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Abstract. We consider a finite difference approximation of mean curvature flow for axisymmetric
surfaces of genus zero. A careful treatment of the degeneracy at the axis of rotation for the one-
dimensional partial differential equation for a parameterization of the generating curve allows us to
prove error bounds with respect to discrete L?- and H'-norms for a fully discrete approximation.
The theoretical results are confirmed with the help of numerical convergence experiments. We also
present numerical simulations for some genus-0 surfaces, including for a nonembedded self-shrinker
for mean curvature flow.

Key words. mean curvature flow, axisymmetry, finite differences, error analysis, self-shrinker
AMS subject classifications. 65M60, 65M12, 65M15, 53C44, 35K55

DOI. 10.1137/20M1374584

1. Introduction. Consider a family of surfaces (S(t))ic,r] C R? evolving by
mean curvature flow, i.e.,

(1.1) Vs = kp, on S(¢).

Here, Vs denotes the normal velocity of S(t) in the direction of the normal (), and
kp, is the mean curvature of S(t), i.e., the sum of its principal curvatures. As the
L2-gradient flow for the area functional, (1.1) is one of the most important geometric
evolution equations with applications in materials science and image processing. We
refer the reader to [12, 17] for an introduction and important results of mean curvature
flow.

In this paper we are concerned with the numerical approximation of solutions of
(1.1) using a parametric approach. If X Mx [0,T) — R? is a family of embeddings
such that S(t) = X(M, t), then (1.1) is satisfied if )?t o X1 = kmUs(t) on S(t). Mak-
ing use of the fact that the mean curvature vector k,,s(;) can be written as As(t)ia,
where Agq) denotes the Laplace-Beltrami operator on S(t), Dziuk [10] suggested a
finite element method in order to approximate solutions of (1.1). While this approach
has been widely used in the following years, the numerical analysis of the method re-
mained open. Only recently, Kovécs, Li, and Lubich [16] obtained error estimates for
a parametric approach that uses not only the position X but also the mean curvature
and the normal as variables. Both approaches are based on evolution equations in
which the velocity vector points purely in normal direction, which may lead to degen-
erate meshes at the discrete level. A way to tackle this issue is to introduce a suitable
additional tangential motion in such a way that mesh points are better distributed
on the approximate surface. Corresponding schemes have been suggested by Barrett,
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Garcke, and Niirnberg [4], as well as by Elliott and Fritz [13], using DeTurck’s trick.
For the approach from [13], error bounds for a finite difference scheme in the case
of surfaces of torus type have recently been obtained in [18]. For more details on
the numerical approximation of geometric evolution equations we refer to the review
articles [8, 6].

In what follows, we are interested in the case that the evolving surfaces are ax-
isymmetric with respect to the xq-axis; i.e., we assume that there exists a mapping
Z(-,t) : [0,1] = R>¢ x R such that

S(t) = {(a’c’(p, t)- & cosb, E(p,t) - &, F(p,t) - E1sinf)” : pe0,1],0 € [0,27r]} .

As shown in [5, 2], the law (1.1) translates into the following evolution equation for
the curves (I'(t));e[0,r) parameterized by (-, t):

S o v-é
(1.2) PRy
€T - ex
where ¥/ is a unit normal to I'(¢) and > = - ¥/ denotes curvature with 3 = ﬁ(‘;ﬂ—”l)p
P P

the curvature vector. We note that without the last term on the right-hand side of
(1.2), the problem collapses to the curve shortening flow,

(13) ft U= >,

which is the analog of (1.1) for curves. Since the relations (1.2) and (1.3) only prescribe
the normal velocity, there is a certain freedom in choosing the tangential part of the

velocity vector. Setting the tangential velocity to zero for (1.3) leads to the formulation

1
||

element approximation of it have been obtained by Dziuk [11]. On the other hand,

Ty = (‘;;"—”l) »» and optimal error bounds for a semidiscrete continuous-in-time finite
P
an application of DeTurck’s trick gives rise to the formulation #; = ;ﬁ for the

classical curve shortening flow. An error analysis for a corresponding semidiscrete
finite element scheme has been first presented in [7], and this was later extended in

[13] to the family of problems a@; + (1 — o) (Z; - V)V = é%, a € (0,1]. Inspired by
the ideas in [7], the present authors in [2] applied DeTurck’s trick to the flow (1.2) to
obtain the system

(1.4) B oy
|| €T-e1

cf. [2, equation (1.7)]. Note that (1.4) is strictly parabolic and that a solution of (1.4)
satisfies (1.2). The difference to the curve shortening flow consists in the presence of
the term g:g, which is the principal curvature related to the parallels of S(¢). It is
possible to rewrite (1.4) in the following divergence form,

(L5) E- |58 = (& @)F,), — |54,

giving rise to a natural variational formulation. On the basis of this weak formu-
lation, a semi-implicit scheme using piecewise linear finite elements in space and a
backward Euler method in time was suggested by the authors in [2]. In particular, in
[2, Theorem 2.2] optimal error bounds both in H! and L? are obtained in the case of
genus-1 surfaces. While the numerical method still performs well also for genus-0 sur-
faces, it is, however, not possible to apply the employed analysis to genus-0 surfaces.
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The reason for the additional difficulties in the genus-0 case comes from the different
properties of the curves I'(t): for genus-1 surfaces, I'(¢) is a closed curve satisfying
Z-€; > 0 on [0,1] so that this term is bounded strictly from below on compact time
intervals, thus simplifying the analysis. In contrast, a description of a genus-0 surface
in our setting requires T'(¢) to be open with its endpoints lying on the xs-axis, which
means that Z- € = 0 at the endpoints of the interval [0,1]. Furthermore, in order
to guarantee smoothness of the surface S(t), the curve I'(¢) has to meet the zo-axis
at a right angle. In order to formulate the resulting initial boundary problem, it is

convenient to rewrite (1.4). To do so, we choose 7 = 7+ with the unit tangent 7 = ép\
P

and -1 denoting a clockwise rotation by 5. Observing that

1 1
(7-&)i= CraA ors

- — (7 o A
FE e AT = e f)

Tp - €2

we are led to the following system:

LT 1 Zy-é 1 .
(1.6a) Ty = =20 — £ in (0,1) x (0,71,
|Zp? |T,* T-en 7
(1.6b) Fod=0,%,-8=0 on {0,1} x [0, 7).

Since Z(p,t) - €1 — 0, as p — po € {0,1}, the last term in (1.6a) needs to be treated
with care. Using the boundary conditions (1.6b), it is shown in (A.3) in Appendix A,
with the help of L’Hospital’s rule, that

lim |—— - — T = —=
2 |0 OF T pt) 5 7 Z,0,67

L a0 ) B0 G

so that the expression acts like a second order operator close to the boundary without
affecting the parabolicity of the problem. Nevertheless, the different behavior of g::i
in the interior and close to the boundary is a major problem for the analysis of a
numerical scheme. Rather than using the variational form (1.5) that worked well for
genus-1 surfaces, we shall introduce a scheme which directly discretizes (1.6a) with
the help of finite differences. Our main result are optimal error bounds measuring the
error in discrete versions of the usual integral norms.

