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Collective neutrino oscillations can potentially play an important role in transporting lepton
flavor in astrophysical scenarios where the neutrino density is large, typical examples are the early
universe and supernova explosions. It has been argued in the past that simple models of the neutrino
Hamiltonian designed to describe forward scattering can support substantial flavor evolution on very
short time scales t ≈ log(N)/(GF ρν), with N the number of neutrinos, GF the Fermi constant and
ρν the neutrino density. This finding is in tension with results for similar but exactly solvable models
for which t ≈

√
N/(GF ρν) instead. In this work we provide a coherent explanation of this tension

in terms of Dynamical Phase Transitions (DPT) and study the possible impact that a DPT could
have in more realistic models of neutrino oscillations and their mean-field approximation.

When considering astrophysical settings with large
neutrino densities, neutrino-neutrino scattering processes
can play an important role in shaping the flavor evo-
lution and can lead to collective oscillations in a neu-
trino cloud [1, 2]. This mechanism has been found to
play an important role in extreme environments like the
early-universe [3–5] or core-collapse supernovae and bi-
nary neutron-star mergers [6–12]. In the latter situations
for example, fast neutrino flavor oscillations can lead to
important consequences for the revival of the shock wave
and nucleosynthesis in the ejected material [13–15].

In this work we study simple models of neutrino-
neutrino interactions in the forward-scattering limit,
when only flavor can be exchanged among neutrinos. For
simplicity we also assume that only two flavor of neutri-
nos mix: νe corresponding to the electron flavor and νx,
a combination of µ and τ flavors [16]. In this model, neu-
trinos are mapped into SU(2) flavor isospins evolving at
low densities under the vacuum Hamiltonian [17]

Hvac =

N∑
k=1

ωk
2
~Bk · ~σk , (1)

with ~σi = (σxi , σ
y
i , σ

z
i ) the vector of Pauli matrices acting

on spin i. The one-body coefficients ωk are connected to
the squared mass gap ∆m = m2

2−m2
1 by ωk = ∆m/(2Ek),

with Ek the neutrino energy. The neutrino mass hierar-
chy is reflected in the sign of the gap: for normal hierar-
chy we consider ∆m > 0, while for inverted hierarchy we
take ∆m < 0 [17, 18]. The orientation of the ”magnetic

field” vector ~Bk = (sin(2θ), 0,− cos(2θ)) is related to the
mixing angle θ. Importantly, the collective oscillations
discussed in this work are not related to the presence of
off-diagonal components in the Hvac Hamiltonian and in
order to avoid confusion we will use a global SU(2) rota-
tion to move to the mass basis |↓〉 = |νx〉 and |↑〉 = |νe〉
with a diagonal vacuum Hamiltonian.

With the addition of the forward-scattering weak inter-
action among neutrinos, the full Hamiltonian reads [17]

HFS = −
N∑
k=1

ωk
2
σzk +

µ

2N

N∑
i<j

Jij~σi · ~σj , (2)

where the interaction strength is given by µ =
√

2GF ρν ,
with GF the Fermi constant and ρν the neutrino number
density. The geometry of the problem is encoded in the
coefficients of the two-body coupling matrix Jij as

Jij =

(
1− ~pi · ~pj
|~pi||~pj |

)
= (1− cos(θij)) , (3)

with ~pk the momentum associated with the k-th neutrino.
In the low density limit µ� ωk, the neutrinos oscillate

independently with their own frequency ωk. The pres-
ence of the forward-scattering interaction can allow col-
lective effects to develop when µ & ωk giving rise to inter-
esting phenomena like synchronization [4, 8, 19, 20], bipo-
lar oscillations [21–23] and spectral splits/swaps [24–28].
Due to the computational complexity of solving directly
for the dynamics generated by the Hamiltonian HFS for
large systems, much of the current understanding of col-
lective oscillation phenomenology is derived within mean-
field approaches (see [18] for a review) which, owing to
the infinite range of the interaction in Eq. (2), are ex-
pected to become increasingly correct as we approach
the thermodynamic limit N � 1 (this is true in general
at least for the ground-state energy, see eg. [29]).

