and results between Bioinformatics and Theoretical Computer Science, another

flagship Bioinformatics problem, genome assembly, is generally lacking similar developments.

As we already anticipated, given a collection of reads (short strings sequenced from an un-

known source genome), the main task is to reconstruct the source genome from which the reads

were sequenced. This is one of the oldest problems in Bioinformatics [61], whose formulations

range from a shortest common superstring of the reads [61, 40, 39], to various models of node-

or arc-covering walks in different assembly graphs (encoding the overlaps between the reads,

such as de Bruijn graphs [62], or overlap graphs [55]) [63, 53, 54, 38, 36, 58, 56]. In general,

most such models of genome assembly are NP-hard. However, a more fundamental theoretical

limitation in genome assembly is that such “global” problem formulations inherently admit a

large number of solutions [44], given the large size and complexity of the input data. In practice,

genome assemblers output only shorter strings that are likely to be correct (i.e. are substrings

of the source genome) [57, 50, 52]. Such a strategy commonly uses the assembly graph to find

only the paths (unitigs) whose internal nodes have unit in- and out-degree. Since unitigs do

not branch, their labels are correct and can also be computed in linear time. The use of unitigs

dates back to 1995 [39] and is at the core of most state-of-the-art genome assemblers, for both

long reads (such as wtdbg2 [64]), and short reads (such as MEGAHIT [47]). Even though long

reads are theoretically preferable, due to various practical limitations short reads are still used

in many biomedical applications, such as the assembly of the SARS-CoV-2 genome [70].

Surpassing the theoretical limitations using safe and complete algorithms. Despite

being at the core of the state-of-the-art in both theory and practice, there is no reason why

only ‘unitigs’ be the basis of correct partial answers to the genome assembly problem. In fact,
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various results [32, 10, 56, 65, 45, 11] presented the open question about the “assembly limit” (if

any), or formally, what all can be correctly assembled from the input reads, by considering both

graph theoretic and non-graph theoretic formulations. Unitigs were first generalized by [63]

by considered the paths having internal nodes with unit out-degree (with no restriction on

in-degree). These were later generalized [54, 37, 44] evolving the idea of correctness to the

paths of the form P = P1eP2, such that e is an arc, the nodes of path P1 have unit in-degree,

and the nodes of path P2 have unit out-degree (intuitively, P1 is the only way to reach e,

and P2 is the only way e reaches other nodes). The question about the “assembly limit”

was finally resolved in 2016 (around 20 years after unitigs were first introduced) in a major

Bioinformatics venue [67] by introducing safe and complete algorithms for the problem. Notions

similar to safety were studied earlier in Bioinformatics [68, 16, 57], and in other fields, including

persistence [33, 20, 15], d-transversals [21], d-blockers [71], and vital nodes/arc [7].

In general, given an assembly graph, the most basic notion of a solution (or a source genome)

is that of a walk covering all nodes or all arcs at least once, thereby explaining their existence in

the assembly graph [67, 56, 58, 52, 57, 50, 44]. The safe walks for this notion of solution include

unitigs and their generalizations described above. Tomescu and Medvedev [67] characterized

the safe walks w.r.t. closed arc-covering walks as omnitigs. On simulated error-free reads where

the source genome is indeed a closed arc-covering walk, omnitigs were found to be on average

60% longer than unitigs, and to contain 60% more biological information without employing

any heuristics. Moreover, [67] presented an O(m2n)-time algorithm1 finding all safe walks

for such genome assembly solutions, in a graph with m arcs and n nodes. Later, Cairo et

al. [14] improved this bound to O(mn), which they also proved to be optimal using worst-case

graphs having Θ(mn)-sized solutions. In Chapter 2, we present a linear-time output-sensitive

algorithm for computing all maximal omnitigs, using a compact representation of the safe walks,

called macrotigs (see Definition 2.21).

Limitations of the existing theory of safe and complete algorithms. To better un-

derstand the motivation behind the work presented in Chapter 3, we quickly recall a known

notation of certificates. In general, given a decision problem, a certificate is a string (or a

structure) that certifies the answer, yes or no, to the problem. For example, given a walk W in

a graph, to prove that W is not an omnitig (Definition 1.1), one has to highlight its forbidden

path in the graph; the existence of such a forbidden path acts as a NO-certificate to the decision

problem.

Despite presenting optimal algorithms, a theoretical limitation of the previous results from

[67, 14, 2] is that safety is characterized in terms of forbidden structures (i.e. NO-certificates)

for the safety of a walk. These turned out to be an unnatural view on more advanced models of

genome assembly, where only a subset of the omnitigs is safe (see next subsections). As such,

1Trivial analysis using new results about omnitigs proves O(m2n) time for [67], though not explicitly stated.
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these characterizations were incomplete and unnatural in the absence of easily verifiable YES-

certificates. To illustrate this, consider the classical notion of a strong bridge (see Figure 1.2):

an arc (x, y) is a strong bridge in a graph G if and only if there exist nodes u and v in G

such that all the paths from u to v in G contain the arc (x, y). Its NO-certificate is a path

from x to y avoiding (x, y), which can thus be seen as a forbidden path. The corresponding

YES-certificate is a cut between a set of nodes S (containing at least the nodes reachable from

x without using (x, y)), and the remaining nodes T (containing at least the nodes reaching

y without using (x, y)), such that the only arc crossing the cut is (x, y). Such a certificate

captures much more information about the structure of the graph from the viewpoint of the

arc (x, y). We generalize this idea from single arcs to walks to get a new perspective on safety

problems in genome assembly. For that, we use a similar graph structure (now recognizing safe

walks) which is essentially a generalization of a cut, and hence a YES-certificate, as follows.

Figure 1.2: The perspective of a safe walk (bold black), generalizing a strong bridge. Center: The
strong bridge (x, y) has a NO-certificate in form of a forbidden path (red), and a YES-certificate in
form of a cut between S and T where (x, y) is the only arc leaving S. Left: The NO-certificate of the
safety of the walk from x to y is a similar forbidden path (red). Right: The YES-certificate of the
safety of the walk from x to y is a graph partition where T is reachable from S only by using the walk
from x to y contiguously.

Our perspective to study safety distinguishes between the reasons for the safety of a walk.

In general, the primary and simplistic reason is the covering constraint making every arc in-

dividually safe (and hence the left and right extensions of the arc), from the more profound

reason arising from the bridge-like nature of some walks, which generalizes the property of a

strong bridge. Such bridge-like walks are required to be traversed contiguously for reachability

between some nodes. Thus, analogous to NO-certificates of a strong bridge (see Figure 1.2),

a bridge-like walk (say from x to y) requires the absence of a forbidden path which allows

reaching y from x without traversing the whole walk contiguously, as described in previous re-

sults [67, 14, 2]. Similarly, analogous to the YES-certificate of a strong bridge (see Figure 1.2),

a bridge-like walk has a directed cut-like structure between the set of nodes S reachable from

x without traversing the whole walk, and the set of nodes T reaching y without traversing the

whole walk. Crossing the cut from y to x uses the remainder of the graph, whereas crossing the

cut from x to y (or S to T ) requires traversing the whole walk contiguously. This partitions

the whole graph from the perspective of the walk, reducing the requirement for the contiguous

traversal of the walk, to the simple requirement to reach from x to y, allowing simpler charac-
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terizations of more advanced models. Moreover, we can now use the same YES-certificate for

many different models, as opposed to finding a NO-certificate separately for each model. Thus,

our new perspective of a safe walk as a generalization of a strong bridge results in a universal

approach for the complete characterization of safe walks.

Formulation of practically relevant genome assembly models. Modeling a genome

assembly solution as a single arc-covering walk is extremely limiting in practice, due to the

presence of multiple (not necessarily circular) genomes in the sample, sequencing errors or

unsequenced genomic regions. See Section 1.0.1 for further motivation of our definitions below.

Most of these practical issues can be handled by considering more flexible theoretical for-

mulations of the problem. Instead of always considering the solution to be a single closed

arc-covering walk of the assembly graph, we can change the model so that the solution is an

arc-covering collection of k ≥ 2 closed walks (i.e. every arc appears in some walk of the collec-

tion). Further, as one can see in [13], when addressing linear genomes, or unsequenced genomic

regions, we further change the model so that the solution is one open arc-covering walk from a

given node s to a given node t (s-t walk), or an arc-covering collection of exactly k ≥ 2 open

s-t walks. Moreover, if there is no constraint k on the number of walks in the collection, then

we will say that k =∞.

Definition 1.2 (k-circular safe walk, k-st safe walk). Let G = V ∪ E be a graph, let s, t ∈ V

and let k ≥ 1. A walk W is called k-circular safe (or k-st safe) if W is a subwalk of at least one

walk of any arc-covering collection of exactly k circular walks, see Section 1.0.2, (or exactly k

walks from s to t).

Remark 1.3. A graph admits an arc-covering collection of k ≥ 1 circular walks if and only if

it is a disjoint union of at most k strongly connected graphs. As such, in the circular models we

can assume the graph to be strongly connected. In the linear models, we first solve the strongly

connected case, and then solve the cases k = 1,∞ for non-strongly connected graphs.

Further, the notion of genome assembly solution can be naturally extended to handle se-

quencing errors. For example, the models can be extended so that the collection of walks is

required to cover only a subset F of the arcs (F -covering). Another possible extension is to

mark the erroneous arcs in E∖F as invisible, in the sense that they are invisible when we define

safety (F -visible). These not only allow handling errors, but also allow handling even more

general notions of genome assembly solutions through simple reductions (see Remark 1.6).

Definition 1.4 (F-subsequence). Let G = V ∪ E be a graph, let F ⊆ E and let W be a walk.

We call F -subsequence of a walk W , the ordered sequence of arcs of W obtained by removing

every arc e such that e /∈ F .

Definition 1.5 (Subset covering / visible). Let G = V ∪ E be a graph, let s, t ∈ V , F ⊆ E,

and let k ≥ 1. A walk W is called:
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• F -covering k-circular safe (or F -covering k-st safe) if W is a subwalk of at least one walk

of every F -covering collection of exactly k circular walks (or exactly k walks from s to t).

• F -visible k-circular safe (or F -visible k-st safe) if the F -subsequence of W occurs contigu-

ously in the F -subsequence of at least one walk of every arc-covering collection of exactly

k circular walks (or exactly k walks from s to t).

Remark 1.6. The subset covering model also allows us to solve a generalization of the linear

models, where the walks in the collection start in any node of a given set S, and end in any

node of a given set T . For that, we set F = E, add a new global source s connected by new

arcs not in F to all nodes in S, and an analogous global sink t connected from every node in

T . Moreover, we can also combine the subset covering and subset visibility models for some

F, F ′ ⊆ E, to get F -covering F ′-visible safe walks, for both circular and linear models, and

obtain analogous results (see also Figure 3.1). This also allows us to solve the same models in a

node-centric formulation, where only (a subset of) the nodes are required to be covered and/or

visible. This can be achieved using a simple transformation of the graph expanding each node

to an arc and choosing only such node-arcs as the subset to be covered.

1.0.1 Bioinformatics Motivation

Assuming we are sequencing a single circular genome (as when sequencing a single bacterium),

the most basic notion of a solution (or a source genome) is that of a walk in the assembly graph

covering all nodes or all arcs at least once, thereby explaining their existence in the assembly

graph [67]. Even if the earlier works (on “global” genome assembly formulations) include

various shortest versions of such walks (e.g. Eulerian, Chinese postman, or even Hamiltonian),

it is widely acknowledged [56, 58, 52, 57, 50, 44] that a shortest walk misses repeats in the

source genome. Moreover, safe walks for all arc-covering walks are also trivially safe for more

specialised types of walks. Both of these facts are related to the lack of constraints of the

solution walks, except that to require that they are indeed arc-covering.

However, such theoretical formulation of genome assembly using a single closed arc-covering

walk uses the following assumptions. (i) All the reads are sequenced from a single circular

genome, such that these reads have (ii) no errors, and (iii) no missing coverage (e.g. every

position of the genome is covered by some read). However, these are very strong and impractical

assumptions that are violated by real input data sets, as we explain next:

• Assumption (i) is not practical for several reasons. When sequencing a bacterium [18],

one indeed obtains reads from a single circular genome. However, when sequencing all

bacteria in an environmental sample (as in metagenomics [51]), the reads originate from

multiple circular genomes. In case of a virus [29], the reads originate from a single linear

genome. Finally, when sequencing eukaryotes such as human [12], the reads originate

from multiple linear chromosomes.
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• Assumption (ii) is not practical because the sequencing process introduces errors in the

reads, with error rates ranging from 1% for short reads, up to 15% for long reads. Such

read errors produce certain known structures in the assembly graph [57], such as tips

(short induced paths ending in a sink), and bubbles (two induced paths of the same length,

and with the same endpoints, see also their generalisation to superbubbles [34, 28, 60]),

which are usually handled in an initial error-correction stage using heuristics (e.g. tips are

removed, and bubbles are “popped” by removing one of the parallel paths). Such bubbles

can also arise from a correct read position in diploid genomes (such as human), but on

which the mother’s copy of the chromosome differs from the father’s. Popping bubbles is

favorable in this setting in order to obtain longer assemblies (since unitigs would otherwise

be broken up by the endpoints of the bubble). Moreover, in a de Bruijn graph, arcs that

appear very few times (having low abundance) in the input reads are heuristically removed,

as they are assumed to be errors. But in practice, the assembly graph’s topology might

give evidence for the correctness of these arcs, especially in scenarios where low abundance

is common [47], so a more accurate removal strategy is likely to result in a better assembly.

This applies even to state-of-the-art long read assemblers like wtdbg2 [64] which simply

removes low abundance arcs.

• Assumption (iii) is not true due to the practical limitations of current sequencing tech-

nologies. Thus, since not all parts of the genome can always be read, even if the sample

contains a single circular genome, the reads appear as if they were sequenced frommultiple

linear genomic sequences.

The genome assembly models from Section 2.1 handle all such issues flexibly and in a

theoretically solid way by considering collections of closed or open walks. In the subset covering

models, the arcs not required to be covered can be those in tips, bubbles and those with low

abundance in the reads. However, merely making them avoidable (and not removing them)

can break the safety around such regions. Hence, another possible extension is to mark such

parts of the graph as invisible. For example, marking bubbles as invisible prevents disrupting

the safety of their flanking regions. See Figure 1.3 for an example of these models.