The paper is organized as follows. In section 2, we formulate our assumptions
on the solution of (1.6) and derive a number of properties that will be used in the
error analysis. In the second part, we introduce our numerical scheme and provide
an estimate for the consistency error. Section 3 is devoted to the proof of our main
error estimates, which include an O(h? 4+ At) bound for a discrete H!-norm. Finally,
in section 4 we present the results of several numerical simulations.

We end this section with a few comments about notation. Throughout this paper,
C denotes a generic positive constant independent of the mesh parameter h and the
time step size At. At times ¢ will play the role of a (small) positive parameter with
C. > 0 depending on € but independent of h and At.

2. Finite difference discretization.

Assumption 2.1. Let & : [0,1] x [0,T7] — R>o x R be a solution of (1.6) such
that 0077 exists and is continuous on [0,1] x [0, 7] for all i,j € No with 2i 4 j < 4.
Furthermore, we assume that Z,(p,t) # 0 for all (p,t) € [0,1] x [0, T}, as well as

(2.1) #-é >0 in (0,1) x [0,7].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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It is beyond the scope of this paper to prove the existence of a solution to (1.6) with
the above regularity. We note, however, that the well-posedness of the corresponding
problem, in the case that the curves I'(¢t) can be written as a graph, was recently
studied in [14].

Let us collect a few properties of the solution which will be used in the error
analysis. To begin, there exist constants 0 < ¢y < Cp such that

(2.2) co < |7,| < Cy in [0,1] x [0, 7.

Recalling (1.6b), we infer that Z,(0,t) - €1 > co,Z,(1,t) - €1 < —cp, which together
with (2.1) implies that there exist ¢; > 0,6 > 0 with

(2.3a) T, € >1%co in0,6] x [0,T],
(2.3b) T, €1 < —%co in[l1—46,1]x[0,7],
(2.3¢) Fé >c in [26,1— 36] x [0, 7.

Let us formally describe how this observation can be translated into an estimate on
the solution. If we multiply (1.6a) by —&,, and integrate over [0,1], we find, upon
integration by parts and observing from (1.6b) that &, -Z, = 0 on {0,1} x [0, T, that

d [t Yz,,? Yoz,
(2.4) %5/0 |xp|2dp+/0 - dp—/o ;7# S Tppdp=0.

Zpl? |Z,]?

1
Since (1.6b) implies % ~ —& on [0,0], we can rewrite the third term on [0, d],

while noting (2.2) and (2.3a), as

(2.5)
5 N
1 p €2 1
) TR Fa e T de
é = — S
1 Z,-€ 1/ 1 1 & o9
~ ST S S & €y dp =3 =7 > 35 |\@ 2 d
/0|$p| T e P=3 o 7] 7 1[(p )]p p
5 5o o /o o 5 » o S o
:é[} _'1_‘ (fp'_'2)2:| +%/ xP_: 1(;{{).—?222(1/)—"%/ xp_:xgpp( 2'32)2 dp
|Zp| T €1 0 o 1% (@-é o 1%l T e
5 1o o 5 = o o
leO ( p €2 § dp+l/ Lo Tpp ('TP 62)2 dp
_400 0 (f'€1>2 2 o ‘fp| f'_'l )

so that we obtain L?—control of ?;12 close to 0. A similar calculation applies close to
1, while the denominator Z - € is bounded away from 0 on [d,1 — §] in view of (2.3c).
Our aim is to mimic this argument within the error analysis (cf. Lemma 3.4). To do
so, we will directly discretize (1.6a) using a finite difference scheme, and the discrete
analog of the above estimate is then obtained by multiplying with a suitable second
order finite difference.

In order to define our finite difference scheme, let us introduce the set of grid
points Gy, = {qo,¢1,...,qs}, where g; = jh and h = %,j =0,...,J. For a grid
function ¥ : G, — R? we write ¥; := 9(g;j), j = 0,...,J. Furthermore we associate
with ¢ the following finite difference operators:
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TR P
(2.6a) 070 = %, i=1,...,J;
(2.6b) 67T 1= 0 = =0, -1
(2.6¢) §'0; = L(61T; + 67 0) = % =1, —1;
ST — 6~ 0 i — 20 + T
(2.6d) 52y = 0 - T h”;”? L S R

Two grid functions v and W satisfy the following summation by parts formula:

J J—1
(2.7) hY 6706 = —h Yy T 8% + Uy - 6y — 1 - 5.
j=1 j=1

In addition, we introduce the following discrete norms and seminorms:

J—1 J
(2.8) (18,0 = 3hIT0l + R Y [T17 + 5hIGs % [T, = k) 1675
j=1 j=1
J—1
19115 = 1918 5 + (91305 013, = R D 16°T17.
j=1

We also recall the following inverse inequality, as well as a discrete version of a well—
known Sobolev type inequality.

LEMMA 2.2. Let ' : G, — R2 be an arbitrary grid function. Then

1
. O .
(2.9) max |07 0| < h7E [T,
- 12 =12 —| |
(2.10) omax [Uk[" < [0]o,n + 2{Ulo.n|0]1.n,
(2.11) max |67 0 [* < [0} 5, + 2/001, [Tz,

In addition, if vy - €, = Uy - €1 =0, then

: 5 - &1| < 2¢;(1— g -7 <j<J
(2.12) v - e1] < 2¢;(1 q])lglléiéjw vpl, 0<j<J

Proof. The inverse inequality (2.9) follows immediately from the definition (2.8).
Let 0 < k < J. For 0 < 5 <k it follows from (2.6b), the elementary inequality

(a+b)?<2(a*+b?), a,beR,

and (2.8) that

k—1 k—1
213) [ = 5 + (1T | = [8*) = |57 + B Y (Ter + ) - 6445
=3 =j

2

k—1
<GP+ V2 2D (e l? + 15 | |5ln < 1551 + 215]0,1|5]1n-
=
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Similarly, for £+ 1 < j < J, we have

j—1
(2.14) [Gl® = 557 =Y (1T [ = |8*) < |55 + 2|7
=k

0,210)1,n-

Combining (2.13) and (2.14) yields that maxo<x<, |0k|* < [0;]* + 2|T]o,n|0]1,n for
0 < j < J. Multiplication by % for j =0,J and by h for 1 < j < J — 1 followed
by summation over j =0,...,J yields (2.10). The inequality (2.11) is obtained in an
analogous manner, taking into account that §+6~7; = §%4;.

