
Alexandria Engineering Journal (2022) 61, 3403–3415
HO ST E D BY

Alexandria University

Alexandria Engineering Journal

www.elsevier.com/locate/aej
www.sciencedirect.com
A novel ant colony algorithm for solving shortest

path problems with fuzzy arc weights
* Corresponding authors at: Department of Mathematics, Qaemshahr

Branch, Islamic Azad University, Qaemshahr, Iran and Faculty of

Economics and Management, Free University of Bolzano, Piazza

Università 1, 39100 Bolzano, Italy.

E-mail addresses: debora.dicaprio@unitn.it (D. Di Caprio), a.ebra-

himnejad@qaemiau.ac.ir, aemarzoun@gmail.com (A. Ebrahimnejad),

hamidreza.alrezaa@qaemiau.ac.ir (H. Alrezaamiri), fsantosartea-

ga@unibz.it (F.J. Santos-Arteaga).

Peer review under responsibility of Faculty of Engineering, Alexandria

University.

https://doi.org/10.1016/j.aej.2021.08.058
1110-0168 � 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Debora Di Caprio a, Ali Ebrahimnejad b,*, Hamidreza Alrezaamiri c,

Francisco J. Santos-Arteaga d,*
aDepartment of Economics and Management, University of Trento, Trento, Italy
bDepartment of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
cBabol Branch, Islamic Azad University, Babol, Iran
dFaculty of Economics and Management, Free University of Bolzano, Bolzano, Italy
Received 28 January 2021; revised 5 July 2021; accepted 22 August 2021
Available online 03 September 2021
KEYWORDS

Fuzzy shortest path problem;

Ant colony optimization;

Fuzzy numbers;

Fuzzy directed graph
Abstract The shortest path (SP) problem constitutes one of the most prominent topics in graph

theory and has practical applications in many research areas such as transportation, network com-

munications, emergency services, and fire stations services, to name just a few. In most real-world

applications, the arc weights of the corresponding SP problems are represented by fuzzy numbers.

The current paper presents a fuzzy-based Ant Colony Optimization (ACO) algorithm for solving

shortest path problems with different types of fuzzy weights. The weights of the fuzzy paths involv-

ing different kinds of fuzzy arcs are approximated using the a-cut method. In addition, a signed dis-

tance function is used to compare the fuzzy weights of paths. The proposed algorithm is

implemented on three increasingly complex numerical examples and the results obtained compared

with those derived from a genetic algorithm (GA), a particle swarm optimization (PSO) algorithm

and an artificial bee colony (ABC) algorithm. The results confirm that the fuzzy-based enhanced

ACO algorithm could converge in about 50% less time than the alternative metaheuristic algo-

rithms.
� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The problem of finding the shortest path between two vertices

is one of the most prominent research topics in graph theory
[1]. A path in a graph is a sequence of vertices and edges (or
arcs) with a specific origin and destination. When there are

multiple paths between two specific vertices, finding a route
with the lowest cost becomes a fundamental objective and, in
turn, creates the problem of finding the shortest path [2–3].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2021.08.058&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:debora.dicaprio@unitn.it
mailto:a.ebrahimnejad@qaemiau.ac.ir
mailto:a.ebrahimnejad@qaemiau.ac.ir
mailto:aemarzoun@gmail.com
mailto:hamidreza.alrezaa@qaemiau.ac.ir
mailto:fsantosarteaga@unibz.it
mailto:fsantosarteaga@unibz.it
https://doi.org/10.1016/j.aej.2021.08.058
https://doi.org/10.1016/j.aej.2021.08.058
http://www.sciencedirect.com/science/journal/11100168
https://doi.org/10.1016/j.aej.2021.08.058
http://creativecommons.org/licenses/by-nc-nd/4.0/

3404 D. Di Caprio et al.
In traditional shortest path problems, there is exact infor-
mation about the parameters of the problem such as time,
costs, and risk. However, real-world environments require

dealing with uncertain parameter values. For example, param-
eters such as time or arc costs are usually affected by traffic or
weather conditions. Therefore, it is not practical to assign them

a certain value. In such cases, an imprecise type of problem
arises where the arc parameters are not specified in advance.
In these cases, a suitable modeling approach to deal with the

uncertainty of parameters consists of using fuzzy numbers that
convert the initial scenario into a fuzzy shortest path problem
[4]. Moreover, there is generally a need to allocate different
types of fuzzy numbers to these parameters.

Shortest path problems have been used to formalize and
evaluate many real-life settings. For example, air pollution
constitutes a fundamental environmental problem in

metropolitan areas. Understanding the factors affecting air
pollution can be effective in reducing its destructive effects
and finding suitable solutions. Vehicles represent one of the

main factors contributing to the pollution of big cities.
Research has shown that traffic conditions are directly corre-
lated with the amount of air pollution produced. That is, envi-

ronmental pollution is not just caused by the number of
vehicles. The amount of pollutants produced is larger in heavy
traffic than in light traffic with a larger number of vehicles. It
can be concluded that if the traffic flow were lighter in cities,

air pollution and the waste of citizens’ time would be signifi-
cantly reduced [5].

In transportation systems such as those where taxi compa-

nies operate, the cost of the route varies according to the
weather or time of the day [6]. In these systems, the use of
fuzzy numbers to define the cost of the paths is much more rea-

sonable than the assignment of crisp numbers. It is important
for drivers to find the path that results in the lowest cost.
At fire stations or emergency services, the time factor is crucial.

When a station is contacted, relief vehicles must reach the des-
tination site through the fastest route. The transit time of a
specific route within a city varies through the different hours
of the day. It is therefore natural to consider fuzzy numbers

for the duration of the paths. Note how, in most situations,
finding the optimal path is equivalent to identifying the least
costly or fastest route.

The problem of finding the shortest path, in both its fuzzy
and non-fuzzy forms, could indeed be considered an optimiza-
tion problem. In fact, the optimal path is the shortest one. The

complexity of the subsequent NP optimization problem has
constrained traditional methods from finding the optimal solu-
tion within reasonable time. The use of metaheuristic algo-
rithms to identify the shortest path provides a suitable

solution technique aimed at improving the efficiency of the
identification process.

Meta-heuristics have the capability to deal with additional

constraints and deliver optimal or near optimal path solutions
within a reasonable computational time both in small and
large scale networks.

Meta-heuristics such as Genetic Algorithms (GAs), Particle
Swarm Optimization (PSO) algorithms, and Ant Colony Opti-
mization (ACO) algorithms have been widely used to approach

shortest path problems in very different research fields. For
instance, Kumar and Kumar [7] used GA to determine the
shortest path in data networks. Rares [8] considered the short-
est path routing problem for highly evolving networks, with a
high load of traffic, and used an improved GA based on an
adaptive mutation operator. Mohiuddin et al. [9] developed
a fuzzy evolutionary PSO (FEPSO) algorithm to determine

optimized routing paths and enhance the operational use of
the network. Dudeja [10] proposed a fuzzy-based modified
PSO algorithm as a strategy to overcome the shortest path

problem with uncertain edges and reduce cost and time con-
sumption. Gupta and Srivastava [11] solved the distance opti-
mization problem using both PSO and ACO, and conducted a

quantitative comparison between their performances with the
simulated results showing the superiority of the latter opti-
mization algorithm. Wang et al. [12] proposed an improved
ACO algorithm for time-triggered flows in time-sensitive net-

works. Zangina et al. [13] used an improved non-dominated
sorting genetic algorithm (INSGA-III) to design a robust vehi-
cle routing problem scheme for an autonomous robot naviga-

tion strategy able to optimize both crop yield and quality
subject to a minimum costs.