1.0.2 Definitions and notations

In this section we elaborate definitions and notations we used throughout the thesis; despite

the fact that some definitions were already introduced, we are going to restate them when

needed, to better clarify new concepts. The section is divided into paragraphs distinguishing

and highlighting the differences between definitions and notations (e.g., two different definitions

of walk in a graph) adopted in the two main chapters of the thesis. Indeed, in Chapter 3, these

differences caused minor changes to the terminology we used as well; this was done to help us

in handling some particular cases, which we are going to explain in detail.
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AATGCAGTATGCAGTCATGCAGTTACGACGT
AATGCAGTATGCAGTCATGCAGTGACGACGT

Father:
Mother:

ACG

Figure 1.3: Assume a “full” read coverage scenario in which reads of length at least 4 have been
sequenced starting from each position a diploid genome (i.e. from both the mother and the father
copy of a chromosome). An arc-centric de Bruijn graph of order 3 has all substrings of length 3 of
the reads as nodes, and all substrings of length 4 as arcs (from their length-3 prefix to their length-3
suffix). The thin blue line depicts the mother genome as a walk in this graph. Orange marks a position
in which the two haplotypes differ; this induces a bubble in the de Bruijn graph (dotted arcs). We
assume that the red arcs have low abundance in the read dataset for some natural reasons, despite
being correct. But they would still be removed by current heuristic error-correction strategies, even
though our models show evidence for their correctness. We set the dotted arcs to invisible, and model
the genome as an s-t walk not required to cover the red and dotted arcs, where s = AAT and t = CGT.
Below the mother’s haplotype, we mark in green its maximal 1-st safe substrings. The thick safe walk
of the mother’s haplotype is also depicted in the graph (in green as well). We show in magenta the
unitigs of the graph aligned to the mother haplotype. Additionally, the red parts of the unitigs would
be missing if the red arcs were removed.

Chapter 2 definitions and notations. A graph is a pair G = (V,E), where V is a finite

set of nodes v ∈ V , E is a finite multi-set of ordered pairs of nodes called arcs, e = (u, v) ∈ E,

where u, v ∈ V ; an arc e = (u, v) is incident to both the nodes u and v it connects. Parallel arcs

and self-loops are allowed. The reverse graph GR of G is obtained by reversing the direction

of every arc. For e ∈ E, we denote G∖ e = V ∪ (E ∖ {e}); analogously, for v ∈ V , we denote

G∖ v = (V ∖ {v})∪E. We assume, if not stated otherwise, a graph G = (V,E) to be strongly

connected, with |V | = n and |E| = m ≥ n. The in-degree d−(v) of a node v denotes the

number of arcs incident to v with their head node, symmetrically, the out-degree d+(v) of a

node v denotes the number of arcs incident to v with their tail node. The degree of a node v

is d(v) = d−(v) + d+(v). In the rest of the thesis, we assume a fixed strongly connected graph

G = V ∪ E which is not a cycle 2, with |V | = n and |E| = m > n.

A walk in G is a sequence W = (v0, e1, v1, e2, . . . , vℓ−1, eℓ, vℓ), ℓ ≥ 0, where v0, v1, . . . , vℓ ∈ V ,

and each ei is an arc from vi−1 to vi. Sometimes the nodes v0, . . . , vℓ of a walkW may be omitted

to write W more compactly as e1 . . . eℓ, if ℓ ≥ 1. If an arc e appears in W , we write e ∈ W .

Functions t(·) and h(·) denote, respectively, the tail node and the head node of an arc or a

walk.

We say that W = (v0, e1, · · · , eℓ, vℓ) goes from t(W ) = v0 to h(W ) = vℓ, has length ℓ,

contains v1, . . . , vℓ−1 as internal nodes, starts with e1, ends with eℓ, and contains e2, . . . , eℓ−1 as

2Safe walks in a cycle are not properly defined as they can repeat indefinitely.
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internal arcs. A walk W is called empty if it has length zero, and non-empty otherwise. There

exists exactly one empty walk ϵv = (v) for every node v ∈ V , and t(ϵv) = h(ϵv) = v. A walk W

is called closed if it is non-empty and t(W ) = h(W ), otherwise it is open. The concatenation

of walks W and W ′ (with h(W ) = t(W ′)) is denoted WW ′. A walk W = (v0, e1, v1, . . . , eℓ, vℓ)

is called a path when the nodes v0, v1, . . . , vℓ are all distinct, with the exception that vℓ = v0

is allowed (in which case we have either a closed or an empty path). Subwalks of open walks

are defined in the standard manner. For a closed walk W = e0 . . . eℓ−1, we say that a walk

W ′ = e′0 . . . e
′
j, j ≤ ℓ− 1, is a subwalk of W if there exists i ∈ {0, . . . , ℓ− 1} such that for every

k ∈ {0, . . . , j} it holds that e′k = e(i+k) mod ℓ.

A closed arc-covering walk (i.e. passing through every arc at least once) exists if and only

if the graph is strongly connected. We are interested in the (safe) walks that are subwalks of

all closed arc-covering walks, characterized in [67].

Theorem 1.7 ([67]). Let G be a strongly connected graph different from a closed path. Then a

walk W is a subwalk of all closed arc-covering walks of G if and only if W is an omnitig.

Terminology. To give a deeper insight on the structure and properties of safe walks, we

classify the nodes and arcs of a strongly connected graph as follows (see Figure 2.1 for a visual

reference): (i) A node v is a join node if d−(v) > 1, and a join-free node otherwise. An arc f is

called a join arc if h(f) is a join node, and a join-free arc otherwise. (ii) A node v is a split node

if d+(v) > 1, and a split-free node otherwise. An arc g is called a split arc if t(g) is a split node,

and a split-free arc otherwise. (iii) A node or arc is called bivalent if it is both join and split,

and it is called biunivocal if it is both split-free and join-free. A walk W is split-free (resp.,

join-free) if all its arcs are split-free (resp., join-free). Given a walk W , its univocal extension

U(W ) is defined as W−WW+, where W− is the longest join-free path to t(W ) and W+ is the

longest split-free path from h(W ) (observe that they are uniquely defined).

Notice that W is an omnitig in G if and only if WR is an omnitig in GR. Moreover, any

subwalk of an omnitig is an omnitig. For every arc e, its univocal extension U(e) is an omnitig.

A walk W satisfying a property P is right-maximal (resp., left-maximal) if there is no walk

We (resp., eW ) satisfying P . A walk satisfying P is maximal if it is left- and right-maximal

w.r.t. P . Notice that if G is a closed path, then every walk of G is an omnitig. As such, it is

relevant to find the maximal omnitigs of G only when G is different from a closed path. Thus,

in the rest of the thesis a strongly connected graph G is considered to be different from a closed

path, even when we do not mention it explicitly.

Chapter 3 definitions and notations. Refer to the previous paragraphs for every definition

that is not restated here. A strongly connected component of a graph (SCC) is a maximal

subgraph that is strongly connected, i.e., for any two nodes x and y in the SCC, there exists a

path from x to y. Similarly, a weakly connected component (WCC) is a maximal subgraph that
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is weakly connected, i.e., any two nodes x and y in the WCC are connected by an undirected

path. A node is called a source if it has no incoming arcs, and a node is called a sink if it has

no outgoing arcs.

A w1-wℓ walk (or simply walk) in G is a non-empty alternating sequence of nodes and

arcs W = (w1, . . . , wℓ), where for all 1 ≤ i < ℓ: head(wi) = wi+1 if wi+1 is a node, and

tail(wi+1) = wi otherwise. However, if not otherwise indicated, in a w1-wℓ walk of G, w1 and

wℓ are arcs. We call start(W ) = w1 the start of W , and end(W ) = wℓ the end of W . W is a

path if it repeats no node or arc, except that start(W ) may equal end(W ).

A walk W is called closed if start(W ) = end(W ) and ℓ > 1, otherwise it is open. We may

sometimes use the term circular walks referring to a particular kind of closed walks, that is a

closed walk in which its starting/ending node or arc has lost of significance and the walk itself

can be considered to be repeated indefinitely. The notation WW ′ denotes the concatenation

of walks W = (w1, . . . , wℓ) and W ′ = (w′
1, . . . , w

′
ℓ′), if (w1, . . . , wℓ, w

′
1, . . . , w

′
ℓ′) is a walk. When

writing a walk as a concatenation, then lower-case letters denote single nodes or arcs, e.g., aZb

denotes the walk (a, z1, . . . , zℓ, b) (where a and b are arcs and Z = (z1, . . . , zℓ)). Subwalks of

walks are defined in the standard manner, where subwalks of closed walks do not repeat the

start/end if they run over the end. A walk W is bridge-like if there exist x, y ∈ G such that each

x-y walk contains W as subwalk, and otherwise it is called avertible. Observe that a bridge-like

walk is an open path.

A walk-cover of a graph is a set of walks that together cover all arcs of the graph, and its

size is the number of walks. The minimum walk-cover (and hence its size) can be computed in

O(mn) time using minimum flows, by reducing the problem to maximum flows (see e.g. [6])

and applying Orlin’s and King’s O(mn) time algorithms [59, 43].

Terminology. As we did for the previous paragraphs, some terminology is restated here with

the notation adopted in Chapter 3, to help the reader easily follow the relative chapter. A walk

W = (w1, . . . , wℓ) is univocal if no node in W is a split node, except possibly wℓ (if it is a node)

and it is R-univocal if no node in W is a join node, except possibly w1 (if it is a node) , and it is

biunivocal if it is both univocal and R-univocal. Its univocal extension U(W ) is W lWW r where

W lstart(W ) is the longest R-univocal walk to start(W ) and start(W )W r is the longest

univocal walk from end(W ).

Figure 1.4: A trivial walk on the left and a non-trivial walk on the right. The heart is colored green,
the left wing violet and the right wing red. The left wing is from arc to node and the right wing from
node to arc.

For a walk W = w1, . . . , wℓ let wi be its first join arc or wi = w1 if W has no join arc, and
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let wj be its last split arc or wj = wℓ if W has no split arc. If i ≥ j, then the trivial heart

(or simply heart) Heart(W ) of W is its wj-wi subwalk, and otherwise the non-trivial heart (or

simply heart) Heart(W ) is its wi-wj subwalk. A walk with a trivial heart is a trivial walk, and

a walk with a non-trivial heart is a non-trivial walk. The left wing and right wing of W are

W l and W r in the decomposition W lHeart(W )W r. See Figure 1.4 for a visualisation of these

definitions.

Further, we are going to extensively use some particular results of Chapter 2 ((a) and (b)),

briefly summarized in the following theorem. The first result was also used in [2] (and possibly

other previous works) even though not stated explicitly.

Theorem 1.8. For a strongly connected graph G with n nodes and m arcs, the following hold:

(a) (Two-Pointer Algorithm [2]) Given a walk W and a procedure A to verify the safety of

its subwalks, all the maximal safe subwalks of W can be reported in O(|W |f(m,n)) time,

where each invocation of A requires f(m,n) time.

(b) (Omnitig Bounds [14]) There are at most m maximal 1-circular safe walks [14] where

each has length of at most O(n) [14] and of which O(n) are non-trivial (Chapter 2), and

the total length of all maximal 1-circular safe walks in G is O(mn) [14] (if G is not a

cycle).

(c) (Fault tolerant SCCs [30]) We can preprocess G in O(m) time, to report whether x and

y are in the same SCC in G∖ z in O(1)-time, for any x, y, z ∈ G.



Chapter 2

Genome assembly, from practice to

theory: safe, complete and linear time

2.1 Introduction

Our main result is an O(m)-size representation of all maximal omnitigs, based on a careful

structural decomposition of the omnitigs of a graph. This is surprising, given that there are

families of graphs with Θ(nm) total length of maximal omnitigs [14]. Notice that the total

length of the maximal omnitigs is at least m, since every arc is an omnitig by definition.

Theorem 2.1. Given a strongly connected graph G with n nodes and m arcs, there exists an

O(m)-size representation of all maximal omnitigs, consisting of a set M of walks (maximal

macrotigs, Definition 2.21) of total length O(n) and a set F of arcs, such that every maximal

omnitig is the univocal extension of either a subwalk of a walk inM, or of an arc in F .
Moreover, M, F , and the endpoints of macrotig subwalks univocally extending to maximal

omnitigs can be computed in time O(m).

Since the univocal extension U(W ) of a walk W can be trivially computed in time linear in

the length of U(W ), we immediately get the linear-time output sensitive algorithm:

Corollary 2.1.1. Given a strongly connected graph G, it is possible to enumerate all maximal

omnitigs of G in time linear in their total length.

We obtain Theorem 2.1 using two interesting ingredients. The first is a novel graph structure

(that we called macronodes, Definition 2.10), obtained after a compression operation (described

in Section 2.2.2) of ‘easy’ nodes and arcs. The second is a connection to a recent result by

Georgiadis et al. [30] showing that it is possible to answer in O(1)-time strong connectivity

queries under a single arc removal, after linear-time preprocessing (notice that a forbidden

path is defined w.r.t. two arcs to avoid).

23 23 23
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Figure 2.1: Figure 2.1: Given a bivalent node v, the macronodeMv is the subgraph of G induced by
the nodes reaching v with a split-free path (in red), and the nodes reachable from v with a join-free
path (in blue). These two types of nodes induce the two trees of the macronode. By definition, every
arc with endpoints in different macronodes is bivalent (in green, denoted cross-bivalent arcs). The
remaining bivalent arcs have endpoints in the same macronode (in purple, denoted self-bivalent arcs).
.

Theorem 2.1 has additional practical implications. First, omnitigs are also representable in

the same (linear) size as the commonly used unitigs. Second, maximal macrotigs enable various

O(m)-time operations on maximal omnitigs (without listing them explicitly), for example, by

pre-computing the univocal extensions from any node, which are needed in Theorem 2.1. For

example, given that the number of maximal omnitigs is O(m) [14], this implies the following

result:

Corollary 2.1.2. Given a strongly connected graph G with m arcs, it is possible to compute

the lengths of all maximal omnitigs in total time O(m).

Corollary 2.1.2 leads to a linear-time computation of various statistics about maximal om-

nitigs, such as minimum, maximum, and average length (useful e.g. in [19]). One can also use

this to filter out subfamilies of them (e.g. those of length smaller and/or larger than a given

value) before enumerating them explicitly.

Structure. The main structural insight of this paper is that omnitigs enjoy surprisingly

limited freedom, in the sense that any omnitig can be seen as a concatenation of walks in

a very specific set. In order to give the simplest exposition, we first simplify the graph by

contracting biunivocal nodes and arcs. The nodes of the resulting graph can now be partitioned

into macronodes (see Figure 2.1 and Definition 2.10), where each macronode Mv is uniquely

identified by a bivalent node v (its center). We can now split the problem by first finding

omnitigs inside each macronode, and then characterizing the ways in which omnitigs from

different macronodes can combine.
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Figure 2.2: The only omnitig traversing the bivalent node v is f1g2; e.g., by the X-intersection
Property neither f2g2 is an omnitig (b3f3f1 is a forbidden path) nor f1g1 is an omnitig (g2g3b4 is a
forbidden path). Extending the central-micro omnitig (Definition 2.12) f1g2 to the right we notice that
f1g2g3 is an omnitig and by the Y-intersection Property f1g2g

′
3 is not an omnitig (g3b4 is a forbidden

path). Hence, the only maximal right-micro omnitig is f1g2g3b4, and the only maximal left-micro
omnitig is b3f3f1g2. Merging the two on f1g2, we obtain the maximal microtig b3f3f1g2g3b4.