In order to prove (2.12), we observe that ¥y - € = Uy - €1 = 0 implies

J
c o< — <5 - N -
| 61|7hk§_1 [0~ | < jh 1r§r1ka§xJ|5 x| and |U;-é1]| < (J—j)h 11;1]?%(J|5 Uk

so that

v; - €| < min{g;, 1 — g; “O] < 2¢(1 — g 7 <j<J
|05 é1] < min{gj, 1 —gq;} max 070k < 2g;(1 —¢;) max [070x), 0<j<J g

We consider the following fully discrete approximation, where in order to discretize
in time, we let t,, = mAt, m = 0,..., M with the uniform time step At = % > 0.
Let X9 = #(q;), j =0,...,J. Then, for m =0,...,M —1 find X™ : G, — R? such
that for j=1,...,J -1

Xl Xmo grgmit R Ry
(2.15a) J Rl E . S (Xt
At SXTRBXPR X7a

together with the boundary conditions,

ot e
Xptt— Xmo

(2.15b) Xgttai=0, STXPT g = Jhst XY PR e,
> > i Xy = X
(2.15¢) Xptlhogr =0, 0 Xpt &= —ih\é‘XTFJTt‘] - €.

The above scheme requires the solution of a linear system in each time step. We
will address the existence and uniqueness of this system in section 3 within the error
analysis. Furthermore, we remark that (2.15b) and (2.15c¢) are obtained from inserting
(1.6a) and (1.6b) into a Taylor expansion at p € {0, 1}, yielding a consistency error
that is small enough to derive optimal error bounds. At the same time, the form
of these conditions turns out to be crucial in order to handle the degeneracy of the
equation close to the axis of rotation.

LEMMA 2.3 (consistency). Suppose that & : [0,1] x [0,T] — R? satisfies As-
sumption 2.1. Let F7* := ¥(qj,tm) for j = 0,...,J and m = 0,..., M. Define the
consistency errors of the finite difference scheme (2.15) by
(2.16a)

R’m—i-l _ frjnJrl _ f;n - (52frjn+1 . 1 515“;,”+1 - €9 (513‘;“f,”)l << -
J At oLz SR e i) )
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as well as
gmtl _ gm
(2.16b) Ryt = Tt & — phlst a8,
Fyl — gy
(2.16¢) Ry =57t & 4+ th|oa Pl 8.

At
Then there exists a constant C > 0 such that, form=0,..., M — 1,
(2.17)
R <o (WP+At), j=1,....J=1, and |RGT'+|R}T < Ch(h*+At).
Proof. Simple Taylor expansions yield the well-known results:

Fmtl _ gm

(2.18a) Jth—ft(qj7tm) <CAt, 0<j<J 0<m<M-1,
(2.18b) 0= & — Z,(qj,tm)| < Ch, 1<j<J 0<m<M,
(2.18c)

|51f5‘n - fp(qjvtM)‘ + |525’jn - fpp(qjatm)‘ < ChQ’ 1<7<J-1,0<m< M,
(2.18d)

S'E — Ep(qy,tm) — g Fppp(a tm) = O(R?), 1<j<J—1,0<m <M,

where we have observed that #(g;, ) € C?([0,T]) and Z(-,t,,) € C*([0,1]). Evaluating
(1.6a) at (p,t) = (gj,tm), j=1,...,J —1,m=0,...,M — 1, we find that

- T (Qj7 tm) 1 fp(‘]ﬁ tm) . 52 o1
(2.19) Ti(qy,tm) = =22 - = V2 3 (g t),
e ‘xp(Qﬁtm)P |33p(Qj7tm)|2 j’;”.el p AT

where the assumed regularity of # allows us to use (1.6a) also at time ¢ = 0. If we
combine (2.16a) with (2.19) and note (2.18a) as well as (2.18c), we obtain

+1 2 2m+1 .
e) s | T |+ | S Twltnte)
: j — ybm =
! At ! 16172 [Z,(g5,tm)[?
+ |‘fp(qj7tm) i €2‘ (515T)J_ . fj_(qwtm)
S| 0L 2 [ Zp (g5, tm) P
L L@ -5 t) <@
|(51:E';-”| f}” - €1
ST — 2 (i tm)) - €
SC(h2+At)+C|( Sl m) &l
;" -ep

j
In addition, it follows from (2.18d), (A.1b), (A.9), and (A.8) that
(017 = Ty (gjstm)) - 22
< (M = 8N - | + [ (3T — Byl tm)) - Bl

<At sup |0 F(g5,t) - @
trvlStStm+1

+Ch* min |fppp(qj'atm) €y — fppp(‘]vtm) - €] + cn®
q€{0,1}

< KAt sup  Z(g;,t)-é1+ Ch? min 1% ppp (@, tm) — Zppp(@stm)| + Ch?
bn <t <t i1 q€{0,1}

< CAtg;(1 - ¢;) + Ch? min |gj gl + Ch* < Cqj(1 — gq;) (At +1?).
q 5
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If we insert this bound into (2.20) and note that e > c2q;(1 —q;), 0 <5 < J,

in view of (A.8), we obtain (2.17) for ET+1, j=1,...,J —1. Let us next examine
RJ*. A Taylor expansion yields

omar _ FT =T 1 172 3
oTEyT = - n = xp(07tm+1)+§hxpp(07tm+l)+éh xppp(oathrl)"‘O(h )s

which together with (1.6b), (A.1b), Z,,(0,-) € C*([0,7)), and (A.lc) implies that

ST & = LT, (0, tnp1) - €2 + O(R?) = 3hE,,(0,t,) - & + O(h(h* + At))
= 1h(Z(0,t) - &)|7,(0, ) + O(h(h* + At))
1 J_:V(r)n—i_1 — ‘%n > 2 2

where we have used (2.18a) as well as

67752 — 12, (0, tm)|* = (0775 — Zp(0,tm)) - (6775 + T(0, 1))
= (5hZpp(0,tm) + O(R?)) - (22,(0, tm) + O(h))
= hip(0,tm) - (0, ) + O(h?) = O(h?),
recall (A.la). The bound for R’} is obtained in a similar way. a0

THEOREM 2.4. Suppose that T : [0,1] x [0,T] — R? satisfies Assumption 2.1.

Then there exist hg > 0, > 0 such that the discrete solution (X™)pm—1... ar to (2.15)
exists, and the error

.....

(2.21) EM=3" - X", j=0,....0; m=0,....M
satisfies
) m (|2 i |2 < 4 2
(2.22) e [IE" I+ gua 17 < (0 + (807,
M Em _ E_:mfl 2
(2.23) At E™, + — < C(h* + (A1?),
m=1 0,h

provided that 0 < h < hg and At < ~h.