In this work we are interested in understanding the
out-of-equilibrium dynamics of the spin model for large
but finite systems in order to understand the rate of
convergence to the mean field result. Early work by
Friedland and Lunardini [30] studied the Hamiltonian in
Eq. (2) in the limit where the vacuum term is negligible
(high density) and assuming the geometry is isotropic. In
this limit, the Hamiltonian is proportional to the total an-
gular momentum operator and therefore easily diagonal-
izable. The exact solution shows that substantial flavor
evolution occurs only for the time scales τL ≈ µ−1

√
N

associated with incoherent scattering. The result is fully
consistent with Ref. [31] which argued, using a short-
time approximation, that no entanglement is generated
in the many-body evolution of the system and that the
mean-field picture of incoherent scattering is correct.

The original study in Ref. [30] was motivated by earlier
work by Bell, Rawlinson and Sawyer [32] which presented
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numerical evidence from a similar model, where however
SU(2) invariance was explicitly broken, supporting a very
different result: neutrino flavor evolution occurring on
much shorter time scales τS = µ−1, independently of sys-
tem size. Despite the infinite range of the pair interaction
in HFS , one can expect the time for information to prop-
agate throughout the whole system to be lower bounded
by the information signaling time scaling as τsi ∝ log(N)
instead (see eg. [33]). Later work by Sawyer [34] pro-
vided additional numerical evidence, with larger system
sizes, suggesting indeed the presence of collective flavor
oscillations on a fast time scale τF ≈ µ−1 log(N).

In the present work, we propose an explanation for the
emergence of these different time scales, in apparently
very similar models for the neutrino forward scattering
problem, as a consequence of the presence of a Dynamic
Phase Transition (DPT) [35, 36] in the spin system. The
models considered in [32, 34], and described in more de-
tail in Sec. I below, give rise to fast oscillations with
times scaling as τF by introducing however an unphysi-
cal perturbation that breaks the SU(2) invariance of the
neutrino Hamiltonian in Eq. (2). As shown recently in
a companion paper [37], the presence of of the vacuum
Hamiltonian Hvac can also produce fast oscillations with
times scaling as τF . In Sec. II we provide additional
details about these results and establish a stronger con-
nection with the underlying DPT. Finally, we provide a
summary and conclude in Sec. III.

I. HIGH DENSITY LIMIT

It is reasonable to expect that collective effect would
be enhanced in the high density limit where µ � 1 and
the neutrino-neutrino coupling is strong. In the next two
sections we will study neutrino systems in the limit where
µ� |ωk| and neglect the vacuum one-body part from the
full Hamiltonian. This contribution will be reintroduced
and shown to play an important role in Sec. II below.

A. Single angle approximation

We start our discussion with the model obtained using
a very common simplification: the single angle approxi-
mation. This amounts to neglect the spatial information
encoded in the coupling matrix Jij from Eq. (3) and re-
place it with it’s average value. Here and in the following
we will take, without loss of generality, the coupling to
be Jij = 1. The final Hamiltonian, after neglecting the
one-body vacuum term, can then be written as

Hsa =
µ

2N

∑
i<j

~σi · ~σj =
µ

N
J2 − 3

4
µ , (4)

where we introduced the total flavor spin ~J = 1
2

∑
i ~σi.