We discover a key combinatorial property of how omnitigs can be extended: there are at

most two ways that any omnitig can traverse a macronode center (see also Figure 2.2):

Theorem 2.15 (X-intersection Property). Let v be a bivalent node. Let f1 ̸= f2 be join arcs

with h(f1) = h(f2) = v; let g1 ̸= g2 be split arcs with t(g1) = t(g2) = v.

i) If f1g1 and f2g2 are omnitigs, then d+(v) = d−(v) = 2.

ii) If f1g1 is an omnitig, then there are no omnitigs f1g
′ with g′ ̸= g1, nor f ′g1 with f ′ ̸= f1.

In order to prove the X-intersection Property, we prove an even more fundamental property:

once an omnitig traverses a macronode center, for any node it meets after the center node, there

is at most one way of continuing from that node (Y-intersection Property), see Figure 2.2. The

basic intuition is that if there is more than one possibilities, then strong connectivity creates

forbidden paths.

Given an omnitig fg traversing the bivalent node v, we define the maximal right-micro

omnitig as the longest extension fgW in the macronodeMv (see Figure 2.2 and Definition 2.12).

The maximal left-micro omnitig is the symmetrical omnitig Wfg. By Theorem 2.15, there are

at most two maximal right-micro omnitigs and two maximal left-micro omnitigs. The merging

of a maximal left- and right-micro omnitig on fg is called a maximal microtig (see Figure 2.2

and Definition 2.12; notice that a microtig is not necessarily an omnitig). These at most two

maximal microtigs represent “forced tracks” to be followed by omnitigs crossing v.

We now describe how omnitigs can advance from one macronode to another. We prove that

any arc having endpoints in different macronodes is a bivalent arc, and moreover, for every
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maximal microtig ending with a bivalent arc b, there is at most one maximal microtig starting

with b. Maximal microtigs can be seen as omnitig tracks, i.e., walks in which omnitigs can

be found in kind of a sequence. As such, when a so called omnitig track exits a macronode,

there is at most one way of connecting it with an omnitig track from another macronode. It

is natural to merge all omnitig tracks (i.e., maximal microtigs) on all bivalent arcs between

different macronodes, and thus obtain maximal macrotigs (Definition 2.21 and Figure 2.7).

The total size of all maximal macrotigs is O(n) (Theorem 2.25), and they are a representation

of all maximal omnitigs, except for those that are univocal extensions of the arcs of F , see
below and Theorem 2.26.

Algorithms. Our algorithms first build the setM of maximal macrotigs, and then iden-

tify maximal omnitigs inside them. The set F of arcs univocally extending to the remaining

maximal omnitigs will be the set of bivalent arcs not appearing inM (Theorem 2.26).

Crucial to the algorithms is an extension primitive deciding what new arc (if any) to choose

when extending an omnitig (recall that the X- and Y-intersection Properties limits the number

of such arcs to one). Suppose we have an omnitig fW , with f a join arc, and we need to decide

if it can be extended with an arc g out-going from h(W ). Naturally, this extension can be

found by checking that there is no forbidden path from t(g) = h(W ). However, this forbidden

path can potentially end in any node of W . Up to this point, [66, 67, 14] need to do an entire

O(m) graph traversal to check if any node of W is reachable by a forbidden path.

We prove here a new key property:

Theorem 2.29 (Extension Property). Let fW be an omnitig in G, where f is a join arc. Then

fWg is an omnitig if and only if g is the only arc with t(g) = h(W ) such that there exists a

path from h(g) to h(f) in G∖ f .

Thus, for each arc g with t(g) = h(W ), we can do a single reachability query under one arc

removal: “does h(g) reach h(f) in G ∖ f?” Since the target of the reachability query is also

the head of the arc excluded f , then we can apply an immediate consequence of [30]:

Theorem 2.2 ([30]). Let G be a strongly connected graph with n nodes and m arcs. After

O(m)-time preprocessing, one can build an O(n)-space data structure that, given a node w and

an arc f , tests in O(1) worst-case time if there is a path from w to h(f) in G∖ f .

Using the Extension Property and Theorem 2.2, we can thus pay O(1) time to check each

out-outgoing arc g, before discovering the one (if any) with which to extend fW . In Section 2.2

we describe how to transform the graph to have constant degree, so that we pay O(1) per

node. This transformation also requires slight changes to the maximal omnitig enumeration

algorithm to maintain the linear-time output sensitive complexity (see Section 2.4.1). We use

the Extension Property when building the left- and right-maximal micro omnitigs, and when

identifying maximal omnitigs inside macrotigs, as follows.
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Figure 2.3: Any maximal omnitig is identified (in solid blue) either by a macrotig interval (from a
join arc f to a split arc g; left), or by a bivalent arc b not appearing in any macrotig (right). The full
maximal omnitig is obtained by univocal extension (dotted blue), extension which may go outside of
the maximal macrotig, the extremities of which are represented by red dots.

Once we have the setM of maximal macrotigs, we scan each macrotig with two pointers,

a left one always on a join arc f , and a right one always on a split arc g (see Figure 2.3 and

Algorithm 5). Both pointers move from left to right in such a way that the subwalk between

them is always an omnitig. The subwalk is grown to the right by moving the right pointer as

long as it remains an omnitig (checked with the Extension Property).

When growing to the right is no longer possible, the omnitig is shrunk from the left by

moving the left pointer. This technique runs in time linear to the total length of the maximal

macrotigs, namely O(n).

Comparison with previous techniques. The algorithm of [67] exhaustively extends

an omnitig with every arc outgoing from its head, as long as the resulting walk remained an

omnitig, and did not use any insights on the structure of omnitigs. The O(nm)-time algorithm

of [14] was obtained using two structural results: there can be only one left-maximal omnitig

ending with a split arc (which we do not use here, since we prove deeper insights on the

structure of omnitigs, e.g. the X- and Y-intersection Properties) and the existence of an acyclic

order between split arcs connected by “simple” omnitigs (which we use as Lemma 2.23 in

Section 2.3.2). In [14], these allow computation to be memoized when recursively computing

the left-maximal omnitig ending with a given split arc. The two-pointer technique was used also

in [2] for a related problem, to test the safety of intervals of an entire solution. Our surprising

discovery of macrotigs allow for a “small search space” of total size to O(n), and eliminate the

need of recursion, while the Extension Property enables the use of [30], thus the pay of O(1)

per omnitig extension, instead of O(m) as in [66, 67, 14].

2.2 Constant degree and compression

In this section, we describe three transformations of a given graph G to guarantee the assump-

tion of compression (contraction of biunivocal nodes and arcs) and constant degree on every

node. It is easy to see that such transformations and their inverses can be performed in linear

time.
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2.2.1 Constant degree

The first transformation allows us to reduce to the case in which the graph has constant out-

degree (see Figure 2.4 for an example).

Transformation 1. Given G, for every node v with d+(v) > 2, let e1, e2, . . . , ek be the arcs out-

going from v. Replace v with the path (v1, e
′
1, v2, e

′
2, . . . , e

′
k−2, vk−1), where v1, . . . , vk−1 are new

nodes, and e′1, . . . , e
′
k−2 are new arcs. Each arc ei with t(ei) = v in G now has t(ei) = t(e′i) = vi,

except for ek which has t(ek) = vk−1. Each arc e of G, with h(e) = v, now has h(e) = v1.

v

e1
...

ek

T1−−→ v1

e1
e′1

v2

e2
e′2 e′k−2

vk−1

ek−1
ek

Figure 2.4: An example of Transformation 1 (T1) applied to the node v, where e1, . . . , ek ∈ δ+(v) are
the arcs with tail equal to v.

By also applying the symmetric transformation, the problem on the original graph G is thus

reduced to a graph G′ with constant out- and in-degree. Notice that the number of arcs of G′

is still O(m), where m is the number of arcs of the original graph. As such, we can obtain the

macrotigs of G′ in O(m) time. The trivial strategy to obtain all maximal omnitigs of G is to

enumerate all maximal omnitigs of G′, and from these contract all the new arcs introduced by

the transformation (while also removing duplicate maximal omnitigs, if necessary). However,

this may invalidate the linear-time complexity of the enumeration step, since the length of the

maximal omnitigs of Gmay be super-linear in total maximal omnitig length of G, see Figure 2.5.

In Section 2.4.1 we explain how we can easily modify the maximal omnitig enumeration step

to maintain the O(m) output-sensitive complexity.

To prove the correctness of Transformation 1, we proceed as follows. Let ce(G) be the graph

obtained from G by contracting an arc e (contracting e means that we remove e and identify its

endpoints). For every walk W of G, we denote by ce(W ) the walk of ce(G), obtained from W

by removing every occurrence of e (here we regard walks as sequences of arcs). In the following,

we regard ce as a surjective function from the family of walks of G to the family of walks of

ce(G).

Observation 2.3. When e is a split-free or join-free arc, then ce is a bijection when restricted

to the closed (arc-covering) walks, or to the non-empty open walks of G whose first and last arc

are different from e.

Lemma 2.4. Let e be a join-free arc of G. A walk W ′ of ce(G) is an omnitig of ce(G) if and

only if there exists an omnitig W of G such that W ′ = ce(W ).
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Figure 2.5: Left: A graph G made up of a single node and m ≥ 3 self-loops e1, . . . , em. Its m maximal
omnitigs are e1, . . . , em. Right: The graph G′ obtained from G by applying Transformation 1 and
its symmetric transformation; the nodes of G′ have in-degree and out-degree at most 2. Notice
that the number of arcs of G′ is O(m). The m maximal omnitigs of G′ are of the form U(ei) =
e′1 · · · e′i−1eie

′′
i−1 · · · e′′1 (for i ∈ {1, . . . ,m}). Notice that their total length is Θ(m2), thus one cannot

enumerate all maximal omnitigs of G′ and convert these to maximal omnitigs of G. However, one can
stop all univocal extensions of the arcs ei when reaching arcs introduced by the transformations in G′,
see Section 2.4.1.

Proof. Consider the shortest walk W of G such that W ′ = ce(W ). Notice that the first and

last arc of W are different than e. Moreover, W ′ is an omnitig of ce(G) iff W is an omnitig

of G. Indeed, for every circular arc-covering walk C of G it holds that C avoids W iff ce(C)

avoids W ′.

Corollary 2.4.1. Let e be a join-free arc of G. A walk W ′ of ce(G) is a maximal omnitig of

ce(G) if and only if there exists a maximal omnitig W of G such that W ′ = ce(W ).

Proof. Let W be a maximal omnitig of G. Then ce(W ) is an omnitig of ce(G) by Lemma 2.4.

Moreover, if W ′ was an omnitig of ce(G) strictly containing ce(W ), then there would exist an

omnitig W of G such that W ′ = ce(W ), by Lemma 2.4. Clearly, W would contain W and

contradict its maximality. Therefore, ce(W ) is a maximal omnitig of ce(G).

For the converse, let W ′ be a maximal omnitig of ce(G). Let W be the shortest and unique

minimal walk of G such that W ′ = ce(W ). By Lemma 2.4, W is an omnitig of G. Let W be any

maximal omnitig of G containing W . We claim that ce(W ) = W ′ = ce(W ), which concludes

the proof. If not, then ce(W ) would strictly contain W ′ and contradict its maximality since

also ce(W ) would be an omnitig of ce(G) by Lemma 2.4.

Finally, we can prove that the graph, obtained with Transformation 1, preserves the maximal

omnitigs of the original graph, in the sense that no maximal omnitig is lost in the process.

Lemma 2.5. Let G be a graph and let G′ be the graph obtained by applying Transformation 1 to

G. Then a walk W of G is a maximal omnitig of G if and only if there exists a maximal omnitig

W ′ of G′ such that W is the string obtained from W ′ by suppressing all the arcs introduced with

the transformation.

Proof. Notice that G is obtained by applying ce to each arc e introduced by Transformation 1,

that is, to each arc of G′ that is not an arc of G. Notice that W is the string obtained from
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v0 v1e0 v2e1 v`−1 v`e`
T2−−→

v0 v`e

v0 v`e
T3−−→

v0

Figure 2.6: An example of Transformation 2 (T2) applied to the path P = (v0, e0, . . . , eℓ, vℓ), where
v1, . . . , vℓ−1 are biunivocal nodes and e is the new arc from v0 to vℓ. The Transformation 3 (T3)
compresses biunivocal arcs.

W ′ by suppressing all the arcs introduced with the transformation if and only if W is obtained

from W ′ by contracting each arc e introduced by Transformation 1. Apply Corollary 2.4.1.

2.2.2 Compression

We start by recalling the definition of compressed graph.

Definition 2.6 (Compressed graph). A graph G is compressed if it contains no biunivocal

nodes and no biunivocal arcs.

To obtain a compressed graph, we introduce two transformations. The first one removes

biunivocal nodes, by replacing those paths whose internal nodes are biunivocal with a single

arc from the tail of the path to its head (see Figure 2.6 for an example).

Transformation 2. Given G, for every longest path P = (v0, e0, . . . , eℓ−1, vℓ), ℓ ≥ 2, such that

v1, . . . , vℓ−1 are biunivocal nodes, we remove v1, . . . , vℓ−1 and their incident arcs from G, and

we add a new arc from v0 to vℓ.

This transformation is widely used in the genome assembly field, and it clearly preserves

the maximal omnitigs of G: if P = (v0, e0, . . . , eℓ−1, vℓ), ℓ ≥ 2 is a path where v1, . . . , vℓ−1 are

biunivocal nodes, in any closed arc-covering walk of G, whenever e0 appears it is always followed

by e1, . . . , eℓ.

The last transformation contracts the biunivocal arcs of the graph (see Figure 2.6 for an

example).

Transformation 3. Given G, we contract every biunivocal arc e, namely we set t(e′) = t(e)

for every out-going arc from h(e) and remove the node h(e).