Regarding the incorporation of uncertain or imprecise data

that are naturally involved in many network designs, the liter-
ature presents an increasing number of hybrid algorithms aim-
ing at increasing the performance of a system, both locally and

globally. Among the most recent studies, Dib et al. [14] pro-
pose a solution method where a genetic algorithm (GA) is cou-
pled with a variable neighborhood search (VNS). Dib et al.
[15] design an advanced GA-VNS heuristic method to deal

with multicriteria shortest path problems in multimodal net-
works. Garg [16] presents a hybrid algorithm that combines
GA with the gravitational search algorithm (GSA) to increase

the performance of a system whose analysis, based on uncer-
tain data, focuses on the most critical components for saving
money, manpower, and time. Garg [17] presents a hybrid

PSO-GA technique for solving constrained optimization prob-
lems. Patwal et al. [18] design an integrated heuristic approach
that combines a time varying acceleration coefficient PSO

algorithm with mutation strategies (TVAC-PSO-MS) to study
the optimal power generation schedule for renewable energy
sources. Garg [19] uses a hybrid GSA-GA algorithm for con-
strained nonlinear optimization problems with mixed vari-

ables. De Santis et al. [20] consider the problem of
minimizing the travel distances of pickers in manual ware-
houses and develop a metaheuristic routing algorithm that

integrates the ACO metaheuristic and the Floyd–Warshall
algorithm. Finally, Sedighizadeh and Mazaheripour [21] pre-
sent a hybrid algorithm based on a combination of PSO and

an artificial bee colony (ABC) algorithm to solve the multi
objective vehicle routing problem subject to Precedence con-
straints among customers.

In the current paper, we find the shortest (optimal) path

using the navigation capacity of ants through the graph as
determined by the rules of the ACO algorithm within a fuzzy
setting. The fuzziness of single edges and paths is incorporated

in an approximate manner, building on techniques introduced
recently in the literature. The results obtained from running
simulations of the proposed ACO algorithm on a small, med-

ium and large size graphs have been compared with those
obtained when applying GA [22], PSO [23], and ABC [24] algo-
rithms. The criteria evaluated include convergence time, num-

ber of iterations needed to converge, and total running time.
Each algorithm has been run 10 times on each of the analyzed
graphs, obtaining the minimum, average, and maximum values
for each one of the criteria considered. The numerical results

A novel ant colony algorithm for solving shortest path problems 3405
show the superior performance of the proposed ACO algo-
rithm in terms of number of iterations and convergence time.

The reminder of this paper is organized as follows. In the

next section, we review the related literature and describe the
main contribution of the paper. Section 3 introduces the main
fuzzy concepts used through the paper. In Section 4, we

describe the ACO algorithm proposed to solve the shortest
path problem. Section 5 implements the enhanced optimiza-
tion technique and analyzes the results comparing them to

those obtained when applying GA, PSO, and the ABC algo-
rithm. The last section concludes and suggests future research
directions.

2. Literature review

In this section, we examine the problem of finding the shortest

path in a directed graph. We start by reviewing several tradi-
tional and innovative methods designed to find the shortest
path in directed and weighted graphs. Then, several methods
that have been developed recently to find shortest paths within

fuzzy environments will be analyzed.

2.1. Traditional algorithms

Dijkstra’s algorithm is one of the main graph traversal algo-
rithms. This algorithm solves the shortest path problem in
weighted graphs that do not contain arcs with negative

weights. Dijkstra’s algorithm, with greedy policy, creates the
shortest path tree of a graph specifying the shortest path from
the source to all the vertices (or nodes) [25].

The Bellman-Ford algorithm is another graph traversal

algorithm that solves the shortest path problem in weighted
graphs where arc weights may be negative. Dijkstra’s algo-
rithm solves a similar problem requiring in less execution time

but requires non-negative arc weights. In practice, the
Bellman-Ford algorithm is only used for graphs displaying
arcs with negative weights [26].

Floyd’s algorithm is a graph analysis algorithm that finds
the shortest path in a directed and weighted graph [27]. This
algorithm constitutes an example of dynamic programming,

comparing all the possible routes in a graph between every pair
of vertices.

2.2. Applications to fuzzy environments

The Floyd-Warshall algorithm is implemented by [28] as a
dynamic programming technique along with a ranking method
to solve a shortest chain problem between all the vertices of a

directed graph with fuzzy weights. Tajdin et al. [29] applied
Floyd’s algorithm and an approximation method for the addi-
tion of fuzzy edges to find the shortest path in a wireless sensor

network with combined fuzzy edges. The scenario analyzed
involved a mobile service provider company planning to
deploy 23 centers in one area. Dou et al. [30] identified the

shortest path in a multi-constrained network using a multi-
criteria decision making technique based on a vague similarity
measure. Deng et al. [31] extended the Dijkstra algorithm to
solve the shortest path problem with fuzzy arc weights. Their

method is based on the graded mean integration representation
of fuzzy numbers.
2.3. Evolutionary fuzzy algorithms

Zhang et al. [32] proposed a biologically inspired algorithm
called the fuzzy physarum algorithm for fuzzy shortest path
problems based on a path finding model. Hassanzadeh et al.

[22] used an evolutionary algorithm to find the shortest path
in a directed graph with fuzzy weights. They were able to iden-
tify the optimal route by converting the shortest path problem
into an optimization problem. Ebrahimnejad et al. [23] applied

a PSO algorithm to reduce the run time and increase the speed
of convergence relative to those obtained by GA proposed in
[22]. Similarly, Ebrahimnejad et al. [24] applied an ABC algo-

rithm to reduce the time required to find the shortest path in
complex graphs with fuzzy arcs. Their algorithm used the
mutation operator to carry out the process of searching for

employed and onlooker bees.

2.4. Ant colony optimization

Calle et al. [33] extended the ACO algorithm by endowing ants
with the sense of smell. Even though it may not identify the
shortest path, their algorithm quickly finds a route between
two nodes through a dynamic graph, providing a useful

response in problems where optimality is not required. Ashour
et al. [34] presented a novel algorithm to solve the Traveling
Salesman Problem. These authors grouped vertices into clus-

ters using Adaptive Affinity Propagation and then found the
optimal route for each cluster separately through ACO.
Changdar et al. [35] designed a genetic-ACO algorithm to

solve solid multiple travelling salesman problems in a fuzzy
environment. Each salesman selects his path using an
enhanced version of ACO and the paths of different salesmen
are controlled by GA.

2.5. Contribution

In the current paper, the ACO algorithm has been generalized

to solve fuzzy shortest path problems with the lowest cost and
in less time than any other standard metaheuristic algorithm.
These latter include GA as well as the PSO and ABC algo-

rithms. We find the shortest (optimal) path using the naviga-
tion capacity of ants through the graph as determined by the
rules of the ACO algorithm within a fuzzy setting. The weights

of the fuzzy paths involving different kinds of fuzzy arcs are
approximated using the a-cut method, while a signed distance
function is defined to compare the fuzzy weights of paths.