3. Proof of Theorem 2.4. Assumption 2.1 assures the existence of positive
constants cop, Cp, ¢1,9 such that (2.2) and (2.3) hold. Let h < §. We set J; := [%J €
Z>1 so that qj, = Jih € [46,0]. We shall prove Theorem 2.4 with the help of an
induction argument. In particular, we will prove that there exist hg > 0, 0 < v < 1,
and p > 0 such that if 0 < h < hg and At < vh, then for m € {0, ..., M} the discrete

solution X™ exists and satisfies
(3.1) IE™12, < (B + (At)2)ertr.
The assertion (3.1) clearly holds for m = 0, for arbitrary hg < 6, 0 < v < 1, and

> 0. On assuming that (3.1) holds for a fixed m € {0,...,M — 1}, we will now
show that it also holds for m + 1.
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To begin, let us choose 0 < hg < ¢ and 0 < v < 1 so small that
(hg +~2)etT < 1.
Then, since At < ~h, (3.1) implies that
IE™|3 ), < h2(h? +4)ett™ < h?, 0<h< ho.
In particular, we infer from Lemma 2.2 that

(3.2) max \E | + max, |5 Em|—|— max. \5 Em| < Ch>.
0<5<J 1<y 1<5

This implies for 1 < j < J, on recalling (2.18b) and (2.2), that

67 %77 < |6-| + |67 ) < [7,(a5, )| + Ch} < Co+ O,
and similarly \§*X;”| > co— Chz. Arguing in the same way for 51X;”, we infer that
(3.3) Lo <[6TXM <200, 1<j<J, e <|0'X7| <20, 1<j< T -1,

provided that 0 < h < hg, with hg > 0 being chosen smaller if necessary. A similar
argument together with (2.3a) and (2.3b) shows that

(3.4) & Xmg > 1<j<Ji, O Xré<—ie, J-J<ji<l

Leg
1€ J

Next, since #,(0,t,,) - €2 = 0, recall (1.6b), we have from (3.2) and (2.15b) that
R0~ X < h|6~ & | +h|6 E| <ho~ T - & + h|6~ & - &| + Ch?
<h6~ X" & +Ch? = X" & +Ch? < (1+Ch?)ZF" - & + Ch?,
where in the last step we have observed that
Xm.g — @& =—hi"EM-& <Ch? <Chiz]"- &
on noting 7" - €1 > %coh. Arguing in the same way at the right boundary, we obtain
(35) Fhle X <X e <ga e, GRS XPI<XPL e < gafa

for a possibly smaller Ay > 0. Next, (3.2), (2.3¢c), and the fact that Jih >
that

%5 imply

[N

(3.6) X" & > ¢ — Ch? > L <j<J-J

l
2¢
after choosing hg smaller again if required. In addition, there exists cg > 0 such that

(3.7) Xy > esqs(1—q5), 0<j<J.

To see this, note that )ZO €1 =0 and (3.4) imply that

Y]
=

(38&) X;n : 81 Cth Z %Coqj(l - QJ)7 0 S ] S Jla
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and similarly
(3.8D) Xmeér>teoqi(1—q), J—N<j<J

Combining these estimates with (3.6) proves the bound (3.7). If we combine (3.7)
with (2.12) and (3.3), we obtain

—

(3.9) X @ _4C0 g (1 - gjz1) _ 8Co l<i<i_1
Xmoep — e qi(l—g) T e oo

Finally, (2.2) and (3.3) imply that

1 1 4
(3.10a) — - — <CIs"E™], 1<j<J,
6=Z7 2 |5 X2 ’
1 1 N
(3.10b) - — <C|S'ET|, 1<j<J—1.
TP 15Xy ’

LEMMA 3.1 (existence and uniqueness). Let X™ : G, — R? be as above. Then
(2.15) has a unique solution X™ 1 : G, — R2, provided that hg is small enough.

Proof. The relations (2.15) form a linear system with 2(.J 4+ 1) unknowns for the
2(J + 1) values of X™*! at the nodes ¢;, j = 0,...,J. It is therefore sufficient to
show that the corresponding homogeneous system,

1 - 1 o 1 0K 8, e

(311&) EX‘? — W(S X] = |61X7n‘2 X’In Tz (5 X] ) s ] = 1,...,J— 1,
> 2 h &

(3.11b) Xo-€1 = 0, 6+X0 c €y = %E(XO . 62) |(5+X6n|2,
S, = h - i

(311C) XJ'@]_:O, ) XJ'GQZ_iE(XJ'eQ)M X?}n‘Z’

only has the trivial solution X = 0. If we multiply (3.11a) with 4152)?]- and sum
from j=1,...,J — 1 we obtain with the help of (2.7) that

J-1
1 1, = Lo . 1 .
— X+ —(Xo- 0" Xg—X;-07X Y
A+ 5 (Ko o 2 2:: |51ij|2| il
J—1 >
1 80X 6, = -
=hy =TGR 2K
= 7 [0t X |2 Xm-e
In view of (3.11b) and (3.5) we have
1 - = (5+X0 62) (5_)?1'52)2
— X6t X, = X, 5T X T e > 9 T e
A0 0= At( 0 ) 0 ) = h |5+X8n|2 — 4 (Xm. )2
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Using a similar argument at the right endpoint, as well as (3.3), we deduce

J - 1 = 5= X .82 (5tX, . 8)2
(3.12) — X3+ —5IX15,+ 2R ( X _,62) Jr( X 14@2)
At 4C; (XI” . 61)2 (XTfl ] 61>2
SR (EE @
< xXm. & |51Xm‘2 |51£~m|2
j=1 J J
J—1 =
1 X, -é .
+h — (oramyt . 62X,
; [S1E Xmee ’
J—-1 J—1
_ Jl 2 v 52 2
=hYy S} -0°X;+hY S§2-8°X;
Jj=1 j=1
Using (3.10b) and (3.2) we infer that
1y
X
|Sl| < Cu |(51E'm| ‘52)( ‘ < Ch? u ‘(52X ‘
Xm‘ XJ €}
and hence
J—1 (o X o)
hzsl 62X < CQ|X|2h+Ch227_’)2
j=1 j=1 ] s €1

The term 5’;2 corresponds exactly to —T;"’3 in (3.13) below if we replace Emtl by X
We may therefore deduce from Lemma 3.4 that

X1 - @)2 StX, .- 85)2

j=1 (X{n'é'l)z (Xyi1'€1)2

w\U‘

802|X|2h+C|X|1h

If we insert the above bounds into (3.12) and recall that At < yh < h we infer that
J—1 >
1 B 5K 8)?
( —C) 1X|3) + (ca—Ch)RY (Ji@) <0,
h ' = (ij - E1)2

which implies that X = )_('0 provided that 0 < h < hg, where hq is chosen smaller if
necessary. The boundary conditions (3.11b), on noting (3.3), then yield X =0. 0O