Also this transformation preserves the maximal omnitigs of G because every maximal om-

nitig which contains an endpoint of e, also contains e. Notice that after Transformations 2

and 3, the maximum in-degree and the maximum out-degree are the same as in the original

graph.
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2.3 Macronodes and macrotigs

In this section, unless otherwise stated, we assume that the input graph is compressed, in the

sense that it has no biunivocal nodes and arcs. In some algorithms we will also require that

the graph has constant in- and out-degree. In a compressed graph all arcs are split, join or

bivalent; moreover, the following observation holds.

Observation 2.7. Let G be a compressed graph. Let f and g be a join and a split arc,

respectively, in G. The following holds:

(i) if fWg is a walk, then W has a node which is a bivalent node;

(ii) if gWf is a walk, then gWf contains a bivalent arc.

The following lemmata brings new structural knowledge about omnitigs, which is going to

be useful in proving some more advanced results.

Lemma 2.8. Every maximal omnitig of a compressed graph contains both a join arc and a split

arc. Moreover, it has a bivalent arc or an internal bivalent node.

Proof. Consider an omnitig W composed only of split-free arcs. Notice first that W is a path.

Consider any arc e, with h(e) = t(W ) and observe that eW is an omnitig, since the only out-

going arcs of internal nodes of eW are arcs of eW ; thus there is no forbidden path between

any two internal nodes of eW . Therefore, W is not a maximal omnitig. Symmetrically, no

maximal omnitig is composed only of join-free arcs. This already implies the first claim in the

statement: any maximal omnitig W contains at least one join arc f and at least one split arc

g. If f = g then W contains the bivalent arc f . Otherwise, either W contains a subwalk of the

form fW ′g or it contains a subwalk of the form gW ′f , where W ′ might be an empty walk. In

the first case W has an internal node which is bivalent, by Observation 2.7(i). In the second

case W contains a bivalent arc, by Observation 2.7(ii).

Lemma 2.9. Let e be a join or a split arc. No omnitig can traverse e twice.

Proof. By symmetry, we only consider the case of two sibling split arcs g and g′. Since prefixes

and suffixes of omnitigs are omnitigs, then a minimal violating omnitig would be of the form

gZg, with g /∈ Z. Since G is strongly connected, then there exists a simple cycle C of G with

g′ ∈ C and with g′ as its first arc. Notice that g /∈ C, since C is simple. Consider then the

first node u shared by both C and Z, and let e be the arc of C with h(e) = u. Clearly, e /∈ Z;

in addition, e ̸= g, since C is a path. Let Cu represent the prefix of C ending in u. Therefore,

Cu is a forbidden path for the omnitig gZg, since it starts from t(g) = t(g′), with g′ ̸= g, and

it ends in u with e /∈ Z.
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2.3.1 Macronodes

It is natural to identify a partition of the nodes of a compressed graph, where each class of

such a partition (i.e. a macronode) contains precisely one bivalent node. We identify each class

with the unique bivalent node they contain. Every other node that belongs to the same class

are those that either reach the bivalent node with a join-free path or those that are reached by

the bivalent node with a split-free path (recall Figure 2.1).

Definition 2.10 (Macronode). Let v be a bivalent node of G. Consider the following sets:

• R+(v) := {u ∈ V (G) : ∃ a join-free path from v to u};

• R−(v) := {u ∈ V (G) : ∃ a split-free path from u to v}.

The subgraphMv induced by R+(v) ∪R−(v) is called the macronode centered in v.

Hence, the following result.

Lemma 2.11. In a compressed graph G, the following properties hold:

i) The set {V (Mv) : v is a bivalent node of G} is a partition of V (G).

ii) In a macronodeMv, R
+(v) and R−(v) induce two trees with common root v, but oriented

in opposite directions. Except for the common root, the two trees are node-disjoint, all

nodes in R−(v) being join nodes and all nodes in R+(v) being split nodes.

iii) The only arcs with endpoints in two different macronodes are bivalent arcs.

Proof. For i), by definition every node belongs to at least one macronode. Let u and v be

distinct bivalent nodes and suppose for a contradiction that there exists x ∈ V (Mu)∩V (Mv).

W.l.o.g., assume x is a join node (the case where x is a split node is symmetric). By definition,

x ∈ R−(u)∩R−(v) holds. Let Pu and Pv be split-free paths from x to u and to v, respectively.

Notice that x can not be a bivalent node, since otherwise from x no split-free path can start.

Since the out-degree of x is one, Pu and Pv share a prefix of length at least one, but since u

and v are distinct bivalent nodes, Pu and Pv differ by at least one arc. Let e be the first arc

such that e ∈ Pu, but e /∈ Pv, and let e′ be its sibling arc, with e′ /∈ Pu, but e′ ∈ Pv. Notice

that t(e) = w is a join node, since it belongs to split-free paths, but it also has out-degree two,

since w = t(e) = t(e′); hence w is an internal bivalent node of split-free paths, a contradiction.

Properties ii) and iii) trivially follow from the definition of macronode.

To analyze how omnitigs can traverse a macronode and the degrees of freedom they have

in choosing their directions within the macronode, we introduce the following definitions. In

general, central-micro omnitigs are the smallest omnitigs that cross the center of a macronode.

Left- and right-micro omnitigs start from a central-micro omnitig and proceed to the periphery

of a macronode. Finally, we can combine left- and right-micro omnitigs into microtigs (which

are not necessarily omnitigs themselves); recall Figure 2.2 for a visual reference. Formally:
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Definition 2.12 (Micro omnitigs, microtigs). Let f be a join arc and g be a split arc, such

that fg is an omnitig.

• The omnitig fg is called a central-micro omnitig.

• An omnitig fgW (Wfg, resp.) that does not contain a bivalent arc as an internal arc is

called a right-micro omnitig (respectively, left-micro omnitig).

• A walk W = W1fgW2, where W1fg and fgW2 are, respectively, a left-micro omnitig, and

a right-micro omnitig, is called a microtig.

We are now able to prove an helpful lemma to better understand the structure of omnitigs.

Lemma 2.13. Let u be a bivalent node. No omnitig contains u twice as an internal node.

Proof. Assume for a contradiction that there exists an omnitig W that contains u twice as

internal node. Since u is an internal node of W , we can distinguish the case in which an

omnitig contains twice a central-micro omnitig that traverses u, and the case in which an

omnitig contains both the central-micro omnitigs that traverse u. In the first case, let fg

be the central-micro omnitig of an omnitig W that traverses u. Notice that f is a join arc

contained twice in W , contradicting Lemma 2.9. In the latter case, let f1g1 and f2g2 the two

central-micro omnitigs that traverse u, with f1 ̸= f2 and g1 ̸= g2. Consider W to be a minimal

violating omnitig of the form f1g1W̄f2g2. Notice that u /∈ W̄ , by minimality; hence g1W̄f2 is a

forbidden path, contradicting W being an omnitig.

Given a join arc f , we first find central-micro omnitigs (of the type fg) with the generic func-

tion RightExtension(G, f,W ) from Algorithm 1, where W is a join-free path (possibly empty).

This extension uses the following weak version of the Extension Property (since W is join-free).

To build up the intuition, we also give a self-contained proof of this weaker result.

Lemma 2.14 (Weak form of the Extension Property (Theorem 2.29)). Let fW be an omnitig

in G, where f is a join arc and W is a join-free path. Then fWg is an omnitig if and only if

g is the only arc with t(g) = h(W ) such that there exists a path from h(g) to h(f) in G∖ f .

Proof. To prove the existence of an arc g, which satisfies the condition, consider any closed

path Pf ′ in G, where f ′ is an arbitrary sibling join arc of f . Notice that W is a prefix of Pf ′,

since fW is an omnitig, since otherwise one can easily find a forbidden path for the omnitig

fW as a subpath of Pf ′, from the head of the very first arc of Pf ′ that is not in W to h(f ′).

Therefore, let g be the the first arc of Pf ′ after the prefix W , in such a way that the suffix of

Pf ′ starting from h(g) is a path to h(f) in G∖ f .

For the direct implication, assume that there is a path P in G ∖ f from h(g′), where g′

sibling of g and g′ ̸= g, to h(f). Then, this forbidden path P contradicts the fact that fWg is

an omnitig.
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For the reverse implication, assume that fWg is not an omnitig. Then take any forbidden

path P for fWg. Since fW is an omnitig, P must start with some g′ sibling arc of g, g′ ̸= g.

Since W is join-free, then P must end in h(f) with the last arc different from f . Therefore, P

is a path from h(g′) to h(f) in G∖ f .

Not only Lemma 2.14 gives us an efficient extension mechanism, but it also immediately

implies the Y-intersection Property (for clarity of reusability, we state both its symmetric

variants).

Corollary 2.14.1 (Y-intersection Property). Let fWg be an omnitig, where f is a join arc,

and g is a split arc.

i) If W is a (possibly empty) join-free path, then for any g′ a sibling split arc of g, the walk

fWg′ is not an omnitig.

ii) If W is a (possibly empty) split-free path, then for any f ′ a sibling join arc of f , the walk

f ′Wg is not an omnitig.

We now use the Y-intersection Property to prove the X-intersection Property.

Theorem 2.15 (X-intersection Property). Let v be a bivalent node. Let f1 ̸= f2 be join arcs

with h(f1) = h(f2) = v; let g1 ̸= g2 be split arcs with t(g1) = t(g2) = v.

i) If f1g1 and f2g2 are omnitigs, then d+(v) = d−(v) = 2.

ii) If f1g1 is an omnitig, then there are no omnitigs f1g
′ with g′ ̸= g1, nor f ′g1 with f ′ ̸= f1.

Proof. For point i), assume there exists an arc g3, distinct from g1 and g2, such that t(g3) = v.

Consider any shortest closed path g3P (with P possibly empty), which exists by the strong

connectivity of G. Let f be the last arc of P . If f ̸= f1 then g3P is a forbidden path for

the omnitig f1g1, since g3 ̸= g1. Otherwise, if f = f1 then g3P is a forbidden path for the

omnitig f2g2, since g3 ̸= g1. In both cases we reached a contradiction, therefore g1 and g2 are

the only arcs in G with t(g1) = t(g2) = v. To prove that f1 and f2 are the only arcs in G with

h(f1) = h(f2) = v one can proceed by symmetry.

Point ii) follows from Corollary 2.14.1 (by taking the W path of its statement to be empty).

Given an omnitig fg, we obtain the maximal right-micro omnitig with function

MaximalRightMicroOmnitig(G, f, g) from Algorithm 1. This works by extending fg, as much

as possible, with the function RightExtension(G, f,W ) (where initially W = g). This extension

stops when reaching the periphery of the macronode (i.e. a bivalent arc).
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Algorithm 1: Functions RightExtension and MaximalRightMicroOmnitig.

1 Function RightExtension(G, f,W )
Input : The compressed graph G, fW omnitig with W join-free.
Output : The unique arc e such that fWe is an omnitig, if it exists. Otherwise,

nil.

2 S ← {e ∈ E(G) | t(e) = h(W ) and there is a path from h(e) to h(f) in G∖ f}
3 if there is exactly one arc e ∈ S then return e

4 return nil

5 Function MaximalRightMicroOmnitig(G, f, g)
Input : The compressed graph G, fg omnitig with f join arc and g split arc.
Output : The path W such that fgW is a maximal right-micro omnitig.

6 W ← empty path
7 while True do
8 if fgW ends with a bivalent arc then return W
9 e← RightExtension(G, f,W )

10 if e = nil then return W

11 W ← We

Lemma 2.16. The functions in Algorithm 1 are correct. Moreover, assuming that the graph

has constant degree, we can preprocess it in time O(m) time, so that RightExtension(G, f,W )

runs in constant time, and MaximalRightMicroOmnitig(G, f, g) runs in time linear in its output

size.

Proof. For RightExtension(G, f,W ), recall Lemma 2.14 and Theorem 2.2 and that the input

graph is a compressed graph, and as such every node has constant degree.

For MaximalRightMicroOmnitig(G, f, g), notice that every iteration of the while loop in-

creases the output by one arc and takes constant time, since RightExtension(G, f,W ) runs in

O(1) time.

Algorithm 2 is the procedure to obtain all maximal microtigs of a compressed graph. It first

finds all central-micro omnitigs fg (with RightExtension(G, f, ∅)), and it extends each to the

right (i.e. forward in G) and to the left (i.e. forward in GR) with MaximalRightMicroOmnitig.

In the following lemmata, we show some structural properties of central-micro omnitigs that

are needed to prove the correctness of Algorithm 2, in Theorem 2.19.

Lemma 2.17. Let fg be a central-micro omnitig. The following hold:

i) There exists at most one maximal right-micro omnitig fgW , and at most one maximal

left-micro omnitig Wfg.

ii) There exists a unique maximal microtig containing fg.
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Algorithm 2: Function AllMaximalMicrotigs

1 Function AllMaximalMicrotigs(G)
Input : The compressed graph G.
Output : All the maximal microtigs in G.

2 S ← ∅
3 foreach bivalent node u in G do
4 foreach join arc f with h(f) = u do
5 foreach split arc g with t(g) = u do
6 if g = RightExtension(G, f, ∅) then

▷fg is a central-micro omnitig

▷applied symmetrically for left- and right-micro omnitigs
7 W1 ← MaximalRightMicroOmnitig(GR, g, f)
8 W2 ← MaximalRightMicroOmnitig(G, f, g)

9 add WR
1 fgW2 to S

10 return S

Proof. We prove only the first of the two symmetric statements in i). If g is a bivalent arc,

the claim trivially holds by definition of maximal right-micro omnitig. Otherwise, a minimal

counterexample consists of two right-micro omnitigs fgPg1 and fgPg2 (with P a join-free

path possibly empty), with g1 and g2 distinct sibling split arcs. Since gP is a join-free path,

the fact that both fgPg1 and fgPg2 are omnitigs contradicts the Y-intersection Property

(Corollary 2.14.1).

For ii), given fg, by i) there exists at most one maximal left-micro omnitig W1fg and at

most one maximal right-micro omnitig fgW2, as such there is at most one maximal microtig

W1fgW2.

Lemma 2.18. Let e be an arc. The following hold:

i) if e is not a bivalent arc, then there exists at most one maximal microtig containing e.

ii) if e is a bivalent arc, there exist at most two maximal microtigs containing e, of which at

most one is of the form eW1, and at most one is of the form W2e.

Proof. By symmetry, in i) we only prove the case in which e is a split-free arc. Notice that by

Lemma 2.11, h(e) belongs to a uniquely determined macronodeMu of G; let P be the split-free

path inG, from h(e) to u. Let f be the last arc of eP (f = e if P is empty). By the X-intersection

Property (Theorem 2.15), there exists at most one split arc g with t(g) = u = h(f) such that fg

is an omnitig; if it exists, fg is a central-micro omnitig, hence by Lemma 2.17, there is at most

one maximal left-micro omnitig Wfg. Finally, if such a maximal left-micro omnitig exists, ePg

is a subwalk of Wfg, by the Y-intersection Property (Corollary 2.14.1). Otherwise, a minimal
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counterexample consists of paths f1Rg (subpath of ePg) and f2Rg (subpath of Wfg), where

f1 ̸= f2 and R is a split-free path, since it is subpath of the split-free path eP ; since both f1Rg

and f2Rg are omnitigs, this contradicts the Y-intersection Property.