The proposed algorithm is applied to graphs of varying

complexity and the results obtained compared with those
derived from the other metaheuristic algorithms, namely, GA
[22], PSO [23], and ABC [24] algorithms. The criteria evaluated

include convergence time, number of iterations needed for
each algorithm to converge, and total running time. Each algo-
rithm has been run 10 times on each of the analyzed graphs,

obtaining the minimum, average, and maximum values for
each one of the criteria considered. The capacity of proposed
fuzzy-based ACO to converge in 50% less time than the other

algorithms should be particularly highlighted.
The arc weights are formalized through trapezoidal and

normal fuzzy numbers. There are two reasons behind validat-
ing this choice. From a technical viewpoint, both trapezoidal

and normal fuzzy weights allow for computing a-cuts. Thus,

3406 D. Di Caprio et al.
mixed sums of trapezoidal and normal fuzzy weights can be
approximated using a-cuts [29]. From a practical viewpoint,
the combined use of trapezoidal and normal fuzzy numbers

opens the way to applications to a wide range of real-life short-
est path problems. Indeed, trapezoidal fuzzy numbers include
triangular fuzzy numbers as a special case and are the opera-

tional numbers to which both LR fuzzy numbers and Type-2
fuzzy sets/numbers are usually reduced when formalizing
real-life situations. At the same time, normal fuzzy numbers

can be regarded as the fuzzy counterpart of one of the most
common probabilistic approaches to the analysis of the perfor-
mance of a system.

In the simulations, the single arcs of the initial small size

graph have been assigned either a triangular or a normal fuzzy
weight, while the arcs of the medium and large size graphs
have been assigned either a trapezoidal or a normal fuzzy

weight. The type of fuzzy weight of the single arc has been cho-
sen so as to guarantee variety through the graphs and foresee
possible real applications.

3. Basic fuzzy concepts

In this section, we present some basic definitions and arith-

metic operations on fuzzy numbers [28,36].

Definition 1:. The trapezoidal fuzzy number a
�

is denoted by

a
� ¼ ða1; a2; a3; a4Þ and its membership function is defined as
follows:

la�ðxÞ ¼
x�a1
a2�a1 a1 < x 6 a2

1 a2 6 x 6 a3
a4�x
a4�a3 a3 6 x < a4

8><
>: ð1Þ

An example of a trapezoidal fuzzy number is shown in

Fig. 1.
Triangular fuzzy numbers are a special type of trapezoidal

number where the values of the two median trapezoidal

parameters are equal. This number is denoted by

a
� ¼ ða1; a2; a3Þ, and its membership function is defined as
follows.

la�ðxÞ ¼
x�a1
a2�a1 a1 < x 6 a2
a3�x
a3�a2 a2 6 x < a3

(
ð2Þ
Fig. 1 A trapezoidal fuzzy number.
Fig. 2 provides an example of this type of number.

Definition 2:. The membership function of a normal fuzzy

number a
� ¼ ðm; rÞ is defined as follows:

la� xð Þ ¼ e�
x�m
rð Þ2 ; x 2 R ð3Þ

Fig. 3 illustrates the membership function of a normal fuzzy
number.

Definition 3:. Given a fuzzy set A
�
defined on the universal set of

real numbers Xand any number 0 < a < 1, the a-cut of is

defined as A
�
a ¼ f x j l

A
�ðxÞ P a ; x 2 Xg .

Remark 1:. The a-cut of a trapezoidal fuzzy number

A
�
¼ ða1; a2; a3; a4Þ is given by the real interval

½A
�
�a ¼ ½A

��
a ;A
�þ
a � ¼ ½ða2 � a1Þaþ a1; a4 � ða4 � a3Þa�.

Remark 2:. The a-cut of a normal fuzzy number A
�
¼ ðm; rÞ is

given by the real interval

½A
�
�a ¼ ½A

��
a ;A
�þ
a � ¼ ½m� r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�lnðaÞp
;mþ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�lnðaÞp �.
A standard procedure for approximating the sum of a

trapezoidal fuzzy number A
�
¼ ða1 ; a2; a3; a4Þ and a normal

fuzzy number B
�
¼ ðm ; rÞ is as follows. The sum and its corre-

sponding membership function are approximated by dividing

the a–interval, [0, 1], into n subintervals and letting a0 ¼ 0,

ai ¼ ai�1 þ Dai where Dai ¼ 1
n
and i ¼ 1; 2; . . . ; n.

Given ai 2 ð0; 1�, 1 6 i 6 n, the ai–cut sum of these fuzzy

numbers is derived using Remarks 1 and 2 as follows:

C
�h i

ai
¼ C

�L

ai
; C
�R

ai

� �
¼ A

�L

ai
þ B
�L

ai
; A
�R

ai
þ B
�R

ai

� �
¼

ða2 � a1Þai þ a1 þm� r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�lnðaiÞ

p
; a4 � ða4 � a3Þai þmþ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�lnðaiÞ
p� � ð4Þ

Eq. (4) is used to obtain n points for C
�L

ai
and n points for C

�R

ai

using ai, 1 6 i 6 n. A similar intuition applies when deriving

the ai–cut sum of triangular and normal fuzzy numbers.
Fig. 2 A triangular fuzzy number.

Fig. 3 A normal fuzzy number.

A novel ant colony algorithm for solving shortest path problems 3407
Hassanzadeh et al. [22] approximated the membership func-
tion of the sum using the points obtained via the a–cut and
Crammer’s approach to fit an exponential membership func-
tion for the whole sum.

Let xi ¼ C
�R

ai
and yi ¼ lðC

�R

ai
Þ, and for n points ðxi; yiÞ, con-

sider the fitting model to be y ¼ e�
x�k
bð Þ2 : These authors pro-

posed a least squares model to approximate the right
membership function for the a–cut-based addition, and deter-
mined the unknown parameters k and b as follows [27,31]:

b ¼ n
P

i xi �
ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi

p� ��P
i

ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi
p �P

ixi

�nPi

ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi
p �P

i

ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi
p �P

i

ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi
p ð5Þ

k ¼
P

ilnyi �
P

ixi

� ��P
i xi �

ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi
p� ��P

i

ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi
p

�nPi

ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi
p �P

i

ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi
p �P

i

ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi
p ð6Þ

Similarly, let xi ¼ C
�L

ai
and yi ¼ lðC

�L

ai
Þ, and consider the fit-

ting model y ¼ e
� x�k0

b0

	
2

. The least squares model for approx-
imating the left membership function of the a–cut-based
addition results in the unknown parameters k0 and b0 being
defined as follows [22,29]:

b0 ¼ n
P

i xi �
ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi

p� ��P
i

ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi
p �P

ixi

n
P

i

ffiffiffiffiffiffiffiffi
lnyi

p þP
i

ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi
p �P

i

ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi
p ð7Þ

k0 ¼
P

ilnyi �
P

ixi þ
P

i xi �
ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi

p� ��P
i

ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi
p

n
P

i

ffiffiffiffiffiffiffiffi
lnyi

p þP
i

ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi
p �P

i

ffiffiffiffiffiffiffiffiffiffiffiffi�lnyi
p ð8Þ

Therefore, the approximate membership function for the

approximating sum of trapezoidal and normal fuzzy numbers
is given by:

lc�ðxÞ ¼
e
� k0�x

b0

	
2

; x < k0;

1; k0 6 x 6 k;

e�
x�k
bð Þ2 ; x > k:

8>>><
>>>:

ð9Þ

In what follows, we define the distance between two fuzzy
numbers using the resulting points from the a–cut process
[27,31]. In particular, the distance between two fuzzy numbers
A
�
and B

�
, Dp;q, is defined as follows:

Dp;qðA
�
; B
�Þ ¼

ð1� qÞ R 1

0
A�a � B�a
�� ��pdaþ q

R 1

0
Aþa � Bþa
�� ��pdah i

; p <1
ð1� qÞ sup

0<a61

A�a � B�a
�� ��þ q inf

0<a61
Aþa � Bþa
�� ��; p ¼ 1

8><
>: ð10Þ

where the first parameter p denotes the priority weight
assigned to the end points of the support (for instance, the