We begin our error analysis by combining (2.21), (2.15a), and (2.16a) in order to
derive the following error relation:

(3.13)
~m+1 ~m 2 m+1
BT B OTE; :< 11 ) 2 mt1
At o1 Xm S jetxmz )
S1Xmtl g 1 1 . 1 B
+— : =~ i | O X)) s (FE)T
X & 1 X2 |0 o1

1 SEMT 6
J
1,7m|2 Y
rEPE Xmg
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1 1 1 -
+ < _ _ _)) (51i:m+1_é»2)(51j»§n)L+R;n+l

|61z 2 X -er T - e !
5 .
=Y T, 1<j<T-L

7
Furthermore, for the boundary points we have in view of (1.6b), (2.15b), (2.15¢),
(2.16b), and (2.16¢) that

(Blaa) (By' = By) e = (Bp+ - Bp)-a =0
Egl+1 — E(7)n _ 76+E6n+1 - €y — R6n+1 . ‘5+ |2 i:'gwrl _ %n
(3.14b) =t e o (1 =L
! h |0+ X2 |6+ X2 t
(3.14c) M :_§57E’3n+1'52fR3”+1€ (1_ |5—f"]n|2)f‘r]n+lif,?.
A h 6= X712 16— X2 At

Our strategy for the proof of (3.1) with m replaced by m +1 is now as follows. In
a discrete analog to the formal procedure in (2.4), we are going to multiply (3.13) with
a second order difference of the error E™*1. The ensuing analysis is technical, and
so we split it into three steps. In a first step, we control the terms generated on the
left-hand side of (3.13) in order to obtain Lemma 3.2. Next we estimate four of the
five terms generated by the right-hand side of (3.13); see Lemma 3.3. The remaining
term, which is generated by T™3 and loosely corresponds to the last integral in (2.4),
requires a particularly careful analysis. We present the derived estimate in Lemma 3.4,
where in the proof we will mimic the formal calulations from (2.5).

The induction step is then completed by combining the three lemmas.

LEMMA 3.2. There exists C1 > 0 such that for all0 < A <1

(3.15)
L+ A m m 1 m m |2 m
B R = BR0) + | B = BPR k1 B

— — 2
Em+1 _ fFm

+ ich Al

+ (2 — Cl)\>h

= =

(6*51”“ : 52)2 (07 Byl &)
(X7 - &1)? (X7, )2

0,h
< Ch(h* + (AL)?) + C|E™ 3,

5 J-1 Fm+l _ fm
7, 1yvm|2 73 J 2 pm+1
+hY YT </\6 X P - 0°E; )
i=1 j=1
Proof. Fix 0 < A < 1. If we multiply (3.13) by h(A|s! X2 P2 B0 _ 52 fms)
and sum over j = 1,...,J — 1, we obtain
— |52Em+1|2
6100 ek SE - g gy T
j=1 J=1 |5 X;n|
J—1 Fmtl  m |2
E — F7
h 1yvm|2 J J
+ Z X |
=1
J—1 om—+1 om
o L JETTT—ET .
_ m, 1ymi2—J J 2 pm—+1
7hz T} ~</\|§Xj|At5Ej )
i=1 j=1
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Applying summation by parts, (2.7), to the first term in (3.16), and noting (2.8) and
2(a —b)a = a® — b* + (a — b)?, yields

J—1
h } B} }
“+1 m 2 +1
(3.17) - EZ(E;” — Ej") - *E)
j=1
J
KZ Em+1 Em) 5 Em+1
E_v'm+l E Em+1 E .
VIR A ey VAR
1 m m m m
= S (B~ B ) + B
_ E}n+1 — E}n (57E_:m+1 E(7)n+1 - Eéﬂ 6+Em+1
At RN T

On noting (3.14b), (2.6b), Young’s inequality, (2.17), (3.3), (3.10a), and (3.5), we can
estimate the last term on the right-hand side of (3.17) as

om Lm [ )2 m e-
Lo - Eo LSTEmHL 4 (5+E81+1 '62) _ é‘ﬁEO e Rl
- 0

At 0 hoo |5+ Xm2 h |5+ X7 2

R S N A S
+<l_|6+)?5”|2 A ROTEST @)

e (SYEPT . &) )
AT OTEC )y (a?) - Lo By
h |0— X2

+pm+1l | > 2
(5(?”)6;) — C.h(h* + (At)?) — Coh [T ET 2.
i"-e

> 2 (4-¢e)h

pm+1l_ pm
On choosing ¢ sufficiently small, and arguing similarly for %

find that (3.17) implies

J—1
(3.18) (14— Z (Em+t - SPETT >

. §*E§"+1, we

14+ A

> SR(ETR, - 1B )

(TEyTt &)t (0 EPt. &)
Fpap | Kpoar
— Ch(jo™ B2 4167 BY2) — Ch(n* + (a02).
In addition, we deduce from (3.14b), (3.10a), (3.3), and the fact that, thanks to (3.7),
we have b6t X2 > h=1 (X" &)2 > C X" - & that

1 = .
+ Q—Atwm“ — E™3, +2h

B — By | _ BT A1 .
| < o - ‘+C’E|R6”“|+C|5‘E{”|,
1 €1
so that (2.17) yields
. - 2
h|EJT — ET STETT . &)? -
(3.19) = |=2 0 < opET %) + Ch(h* + At)? + Ch|6~ ET2.
2 At (X -e1)2

Inserting (3.18) into (3.16) and using (2.8), (3.3), and (2.6b), as well as (3.19) and a
corresponding estimate at the right boundary, we obtain the desired result (3.15). 0O
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LEMMA 3.3. Let 0 < A <1 and At < ~vyh. Then

5 J-1

o E’m—i—l _ E_'m J—1

m,i 1vm|2 "7 J 2 Pm+1 =m,3 2 BAm+1

(320) WY ST -<A|5Xj|At—5Ej >+h§ 7 2
i=1 j=1 J=1

< 802|Em+1‘2 +C(|Em‘2h+‘Em+1|2 )-‘rC |Em+1 E’m‘ih

J—1 m+1l =
+C(h4+(At))+C(>\+th(5E+ 2)’

Eerl _ Em - e
0,h Jj=1 J )

+ %cg)\ A7

Proof. We recall the definitions of the terms 7" in (3.13). Then we note from
(3.10b), (3.3), (3.7), (A.8), and (3.2) that