For ii), we again prove only one of the symmetric cases. The proof is identical to the above,

since by Lemma 2.11, h(e) belongs to a unique macronodeMv1 of G. As such, e belongs to at

most one maximal microtig eW1 inMv1 . Symmetrically, t(e) belongs to a uniquely determined

macronodeMv2 of G. Thus, e belongs to at most one maximal microtig W2e withinMv2 .

We conclude the section stating an important result on maximal microtigs.

Theorem 2.19 (Maximal microtigs). The maximal microtigs of any strongly connected graph

G with n nodes, m arcs, and arbitrary degree have total length O(n), and can be computed in

time O(m).

Proof. First we prove the O(n) bound on the total length. As we explain in Section 2.2 we can

transform G into a compressed graph G′ such that G′ has n′ ≤ n nodes and m′ ≤ m arcs.

Since G′ has at most n′ macronodes (recall that macronodes partition the node set,

Lemma 2.11), and every macronode has at most two maximal microtigs, then number of max-

imal microtigs is at most 2n′. The total length of all maximal microtigs is bounded as follows.

Every internal arc of a maximal microtig is not a bivalent arc, by definition. Since every non-

bivalent arc appears in at most one maximal microtig (Lemma 2.18), and there are at most n′

non-bivalent arcs in any graph with n′ nodes, then the number of internal arcs in all maximal

microtigs is at most n′. Summing up for each maximal microtigs its two non-internal arcs

(i.e., its first and last arc), we obtain that the total length of all maximal microtigs is at most

2n′ + n′ = 3n′, thus O(n).

As mentioned, in Section 2.2 we show how to transform G into a compressed graph G′ with

O(m) arcs, O(m) nodes, and constant degree. On this graph we can apply Algorithm 2. Since

every node of the graph has constant degree, the if check in Line 6 runs a number of times

linear in the size O(m) of the graph. Checking the condition in Line 6 takes constant time, by

Lemma 2.16; in addition, the condition is true for every central-micro omnitig fg of the graph.

The then block computes a maximal microtig and takes linear time in its size, Lemma 2.16.

By Lemma 2.18 we find every microtig in linear total time.

2.3.2 Macrotigs

In this section we analyze how omnitigs go from one macronode to another. Macronodes are

connected with each other by bivalent arcs (Lemma 2.11), but merging microtigs on all possible

bivalent arcs may create too complicated structures. However, this can be avoided by a simple

classification of bivalent arcs: those that connect a macronode with itself (self-bivalent) and

those that connect two different macronodes (cross-bivalent), recall Figure 2.1.
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Figure 2.7: Three macronodesMu,Mv,Mw (as gray areas) with arcs color-coded as in Figure 2.1.
Black walks mark their five maximal microtigs: b1g1 . . . b2, bi . . . figi . . . bi+1 (i ∈ {2, 3, 4}), b5 . . . f5g5
(g5 = b1). The maximal macrotig M is obtained by overlapping them on the cross-bivalent arcs
b2, b3, b4, b5, i.e. M = b1 . . . b2 . . . b3 . . . b4 . . . b5 . . . b1. Notice that no arc is contained twice in M , with
the exception of the self-bivalent arc b1, appearing as the first and last arc of M .

Definition 2.20 (Self-bivalent and cross-bivalent arcs). A bivalent arc b is called a self-bivalent

arc if U(b) goes from a bivalent node to itself. Otherwise it is called a cross-bivalent arc.

A macrotig is now obtained by merging those microtigs from different macronodes which

overlap only on a cross-bivalent arc, see also Figure 2.7.

Definition 2.21 (Macrotig). Let W be any walk. W is called a macrotig if

1. W is an microtig, or

2. By writing W = W0b1W1b2 . . . bk−1Wk−1bkWk, where b1, . . . , bk are all the internal bivalent

arcs of W , the following conditions hold:

(a) the arcs b1, . . . , bk are all cross-bivalent arcs, and

(b) W0b1, b1W1b2, . . . , bk−1Wk−1bk, bkWk are all microtigs.

Notice that the above definition does not explicitly forbid two different macrotigs of the

form W0bW1 and W0bW2. However, Lemma 2.18 shows that there cannot be two different

microtigs bW1 and bW2. Thus, our structural results (including Lemmas 2.22 and 2.24 below)

show that we can construct all maximal macrotigs by repeatedly joining microtigs overlapping

on cross-bivalent arcs, as long as possible, and obtain Theorem 2.25.

Lemma 2.22. For any macrotig W there exists a unique maximal macrotig containing W .

Proof. W.l.o.g., a minimal counterexample consists of a non-right-maximal macrotig Wb, such

that there exist two distinct microtigs bW1 and bW2 (notice that b is a cross-bivalent arc). By

Lemma 2.18 applied to b, we obtain bW1 = bW2, a contradiction.

However, the macrotig definition does not forbid a cross-bivalent arc to be used twice inside

a macrotig. In Lemma 2.24 below, we prove that also this is not possible, using the following

result.
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Lemma 2.23 ([14]). For any two distinct non-sibling split arcs g, g′, write g ≺ g′ if there exists

an omnitig gPg′ where P is split-free. Then, the relation ≺ is acyclic.

Lemma 2.24. Let W be a macrotig and let e be an arc of W . If e is self-bivalent, then e

appears at most twice in W (as first or as last arc of W ). Otherwise, e appears only once.

Proof. If e is self-bivalent, then Definition 2.21 implies that e is either the first arc of W , the

last arc of W , or both. Thus, e appears at most twice.

Suppose now that e is not self-bivalent. We first consider the case when e is a split arc. We

are going to prove that any two consecutive non-self-bivalent split arcs are in relation ≺ from

Lemma 2.23. Indeed, let g and g′ be two consecutive (i.e. closest distinct) non-self-bivalent

split arcs along W : that is, gPg′ subwalk of W , with P a split-free path. Notice that g and g′

are not sibling arcs, since otherwise, g is a self-bivalent arc, by Observation 2.7. If t(g′) is not

a bivalent node, then P is empty. In this case, g is a join-free arc, so gg′ is an omnitig; as such,

g ≺ g′. Otherwise, if t(g′) is a bivalent node, then gPg′ is a left-micro omnitig and so it is an

omnitig; as such, again, g ≺ g′.

Suppose for a contradiction that e is traversed twice. Since there are no internal self-bivalent

arcs (as argued at the beginning of the proof), this would result in a cycle in the relation ≺,
which contradicts Lemma 2.23.

When e is a non-self-bivalent join arc, we proceed symmetrically. First, notice that the

relation defined in Lemma 2.23 is symmetric: if f and f ′ are two distinct non-sibling join arcs

such that fPf ′, with P a join-free path, then f ≺ f ′. The claim above can be symmetrically

adapted to hold for any two closest distinct non-self-bivalent join arcs f and f ′ within a macrotig

(i.e. corresponding to a subwalk of W of the form fPf ′, with P a join-free path). Moreover, f

and f ′ are not siblings; since otherwise, f ′ is a self-bivalent arc, by Observation 2.7.

Hence, by the acyclicity property of the relation ≺ on the reverse graph, the claim also

holds for non-self-bivalent join arcs.

Therefore, we can construct all maximal macrotigs by repeatedly joining microtigs overlap-

ping on cross-bivalent arcs, as long as possible, as in Algorithm 3.

Similarly to what we obtained in Theorem 2.19, we conclude this section with an important

result concerning macrotigs of a graph.

Theorem 2.25 (Maximal macrotigs). The maximal macrotigs of any strongly connected graph

G with n nodes, m arcs, and arbitrary degree have total length O(n), and can be computed in

time O(m).

Proof. By Theorem 2.19, G has O(n) maximal microtigs, of total length O(n). By Lemma 2.24,

every maximal microtig is contained in a unique maximal macrotig (and it appears only once

inside such a macrotig), and the length of each maximal macrotig is at most the sum of the
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Algorithm 3: Function AllMaximalMacrotigs.

1 Function AllMaximalMacrotigs(G)
Input : The compressed graph G.
Output : All the maximal macrotigs in G.

2 S ← AllMaximalMicrotigs(G)
3 while ∃ W1b ∈ S and bW2 ∈ S with b cross-bivalent arc and non-empty W1,W2 do
4 remove W1b and bW2 from S
5 add W1bW2 to S

6 return S

lengths of its maximal microtigs; thus, we have that the total length of all maximal macrotigs

is at most O(n).

Using Algorithm 2, we can get all the O(n) maximal microtigs of G in time O(m) (The-

orem 2.19). Once we have them, we can easily implement Algorithm 3 in O(m)-time. The

correctness of this algorithm is guaranteed by Lemma 2.24.

2.4 Maximal omnitig representation and enumeration

In the algorithms of this section we assume that the graph has constant degree, and we explain

in Section 2.4.1 how to handle the non-constant degree case.

We begin by proving the first part of Theorem 2.1. Theorem 2.25 guarantees that the total

length of maximal macrotigs is O(n). Thus, it remains to prove the following lemma, since

since any macrotig is a subwalk of a maximal macrotig (Lemma 2.22).

Theorem 2.26 (Maximal omnitig representation). Let W be a maximal omnitig.

i) If W contains an internal bivalent node, then W is of the form U(fW ′g), where f is the

first join arc of W , g ̸= f is the last split arc of W , and W ′ is a possibly empty walk.

Moreover, fW ′g is a macrotig.

ii) Otherwise, W is of the form U(b), where b is a bivalent arc, and b does not belong to any

macrotig.

Proof. To prove i), let u be an internal bivalent node of W , and let fu and gu be, respectively,

the join arc and the split arc of W with h(fu) = u = t(gu); both such fu and gu exist, since

u is an internal node of W . Therefore, since W contains at least fu and gu, let f and g be,

respectively the first join arc and the last split arc of W . Observe that f is either fu or it

appears before fu in W ; likewise, g is either gu or it appears after gu in W . Thus, f comes

before g, and we can write W = W−fW ′gW+, where W ′ is the subwalk of W , possibly empty,

from h(f) to t(g). Therefore, by the maximality of W , we have W = W−fW ′gW+ = U(fW ′g).
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To prove that the subwalk fW ′g of W is a macrotig, we prove by induction that any walk

of the form fW ′g, where f is a join arc and g is a split arc, is a macrotig. The induction is on

the length of W ′.

Case 1: W ′ contains no internal bivalent arcs. Since fW ′g contains a bivalent node (Obser-

vation 2.7), it is of the form fW ′g = W ′
1f

′g′W ′
2, with h(f ′) = t(g′) = u bivalent node.

Notice that W ′
1f

′g′W ′
2 is an microtig and thus it is a macrotig, by definition.

Case 2: fW ′g contains an internal bivalent arc b, i.e. fW ′g = W ′
1bW

′
2, withW ′

1,W
′
2 non empty.

By induction, W ′
1b and bW ′

2 are macrotigs and both contain a bivalent node as internal

node. Suppose b is a self-bivalent arc, then both W ′
1b and bW ′

2 would contain the same

bivalent node as internal node, contradicting Lemma 2.13. Thus, b is a cross-bivalent arc

and W ′
1bW

′
2 is also a macrotig, by definition.

For ii), notice that if W contains no internal bivalent node then it contains a unique bivalent

arc b, by Lemma 2.8 and Observation 2.7. Thus, by the maximality of W , it holds that

W = U(b). It remains to prove that there is no macrotig containing b.

Suppose for a contradiction that there is a maximal left-micro omnitig M containing b. By

definition, M is of the form bWMfMgM . Notice that h(W ) = t(gM), by univocal extension of b,

and, as such, WgM is a walk. In addition, WgM is an omnitig, since M is an omnitig and the

arcs of W before b are join-free, therefore WgM can have no forbidden path. This contradicts

the fact that W is maximal.

Symmetrically, we have that there is no maximal right-micro omnitig containing b. Thus,

by definition, b appears in no microtig, and thus in no macrotig.

Remark 2.27. The number of maximal omnitigs containing an internal bivalent node is O(n).

This follows by Theorem 2.26(i), by maximality, and by the fact that the total length of maximal

macrotigs is O(n) (Theorem 2.25).

Next, we are going to prove the second, algorithmic, part of Theorem 2.1. To describe the

algorithm that identifies all maximal omnitigs (Algorithm 5), we first introduce an auxiliary

procedure (Algorithm 4), which is a corollary of the Extension Property (Theorem 2.29) and

of Theorem 2.2, to find the unique possible extension of an omnitig. By Theorem 2.25, we can

compute the maximal macrotigs of G in time O(m). We can trivially obtain in O(m) time the

set F of arcs not appearing in the maximal macrotigs. It remains to show how to obtain the

subwalks of the maximal macrotigs univocally extending to maximal omnitigs. We first prove

an auxiliary lemma needed for the proof of the Extension Property.

Lemma 2.28. Let fW be an omnitig, where f is a join arc. Let P be a path from t(P ) = h(W )

to a node in W , such that the last arc of P is not an arc of fW . Then no internal node of P

is a node of W .
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Algorithm 4: Function IsOmnitigRightExtension

1 Function IsOmnitigRightExtension(G, f, g)
Input : The compressed graph G. A join arc f and a split arc g such that there

exists a walk fWg where fW is an omnitig.
Output : Whether fWg is also an omnitig.

2 S ← {g′ ∈ E(G) | t(g′) = t(g) and there is a path from h(g′) to h(f) in G∖ f}
3 return True if S = {g} and False otherwise

Proof. Let PW be the longest suffix of P such that no internal node of PW is a node of W . If

PW = P , the lemma trivially holds. Let now W = (u0, e1, u1, e2, . . . , ek, uk). Let ui = t(PW )

and uj = h(PW ). If i ≥ j, then PW is a forbidden path for fW , a contradiction. Hence, assume

i < j < k. Let f ′WQ be a closed path. Consider the walk Z = PW ej+1 . . . ekQ. Notice that

ei+1 /∈ Z and f /∈ Z. Thus Z can transformed in a forbidden path for fW , from ui to h(f).

Theorem 2.29 (Extension Property). Let fW be an omnitig in G, where f is a join arc. Then

fWg is an omnitig if and only if g is the only arc with t(g) = h(W ) such that there exists a

path from h(g) to h(f) in G∖ f .