A�a and Aþa components of the fuzzy numbers). The second

parameter q determines the analytical properties of Dp;q. If

the expert has no preference, Dp;12
is used. Given two fuzzy

numbers A
�
and B

�
, Dp;q is proportional to:

Dp;qðA
�
; B
�
Þ ¼ ð1� qÞ

Xn

i¼1
A�ai � B�ai
�� ��p þ q

Xn

i¼1
Aþai � Bþai
�� ��p" #1

p

ð11Þ
If q ¼ 1

2
and p ¼ 2, we obtain the following expression:

D2;12
ðA
�
; B
�
Þ ¼

ffi
1

2

Xn

i¼1
A�ai � B�ai
�� ��2 þ 1

2

Xn

i¼1
Aþai � Bþai
�� ��2" #vuut ð12Þ

We will compare two fuzzy arc weights A
�

and B
�

to

0
�
¼ ð0; 0; . . . ; 0Þ using the ai-cuts. This reference benchmark

has been chosen because both weights are supposed to repre-
sent positive values. In fact, Eq. (10) is used to compute

D2;12
ðA
�
; 0
�
Þ and D2;12

ðB
�
; 0
�
Þ. In this case, we can conclude that

A
�
�B
�
if and only if D2;12

ðA
�
; 0
�
Þ 6 D2;12

ðB
�
; 0
�
Þ.

4. Proposed ant colony optimization algorithm

Ants and some species of bees live in large groups called colo-
nies. Insect swarms can work together to resolve problems that
none of the members of the swarm could solve on their own.

The ACO algorithm is an excellent example of swarm intelli-
gence [37]. Fig. 4 shows an ant colony.

The ACO algorithm consists of a given number of ants. The

main objective of the ants is to find the shortest path between
Fig. 4 Ant colony.

Fig. 5 Flowchart describing the implementation of the ACO

3408 D. Di Caprio et al.
the nest and a food source. Suppose the ant path is defined
within a graph G ¼ ðV;EÞ. Using this algorithm, one can find
the shortest existing path between two arbitrary vertices of

graph G. Any edge that connects vertex i to vertex j is denoted
by lij. An amount of pheromone sij is assigned to each edge lij.

The amount of pheromone must be read or modified by the
ants. In addition, the amount of pheromone existing on an
edge is used as a measure assessing the desirability of the edge.

It is also intended to be selected by ants to build better path-
ways. At the beginning of an algorithm, all edges have an equal
amount of pheromone amounting to s0 [38].

In the ACO algorithm, ants add an amount of pheromone
to an edge when passing through it. This amount is defined as
Dsij. That is, if an ant passes through an edge located between

vertices i and j at time t, it modifies the amount of pheromone
associated to the edge as follows:

sijðtÞ sijðtÞ þ Dsij ð13Þ
In order to conduct an adequate search between different

paths, pheromones existing on graph edges evaporate, just as
real pheromones do. The amount of pheromone on the edges
decreases automatically, in such a way that ants become more
interested in searching for new and probably better paths. The

evaporation process is usually defined as a decreasing function.
The overall form of this formula is defined as follows:

sijðtÞ ð1� qÞsijðtÞ ; q 2 ð0; 1� ð14Þ
where q is a parameter known as the coefficient of evapora-
tion. Relatively low values of the evaporation coefficient q
result in fast convergence, leading the ants to lose interest in
exploring the edges of the graph and rely on their initial
responses. In contrast, assuming a relatively high value of q
leads to a very slow convergence process, while, in many cases,

the algorithm will not converge. That is, the coefficient of
evaporation directly affects the convergence time of the algo-
rithm [39].

In some problems, initial parameters are defined as quanti-
ties associated with the edges. These quantities, which are
called subjective values, are denoted as gij for edge lij. Regard-

ing the problem of finding the shortest path, subjective values
are defined as gij ¼ 1dij, where dij is the distance between vertex

i and vertex j.
Ants existing in colonies have the following properties:

� Ants began to move from a source vertex. At each step, one

of the adjacent nodes is selected on the basis of a probabil-
ity formula. If ant k is in vertex i, the probability that vertex
j will be selected as the next destination is determined based

on the following relationship

Pk
ij ¼

ðsijÞaðgijÞaP
m2Nk

i

ðsimÞaðgimÞa
j 2 Nk

i

0 j R Nk
i

8<
: ð15Þ

where Nk
i denotes vertices that are in the neighborhood of ver-

tex i.

� In equation (19), a and b are constant positive numbers

used for weighting the pheromone and subjective informa-
tion, respectively. The higher the weight of a certain kind
of information, the more effective the ants’ decision-

making, which affects their answers through the path selec-
tion process. In this case, assuming a ¼ 0, the probability of
selection of closer vertices is higher. In fact, in this case, the

ACO algorithm turns into a random, and of course greedy,
search algorithm. In contrast, assuming b ¼ 0, only the
pheromone information will be used. In this case, there will
be a more rapid convergence, causing stagnation in the

algorithm procedure.
� Ants continue moving until at least one of the termination
conditions is met. This creates a feasible path for the

problem.
� While moving from vertex i toward vertex j, each ant mod-
ifies the amount of pheromone sij on edge lij. This proce-

dure is called step-by-step pheromone renewal. Over time,
the amount of pheromones available on paths decreases

with evaporation.
� Each ant has a personal memory denoted by M that stores
each path along which it passes. This memory can be used

to create feasible solutions, evaluate the solutions found,
and move along the path in reverse.

The flowchart of the ACO algorithm designed to solve the
problem of finding the shortest path is illustrated in Fig. 5.
algorithm.

A novel ant colony algorithm for solving shortest path problems 3409
5. Implementation

In this section, we implement and analyze the ACO algorithm
on three directed and weighted graphs with varying complexi-

ties. MATLAB R2010b run on a computer with a Windows 7
operating system, an Intel core i7 1.6 GHz processor, and a
4 GB RAM was used for its implementation.

Fig. 6 describes the first graph on which the algorithm was
run, encompassing 11 vertices and 25 edges. The source vertex
of the graph is vertex 1, and the destination vertex is number
11. The weight of the fuzzy edges is described in Table 1. This

graph has edges of triangular and normal types. The shortest
path in the graph is given by 1! 3! 8! 7! 11 with a fit-
ness value of 1129.48. As explained in Section 3, the solution

process requires adding the fuzzy edges of a path, which pro-
vides an approximate fuzzy number. Then, the fitness value
of this fuzzy number is compared to others using the respective

crisp distances, Dp;q, defined in Section 3.

The results from running simulations of the ACO algorithm
on this graph have been compared with the results obtained
when applying GA [22], PSO [23], and ABC [24] algorithms.
In order to allow for a fair comparison of the results across

algorithms, absolutely identical conditions were considered
for their implementation. For instance, a total of 30 iterations
have been simulated for each algorithm. We have also assumed

� a colony composed by a total of 10 ants;
� a population consisting of 10 chromosomes in GA;

� 10 swarm particles in the PSO algorithm;
� 10 clone solutions in the bee colony algorithm.

The remaining parameters used in the ant colony simula-

tion are described in Table 2.
The criteria evaluated were the convergence time, the num-

ber of iterations needed for each algorithm to converge, and

the total running time of each algorithm. Table 3 presents
the results from the implementation of the different algorithms
on the graph illustrated in Fig. 6. Each algorithm was run 10

times, and the minimum, average, and maximum values
obtained for each criterion are provided in Table 3.