This model is similar to the Lipkin-Meshov-Glick (LMG)

model [38] which, together with it’s variants, has been ex-
plored extensively in the past [39–43]. The Hamiltonian
Hsa is diagonal in the angular momentum basis |j,m〉
with j ∈ 0, . . . , N/2 and eigenvalues given by

Esa(j,m) =
µ

N
j (j + 1)− 3

4
µ . (5)

The ground-state is the singlet |0, 0〉 and the gap to ex-
cited states with total spin less than Nη/2 vanishes in
the thermodynamic limit for any η < 1. Owing to the
high degree of symmetry of this model, analytical solu-
tions can be found for the evolution of any observable
quantity as a function of time. In particular, a useful ob-
servable considered also in Refs. [30, 32, 37] is the flavor
persistence p(t), defined as the probability of measuring
one of the neutrinos in the same flavor state it had at the
beginning of time evolution. Throughout this work we
will consider an initial product state defined as

|Ψ0〉 =

N/2⊗
n=1

|↓〉

⊗
N/2⊗
m=1

|↑〉

 . (6)

In this case the flavor persistence can be expressed ex-
plicitly as the following expectation value

p(t) =
1

2
〈Ψ(t)|(1− σz1)|Ψ(t)〉 . (7)

where |Ψ(t)〉 = exp(−itH) |Ψ0〉 is the time evolved state
and, without loss of generality, we have considered the
first neutrino which started in the heavy flavor state |↓〉 at
time t = 0. Here and in the following, we will denote the
two sets of spins initialized with opposite polarizations in
|Ψ0〉 as A and B, with corresponding total spin operators
~JA = (XA, YA, ZA) and ~JB respectively.

In order to expose the role of Dynamical Phase Tran-
sitions in the collective oscillation phenomenon, we want
to describe the full time evolution of the initial state
|Ψ0〉 under the Hamiltonian in Eq. (4) as a quantum
quench [44]. In this setup one starts with an initial
Hamiltonian H0

sa, of which |Ψ0〉 is a ground state of,
and suddenly changes to the final Hamiltonian Hsa given
above. With our choice of initial state |Ψ0〉, the initial
Hamiltonian we consider in this case can be chosen as

H0
sa =

ν

4N

∑
i∈A

∑
i∈B

σzi σ
z
j =

ν

N
ZAZB , (8)

where we have indicated with A and B the set of indices
for the spins of the A and B group. The Hamiltonian H0

sa

has two degenerate ground-states corresponding to |Ψ0〉
and to it’s spin-reversed partner obtained by applying
the Pauli X operator to each spin: |Ψ1〉 =

⊗
i σ

x
i |Ψ0〉.

The full Hamiltonian used for our quantum quench can
then be express compactly as follows

H(t) =
µ(t)

N
J2 +

ν(t)

N
ZAZB , (9)
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with (µ(0), ν(0)) = (0, 1) and (µ(t), ν(t)) = (1, 0) ∀t > 0.
The system described by the full Hamiltonian H(t) un-
dergoes a quantum phase transition between a gapped
phase for ν(t)� µ(t) to a gapless phase for ν(t)� µ(t).
Contrary to the gapless Hamiltonian Hsa, the full Hamil-
tonian H(t) in Eq. (9) is not diagonal in the coupled
angular momentum basis |J,M〉. Using a mean-field cal-
culation, which is exact in the thermodynamic limit, we
find for µ > 0 a critical point at ν = 0 in the thermo-
dynamic limit (see Appendix A 1 for more details). The
quench dynamics under consideration here will therefore
terminate at the quantum critical point.

In order to define and characterize in general a Dynam-
ical Phase Transition (see [36] for a review) one usually
starts by introducing the Loschmidt echo as

L(t) = |〈Φ|exp (−itHf )|Φ〉|2 , (10)

with |Φ〉 the initial (pure) state at t = 0 and Hf the
final Hamiltonian of the quench. The quantity L(t) is
a fidelity measure [45] that quantifies the probability for
the system to return to it’s initial state. A DPT is then
characterized by non-analiticities in the rate function

λ(t) = − 1

N
log [L(t)] , (11)

where N is the total number of particles in the system
and λ(t) an intensive ”free energy” [35, 46]. The rate λ(t)
plays here the role of a non-equilibrium equivalent of the
thermodynamic free-energy. Notably, other definitions of
DPT are possible, for instance using time averaged order
parameters [47–49] and there are known cases where the
two definitions of criticality are incompatible [50]. In
the rest of this work we consider only DPT characterized
using the Loschmidt echo and leave for future work a
more detailed connection to dynamical order parameters.