Proof. As seen in the proof Lemma 2.14, at least one g exists which satisfies the condition.

Assume g is a split arc, otherwise the statement trivially holds.

First, assume that there is a g′ sibling split arc of g and a path P from h(g′) to h(f) in

G∖f . We prove that there exists a forbidden path for fWg. Let PW be the prefix of P ending

in the first occurrence of a node in W (i.e., no node of PW belongs to W , except for h(PW )).

Notice that g′PW is a forbidden path for the omnitig fWg (it is possible, but not necessary,

that h(PW ) = h(f)).

Second, take any forbidden path P for the omnitig fWg. We prove that there exists a g′

sibling split arc of g and a path from h(g) to h(f) in G∖ f . Notice that t(P ) = h(W ) = t(g),

otherwise P would be a forbidden path for fW . As such, P starts with a split arc g′ ̸= g and,

by Lemma 2.28, P does not contain f . Thus, the suffix of P from h(g′) is a path in G∖ f from

h(g′) to h(f).

Corollary 2.29.1. Algorithm 4 is correct. Moreover, if the graph has constant degree, we can

preprocess it in time O(m) time, so that Algorithm 4 runs in constant time.

Maximal omnitigs are identified with a two-pointer scan of maximal macrotigs (Algo-

rithm 5): a left pointer always on a join arc f and a right pointer always on a split arc g,

recall Figure 2.3. For completeness, Algorithm 5 also outputs the maximal omnitigs.

Theorem 2.30 (Maximal omnitig enumeration). Algorithm 5 is correct and, if the compressed

graph has constant degree, it runs in time linear in the size of the graph and of its output.
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Algorithm 5: Computing all maximal omnitigs

Input : The compressed strongly connected graph G of constant degree.
Output : All maximal omnitigs of G.

▷Assume that AllMaximalMacrotigs(G) returns all the maximal macrotigs in G.
▷Recall that U(W ) is the univocal extension of the walk W .

1 B ← {b | b bivalent arc that does not occur in any W ∈ AllMaximalMacrotigs(G)}
2 foreach b ∈ B do output U(b)

3 foreach f ∗Xg∗ ∈ AllMaximalMacrotigs(G) do

▷With the notation X[f..g], we refer to the subwalk of f ∗Xg∗ starting with the
occurrence of f in f ∗X (unique by Lemma 2.24) and ending with the occurrence
of g in Xg∗ (unique by Lemma 2.24).

4 f ← f ∗, g ← nil, g′ ← first split arc in Xg∗

5 while g′ ̸= nil do
6 while g′ ̸= nil and IsOmnitigRightExtension(f, g′) do

▷Grow X[f..g] to the right as long as possible
7 g ← g′

8 g′ ← next split arc in Xg∗ after g

▷X[f..g] cannot be grown to the right anymore
9 output U(X[f..g])

10 while g′ ̸= nil and not IsOmnitigRightExtension(f, g′) do
▷Shrink X[f..g] from the left until it can be grown to the right again

11 f ← next join arc in f ∗X after f

Proof. By Theorem 2.26, any maximal omnitig W is either of the form U(fW ′g) (where fW ′g

is a macrotig, and thus also a subwalk of a maximal macrotig, by Lemma 2.22), or of the form

W = U(b), where b is a bivalent arc not appearing in any macrotig. In the latter case, such

omnitigs are outputted in Line 2. In the former case, it remains to prove that the external

while cycle outputs all the maximal omnitigs of the form U(fW ′g) where fW ′g is contained

in a maximal macrotig f ∗Xg∗. At the beginning of the first iteration, W = U(X[f..g′]) is

left-maximal since f = f ∗. The first internal while cycle ensures that W = U(X[f..g]) is also

right-maximal, at which point it is printed in output. Then, the second internal while cycle

ensures that W = U(X[f..g′]) is a left-maximal omnitig, and the external cycle repeats.

For the running time analysis, note that AllMaximalMacrotigs(G) runs in O(m) time, by

Theorem 2.25. Each iteration of the foreach cycle takes time linear in the total size of the

maximal macrotig X and of its output (by Corollary 2.29.1), and that the total size of all

maximal macrotigs is linear, by Theorem 2.25.
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2.4.1 Maximal omnitig enumeration for non-constant degree

Given the input strongly connected graph G with m arcs, and non-constant degree, denote by

G′ the graph with constant in-degree and out-degree obtained by applying Transformation 1

and its symmetric transformation. The trivial strategy to obtain the set of maximal omnitigs

of G, given the set of maximal omnitigs G′, is to:

1. Contract in the maximal omnitigs all the arcs which were introduced by Transformation 1.

2. Remove any duplicate omnitig which may occur due to this contraction (i.e., two different

maximal omnitigs in G′ which result in the same walk in the G, after the contraction).

In general, the above procedure may require more than linear time in the final output size,

recall Figure 2.5.

We avoid this, as follows. LetM andM′ denote the set of maximal macrotigs of G and G′,

respectively, and let F and F ′ denote the set of bivalent arcs not appearing in any macrotig,

of G and G′, respectively (recall Theorem 2.1).

First, since G′ has O(m) nodes and arcs, by Transformation 1, then also the maximal

macrotigs M′ have total length O(m), and both M′ and F ′ can be obtained in O(m) time

(Theorem 2.25). FromM′, one can obtainM in time O(m), by contracting the arcs introduced

by the transformation. However, while contracting such arcs, we must keep track of the pair of

arcs (f, g) corresponding to maximal omnitigs, as follows.

We modify Algorithm 5 to also report, for each macrotig X ′ of G′ and for each maximal

omnitig of the form U(X ′[f..g]) (in the order they were generated by the algorithm), the indexes

of the arcs f and g in X ′. We now contract the arcs of X ′ by removing from X ′ every occurrence

of the arcs introduced by the transformation, and updating the indexes of f and g so that they

still point at the first and last arc of the walk obtained from X ′[f..g], after the contraction.

Second, to avoid duplicates, we scan the pair of indexes of f and g along each macrotig, and

remove any duplicated pair (if duplicates are present, they must occur consecutively, and thus

they can be removed in linear time).

Second, the transformations do not introduce bivalent arcs, thus F = F ′. This also implies

that the arcs introduced by the transformation appear either inside macrotigs, or inside univocal

extensions U(·). Having the set of maximal macrotigs M and the new arc pairs (f, g) inside

the maximal macrotigs inM, it now suffices to perform the univocal extensions U(·) inside the
original graph G.



Chapter 3

The Hydrostructure: a Universal

Framework for Safe and Complete

Algorithms for Genome Assembly

3.1 Introduction

The Hydrostructure as a Universal Framework for safety. In this chapter, we show

how to obtain safe and complete algorithms for a plethora of natural genome assembly problems,

as stated in Definitions 1.2 and 1.5 and Remark 1.6, with an entirely new perspective, and a

universal framework for safety, the hydrostructure of a walk (see Section 3.2 for a detailed

definition).

The hydrostructure gives a more structured view of the graph from the perspective of the

walk on which the hydrostructure is built, allowing for simple safety characterization for all

models (see Figure 3.1 and [13]). We characterise, as it is the main focus of thesis, k-circular safe

walks for any given k (where 1 < k <∞), which was mentioned as an open problem in [2], and

prove the equivalence of the k-circular safe problems for all k ≥ 2. The Hydrostructure can also

be used to for single and multiple linear models (mentioned as open problems in [67]), as shown

in [13], an overview is given in Figure 3.1. Moreover, the flexibility of the hydrostructure allows

us to generalize these to the more practically relevant subset covering and visibility models.

Even though the hydrostructure is developed mainly for such arc-covering models, it reveals

a novel fundamental insight into the structure of a graph, which may be of independent interest.

It captures the bridge-like characteristic of a walk for characterizing safety. This distinguishes

the core of a safe walk from its trivially safe extensions on both sides, i.e., along the only way

to reach it or its left wing (if exists), and along the only way forward from it or its right wing

(if exists).

Its water-inspired terminology stems from the standard notions of “source” and “sink”

45 45 45
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Figure 3.1: [Taken from [13]] An overview of the characterizations of safety for non-trivial walks
in our various models. Relationships among the criteria for characterization of different models are
depicted using, (i) EQ implying equivalent criteria, (ii) OR implying criteria is an OR of itself with
that of the source, or (iii) MOD implies the criteria is modified from the source as described. For
simplicity of presentation, the criteria for trivial walks and wings (for linear models) are not included,
despite being simple criteria based on hydrostructure. Note that all characterizations imply that the
Vapor is a path, and hence include being 1-circular safe.

nodes, but in the present case of a strongly connected graph now mimics the water cycle on

Earth. The hydrostructure distinguishes the source part as Sea and the target part as Cloud.

The internal part of the bridge-like walk forms the Vapor, which is the only way water moves

from Sea to Cloud. On the other hand, water can easily move from Cloud to Vapor and from

Vapor to Sea. The residual graph forms the River, which in general serves as an alternate route

for the water from Cloud to Sea. For non-bridge-like walks the hydrostructure trivially reduces

to Vapor being the entire graph, and the remaining components empty. For any walk, we show

that its hydrostructure can be easily computed in linear time, by evaluating the restricted

reachability of the end points of the walk.

Simple characterizations for existing and new problems. For single circular walks, the

previous characterizations identified forbidden paths [67, 14] resulting only in a NO certificate.

Our characterization simplifies it to merely Vapor not being the entire graph, which basically

signifies that the walk is bridge-like, resulting in both YES and NO certificates which are easily

verifiable. For∞-circular safe walks, the previous characterization further required the presence

of a certificate arc [2] forbidding cycles of certain types, resulting in a NO certificate which is

even harder to verify. Our characterization only adds an additional constraint of having a

non-empty River, drastically simplifying the characterization. Note that it is the same for any

given number k ≥ 2 of closed walks, proving their equivalence.

In the subset covering model, the previous characterizations are easily extendable using

more concrete criteria involving the corresponding subset F . In the subset covering model,

the hydrostructure itself is generalized for the corresponding subset F , so that the existing

characterizations can be directly applied without any changes. Finally, for all these problems,
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Safety Previous Results New Results
Problems Verify Enumerate Verify Enum. Trivial Enum. Improved

1-circular O(mn) O(m2n) [67] O(m)∗ O(m2n) -
O(mn) O(mn)∗ [14]
O(m)∗ O(m+ o)∗ Chapter 2

k-circular - - O(m)∗ O(m2n) O(mn)∗

∞-circular O(mn) O(m2n) [2] O(m)∗ O(m2n) O(mn)∗

Table 3.1: A comparison of the previous results for safety problems with the new results trivially
obtained from the characterization, and the improved results. The size of the output is represented
by o. The optimal algorithms are marked by ∗. Optimality is obtained and proved thanks to the
result in section Incremental Computation of the Hydrostructure, in [13]. All the above models can
also be extended to subset covering (see Section 3.4) using the same bounds and to subset visibility
(see Section 3.5) with an additive O(mn) term.

the hydrostructure itself (or in some cases with additional walk cover1) serves as both the YES

and NO certificate.

The simplicity of our characterization motivates us to introduce the problem of verifying

whether a given walk is safe in a model. Despite this problem not being explicitly studied earlier,

the previous characterizations [67, 14, 2] resulted in O(mn) time verification algorithms, which

again depend on the corresponding certificate for the model. In Chapter 2, we presented an

algorithm which can be adapted to a linear-time verification algorithm for 1-circular safe walks,

but it uses complex data structures.

Our characterizations (proved in [13], section Incremental Computation of the Hydrostruc-

ture) are directly adaptable to linear time optimal verification algorithms for almost all of our

models, using simple techniques such as graph traversal. See Table 3.1 for a comparison.

Novel techniques to develop optimal enumeration algorithms. Our verification algo-

rithms can also be adapted to simple O(m2n) time algorithms to enumerate all the maximal safe

walks. Further, using the optimal 1-circular safe algorithm [14] and our new characterization,

we not only improve upon [2] for∞-circular walks, but also make our k-circular safe algorithm

optimal. In order to improve our linear algorithms, in [13], we presented a novel technique to

compute the hydrostructure for all subwalks of a special walk using incremental computation.

Since the linear characterizations are built on top of the 1-circular safe walks, we use the concise

representation of 1-circular safe walks in O(n) special walks, as seen in Chapter 2. At its core,

the incremental computation uses the incremental reachability algorithm [35] requiring a total

O(m) for each special walk. Surprisingly every node and arc can enter and leave River exactly

once during the incremental computation, allowing its maintenance in total O(m) time.

Summarising, the hydrostructure is a mathematical tool which is flexible for addressing a

variety of models (handling different types of genomes, errors, complex or unsequenced regions),

1For simplicity we use the walk cover (a NO-certificate) in our characterization, which have a simple equiv-
alent YES-certificate using maximum arc antichain
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and is adaptable to develop simple yet efficient algorithms. Thus, we believe the various results

shown in this chapter can form the theoretical basis of future complete genome assemblers.

3.2 Hydrostructure

The hydrostructure of a walk partitions the strongly connected graph from the perspective

of the walk; for a bridge-like walk it identifies two parts of the graph separated by the walk,

and gives a clear picture of the reachability among the remaining parts. This allows an easy

characterization in problems (such as safety) that inherently rely on reachability. It is defined

using the restricted forward and backward reachability for a walk, as follows.

Definition 3.1. The restricted forward and backward reachability of a walk W is defined as

• R+(W ) = {x ∈ G | ∃ start(W )-x walk W ′s.t. W is not a subwalk of W ′},
• R−(W ) = {x ∈ G | ∃ x-end(W ) walk W ′s.t. W is not a subwalk of W ′}.

By definition, all nodes and arcs of W (except for its last arc end(W ), since by our conven-

tion the walks start and end in an arc), are always in R+(W ) (and symmetrically for R−(W )).

Further, if a walk is not bridge-like, we additionally have end(W ) ∈ R+(W ) as we will shortly

prove, and R+(W ) extends to the entire graph G due to strong connectivity. Thus, inspired by

the similarity between the water cycle on Earth and the reachability among the four parts of

the Venn diagram of R+(W ) and R−(W ) (see Figure 3.2a), we define the hydrostructure of a

walk as follows.

Definition 3.2 (Hydrostructure of a Walk). Let W be a walk with at least two arcs.

• Sea(W ) = R+(W )∖R−(W ).

• Cloud(W ) = R−(W )∖R+(W ).

• Vapor(W ) = R+(W ) ∩R−(W ).

• River(W ) = G∖ (R+(W ) ∪R−(W )).