. ﬁ SLXmH .G,
[T+ T2 < C | 6%+ + 7| ; | S'ET|
ij '61
ptam it gt e [SEMT &l L
<c<1+ f,,fﬂlg ;(m = + )zjm — 61 E|
j 1 . J . el
‘ 1 7rL+1 €2|
<ot Em\—l—Chfi, 1<;<J -1,
X7 -er
so that (2.6¢), (2.6b), (3.3), and (2.8) imply that
(3.21)
2 J-1 =
S E; Em .,
m,i 1ym|2 J 2 rm+1
hZZTj .<A|5XAt —0°E] )
=1 j=1
J—1 1 m—+1 - om-1 ~m
1|0 E; - &) E’ —ET
< Em 3 _ J J 2Em+1
Chz<|6 |+ 167 ET, | + h? Sz A N +[62Em
j=1 J 1
. S 2
Em+l _ pm - . J-1 (61E7n+1 . 52)2
SE)\T +€|E +1|2h+C‘E |1h+ChQZﬁ
(X7 -en)

0,h Jj=1

The term involving the product of T3 with 62E™*! is not estimated, while

Emtt — B
3.22 hy T AeTX
(3.22) ; | | Al
< CA h§(515§"’+1 &)\ B =
= ey At |,
Em+l Em Em-‘rl 6‘2)2
<e + C Ah
At on Z )
Next, we have
. Em.¢
(3.23) T < C |j f' — 61 F |, 1<j<J -1
(@ - en) Xy -ér)
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In addition, (A.8) and (A.9) yield

1om41 5 |5lf;1+1'€2|m+1 > .
6727 e = — g ——a" e < Cqi(1—gq;), 1<j<J-1,

$j s €1

so that (3.23), (2.12), (A.8), (3.7), and (2.9) imply
¢ (1 —g;)*

Tt <0 — o STEP|<C §"EM
7571 < Cgcgqj(l —qj)? 11<nka<XJ\ il = r<nka§]| k

< O( max |07E"H + max 67 (Ey+t — Ep)l)
1<k<J

< C max [§7EmH +Ch*§\Em+1 —E™yp, 1<j<J-1
1<k<J

Hence we obtain with the help of (2.11) and the fact that At < vh
(3.24)

J—1 Emtl _ pm
h ZijA . ()\|(51X;n2 J At J 62Ejr_n+1>

Em+1 _ E_"m o
—ar | Bk

<C < max [0~ Em+1| +hTE|E EmLh) A
0,h

1<5<J

Em+1 _ E_"m 2

< e B +ed |5

OB Ry Ce [T — B3

0,k
Finally, we infer from (2.17) that
J—1 ~m-+1 ~m
- S E’ — BT
m,5 1 27 j 2 Fm41
(3.25) h ZT]. : ()\|6 X Pt — %K )
E_"m+1 _ Em .
SCR+ A (N =—x—| +IE" |
0,h

Em+1 _ Em 2

<e|EME, ed | T

+C: (h* + (A1)?).

0,h

If we add (3.21), (3.22), (3.24), and (3.25) and then choose ¢ sufficiently small, the
bound (3.20) follows. 0

In the next lemma we mimic the formal calulations in (2.5), thereby closing our
estimates.

LEMMA 3.4. There exists a constant cq4 > 0 such that

J—1
~m,3 2 Pm+1
(3.26) h» T 8E
j=1

J—=1 (sl pm+l | 5 \2 —_pm+l o +pm+1l 5 \2

(6*E} € STETHL @) (6TETY e

>C4h E _' 2) %h ( _’1 — 62) + ( _ J—1 — 2)
(X{"-é1)? (X7, -e1)?

- 5|Em+1|2,h Ce |Em+1 1,h*
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Proof. Let us start by writing

(3.27)

J—1 J—J1—1 J—1

Z j}m’g‘(S?E;?l+l ZTm 3 62Em+1+ Z Tm 3 62Em+1+ Z Tm 3 52Em+1
j=1 j=1 j=J1+1 j=J=J

and we begin by estimating the first sum on the right-hand side of (3.27). On recalling
(3.13), we can write
(3.28)

Tm3

I 2 S W0 o R A O S B

= €y — - = € =:9; "L
Ee Xmee ey Xpea \ leapl ) T
Observing from (2.6) that

. . 1 = - -

(O'E]T - &) 82 EN T - & :f(alEm“ &) (OTET = 6T E ) -6
2h ((5 E;Til ! H2)2 - (57E;n+1 ! 52)2),

we find that
(3.29)

.]1 Jl
— . 1 1 .
1 2rm+1 1 m+1l - \2 —rm+1l - \2
h;Sj-a E' _ﬁzwlmﬁ,m.a((a ETA-ey)% — (57 EP - &)?)

:1 L (6TET - 8)? 71‘112*:1 (6~ Eﬁfll.")Q
— oy X e | X

€1

=0
:lJl 1( 1 1 1 1 )(5 e g2
2 \I8Fp ] Xpea 0MT] X, 6 e
L EEMT &) (TER 52)2
2

—+3
S| X - & gz | X -

In order to estimate the sum on the right-hand side, we observe that |51 Wl <
57 fq’” |25t dp < Co, recall (2.2), and observe that X]m e < Xj+1 e < CXJT" - €
for 1 § J § J1 —1; recall (3.4) and (3.9). Hence we obtain with the help of (3.4) that
1 1 1 1
o127 X‘]m & |51 7| X}Ch . &

1 o-Xm . X )
L -0y & K6 \PE e
(0]

1 Q0 1 1
Co(Xp e Xpy-a 80 (X, - é)?

Furthermore, on noting |[§*Z7"| > §*&" - &) = 575 - €1 > 3@ - €1 > 21X - @,
recall (3.5); we have that
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Inserting the above two estimates into (3.29) yields, on recalling (2.8), that

J Ji—1 (s— pm+l 5 \2 _ Bm o
(3.30) higl . 62E_v’m+1 >h Co IZ (5 Ej+1 -62) B éh((; E1 +1 62)2
j=1 ’ T 166 o (X en)? U (Xpea)?

— CIE™H2,,

- =1
Note that in view of (1.6b), (2.2), and (2.3a) we have é:gg:g‘ = €}, so that I?:,((ig,’:))l =
€ = —&,. Hence (2.18¢) and the smoothness of & imply
@yt | @I wat) || [F @) 50t
6123 T gyt | 1Zo(ggs tm) [ 1Tp(0, )]
< C(h+q;) < Cqj,
for 1 < j < Jp, which means that with the help of (3.8a) we obtain
Jl Jl
(3.31) hY S} PErT > —Chy (|67 Ept + (5T EPT) (82
j=1 j=1

> —5|Em+1|§,h - Ce\EmHﬁ,h-

Combining (3.30) and (3.31) with (3.28) we obtain

J J — _"ITL 1 — = o
(3.32) hi:fm’3.52ﬁm+l NP i: (6-E7 - &)* i, (0 Bt ay)2
= TsG g (par T (ap

- €|Em+1|§,h - C |Em+l|f,h~
In order to estimate the third sum on the right-hand side of (3.27), we start from