Due to the degeneracy in the ground-space of the initial
Hamiltonian H0

sa, the Loschmidt echo in Eq. (10) needs
to be generalized. As shown in Refs. [49, 51] a consis-
tent generalization can be found by considering the total
probability P (t) of returning to the ground-space

P (t) = L0(t) + L1(t) , (12)

where we introduced the two Loschmidt echoes

Lk(t) = |〈Ψk|exp (−itHsa)|Ψ0〉|2 , (13)

associated with both ground-states. In the thermody-
namic limit N � 1 only one of the two contribution will
dominate resulting in the asymptotic scaling [51]

P (t)→ e−Nλm(t) λm(t) = min [λ0(t), λ1(t)] , (14)

up to exponentially small corrections. The rate functions
λ0(t) and λ1(t) correspond to the definition in Eq. (11)
but applied to L0(t) and L1(t) separately. A DPT can
then occur whenever L0(t) and L1(t) intersect at some
finite value t∗ for the evolution time [49, 51]. According
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FIG. 1. (Color online) Time evolution of the Loschmidt
echoes L0(t) and L1(t) for different systems sizes N . The
inset shows the crossing time as a function of system size.

to the phase diagram described above, our initial state is
quenched up to the critical point and this could lead to
a finite value of the crossing time t∗ for any finite N .

In order to test this scenario, we performed numer-
ical simulations using the Time Evolving Block Deci-
mation (TEBD) algorithm with Matrix Product States
(MPS) [52] implemented using the iTensor library [53].
The appealing property of this class of algorithms is
that their computational cost scales with the amount of
entanglement generated by the real-time dynamics and
can then be used efficiently when quantum correlations
are sufficiently weak. The implementation of the time
evolution operator U(t) = exp(−itH) follows the swap
network scheme employed also in past quantum simu-
lations [54]. Additional details on this computational
scheme can be found in the companion paper Ref. [37].

The results in the main panel of Fig. 1 show the two
Loschmidt echoes L0(t) and L1(t) for system of different
size. In marked difference with the nearest neighbour
case studied in Ref. [51], the crossing time t∗ shows a
rapid evolution with system size on time scales propor-
tional to τL = µ−1

√
N . From the results of our sim-

ulations we extract a value of t∗/τL = 1.34(2) for the
crossing time. The divergence of τL with the system size
N indicates that this is not technically a DPT, in the
sense that the crossing of Loschmidt echoes is a finite-
size effect that will vanish in the thermodynamic limit.

The results of our simulation for the the flavor per-
sistence p(t), defined explicitly in Eq. (7), are shown in
Fig. 2. We recover the result reported in Ref. [30]: the
minimum of the persistence is achieved at times tP ∝ τL.
This is clearly indicated by the inset (b) of Fig. 2 which
shows the persistence as a function of the rescaled time
t′ = t/

√
N . The dependence on system size is minimal.

The right hand panels show more in detail the sys-
tem size dependence of tP , in panel (c), and of the value
pmin(N) of the persistence at it’s minimum, in panel (d).
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FIG. 2. (Color online) The main panel (a) shows the time evo-
lution of the flavor persistence p(t) for different system sizes
N = [16, 32, 48, 64, 96]. The inset (b) shows the persistence

p(t) plotted versus the rescaled time t′ = t/
√
N . The data

in panel(c) shows the evolution with system size of the time
tP to reach the minimum of p(t) while in panel (d) we report
the value of the persistence at the minimum as a function of
1/N . The continuous curves in panels (c) and (d) correspond
to the fit described in the text.

The latter is plotted as a function of 1/N to emphasize
the power law scaling of pmin(N) = pmin−c/N (the solid
green curve in panel (d)). The result of these fit for the
minimum time is tP /τL = 2.10(5) while pmin = 0.357(2)
in the infinite system size limit. The first two data points
in panel (d) of Fig. 2 correspond to N = 8 and N = 10
and we see that one needs to reach N = 16 before devi-
ations from the 1/N behavior are apparent.