Notice that the hydrostructure is defined on walks consisting of at least two arcs: it is,

indeed, meant to answer safety queries and, generally speaking, every arc is safe by definition

(this is not true in some models, e.g., as in the F -visible model, but a single arc query in the

F -model is easy to solve nonetheless). The reachability among the parts of the hydrostructure

mimics the water cycle, which we describe as follows (formally proved later). For any node or

arc in the Sea, the only way to reach the Cloud is by traversing the walk through the entire

Vapor (similar to the evaporation process), as it is shared by both R+(W ) and R−(W ). Thus,

for a bridge-like walk W , the hydrostructure exposes the Sea and the Cloud that are separated

by W in the Vapor.

On the other hand, a node or an arc from the Cloud can directly reach the Vapor (by dissi-

pation), being in R−(W ), and from the Vapor it can directly reach the Sea (by condensation),



Chapter 3. The Hydrostructure: a universal framework 49

being in R+(W ). Finally, the River acts as an alternative path from the nodes and arcs in the

Cloud to the Sea (by rainfall), since the forward reachability from the Cloud and the backward

reachability from the Sea are not explored in R+(W ) and R−(W ).

Properties. The strong connectivity of the graph results in the hydrostructure of an avertible

walk to have the entire graph as the Vapor, whereas the Sea, Cloud, and River are empty. On the

other hand, for a bridge-like walk, the Vapor is exactly the internal path of the walk, resulting

in the following important property for any walk W = aZb.

Lemma 3.3. For a walk W = aZb, Vapor(W ) is the open path Z iff W is bridge-like, otherwise

Vapor(W ) is G.

Proof. We decompose W into aZb, where a and b are arcs. We first prove that if Vapor(aZb)

is not exactly the open path Z, then Vapor(aZb) = G and aZb is avertible. Assume that Z is

not an open path, or Vapor(aZb) contains a node or arc x /∈ Z. We distinguish three cases:

• If Z is not an open path, then it contains a cycle which can be removed to create a walk

from a to b not containing aZb.

• If x = a (or x = b) then by definition R−(aZb) (or R+(aZb)) contains a walk from a to b

that does not contain aZb.

• If x /∈ {a, b}, then by definition of R+(aZb) and R−(aZb), there are paths from a to x

and from x to b that do not contain aZb. And since x is not in aZb, these paths can be

joined together to create a walk from a to b that does not contain aZb.

In each case, there is a walk from a to b that does not contain aZb. And since b is the last

element of this walk, by strong connectivity this walk can be extended within G to reach any

node or arc in G∖Z without containing aZb. By definition, the walk Z is in Vapor(aZb) as well.

So R+(aZb) = G, and by symmetry one can prove that R−(aZb) = G, so Vapor(aZb) = G.

This also makes aZb avertible, since, for any pair x, y ∈ G, every occurrence of aZb in an x-y

walk can be replaced with an a-b walk that does not contain aZb.

We now prove that if Vapor(aZb) is an open path equal to Z, then aZb is bridge-like. Since

Z is an open path, b /∈ Z else it would repeat the node tail(b). However, b ∈ R−(aZb)

by definition, so we have b /∈ R+(aZb), which means aZb is bridge-like because of the pair

(a, b).

Note that the hydrostructure partitions not just the nodes but also the arcs of the graph. The

strong connectivity of the graph and the definitions above result in the following properties of

the parts of the hydrostructure (see Figure 3.2b for the SCCs, and Figure 3.2a for reachability).

Lemma 3.4. The hydrostructure on a bridge-like path aZb exhibits the following properties:

a. (Safety) Every walk from x ∈ Sea(aZb) to y ∈ Cloud(aZb) contains aZb as a subwalk.

b. (Avoidance) Every x ∈ Cloud(aZb) and y ∈ Sea(aZb) have an x-y walk with no subwalk

aZb.
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c. (Separation) a ∈ Sea(aZb) and b ∈ Cloud(aZb).

d. (SCCs) If Sea(aZb) is not just {a}, then Sea(aZb) and the prefix of aZb ending in its

last split-node form an SCC (denoted as the sea-related SCC). Similarly, if Cloud(aZb)

is not just {b}, then Cloud(aZb) and the suffix of aZb starting in its first join-node form

an SCC (denoted as the cloud-related SCC).

e. (Reachability) Let (x, y) ∈ G×G be an ordered incidence pair (arc-node or node-arc) in

G, where x and y are in different components of the hydrostructure of aZb. Then (x, y)

can (only) be associated with the following pairs of components.

• (Vapor,Cloud) where y = b, or (Sea,Vapor) where x = a,

• (Cloud,Vapor) or (Vapor, Sea), where both always occur for non-trivial aZb,

• (Cloud,River) or (River, Sea), where both always occur for nonempty River,

• (Cloud, Sea), where aZb is univocal or R-univocal.

(a) (b)

Figure 3.2: (a): The hydrostructure partitioning of a non-trivial heart aZb in the sets Sea, Cloud,
Vapor, and River using R+(aZb) and R−(aZb). It also shows the membership of the arcs, and the
reachability among the parts. (b): The hydrostructure for a trivial bridge-like walk aZb, with the
sea-related and cloud-related SCC shown using thick green cycles. The River is a DAG of SCCs where
the SCCs are blue cycles.

Proof. We prove the statements in reverse order for simplicity.

(e) We first prove all the incident pairs involving the River(aZb), and then the residual pairs

involving the Vapor(aZb), and finally between Sea(aZb) and Cloud(aZb).

– We show that x, y ∈ (River,Vapor) and x, y ∈ (River,Cloud) do not exist. Since

x ∈ River(aZb), it holds that x /∈ R+(aZb) and therefore x ̸= a. Thus, y ∈ R−(aZb)

(and hence Vapor(aZb) or Cloud(aZb)), implies x ∈ R−(aZb) because of (x, y), as

prepending x (̸= a) does not make aZb a subwalk. This contradicts that x ∈
River(aZb) by definition. By symmetry x, y ∈ (Vapor,River) and x, y ∈ (Sea,River)

do not exist as well.

– For x, y ∈ (Vapor,Cloud) we necessarily have y = b, because x ∈ R+(aZb) would

otherwise add y ∈ R+(aZb), removing it from Cloud(aZb). When y = b we get aZb

as a subwalk, preventing R+(aZb) from covering y. By symmetry, x, y ∈ (Sea,Vapor)

implies x = a.
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– We show that x, y ∈ (Sea,Cloud) implies x = a and y = b, which contradicts our

definition of aZb as being from arc to arc. This is because x ∈ R+(aZb) would add

y ∈ R+(aZb) if y ̸= b, as described above, and symmetrically y ∈ R−(aZb) implies

x = a.

Let x, y ∈ (Cloud, Sea). We prove that if x is an arc then aZb is R-univocal (by

symmetry if y is an arc then aZb is univocal), and hence trivial. Then x ∈ R−(aZb)

but y /∈ R−(aZb), so x = b because each other arc is covered by R−(aZb) using its

head. Assume for a contradiction that aZb contains a join node. Then by strong

connectivity an arc e entering aZb at this join node needs to be (forwards) reachable

from y = head(b), let W be such a walk of minimum length. But then, since

y /∈ R−(aZb), W (being a b-e walk) needs to have aZb as subwalk, which contradicts

that it is minimal.

Where it applies, the necessity of the connections follows from strong connectivity of the

graph since no other connections exist, as proved above.

(d) LetW P be the prefix of aZb ending in its last split node. We show that if Sea(aZb) ̸= {a},
then for every node and arc x ∈ Sea(aZb) with x ̸= a there is a path P in Sea(aZb)

containing x which starts from an arc e with tail(e) ∈ Vapor(aZb) and ends in a. Notice

that tail(e) is a split-node, since P diverges from aZb at e, ensuring that tail(e) is in

W P . This will prove the first part of the statement because it allows to form a cycle

through a and x ̸= a within W P ∪ Sea(aZb), because the path would leave aZb latest at

its last split node to enter Sea(aZb) (using Lemma 3.4 (e)). And this will also prove the

second part by symmetry.

For a node or an arc x ̸= a in Sea(aZb), by definition there is an a-x walk inside R+(aZb)

that does not have aZb as subwalk. Starting from head(a) ∈ Vapor(aZb) this walk exits

Vapor(aZb) into the Sea(aZb) (since R+(aZb) = Vapor(aZb) ∪ Sea(aZb)), with an arc

e having tail(e) ∈ Vapor(aZb). By strong connectivity, there is also a path from x to

a. Notice that both the paths from e to x and from x to a are completely within the

Sea(aZb) because the only arc leaving Sea(aZb) is a, by Lemma 3.4 (e).

This also proves that there exists such a circular path for a if there exists some x ∈
Sea(aZb) ̸= a. For Sea(aZb) = a, we have no split nodes on aZb because R+(aZb) does

not leave aZb. This makes W P = ∅ resulting in no SCC.

(c) By definition, a ∈ R+(aZb) and a /∈ R−(aZb) when aZb is bridge-like, resulting in

a ∈ Sea(aZb). Symmetrically, we prove b ∈ Cloud(aZb).

(b) By strong connectivity, there always exists an x-y path. If such a path contains aZb,

then consider its prefix, say P , that ends at the first occurrence of a. Notice that if
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Sea(aZb) = {a}, then y = a, making P a path from x to y without having aZb as subwalk.

Otherwise, by Lemma 3.4 (d), there is a path from a to every such y ∈ Sea(aZb) which

does not contain b, which when appended to P gives us the desired walk with no subwalk

aZb.

(a) The only way to reach Sea(aZb) from Cloud(aZb) is through Vapor(aZb) (by

Lemma 3.4 (e)) so every path from Sea(aZb) to Cloud(aZb) passes through Vapor(aZb).

Further, Vapor(aZb) can only be entered from Sea(aZb) through a (by Lemma 3.4 (e))

and can only be exited to Cloud(aZb) through b (by Lemma 3.4 (e)), and every such path

contains the entire aZb as subwalk (by Lemma 3.3).

3.2.1 Implementation

To obtain the hydrostructure of a walk W , we need to compute R+(W ) (and symmetrically

R−(W )), with Algorithm 6. Note that R+(W ) for avertible walks is simply G, and for bridge-

like walks is the part of the graph reachable from start(W ) in G∖end(W ). We can identify if

W is avertible while performing the traversal, by checking if the traversal reaches W again after

leaving it. Thereafter, we can easily compute the Sea, Cloud, Vapor and River by processing

each arc and node individually.

Algorithm 6: Forward Reachability

Input: Graph G, non-empty walk W
Output: R+(W )

1 if W is an open path then
2 R′ ← {x ∈ V ∪ E | ∃ start(W )-x walk in G∖ end(W )}
3 if ∄ arc e ∈ R′ : e /∈ W ∧ head(e) ∈ W then
4 return R′

5 return G

In conclusion, we have the following:

Theorem 3.5. The hydrostructure of any walk can be computed in O(m) time.

Proof. Each node and arc can be annotated with its membership in R+(W ) and R−(W ) using

Algorithm 6 and its symmetric variant in O(m) time. It remains to prove the correctness of

Algorithm 6.

• Suppose Algorithm 6 reaches Line 5 and returns G. If W is not an open path, then by

Lemma 3.3 this is correct. Otherwise, if W is an open path, there is an arc e ∈ R′ such

that tail(e) /∈ W ∧head(e) ∈ W ∧e ̸= start(W ). Then, there is a walk from start(W )

via e to end(W ) that does not containW as subwalk, soW is avertible, and by Lemma 3.3

it follows that outputting G is correct, because G = Vapor(W ) ⊆ R+(W ) ⊆ G.
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• Suppose Algorithm 6 reaches Line 4 and returns R′. Then for that to be correct, by

Lemma 3.3 W must be bridge-like and R′ must be equal to R+(W ).

Assume for a contradiction that W is avertible. Then by Lemma 3.3 it holds that

Vapor(W ) = G, and therefore R+(W ) = G. Hence, by definition of R+(·), there is a

start(W )-end(W ) walk W that does not have W as subwalk. Such a walk leaves W

before reaching end(W ) to avoid having W as subwalk. But then it must enter W again

at an arc e other than start(W ) before it reaches end(W ) for the first time. Therefore,

e ∈ R′ and it holds that e /∈ W and head(e) ∈ W . But then the condition in Line 3

would be false and Algorithm 6 would not reach Line 4, a contradiction.

Therefore, W is bridge-like, and it remains to prove that R′ = R+(W ). (⊆) Let x ∈ R′.

Then there is a start(W )-x walk in G∖ end(W ), so x ∈ R+(W ). (⊇) Let x ∈ R+(W ).

Then there is a start(W )-x walk in G that does not contain W as subwalk. This walk

cannot contain end(W ), since otherwise one of its prefixes until end(W ) would prove

end(W ) ∈ R+(W ), contradicting Lemma 3.4 (c). So x ∈ R′.

3.3 Safety in Circular Models

In the circular models the heart of a walk determines its safety, as the univocal extension of a

safe walk is naturally safe. Therefore, every trivial walk is naturally safe because of the covering

constraint for any arc in its heart, which can be univocally extended to get the whole walk.

A non-trivial walk W with a bridge-like heart is safe as well, as every circular arc-covering

walk contains all bridge-like walks by definition. If on the other hand Heart(W ) is avertible

(having Vapor(W ) = G), then a walk can cover the entire graph without having Heart(W )

as subwalk, making it unsafe by definition. Thus, the characterization for circular safe walks

(Definition 1.2) is described in the following lemmata:

Theorem 3.6 (1-Circular). A non-trivial walk W is 1-circular safe iff Vapor(Heart(W )) is a

path.

Proof. (⇒) Let Vapor(Heart(W )) not be a path. Let aZb := Heart(W ), a′ be a sibling join arc

of a and b′ be a sibling split arc of b. Then, by Lemma 3.3, aZb is avertible. We prove that

aZb is not 1-circular safe by constructing a circular arc-covering walk C that does not contain

aZb. Let P be a a′-b′ walk such that aZb is not a subwalk of P , which exists since aZb is

avertible. Let C ′ be an arbitrary circular arc-covering walk of G. If C ′ does not contain aZb

the claim holds, otherwise consider C obtained from C ′, by replacing every aZb subwalk with

aZPZb. Concluding, since aZb is not 1-circular safe, it holds that W is not 1-circular safe.

(⇐) Let Vapor(Heart(W )) be a path. Then Vapor(Heart(W )) is not the whole G. Moreover,

by Lemma 3.3, Heart(W ) is bridge-like, so there are x, y ∈ G such that each x-y walk has

Heart(W ) as a subwalk. Therefore, since every circular arc-covering walk C in G contains both
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Figure 3.3: In the absence of the River, the two cycles (shown in thick green) can cover the
cloud-related and sea-related SCCs of a non-trivial Heart without having aZb as subwalk.

x and y and hence a subwalk from x to y, Heart(W ) is a subwalk of C (and hence 1-circular

safe). Further, since C is circular, the whole W is 1-circular safe, as Heart(W ) can only be

traversed by also passing through its univocal extension.