This table illustrates how all the algorithms were able to

detect the shortest path of the graph i.e.
1! 3! 8! 7! 11. Regarding the number of iterations
Fig. 6 Initial graph setting.
needed for convergence, the ACO algorithm converged on
average in the third iteration. The convergence rate obtained
was lower than that of the other three algorithms. Regarding

the run time convergence criterion, the ACO algorithm
required the least time to converge on average. Compared to
the performance of the ABC algorithm, the difference in aver-

age convergence times is insignificant. Yet, this difference is
relatively large for the PSO algorithm (48% less) and substan-
tially larger for GA (80% less). Regarding the overall run time

criterion, the ACO algorithm had the fastest run. Its runs
ended almost 50% faster than those of the bee colony and
PSO algorithms.

These results are illustrated in Fig. 7, which describes the

average convergence time and average runtime of all the algo-
rithms, and Fig. 8, which presents a convergence graph of the
simulated algorithms. Note that the fastest convergence pat-

tern is that of the ACO algorithm, which is described by a pur-
ple dotted curve.

The relative performance of the proposed ACO algorithm

will be examined through increasingly complex evaluation
structures. We will illustrate how, as the complexity of the
graphs increases, the performance of the ACO algorithm

improves relative to that of the alternative metaheuristic algo-
rithms. Fig. 9 presents a graph with 23 vertices and 40 edges.
The source vertex of the graph is denoted by 1, while the des-
tination is vertex 23. The shortest path is given by

1! 5! 12! 15! 18! 23, with a fitness value of 184.24.
Table 4 describes the weight of the fuzzy edges. Note that
the current graph could be used to describe a real instance of

a fire station or a transportation system requiring a vehicle
to reach a given destination incurring the lowest possible cost.

Table 5 illustrates the results obtained from 10 runs of the

different algorithms. As in the previous example, a total of 30
iterations have been simulated per algorithm. Given the com-
plexity of the current graph, we have increased the operational

capacity of the different algorithms by assuming

� A colony composed by a total of 22 ants;
� A population consisting of 22 chromosomes in GA;

� 22 swarm particles in the PSO algorithm;
� 22 clone solutions in the ABC algorithm.

The ACO algorithm converged on average to the best path
after 2.5 iterations. In this regard, it performed better than the
ABC and PSO algorithms, and substantially better than GA.

When considering the run time convergence criterion, the
ACO algorithm converged much faster than the others on
average. This means that the algorithm finds the optimal path
in complex graphs much faster than any of the other algo-

rithms. Regarding average convergence time, the ACO algo-
rithm reached convergence 35% faster than the ABC
algorithm, 55% faster than the PSO algorithm, and 71% faster

than GA.
These results are illustrated in Fig. 10, which describes the

average convergence time and average runtime of all the algo-

rithms. Fig. 11 presents a convergence graph of the simulated
algorithms, with the ACO algorithm displaying the fastest con-
vergence pattern.

Finally, we analyze the behavior of the different algorithms
when dealing with a large network structure. Fig. 12 describes
the third graph on which the algorithms were run, encompass-
ing 30 vertices and 71 edges. The source vertex of the graph is

Table 1 Fuzzy weights of the edges in the initial graph setting.

Edges Fuzzy number Edges Fuzzy number Edges Fuzzy number

(1, 2) (800, 820, 840) (3, 5) (730, 748, 870) (8, 4) (710, 730, 835)

(1, 3) (35, 11) (3, 8) (42, 14) (8, 7) (230, 242, 355)

(1, 6) (650, 677, 783) (4, 5) (190, 199, 310) (9, 7) (120, 130, 250)

(1, 9) (290, 300, 350) (4, 6) (310, 340, 460) (9, 8) (13, 4)

(1, 10) (420, 450, 570) (4, 11) (71, 23) (9, 10) (23, 7)

(2, 3) (180, 186, 293) (5, 6) (610, 660, 790) (10, 7) (330, 342, 450)

(2, 5) (495, 510, 625) (6, 11) (23, 7) (10, 11) (125, 41)

(2, 9) (90, 30) (7, 6) (390, 410, 540) (3, 4) (650, 667, 983)

(7, 11) (45, 15)

Table 2 Simulation parameters.

Parameter Value

Number of Iterations 30

Number of Ants 10

a 1

b 1

s 0.1

q Rand (0,1]

D 0.15

Pc 0.40

Pm 0.10

C1 2.0

C2 2.0

Wmax 0.90

Wmin 0.20

Limit No. Iterations/6

Legend: PC and Pm: GA crossover and

mutation rates, respectively; C1, C2, Wmax

and Wmin: PSO particles’ update param-

eters; Limit: number of employed bees

converted into scouts after an unsuccess-

ful search within the ABC.

Table 3 Implementation results in the initial graph setting.

Iteration SP Number of iterations to converge

GA PSO ABC ACO

1 30 1–3-8–7-11 5 4 4 3

2 30 1–3-8–7-11 9 2 4 1

3 30 1–3-8–7-11 3 5 2 5

4 30 1–3-8–7-11 15 4 2 4

5 30 1–3-8–7-11 6 8 2 3

6 30 1–3-8–7-11 2 1 3 6

7 30 1–3-8–7-11 1 2 4 1

8 30 1–3-8–7-11 9 6 1 2

9 30 1–3-8–7-11 10 7 3 4

10 30 1–3-8–7-11 11 3 7 1

Min – – 1 1 1 1

Max – – 15 8 7 6

Avg – – 7.10 4.20 3.20 3.0

3410 D. Di Caprio et al.
vertex 1, and the destination vertex is number 30. The length of
the fuzzy edges is described in Table 6. The shortest path has
been highlighted in green and is given by the following vertex

sequence
1! 2! 11! 13! 23! 25! 28! 30,
which delivers a fitness value of 63.72.

Table 7 presents the results obtained from 10 runs of the
different algorithms. Due to the complexity of this graph, we
have increased the number of iterations and the size of the
population. In order to perform a fair comparison among

algorithms, the number of iterations in all of them has been
set equal to 60. In addition, the population size of each algo-
rithm has been set equal to these values

� A colony composed by a total of 40 ants;
� A population consisting of 40 chromosomes in GA;

� 40 swarm particles in the PSO algorithm;
� 40 clone solutions in the ABC algorithm.

The rest of the simulation parameters correspond to the
values described in Table 2.

As illustrated in Table 7, the ACO algorithm displays the
best convergence rate. Given its capacity to explore potential

paths, the ACO algorithm converged on average after 8.9 iter-
Convergence time span (s) Total time (s)

GA PSO ABC ACO GA PSO ABC ACO

0.55 0.28 0.21 0.14 2.54 1.69 1.57 0.87

0.99 0.17 0.22 0.04 3.02 1.77 1.68 0.85

0.28 0.33 0.09 0.25 2.81 1.67 1.61 0.86

1.55 0.25 0.09 0.25 2.64 1.68 1.59 0.91

0.59 0.54 0.08 0.13 3.06 1.77 1.56 0.85

0.26 0.09 0.17 0.28 3.00 1.68 1.66 0.88

0.18 0.18 0.19 0.05 3.01 1.67 1.56 0.90

0.93 0.37 0.06 0.07 2.94 1.75 1.88 0.80

1.09 0.48 0.33 0.19 3.07 1.63 1.75 0.85

1.11 0.22 0.19 0.05 3.02 1.58 1.69 0.86

0.18 0.09 0.06 0.04 2.54 1.58 1.56 0.80

1.55 0.54 0.33 0.28 3.07 1.77 1.88 0.91

0.75 0.29 0.16 0.15 2.91 1.69 1.66 0.86

Fig. 7 Average convergence time and average runtime of the

algorithms implemented within the initial graph setting.