All of these time scales quickly diverge for large system
sizes N � 1 and the mean-field solution, which predicts
for this models no time evolution at all, becomes eventu-
ally exact in the thermodynamic limit.

In order to quantify quantum correlations in the
evolved state, we compute the half-chain entanglement
entropy (see eg. [55]) defined as

SN/2(t) = −Tr [ρB(t) log2 (ρB(t))] , (15)

with ρB = TrA [ρ(t)] the reduced density matrix obtained
by tracing the full density matrix of the neutrino system
at time t, denoted as ρ(t), over the first N/2 spins be-
longing to the A group defined above.

We see from the results in Fig. 3 that, after an ini-
tial growth, the entropy SN/2(t) reaches a peak and then
plateaus at a value Smax ≈ log2(N/2) with oscillations
around the average. The maximum value Smax for the
entanglement entropy is reminiscent to the one in ground
states of one dimensional spin systems at a quantum crit-
ical point [56, 57] and reflects the absence of a gap in the
Hamiltonian Hsa in Eq. (4). The qualitative behavior of
SN/2(t) is remarkably close to the one observed with a
similar model (but different initial conditions) in Ref. [58]
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FIG. 3. (Color online) Time evolution of the half-chain
entropy. Horizontal dashed lines correspond to the value
log2(N/2) and the (purple) dotted line is the fit from Eq. (17).
The inset shows the evolution of the time to reach maximum
entropy with system size: the green solid curve is the best fit
discussed in the text while the red dashed line corresponds to
the crossing time t∗ from Fig. 1.

where the entanglement entropy was observed to peak
and then plateau when the system was quenched at the
critical point of a DPT. The observed time scale to reach
the peak, also connected to the Eherenfest time tEhr [58],
was found there to scale as tEhr ≈ log(N) similarly to
the fast scale τF while away from the quantum critical
point tEhr ≈

√
N like τL.

From our simulation we find that in our case, despite
being at the critical point, the entropy grows more slowly
and reaches the peak on the slow time scale tent ≈

√
N .

In order to account for finite size effects, we perform a fit
to the data shown in the inset of Fig. 3 using

tent(N) = a
√
N +

b√
N

+
c

N
(16)

The optimal parameter for the leading order term is
found to be aτL = 1.16(4) while the finite size correc-
tions b and c are O(10). This time scale is very similar,
and always strictly smaller, to the crossing time t∗ when
the DQPT occurs (see red dashed line in inset of Fig. 3).

A separate test of whether the entanglement time tent
scales algebraically (case α) or logarithmically (case β)
in system size can be obtained by estimating the time to
reach SN/2 = Smax using two limiting cases

SM (t) = log2

(
N(t)

2

)
=

{
A log2(t/B) case α
Ct+D case β

. (17)

For the single angle setup considered in this section we
found a good fit to data only for the model from ”case
α” (shown as purple dotted line in Fig. 3) with optimal
parameters A = 2.14(4) and B = 2 respectively.

We note that this slow increase of the entanglement
entropy with system size and with time is at the hearth
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of the classical simulatability of the neutrino model in the
single-angle approximation with Matrix Product States:
the maximum bond dimension needed only scales lin-
early with N to obtain converged results. The TEBD
scheme employed here, and in the accompanying pa-
per [37], is however not optimal for long range inter-
actions and further progress could be made using more
sophisticated simulation techniques like the Time Depen-
dent Variational Principle [59] as well as different tensor
network [60, 61] or neural network states [62].

B. Fast oscillations with SU(2) breaking

The first calculations showing a many-body ”coherent
speedup” of flavor oscillations at the shorter time-scale
τS = µ−1 were obtained in Refs. [32, 34] using a neutrino
Hamiltonian that explicitly breaks the global SU(2) fla-
vor invariance of the Hamiltonian HFS in Eq. (2). The
symmetry-breaking term used in both cases is

HSB = (∆− 1)
µ

2N

N∑
i<j

Jijσzi σzj . (18)

The control parameter here is ∆ and for ∆ = 1 the orig-
inal SU(2) invariant interaction is recovered. As we will
see below the geometry of the problem encoded in the
angular factors Jij will play now an important role.