Now, for k ≥ 2, a single circular arc-covering walk can be repeated to get k circular arc-

covering walks, implying that every k-circular safe walk is 1-circular safe. For the k-circular

safety of a non-trivial walk W , an added issue (see Figure 3.3) is that two different circular

walks can cover the sea and cloud-related strongly connected components. However, this is not

possible if these components do not entirely cover the graph, i.e. the River is not empty. Thus,

we get the following characterization.

Theorem 3.7 (k-Circular). A non-trivial walk W is k-circular safe for k ≥ 2, iff

Vapor(Heart(W )) is a path and River(Heart(W )) is non-empty.

Proof. (⇒) We first prove that W is not k-circular safe if Vapor(Heart(W )) is not a path or

River(Heart(W )) is empty.

• If Vapor(Heart(W )) is not a path, then using Theorem 3.6 W is not 1-circular safe, that

means there is a circular arc-covering walk C not containing W . Thus, a collection of k

copies of C is also arc-covering not containing W , proving that W is not k-circular safe.

• If Vapor(Heart(W )) is a path, and River(Heart(W )) is empty, we can prove that W is not

k-circular safe for k ≥ 2 because for a non-trivial W it holds that Cloud(Heart(W )) ∪
Vapor(Heart(W )) and Sea(Heart(W )) ∪ Vapor(Heart(W )) are each strongly connected.

Thus, two different walks can separately cover them as River(Heart(W )) is empty.

We only prove that Cloud(Heart(W ))∪Vapor(Heart(W )) is strongly connected as the other

follows by symmetry. Since W is non-trivial, Heart(W ) starts with a join arc a and ends

with a split arc b. If Cloud(Heart(W )) = {b} then clearly it is the join sibling of a, making

Cloud(Heart(W )) ∪ Vapor(Heart(W )) a cycle and hence strongly connected. Otherwise, if

Cloud(Heart(W )) ̸= {b} then the strong connectivity follows by Lemma 3.4 (d).
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(⇐) If Vapor(Heart(W )) is a path then Heart(W ) is bridge-like by Lemma 3.3. If

River(Heart(W )) is not empty, since the graph is strongly connected we can enter

River(Heart(W )) only from Cloud(Heart(W )) (by Lemma 3.4 (e)) using some arc. Hence, ev-

ery walk covering this arc requires a subwalk from River(Heart(W )) to Cloud(Heart(W )), which

passes through Sea(Heart(W )) (by Lemma 3.4 (e)). Using Lemma 3.4 (a) we get that this

subwalk necessarily contains the walk W making it k-circular safe.

Notice that our characterization does not distinguish between k when k ≥ 2, implying

that all the problems of (k ≥ 2)-circular safety are equivalent. These characterizations can

be directly adapted for an optimal verification algorithm, by computing the hydrostructure

for the given walk in linear time. This also results in O(m2n) time enumeration algorithms

using the two pointer algorithm on a simple circular arc-covering walk of length O(mn) (see

Section 3.3.1). Moreover, using the optimal O(mn) time 1-circular safe algorithm [14], the

maximal k-circular safe walks can also be optimally enumerated in O(mn) time, by computing

the hydrostructure for O(n) non-trivial 1-circular safe walks (Theorem 1.8 (b)) and using an

interesting property of 1-circular safe walks that are not k-circular safe. See Section 3.3.1 for

more details on the implementation.

The following property proved to be necessary for our efficient algorithm to compute k-

circular safe walks.

Lemma 3.8. Let k ≥ 2. For a 1-circular safe walk W = XHeart(W )Y where Heart(W ) = aZb,

if W is not k-circular safe then XaZ and ZbY are k-circular safe walks.

Proof. By symmetry of the statement, we only prove that if W is a 1-circular safe walk of

G that is not k-circular safe then XaZ is a k-circular safe walk of G. This also implies that

Q is non-trivial otherwise it is implicitly k-circular safe. Further, being a subwalk of the 1-

circular safe W makes Q := XaZ also 1-circular safe. Let Heart(Q) = aZ∗b∗, which is either

aZ or a prefix of aZ. Since aZb is a non-trivial heart, there exists a sibling split arc b′ of

b. We claim that for any such sibling b′, we have b′ ∈ River(aZ∗b∗), which is equivalent to

b′ /∈ R+(aZ∗b∗) ∪R−(aZ∗b∗).

Now, aZ is bridge-like (since aZb is bridge-like), so each start(aZ)-end(aZ) walk has aZ

as subwalk. Since end(aZ) = tail(b′) it follows that each a-b′ walk has aZ as subwalk, and

hence its prefix aZ∗b∗. Thus, b′ /∈ R+(aZ∗b∗). Further, we know that b′ ∈ Sea(aZb) as it is

surely in R+(aZb) (by definition) and not in Vapor(aZb) (for bridge-like aZb by Lemma 3.3).

So any path from b′ to b∗ ∈ Vapor(aZb) surely enters Vapor(aZb) through a (by Lemma 3.4 (e)).

Hence it has aZ∗b∗ as a subwalk since Vapor(aZb) is a path and aZ∗b∗ is a prefix of aZb. Thus,

b′ /∈ R−(aZ∗b∗).

Thus b′ /∈ (R+(aZ∗b∗) ∪ R+(aZ∗b∗)) implying that b′ ∈ River(aZ∗b∗), and by Theorem 3.7

that aZ∗b∗ is k-circular safe. Therefore, since Heart(XaZ) = aZ∗b∗, we conclude that XaZ is

k-circular safe. By symmetry ZbY is also k-circular safe.
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3.3.1 Implementation

The characterization can be directly adapted to get a verification algorithm for evaluating

whether a given walk is safe in 1-circular and k-circular models. A trivial walk W is easily

identified in O(|W |) time by checking for univocal walks. For a non-trivial walk W the hy-

drostructure can be computed in linear time (Theorem 3.5) and the characterization can be

verified in O(|W |) time resulting in an O(m) time verification algorithm for both 1-circular safe

and k-circular safe walks.

Since every trivial walk is 1-circular safe and k-circular safe, they can be enumerated by

computing univocal extensions of each arc in O(mn) time. For reporting all non-trivial maximal

1-circular safe and k-circular safe walks, we use the two pointer algorithm on a candidate

solution. A candidate solution can be computed by arranging the m arcs in some circular order,

and adding the shortest path between adjacent arcs to complete the closed arc-covering walk of

size O(mn). To get an arc-covering solution made up of k closed walks, we can have k identical

copies of this O(mn)-size walk. Now, using the two-pointer algorithm (Theorem 1.8 (a)) on one

of these identical walks, with the above linear time verification algorithm we can enumerate all

non-trivial maximal 1-circular safe and k-circular safe walks in O(m2n) time.

Alternatively, non-trivial k-circular safe walks can computed using non-trivial 1-circular

safe walks in O(mn) time. This is because the number of non-trivial 1-circular safe walks is

O(n) (Theorem 1.8 (b)). Computing their hydrostructure in O(m) time either verifies them to

be k-circular safe or its two subwalks as k-circular safe (using Lemma 3.8). Hence, using the

O(mn) time optimal 1-circular safe algorithm [14] we directly obtain the following result.

Theorem 3.9. Given a strongly connected graph with m arcs and n nodes, all the maximal

k-circular safe walks can be reported in O(mn) time.

3.4 Safety in Subset Covering Models

The subset covering models reduce the covering constraint to only a subset F ⊆ E instead of

the entire E. Note that this implies that any walk which is a solution in the E-covering model

is also a solution in the F -covering model, but we can have walks which are not E-covering but

F -covering. Thus, every F -covering safe walk is E-covering safe. Furthermore, if F is empty

then no walk is safe, so in this section we assume F ̸= ∅.
Note that, in contrast to the E-covering models, in the F -covering models, a single arc is not

trivially safe. So in order to characterise their safety we extend the definition of hydrostructure

for single arcs, by splitting the arc using a dummy node. Thus, a single arc can be treated as

a walk with two arcs, for which the hydrostructure is already defined.

We call an arc in F an F -arc and a part of the graph F -covered if an F -arc belongs to

it. Also, for a bridge-like walk, we define the F -covered SCCs, which are the maximal SCCs
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of its River, and the sea- and cloud-related SCCs (see Lemma 3.4 (d)) that are F -covered.

Similarly, for an avertible walk, the F -covered SCC is G. Furthermore, the F -covered sea and

cloud-related SCCs are counted as one if they share all their F -arcs.

3.4.1 Circular Models

A trivial walk W is circular safe if Heart(W ) is F -covered.

For bridge-like walks, the issue with F -covering circular walks is that a set of cycles can

cover the entire F if it is covered by some F -covered SCCs, making the walks unsafe. This is

not possible if an arc in F exists outside the F -covered SCCs, or the number of such SCCs are

more than k. To prove the following we first state a result from [13].

Lemma 3.10. For a trivial avertible walk aZb in a strongly connected graph G, the graph

G∖ Heart(aZb) is also strongly connected.

Theorem 3.11 (Circular F -Covering Safety). For F ⊆ E a 1-circular safe walk W that con-

tains at least two arcs is k-circular F -covering safe iff for the hydrostructure on W (for trivial)

or Heart(W ) (for non-trivial) it holds that

(a) k is less than the number of F -covered SCCs, or

(b) there exists an F -covered arc in the River, that is not in any SCC of the River, or

(c) W has an F -covered trivial heart.

Proof. (⇒) Assume that k is greater than or equal to the number of F -covered SCCs, there

exists no F -covered arc in the River, that is not in any SCC of the River, and W does not have

an F -covered trivial heart. We distinguish between W being trivial avertible, trivial bridge-like

or non-trivial.

• If W is trivial and avertible but does not have an F -covered trivial heart, then by

Lemma 3.10 all arcs in F can be covered by a single circular walk without traversing

Heart(W ). Thus, W is not k-circular F -covering safe.

• If W is trivial and bridge-like or non-trivial (in which case Heart(W ) is bridge-like by

Theorem 3.6), then all arcs in F are in F -covered SCCs. Indeed arcs in the River are in

F -covered SCCs by hypothesis; arcs in the Cloud or Sea are relatively in the F -covered

cloud-related SCC or sea-related SCC; arcs in the Vapor of non-trivial walks are both in

the sea-related SCC and cloud-related SCC; and for trivial walks the arcs in the Vapor

that are neither in the cloud-related SCC nor in the sea-related SCC are in the trivial

heart by definition, which does not contain arcs in F by hypothesis. Therefore, since all

arcs in F are in F -covered SCCs and we have at most k F -covered SCCs of which none

contains the whole walk W , it follows that F can be covered with k walks not having W

as subwalk, hence W is not k-circular F -covering safe.
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(⇐)

• If W has an F -covered trivial heart then it is k-circular F -covering safe.

• If k is less than the number of F -covered SCCs, then at least one solution walk needs to

intersect two SCCs. We need to distinguish three cases: (A) if these are sea-related and

cloud-related (in which case the sea-related SCC and the cloud-related SCC do not share

all their F -arcs), (B) if one is in the River and the other is sea-related or cloud-related,

or (C) if both are in the River. In all cases, Lemma 3.4 (e) implies that this solution

walk needs to traverse from Sea to Cloud, which by Lemma 3.4 (a) implies the k-circular

F -covering safety of W . In case (C) this is because the River is not strongly connected if

there is more than one maximal SCC.

• If there exists an F -covered arc in the River, that is not in any SCC of the River, then

the River is not strongly connected. Therefore, to cover this arc with a circular walk, the

River needs to be exited and entered, which by Lemma 3.4 (e) implies that a solution walk

covering this arc needs to traverse from Sea to Cloud, which by Lemma 3.4 (a) implies

the k-circular F -covering safety of W .

3.5 Safety in Subset Visibility Models

In subset visibility we limit the solution of the problem to its visible arcs. We thus define

visF (W ) as the substring of a walk W that belongs to F . Note that this does not change the

solution of the problem but only its representation, which is now limited to the visible set F .

So if a walk W is a solution in the E-visible model for a problem, then we have visF (W ) is

a solution in the F -visible model for the problem, where F ⊆ E. Abusing notation we also

simply say that W is a solution for the F -visible model of the problem.

However, note that the safe solutions ignore the non-visible part of the walk to compute

safety. For example Theorem 3.6 relaxes to the visible part of Vapor(Heart(W )) to being a

single sequence of arcs (possibly disconnected). Henceforth, we shall continue to refer to such

a sequence as a visible path despite being disconnected. Thus, relaxing the criteria for safety

implies that even though the F -visible solution for a problem is the same as the E-visible

solution, we have that every E-visible safe walk is F -visible safe but not vice-versa. As a

result, in order to characterise the safety in the F -visible model, we relax the definition of the

hydrostructure by relaxing the forward and backward reachability of a walk as follows:

Definition 3.12. For a walk W where end(W ), start(W ) ∈ F , we define the restricted

forward and backward F -visible reachability as

• R+
F (W ) = {x ∈ G | ∃ start(W )-x walk W ′ : visF (W ) not subwalk of visF (W

′)},
• R−

F (W ) = {x ∈ G | ∃ x-end(W ) walk W ′ : visF (W ) not subwalk of visF (W
′)}.
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Notice that the modified hydrostructure is merely more relaxed in terms of the Vapor. For

the F -visible model, Lemma 3.3 relaxes the criteria of the Vapor being more than a single path,

to having a single visible path (see Figure 3.4). Similarly, the properties of the hydrostructure

are adapted by considering visF (W ) instead of W .

Figure 3.4: A non-trivial visible walk with visible heart in green, and visible wings in violet
and red, where the dotted arcs are invisible.

The visible wings of a walkW l
F andW r

F and the visible heart HeartF (W ) require visible splits

and visible joins in terms of only visible arcs possibly having invisible arcs (or even subgraphs)

between them. Thus, for arcs e, f ∈ F we consider (e, f) as adjacent if there exists a path from

head(e) to tail(f) in G∖ F .

3.5.1 Implementation.

In order to present the verification and enumeration algorithms for any model, it is sufficient to

describe the computation of the hydrostructure. The only difference from Section 3.2 is that we

shall now be using visible adjacency and hence visible splits and joins. In order to compute these

efficiently we pre-compute the all-pairs reachability among endpoints of arcs in F in G ∖ F .

This can be computed performing a traversal (BFS or DFS) from the k endpoints of arcs in F

in O(mk) time, where k ≤ min(n, |F |). Thus, all the previous algorithms are adaptable in the

F -visible model with an added expense of O(mn).
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