Fig. 8 Convergence of the algorithms implemented within the

initial graph setting.

Fig. 9 Enhanced

A novel ant colony algorithm for solving shortest path problems 3411
ations, a much lower number than the ones displayed by the
other metaheuristic algorithms. We should highlight that the
PSO algorithm was unable to find the shortest path in three

of the runs, a fact shown in the table with a dash.
In terms of convergence time, the ACO algorithm was 74%

faster than the GA, 65% faster than the ABC algorithm and

40% faster than the PSO algorithm. The mean convergence
time of the PSO was obtained from the average of the seven -
runs in which the algorithm converged. The total run time of

the algorithms is also shown in Table 7. As in the previous
cases, the ACO algorithm displays the shortest run time due
to its agility. Fig. 13 compares the convergence and run times
of the algorithms using a bar graph, while Fig. 14 presents a

convergence graph illustrating the fastest convergence pattern
exhibited by the ACO algorithm.

We conclude the analysis by summarizing the main conver-

gence results of the algorithms within the different evaluation
scenarios. Table 8 highlights the dominance of ACO relative to
the alternative metaheuristic algorithms in terms of average

iterations and convergence times. This dominance becomes
particularly evident as the complexity of the evaluation scenar-
ios increases, as can be observed when comparing the behavior

of ACO with that of ABC, its closest rival in terms of
performance.

6. Conclusion

We have applied the ACO algorithm to find the shortest path
within a graph whose edges consist of normal, triangular, and
trapezoidal fuzzy numbers. Three graphs of varying complex-

ity have been used to illustrate the capacity of this metaheuris-
tic algorithm to solve complex shortest path problems. The
results obtained were compared with those derived from the

implementation of genetic, PSO, and ABC algorithms. We
have illustrated numerically the superior performance of the
ACO algorithm in terms of number of iterations and conver-

gence time. This feature is particularly relevant when the com-
plexity of the graph increases, in which case the convergence
behavior of the ACO algorithm clearly outperforms that of

the other metaheuristic algorithms. In particular, the ACO
graph setting.

Table 4 Fuzzy weights of the edges in the enhanced graph setting.

Edges Fuzzy number Edges Fuzzy number Edges Fuzzy number

(1, 2) (12, 13, 15, 17) (1, 3) (40, 11) (1, 4) (8, 10, 12, 13)

(1, 5) (7, 8, 9, 10) (2, 6) (35, 10) (2, 7) (6, 11, 11, 13)

(3, 8) (40, 11) (4, 7) (17, 20, 22, 24) (4, 11) (6, 10, 13, 14)

(5, 8) (29, 9) (5, 11) (7, 10, 13, 14) (5, 12) (10, 13, 15, 17)

(6, 9) (6, 8, 10, 11) (6, 10) (35, 11) (7, 10) (9, 10, 12, 13)

(7, 11) (6, 7, 8, 9) (8, 12) (5, 8, 9, 10) (8, 13) (50, 5)

(9, 16) (6, 7, 9, 10) (10, 16) (40, 13) (10, 17) (15, 19, 20, 21)

(11, 14) (8, 9, 11, 13) (11, 17) (28, 9) (12, 14) (13, 14, 16, 18)

(12, 15) (12, 14, 15, 16) (13, 15) (37, 12) (13, 19) (17, 18, 19, 20)

(14, 21) (12, 12, 13, 14) (15, 18) (8, 9, 11, 13) (15, 19) (25, 7)

(16, 20) (38, 12) (17, 20) (7, 10, 11, 12) (17, 21) (6, 7, 8, 10)

(18, 21) (15, 17, 18, 19) (18, 22) (16, 5) (18, 23) (15, 5)

(19, 22) (5, 16, 17, 19) (20, 23) (13, 14, 16, 17) (21, 23) (12, 15, 17, 18)

(22, 23) (20, 5)

Table 5 Implementation results in the enhanced graph setting.

Iteration SP Number of iteration to converge Convergence time span (s) Total time (s)

GA PSO ABC ACO GA PSO ABC ACO GA PSO ABC ACO

1 30 1–5-12–15-18–23 5 4 2 3 1.76 1.80 0.69 0.96 9.19 7.44 5.33 3.49

2 30 1–5-12–15-18–23 3 2 3 2 1.61 1.00 0.98 0.49 9.63 7.33 5.26 3.48

3 30 1–5-12–15-18–23 8 3 1 4 2.15 1.41 0.46 0.91 9.88 7.41 5.54 3.41

4 30 1–5-12–15-18–23 4 1 5 1 1.68 0.51 1.97 0.34 9.55 7.29 5.41 3.63

5 30 1–5-12–15-18–23 2 5 3 1 1.35 1.91 1.03 0.25 9.42 7.65 5.28 3.55

6 30 1–5-12–15-18–23 10 1 1 6 2.88 0.55 0.47 1.43 9.81 7.31 5.21 3.43

7 30 1–5-12–15-18–23 17 8 2 3 4.87 2.12 0.63 0.64 9.34 7.55 5.61 3.36

8 30 1–5-12–15-18–23 12 4 1 1 3.13 1.78 0.41 0.24 9.30 7.34 5.42 3.48

9 30 1–5-12–15-18–23 9 6 6 3 2.64 1.97 2.14 0.71 9.35 7.11 5.51 3.46

10 30 1–5-12–15-18–23 6 1 2 1 2.11 0.52 0.68 0.25 9.51 7.47 5.31 3.54

Min – – 2 1 1 1 1.09 0.51 0.41 0.24 9.19 7.11 5.21 3.36

Max – – 17 8 6 6 4.62 2.12 2.14 1.43 9.88 7.65 5.61 3.63

Avg – – 7.6 3.5 2.6 2.5 2.13 1.36 0.95 0.62 9.50 7.39 5.39 3.48

Fig. 10 Average convergence time and average runtime of the

algorithms implemented within the enhanced graph setting.

Fig. 11 Convergence of the algorithms implemented within the

enhanced graph setting.

3412 D. Di Caprio et al.

Fig. 12 Large graph setting.

Table 6 Fuzzy length of edges in the large graph setting.

Edges Fuzzy Number Edges Fuzzy Number Edges Fuzzy number Edges Fuzzy number

(1, 2) (2, 4, 5, 7) (1, 3) (3, 6) (1, 4) (4,5) (1, 5) (3, 5, 7, 9)

(1,11) (1, 4, 9, 10) (2, 11) (2, 3) (2, 12) (3,7) (2,13) (6, 7, 8, 9)

(3, 5) (4, 11) (3, 10) (6, 8, 10, 12) (3, 11) (2,3,4,5) (3,16) (4, 6, 7, 8)

(4,5) (7, 9) (4,6) (5,5) (4,7) (3,5,7,9) (5,7) (1, 3, 5, 6)

(5,8) (6, 8) (5,9) (5, 11) (5, 10) (4,8) (6,7) (7,2)

(7, 8) (6, 7, 8, 9) (8, 9) (2,3) (8, 19) (4, 6, 8, 13) (9,18) (3, 5)

(9, 19) (4,3) (9,20) (5,6,8,9) (10, 9) (8,2) (10,17) (5, 6, 7, 8)

(10, 18) (8, 9, 11, 13) (11, 10) (6,7,8, 9) (11, 13) (3,3) (11,16) (2,4)

(12, 13) (2,1) (12, 14) (3,2) (13, 14) (2,1) (13,15) (4,5)