In this section we will consider a very simple situation:
two neutrino beams, one with N/2 neutrinos starting in
the |↓〉 state and one with N/2 neutrinos starting in |↑〉.
These correspond to the sets A and B defined above.
Neutrinos belonging to the same group interact with the
same strength JAA = JBB while neutrinos belonging to
different beams interact with a coupling JAB . Using the

total flavor spin operators ~JA and ~JB introduced above,
we can write the full Hamiltonian used in this quench as

Htb =
µJAA
N

[
J2
A + J2

B + (∆− 1)
(
Z2
A + Z2

B

)]
+

2µJAB
N

[
~JA · ~JB + (∆− 1)ZAZB

]
,

(19)

plus an inconsequential constant factor that we ignore.
The limit in which the beams are very collimated corre-
sponds to the choice JAA = 0, and the weak interactions
are relevant only across beams. For the rest of this sec-
tion we will measure energies in units of (µJAB) and use
directly the dimensionless parameter Γ = JAA/JAB .

The quench dynamics we will consider in this section
starts in the limit ∆→∞ with Γ→ 0 which corresponds
to the starting Hamiltonian H0

sa considered above, with
|Ψ0〉 and |Ψ1〉 as it’s two degenerate ground-states.

The equilibrium phase diagram of the two beam Hamil-
tonian Htb is now much richer than with the single angle
approximation (see Fig. 4). Using a mean-field approach
(see App. A 2 for details) we can identify 4 distinct phases
depending on the value of the SU(2) breaking parameter
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FIG. 4. (Color online) Equilibrium phase diagram for the
two beam model (see App. A 2 for a derivation) together with
the two quantum quenches considered in the main text: FL
denotes the single angle model from Ref. [30], BRS indicates
the SU(2) broken model from Ref. [32]. In both cases the
system starts with |Ψ0〉 in the AFM phase (purple square).
The dashed lines indicate the set of points in parameter space
where the dynamics is equivalent to that of the single angle
SU(2) invariant point (denoted by a solid circle).

∆ and on the ratio Γ of the two body couplings which
specifies the relative orientations of the beams.

For collimated beams with Γ < 1 we find two gapped
phases, one with anti-ferromagnetic order in the z direc-
tion at large positive values of ∆ (denoted by AFM) and
one with ferromagnetic order along the z direction for suf-
ficiently negative values of ∆ (denoted by FM). These
two phase are separated by a gapless phase, indicated
by XY in Fig. 4, where anti-ferromagnetic order is pre-
served in the xy−plane but is lost in the z direction. The
only ordered phase present for Γ ≥ 1 is the FM phase
for ∆ < 0 while a disordered gapless phase emerges for
positive values of ∆ (denoted by DIS in Fig. 4).

The results within the single angle approximation de-
scribed in the previous section (and in Ref. [30]) cor-
respond to the trajectory indicated by the FL arrow in
Fig. 4 and ending at the full dot (which indicates the sin-
gle angle point). The dashed lines emanating from that
point indicate parameter values for which, due to conser-
vation laws, the dynamics is indistinguishable from the
one obtained with the FL quench. Note that this holds
also for quenches that are apparently crossing a phase
boundary. This is in agreement with previous studies
showing that a DPT can fail to appear even in quenches
that crossed a phase boundary (see eg. [49, 63, 64]).

Here we study in some detail the quench used in the
original paper by Bell et al. in Ref. [32] (denoted by the
BRS arrow in Fig. 4) and comment on the qualitative dif-
ferences with the single angle case explored in the previ-
ous section. Further exploration of the interplay between
the equilibrium phase boundaries displayed in Fig. 9 and
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the presence of a DPT would be very interesting. How-
ever, since in order to describe neutrino interactions we
are not allowed to break the SU(2) invariance explicitly,
we cover here only the simpler case needed to explain the
findings of Refs. [32, 34] and proceed in the next section
to consider instead the SU(2)-invariant problem consid-
ered already in Ref. [37] which shows similar features.