LSBT e 1 SETNe (et
) 2= = — 2
o1 X g 1 FP Xm. g

Am,3 __
Tj e

and use similar arguments as above to obtain

(3.33)
J—1 J-1 — pBmAl o2 _ Amtl -
. . O E" . m+1 2
I S e
j=J—J1 0 g J1+1 (Xj - €1) (XJ—1'61)

- 6|E—:m+1|g,h - C |Em+l|%,h'

Moreover, it follows from (2.2), (3.3), and (3.6) that

(3.34) & R O —_—t
j=JiF1 16C0 G, (X @)
J—1 J—1
> —ChY (|67 EPY + |0” EFA)ISCER T = Ch Y |6 EPTP
j=1 j=1

~m-+112 m-+112
> —c|b 2,h - C|E 1,h*
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If we combine (3.32), (3.33), and (3.34) we obtain

J—1 o . J—1 (5_Em+1 . 6*2)2
335) BS TS g2EmHL > D J
( ) ( J J - 1600 Z
j=1 =2
§TEML g2 (GYETH @) : -
*éh ( 1 62) + ( _ J—1 2) 7€|Em+1§h70€ |Em+1|%h'
(X7 -e1)? (X7, -er)? ’ ’

(X -ay

Observing that in view of (2.6b) and (3.9)

\6+EJ’.”“ A - %M—ETWA - &

I 1< -2,
Xm.g c3 Xﬂl e
we have
L S e AR N L dat
= Xeayr T2 (Xea)? 2 (Xpa)?
ﬁ ((5‘%’?&1 2,)? 5+_'E"Sn_+11 . 52)2> +Ch§ (5—£Em+1 &)?
2\ (Xpr-a)? (X - e1)? = (Xree)?

If we insert this bound into (3.35), we deduce (3.26) provided that ¢ is small
enough. O

Combining Lemmas 3.2, 3.3, and 3.4 we obtain after choosing ¢, v, and A suffi-
ciently small that

2
1+ A

E_'m+1 _ Em
2At

(3.36) N

(|Em+1 %,h - ‘Em|%h) + |Em+1|§,h + %Cg)‘

162

0,h
< C(E™3 ), +|E™HE,) + C(h* + (A1)?).

Furthermore, we have

(3.37)
1 ~m—+12 om |2 1 Em+1 B Enz ~m—+1 om
E“E on = E™5n) < 5 B Ve (IE™ o,n + [E™o,n)
0,h
ﬁ N 2
Em+1 —_ Em _— .
< g | DB o, BN ).
0,h

On inserting (3.37) into (3.36), divided by (1+\), we obtain that there exist constants
cg > 0 and Cy > 0 such that

N ﬂ 2
1, = ﬂ . Em+l _ fm
(IE™HT 0 = IE™I3 1) + o [ [E™THS ), + —

(3.38) N

0,h
< Co(|E™HY 3, + 1 E™3,) + Co (R + (A1)?).

Combining (3.38) with the induction hypothesis (3.1) completes the proof of The-
orem 2.4. In fact, if we choose hg so small that CoAt < % for At < ~hg, then
0<(1—CyAt)~! <1+ 2C5At, and so it follows from (3.38) and (3.1) that
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1B 2 < (1= CoAn ™ [(14 oAt B2+ Cotie(b* + (A1)

1+ 205A8)%||E m||1 o+ Co(1+20,A8) At (h* +

(

< ) (A1)?)
(14 2C,A8)° (h* + (At)?) et + 2C, At (h* +

( ) (h

< (n'

(At)?)

IN

IN

(
1+ 302At 2( )eth
) 6C2At (h4 + (At)Z)e‘u'thrl
if we choose pu = 6C5. Since p, as well as v, were chosen independently of h and At,
we have shown (3.1) by induction. Together with (2.10) this proves the inequality
(2.22). Finally, multiplying (3.38) by At and summing for m = 0,..., M — 1 yields
the bound (2.23).

4. Numerical results. It is easy to show that a shrinking sphere with the radius
1
[1 —4t]2 is a solution to (1.1). In fact, the parameterization

- 4t (sin(mp)
(4.1) Z(p,t) = [1 —41]2 (COS(T( p))
solves (1.6). On letting & = Z(g;,tm), j = 0,...,J, we compare (4.1) to the dis-

crete solutions (X'm)m:o,wM of (2.15) and perform two convergence experiments. In
particular, we choose either At =hor At=h>for h=J"1=2"% k=5,...,9.

The results in Tables 1 and 2 confirm the theoretical results proved in Theo-
rem 2.4. We stress that the quadratic convergence rate for the H'-seminorm in
Table 2 is better than the linear rate observed in [2, Table 4] for the finite element
scheme considered there. This suggests that the delicate treatment of the boundary
nodes in our finite difference scheme (2.15) is crucial to obtain the optimal convergence
rate in Theorem 2.4.

In Figure 1 we show a simulation for the mean curvature flow of a sphere with an
inscribed torus. In particular, the initial surface self-intersects on the equator of the
sphere and has genus zero. For the scheme (2.15) we choose J = 1024 and At = 10~

TABLE 1
Errors for the convergence test for (4.1) over the time interval [0,0.125] with At = h, together
with their experimental orders of convergence (EOC).
J max |2 — )?m|0,h EOC max |2 — )?m\l’h EOC
m=0,...,M m=0,...,M
32 3.5744e-02 — 1.1225e-01 —
64 2.0034e-02 0.84 6.2934e-02 0.83
128 1.0690e-02 0.91 3.3582e-02 0.91
256 5.5352e-03 0.95 1.7389e-02 0.95
512 2.8185e-03 0.97 8.8546e-03 0.97
TABLE 2
Errors for the convergence test for (4.1) over the time interval [0,0.125] with At = h?.
J max |[&™ — X™|q, | EOC max |77 — X", | EOC
m=0,..., M m=0,..., ’
32 1.0024e-03 — 3 14806 03 —
64 2.5201e-04 1.99 7.9165e-04 1.99
128 6.3093e-05 2.00 1.9821e-04 2.00
256 1.5779e-05 2.00 4.9571e-05 2.00
512 3.9451e-06 2.00 1.2394e-05 2.00
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Fic. 1. Evolution for a torus inscribed within a sphere. Plots are at times t = 0,0.1,0.14,0.2.

Under the mean curvature flow, the torus attempts to shrink to a circle. For the gen-
erating curve, this means that the cusp or swallow tail tries to disappear. Of course,
for the approximated partial differential equation this represents a singularity, where
the curvatures of the curve, and of the corresponding axisymmetric surface, blow up.
However, the discrete scheme (2.15) is blind to the self-intersection and the associ-
ated singularity. Hence the finite difference approximation simply integrates across
the singularity. The same behavior can be seen, for example, in [8, Figure 4.2] and [3,
Figure 6]. Continuing the evolution in Figure 1 would show the curve approaching a
shrinking semicircle that eventually vanishes at the origin.