(13, 23) (1,1,2,3) (14, 23) (3,4) (14, 24) (2,4,5,8) (15,17) (3,4,5,6)

(15, 22) (2,3,4,5) (15, 23) (1,1,2,3) (15, 25) (1,2) (16,15) (6, 7)

(16,17) (9,4) (17,18) (1, 5) (17, 21) (1,2,3,4) (17,22) (1, 4)

(18, 20) (1,3,4,5) (18,21) (2,4,5,7) (19,20) (2,2) (19,29) (8, 9, 10, 11)

(20, 21) (6,5) (20,29) (6,6) (20,30) (3,4,5,6) (21,28) (4,6)

(21,30) (3,4,5,6) (22,21) (7,7,8,9) (22,28) (4,5,7,8) (23,22) (1,2,3,3)

(23,25) (1,2) (24,25) (2,3) (24,26) (1,3,4,5) (25,22) (1,3)

(25,26) (2,2) (25,27) (3,4,5,7) (25,28) (3,5,7,9) (26,27) (3,3)

(27,28) (4,3) (28,30) (1,3) (29,30) (3,5)

A novel ant colony algorithm for solving shortest path problems 3413
algorithm was 65% faster than the ABC algorithm, 40% faster
than the PSO algorithm, and 74% faster than GA in reaching

convergence within the most complex evaluation scenario.
Regarding the total runtime criterion, the ACO algorithm
was between 35% and 65% faster than the other metaheuristic

algorithms under identical implementation conditions in all
three graphs. These results highlight the capacity of the algo-
rithm to deal with complex evaluation scenarios in fuzzy rout-
ing environments.
Ethical approval

This article does not contain any studies with human partici-

pants or animals performed by any of the authors.

Declaration of Competing Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Table 7 Implementation results in the large graph setting.

Iteration SP Number of iterations to converge Convergence time span (s) Total time (s)

GA PSO ABC ACO GA PSO ABC ACO GA PSO ABC ACO

1 60 1–2-11–13-23–25-28–30 11 25 21 4 2.09 2.54 1.99 0.39 15.47 9.87 9.15 5.36

2 60 1–2-11–13-23–25-28–30 9 8 38 2 1.73 0.87 3.58 0.21 15.11 9.67 8.87 5.45

3 60 1–2-11–13-23–25-28–30 13 4 6 6 2.42 0.55 0.66 0.55 15.48 9.62 8.99 5.12

4 60 1–2-11–13-23–25-28–30 26 – 33 4 4.14 – 3.24 0.39 15.86 9.56 9.17 5.38

5 60 1–2-11–13-23–25-28–30 44 3 22 16 10.9 0.36 1.96 1.43 15.22 9.81 8.64 5.63

6 60 1–2-11–13-23–25-28–30 7 27 6 5 1.27 2.69 0.62 0.46 15.77 9.11 8.66 5.60

7 60 1–2-11–13-23–25-28–30 5 – 46 7 1.04 – 4.24 0.71 15.36 9.69 9.16 5.62

8 60 1–2-11–13-23–25-28–30 17 6 23 15 3.37 0.80 2.16 1.42 15.23 9.23 8.79 5.38

9 60 1–2-11–13-23–25-28–30 28 – 51 27 4.41 – 4.88 2.57 15.12 9.24 8.91 5.41

10 60 1–2-11–13-23–25-28–30 3 17 4 3 0.79 1.88 0.46 0.32 14.98 9.38 9.28 6.09

Min – – 3 3 4 2 0.79 0.36 0.46 0.21 14.98 9.11 8.64 5.12

Max – – 44 – 51 27 10.9 – 4.88 2.57 15.86 9.87 9.28 6.09

Avg – – 16.3 – 25.0 8.90 3.22 1.38 2.38 0.84 15.36 9.53 8.96 5.50

Fig. 13 Average convergence time and average runtime of the

algorithms implemented within the large graph setting.Fig. 14 Convergence of the algorithms implemented within the

large graph setting.

Table 8 Average convergences within the different graph settings.

Graph Number of iterations to converge Convergence time span (s) Total time (s)

GA PSO ABC ACO GA PSO ABC ACO GA PSO ABC ACO

Initial 7.10 4.20 3.20 3.0 0.75 0.29 0.16 0.15 2.91 1.69 1.66 0.86

Enhanced 7.6 3.5 2.6 2.5 2.13 1.36 0.95 0.62 9.50 7.39 5.39 3.48

Large 16.3 – 25.0 8.90 3.22 1.38 2.38 0.84 15.36 9.53 8.96 5.50

3414 D. Di Caprio et al.
Acknowledgement

This work was supported by the Open Access Publishing Fund
of the Free University of Bozen-Bolzano.
References

[1] X. Gao, Y. Xianzang, X. You, Y. Dang, G. Chen, X. Wang,

Reachability for airline networks: fast algorithm for shortest

path problem with time windows, Theoret. Comput. Sci. 749

(2018) 66–79.

[2] F.F. Dragan, A. Leitert, On the minimum eccentricity shortest

path problem, Theoret. Comput. Sci. 694 (2017) 66–78.

http://refhub.elsevier.com/S1110-0168(21)00573-1/h0005
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0005
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0005
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0005
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0010
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0010

A novel ant colony algorithm for solving shortest path problems 3415
[3] S. Mozes, Y. Nussbaum, O. Weimann, Faster shortest paths in

dense distance graphs with applications, Theoret. Comput. Sci.

711 (2018) 11–35.

[4] J. Brito, F.J. Martı́nez, J.A. Moreno, J.L. Verdegay, An ACO

hybrid metaheuristic for close–open vehicle routing problems

with time windows and fuzzy constraints, Appl. Soft Comput. 32

(2015) 154–163.

[5] G. Bowatte, C.J. Lodge, L.D. Knibbs, B. Erbas, J.L. Perret, B.

Jalaludin, R. Wood-Baker, Traffic related air pollution and

development and persistence of asthma and low lung function,

Environ. Int. 113 (2018) 170–176.

[6] W. Yu, Z. Liu, X. Bao, New LP Relaxations for Minimum

Cycle/Path/Tree Cover Problems, Theoret. Comput. Sci. (2019).

[7] Kumar, R., & Kumar, M. (2010). Exploring genetic algorithm

for shortest path optimization in data networks. Global Journal

of Computer Science and Technology.

[8] Rares, M. (2015, June). Adaptive mutation in genetic algorithms

for shortest path routing problem. In 2015 7th International

Conference on Electronics, Computers and Artificial Intelligence

(ECAI) (pp. S-69). IEEE.

[9] M.A. Mohiuddin, S.A. Khan, A.P. Engelbrecht, Fuzzy particle

swarm optimization algorithms for the open shortest path first

weight setting problem, Appl. Intelligence 45 (3) (2016) 598–621.

[10] C. Dudeja, Fuzzy-based modified particle swarm optimization

algorithm for shortest path problems, Soft. Comput. 23 (17)

(2019) 8321–8331.

[11] A. Gupta, S. Srivastava, Comparative analysis of ant colony and

particle swarm optimization algorithms for distance

optimization, Procedia Comput. Sci. 173 (2020) 245–253.

[12] Y. Wang, J. Chen, W. Ning, H. Yu, S. Lin, Z. Wang, G. Pang,

C. Chen, A time-sensitive network scheduling algorithm based

on improved ant colony optimization, Alexandria Eng. J. 60 (1)

(2021) 107–114.

[13] U. Zangina, S. Buyamin, M.S.Z. Abidin, M.S.A. Mahmud,

Agricultural rout planning with variable rate pesticide

application in a greenhouse environment, Alexandria Eng. J.