We start by looking at both the time evolution of the
flavor persistence p(t) and the crossing time of the two
Loschmidt echoes from Eq. (13). The main panel of
Fig. 5 shows the flavor persistence p(t) for various sys-
tem sizes (solid lines) together with the equivalent re-
sult in the single angle approximation from the previous
section (dotted lines). It is clear that flavor evolution
happens much faster in the BRS quench, with sustained
oscillations for long times. The frequency of these os-
cillations, as measured by the time tP to reach the first
minimum, follows the fast time scale τF = µ−1 log(N) as
µtP = 2.04(5) log(N) + 1.6(1) (see panel (b) of Fig. 5).
This is in agreement with the expectations from results
presented in Refs. [32, 34] and much faster than in the
single angle approximation (shown as the green dashed
line in Fig. 5(b)) we studied above and in Ref. [30].

The Loschmidt echoes L0(t) and L1(t) are also found to
cross at shorter time scales than those found in Sec. I A.
The results for the crossing time t∗ as a function of the
system size N are presented in panel (c) of Fig. 5 and
again follow the fast time scale with t∗/τF = 1.56(4).

The stark difference with the single angle case can also
be observed in the evolution of the half-chain entangle-
ment entropy SN/2 defined in Eq. (15). The main panel
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FIG. 5. (Color online) The main panel (a) shows the flavor
persistence p(t) for different sizes of the neutrino system with
N given by: 16 (black line), 24 (green line), 32 (red line) and
48 (blue line). Also shown as dotted lines, with the same
color, the results for p(t) obtained with the single angle ap-
proximation in Sec. I A. The right panels show the system size
dependence of the time tP to reach the minimum of the per-
sistence (panel (b)) and the crossing time t∗ of the Loschmidt
echoes (panel (c)). The green dashed lines are the best fit for
the results with the single angle approximation.
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together with logarithmic fits. The brown dotted line in the
main panel is the ”case β” fit from Eq. (17).

of Fig. 6 shows the entanglement entropy for different
system sizes N = 8, 16, 24, 32, 48, 64, 96, 128 (solid lines
in the main panel). The behavior in this case is qualita-
tively different from the results shown in Fig. 3 for the
single angle approximation: the entanglement entropy
itself oscillates in time, reaching values as high as Smax
(dashed lines in Fig. 6) multiple times. In the results
shown in Fig. 6 we see two distinct peaks whose times
scale with the fast time scale τF as t1ent/τF = 1.3(1) and
t2ent/τF = 3.9(1) respectively (these fits are shown in the
inset of Fig. 6 as continuous lines). To corroborate these
findings we also shown in the main panel is the ”case
β” fit from Eq. (17) which very accurately matches the
evolution of the entropy maximum.

The results shown in this section were obtained us-
ing Γ = 0 as in the original model from Ref. [32] but
we confirmed the presence of the same logarithmic time
scale also for larger values up to Γ ≈ 0.7 as observed also
in previous work as reported in Ref. [34]. The original
model from Ref. [32] also used a more complex angular
distribution than the two beam geometry employed here
and in Ref. [34], unfortunately, due to the explicit N de-
pendence of the angular distribution used there, it was
not possible to obtain a smooth extrapolation in system
size as we have done with the other models in this work.
We have found in a few selected cases at fixed N that,
with our initial state |Ψ0〉, more complex angular depen-
dence actually slows down the dynamics as compared to
the two beam geometry. This effect is likely due to frus-
tration of some of the interaction terms and in future
work we plan to assess more quantitatively the role of
multi-angle effects by using model geometries that have
a well-defined scaling with system size.
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II. INTERMEDIATE DENSITY REGIME

The fast flavor oscillations observed in the models of
the previous section are unfortunately not directly rel-
evant to neutrino physics since the correct Hamiltonian
is SU(2) flavor invariant also in the general case. The
previous result, however, points to the fact that oscilla-
tions at the time scale τF can appear when one crosses a
quantum critical point and we have a DPT in the quan-
tum quench. By tuning appropriately the one body part
of the forward-scattering Hamiltonian in Eq. (2) we can
orchestrate this to happen also in a physically relevant
scenario closely related to the model used in describing
bipolar collective oscillations (see eg. [22, 65]).