In the recent article [2], Barrett, Deckelnick, and Niirnberg numerically studied
the Angenent torus (see [1, 17]) as an example of a self-shrinker for the mean curvature
flow. Here we recall that the surface S(0) is called a self-shrinker if the self-similar
family of surfaces

S(t) =[1—1]25(0)

is a solution to (1.1). In what follows, we would like to use our approximation (2.15)
in order to investigate self-shrinkers of genus zero. It was shown in [15] that the only
bounded embedded genus-0 self-shrinker in R? is the sphere of radius 2. Note that
the unit sphere has an extinction time of Ty = %; recall (4.1). On the other hand, in
[9] the existence of infinitely many immersed self-shrinkers with rotational symmetry
was proved. Hence, inspired by [9, Figure 3], we would like to compute such a self-
similar evolution for the mean curvature flow. To this end, we use the open curve
analog of [2, (5.7), (5.8)] in order to calculate a profile curve of a self-shrinker that has
three self-intersections. Using the obtained curve as initial data for the scheme (2.15)
yields the self-similar evolution displayed in Figure 2. Here we used the discretization
parameters J = 512 and At = 10~%. Note that the numerical method appears to
confirm the unit extinction time. In fact, continuing the evolution until the method
breaks down yields the behavior of the approximate surface area

J
A™ =2mh Y X &6 X,
j=1
as shown in Figure 3, with the expected linear decay and an approximate extinction
time of 1.

Finally, we include a numerical experiment to demonstrate that our scheme can
also deal with initial data that violate the 90° contact angle condition in (1.6b). To
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Fic. 2. Self-similar evolution for a surface with three self-intersections. Plots are at times
t=0,0.1,...,0.9 and again at timest =0 and t = 0.9.
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F1c. 3. A plot of the approzimate surface area A™ for the simulation in Figure 2 over time.
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FiG. 4. Evolution for a surface with two cone singularities. Plots are at times t = 0,0.01,0.1,0.4.

this end, in Figure 4 we start a simulation for a surface that has two cone singularities:
an inward cone and an outward cone. The generating curve has a 45° contact angle at
the axis of rotation, which induces a discontinuous jump in time for the solution of the
partial differential equation. For the simulation we choose J = 512 and At = 10~ for
the scheme (2.15). It can be observed that the outward cone very quickly smoothes
to a rounded tip, while the inward cone also smoothes and rises at the same time.
Eventually the curve approaches a shrinking semicircle that will shrink to a point.

Appendix A. Properties of the solution.

LEMMA A.1 (behavior at the boundary). Let Z : [0,1] x [0,T] — R? satisfy As-
sumption 2.1. Then we have
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(A.1la) Tpp- €1 =Ty, T, =0 on {0,1} x [0, T,
(A.1Db) Zppp €2 =0 on {0,1} x [0, 71,
(A.1c) F = 29%7"26252 on {0,1} x [0, ).
Zp

Proof. We have from (1.6b) that
(A.2) 7, (0,1) = (17,(0,0)| &)~ = —[,(0,1)| &,
and so we obtain with the help of L’Hospital’s rule that
A3 lim — A A = — A e s (LN
A3 G Gor #en-a ) T E 0P 70,08 o Y

_ 7fpp(0at) ) 52 52
|Z,(0,2)[?

Thus (1.6a) implies that

(A.4) 7,(0,t) =

fpp >t) fpp(oat) - €2 &y.

Zp(0,8)[2 — |Z,(0,2)[2

Observing from (1.6b) that Z:(0,t)- €1 = 0, we infer from (A.4) that Z,,(0,t)-€; =0,
which together with (1.6b) proves (A.la) at p = 0. In particular, Z,,(0,t) = (Z,,(0,t)-
€2)@. Combining this with (A.4) yields (A.1c) at p = 0. In order to prove (A.1b), we
differentiate (1.6a) with respect to p and obtain

(0
0,

(A.5)

= fppp fpp ) fﬁ - _'p - €2 fpp ) fp an 1 e _'p - €2 1 e
= -9 2 _ _

Ltp ‘fp|2 |fp‘4 Tpp + Z-é ( |fp|4 P |fp|2xpp) ( Z-é )p |§p|2xp

in (0,1) x (0,7T]. A further application of L’Hospital’s rule implies that

(A.6)
oy (22 (10 = iy Eslp)- BN )~ Eolps): ) Eslp1) )

N0\ T € PO (Z(p,t) - €
i Ganel00) )00 8) — (o) - E)Epplp.1) )
PN\O 2(Z(p,t) - €1)(Zp(p,t) - €1)

since Z,,(0,t) - €, = 0. Combining (A.5) and (A.6), on noting (A.la), (1.6b), and
(A.2), yields that

) Zopp(0,8) | Tppp(0, ) - &
A7 Ot — PPP ) l PPP ) .
(A7) 00 =G 00 T2 5,008

Since #,(0,t) - €5 = 0 in view of (1.6b), we deduce from (A.7) that also (A.lb)
holds at the left boundary point. The proof of (A.1) for the other boundary point is
analogous. ]

LEMMA A.2. Let Z:[0,1]x[0,T] — R? satisfy Assumption 2.1. Then there exists
0 < c2 < C2 such that

(A.8) c2p(l—p) < E(p,t)- €1 < Cop(l—p)  forall (p,t) €[0,1] x [0, T].
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Moreover, there exists K > 0 such that for all0 < h < %5, with § as in (2.3),

1

—

f~el

0l 2. _ 9. —
(A.9) 01 +h’t)2hatx< MO ol <k i —nx[0,7], ¢=0,1.

Proof. The result (A.8) is an immediate consequence of (2.3).
Let t € [0,7] and h < p < 6. We infer from (1.6b) and (2.3a) that Z(p,t) - & >
%cop, and hence

1 Z(p+h,t) —Z(p—h,t) 2 |1 /P+hq B B
: < — = t) —%,(0,t)) - ey d
Z(p,t) - €1 2h 2= cop | 2n p—h (F5(C,1) = F5(0,1)) - & A
< 2 max |7, (1) - ]
— max . .
= oo o] et
<= 7 el
= Co 03X[0.T] %o - €2l

We can argue in the same way for 1 — %5 < p <1— h, while for %(5 <p<l- %(5 we

have that
1 Z(p+ h,t) —Z(p— h,t) 1 1/P+’g .
Y ey t)-&d
Zpot) - & 2h <l ), TG A
1 .S
< = max |Z, - €3],

€1 [§,1-5]x[0,T]

so that (A.9) holds with K = max{% max(g s)x[0,7] |Zpp - €2 é Max(s 1_3]x0,7] |z, -

€|} in the case £ = 0. The case £ = 1 can be treated in the same way on noting that
Zip(gq,t) - €2 =0 for g € {0,1}. 0
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