60 (3) (2021) 3007–3020.

[14] O. Dib, M.A. Manier, L. Moalic, A. Caminada, Combining

VNS with genetic algorithm to solve the one-to-one routing issue

in road networks, Comput. Oper. Res. 78 (2017) 420–430.

[15] O. Dib, L. Moalic, M.A. Manier, A. Caminada, An advanced

GA–VNS combination for multicriteria route planning in public

transit networks, Expert Syst. Appl. 72 (2017) 67–82.

[16] H. Garg, A hybrid GA-GSA algorithm for optimizing the

performance of an industrial system by utilizing uncertain data,

in: Handbook of research on artificial intelligence techniques

and algorithms, IGI Global, 2015, pp. 620–654.

[17] H. Garg, A hybrid PSO-GA algorithm for constrained

optimization problems, Appl. Math. Comput. 274 (2016) 292–

305.

[18] R.S. Patwal, N. Narang, H. Garg, A novel TVAC-PSO based

mutation strategies algorithm for generation scheduling of

pumped storage hydrothermal system incorporating solar

units, Energy 142 (2018) 822–837.

[19] H. Garg, A hybrid GSA-GA algorithm for constrained

optimization problems, Inf. Sci. 478 (2019) 499–523.

[20] R. De Santis, R. Montanari, G. Vignali, E. Bottani, An adapted

ant colony optimization algorithm for the minimization of the

travel distance of pickers in manual warehouses, Eur. J. Oper.

Res. 267 (1) (2018) 120–137.

[21] D. Sedighizadeh, H. Mazaheripour, Optimization of multi

objective vehicle routing problem using a new hybrid
algorithm based on particle swarm optimization and artificial

bee colony algorithm considering Precedence constraints,

Alexandria Eng. J. 57 (4) (2018) 2225–2239.

[22] R. Hassanzadeh, I. Mahdavi, N. Mahdavi-Amiri, A. Tajdin, A

genetic algorithm for solving fuzzy shortest path problems with

mixed fuzzy arc lengths, Math. Comput. Modell. 57 (1) (2013)

84–99.

[23] A. Ebrahimnejad, Z. Karimnejad, H. Alrezaamiri, Particle

swarm optimisation algorithm for solving shortest path

problems with mixed fuzzy arc weights, Int. J. Appl. Decision

Sci. 8 (2) (2015) 203–222.

[24] A. Ebrahimnejad, M. Tavana, H. Alrezaamiri, A novel artificial

bee colony algorithm for shortest path problems with fuzzy arc

weights, Measurement 93 (2016) 48–56.

[25] E.W. Dijkstra, A Note on Two Problems in Connection with

Graphs, Numer. Math. 1 (1959) 269–271.

[26] L.R. Ford Jr, D.R. Fulkerson, A suggested computation for

maximal multi-commodity network flows, Manage. Sci. 5 (1)

(1958) 97–101.

[27] R.W. Floyd, Algorithm 97: shortest path, Commun. ACM 5 (6)

(1962) 345.

[28] I. Mahdavi, R. Nourifar, A. Heidarzade, N.M. Amiri, A

dynamic programming approach for finding shortest chains in

a fuzzy network, Appl. Soft Comput. 9 (2) (2009) 503–511.

[29] A. Tajdin, I. Mahdavi, N. Mahdavi-Amiri, B. Sadeghpour-

Gildeh, Computing a fuzzy shortest path in a network with

mixed fuzzy arc lengths using a-cuts, Comput. Math. Appl. 60

(4) (2010) 989–1002.

[30] Y. Dou, L. Zhu, H.S. Wang, solving the fuzzy shortest path

problem using multi-criteria decision method based on vague

similarity measure, Appl. Soft Comput. 12 (6) (2012) 1621–1631.

[31] Y. Deng, Y. Chen, Y. Zhang, S. Mahadevan, Fuzzy Dijkstra

algorithm for shortest path problem under uncertain

environment, Appl. Soft Comput. 12 (3) (2012) 1231–1237.

[32] Y. Zhang, Z. Zhang, Y. Deng, S. Mahadevan, A biologically

inspired solution for fuzzy shortest path problems, Appl. Soft

Comput. 13 (5) (2013) 2356–2363.

[33] J. Calle, J. Rivero, D. Cuadra, P. Isasi, Extending ACO for fast

path search in huge graphs and social networks, Expert Syst.

Appl. 86 (2017) 292–306.

[34] W. Ashour, R. Muqat, H. Al-Talli, Optimization of Traveling

Salesman Problem based on Adaptive Affinity Propagation and

Ant Colony Algorithms, Int. J. Comput. Appl. 181 (2018) 25–

31.

[35] C. Changdar, R.K. Pal, G.S. Mahapatra, A genetic ant colony

optimization based algorithm for solid multiple travelling

salesmen problem in fuzzy rough environment, Soft. Comput.

21 (16) (2017) 4661–4675.

[36] H. Alrezaamiri, A. Ebrahimnejad, H. Motameni, Software

requirement optimization using a fuzzy artificial chemical

reaction optimization algorithm, Soft. Comput. (2018) 1–16.

[37] J. Wang, J. Cao, R.S. Sherratt, J.H. Park, An improved ant

colony optimization-based approach with mobile sink for

wireless sensor networks, J. Supercomput. (2017) 1–13.

[38] J. Qin, X. Shen, F. Mei, Z. Fang, An Otsu multi-thresholds

segmentation algorithm based on improved ACO, J.

Supercomput. (2018) 1–13.

[39] F. Tirado, R.J. Barrientos, P. González, M. Mora, Efficient

exploitation of the Xeon Phi architecture for the Ant Colony

Optimization (ACO) metaheuristic, J. Supercomput. 73 (11)

(2017) 5053–5070.

http://refhub.elsevier.com/S1110-0168(21)00573-1/h0015
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0015
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0015
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0020
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0020
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0020
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0020
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0025
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0025
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0025
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0025
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0030
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0030
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0045
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0045
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0045
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0050
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0050
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0050
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0055
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0055
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0055
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0060
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0060
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0060
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0060
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0065
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0065
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0065
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0065
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0070
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0070
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0070
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0075
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0075
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0075
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0080
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0080
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0080
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0080
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0080
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0085
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0085
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0085
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0090
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0090
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0090
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0090
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0095
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0095
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0100
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0100
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0100
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0100
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0105
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0105
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0105
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0105
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0105
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0110
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0110
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0110
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0110
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0115
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0115
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0115
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0115
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0120
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0120
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0120
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0125
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0125
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0130
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0130
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0130
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0135
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0135
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0140
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0140
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0140
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0145
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0145
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0145
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0145
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0150
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0150
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0150
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0155
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0155
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0155
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0160
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0160
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0160
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0165
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0165
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0165
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0170
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0170
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0170
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0170
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0175
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0175
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0175
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0175
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0180
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0180
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0180
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0185
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0185
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0185
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0190
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0190
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0190
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0195
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0195
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0195
http://refhub.elsevier.com/S1110-0168(21)00573-1/h0195

	A novel ant colony algorithm for solving shortest path problems with fuzzy arc weights
	1 Introduction
	2 Literature review
	2.1 Traditional algorithms
	2.2 Applications to fuzzy environments
	2.3 Evolutionary fuzzy algorithms
	2.4 Ant colony optimization
	2.5 Contribution

	3 Basic fuzzy concepts
	4 Proposed ant colony optimization algorithm
	5 Implementation
	6 Conclusion
	Ethical approval
	Declaration of Competing Interest
	Acknowledgement
	References