In this section we will consider the same model we
introduced in the companion paper [37] where the system
is still decomposed in the two beams A and B but now
with two different energies

HID = −ωA
2

∑
i∈A

σzi −
ωB
2

∑
i∈B

σzi +
µ

2N

∑
i<j

~σi · ~σj ,

(20)

where we have also used the single angle approxima-
tion for the coupling matrix Jij in the interaction. The
Hamiltonian commutes with the z component of the total
flavor spin Jz = ZA+ZB and, given our initial state |Ψ0〉,
it’s expectation vale remains zero at all times. Using spin
operators for the neutrinos in the two beams and denot-
ing the spin difference along the z axis as Dz = ZB−ZA,
we can write the full Hamiltonian as (cf. [37])

HID =
µ

N
J2 + δωDz (21)

where we introduced δω = (ωA − ωB)/2 for the energy
difference between the two beams and dropped an irrel-
evant constant. The equilibrium phase diagram depends
on the sign of the two body interaction µ:

• for a ferromagnetic coupling µ < 0, there is a sec-
ond order transition at δω = ±|µ| between polar-
ized phases with 〈Dz〉 = ∓N/2 and a broken phase
with ferromagnetic order in the xy plane [41].

• for an anti-ferromagnetic coupling µ > 0, the tran-
sition between gapped polarized phases is of first
order and at δω = 0 instead [39].

On the other hand, the Loschmidt echo Eq. (10) char-
acterizing a DPT is invariant upon inversion of the full
Hamiltonian HID → −HID and we can therefore expect
the dynamical phase diagram to display features of both
cases above and depend instead only on the relative sign
of the two couplings constants µ and δω.

This is indeed the case as shown in the results pre-
sented in Ref. [37] which we briefly summarize here. Us-
ing energy conservation together with the known initial
state |Ψ0〉 whose energy expactatin value reads

E0 = 〈Ψ0|HID|Ψ0〉 =
µ

2
+ δω

N

2
, (22)

we can express the instantaneous value of the total an-
gular momentum as a function of the staggered spin po-
larization Dz as follows

〈J2(t)〉 =
N

2

(
1 + 2

δω
µ

(
N

2
− 〈Dz(t)〉

))
, (23)

with initial conditions 〈J2(0)〉 = 〈Dz(0)〉 = N/2. As was
show in the accompanying paper [37], this relation be-
tween the total angular momentum and the flavor asym-
metry in the two beams is sufficient to characterize quali-
tatively the entire out-of-equilibrium dynamics. For com-
pleteness we provide a more complete derivation of those
results with more details in the following.

In the case where the energy asymmetry δω/µ < 0 is
negative, the total spin, which starts already at a rela-
tively small value, can only decrease further during time
evolution. Since the operator J2 is positive semi-definite
this introduces a constraint on the fluctuations that Dz

can experience, in particular

〈Dz(t)〉
∣∣∣∣
δω/µ<0

≥ N

2
−
∣∣∣∣ µ2δω

∣∣∣∣ , (24)

and the change in polarization per spin vanishes in the
thermodynamic limit. This suggests that for δω/µ <
0 the system experiences negligible flavor evolution and
is always close to the initial state, this was called the
frozen phase in Ref. [37]. In the opposite limit δω/µ > 0
instead, the fluctuations become parametrically small at
low densities (corresponding to δω/µ � 1 ) but remain
finite also in the N � 1 limit

〈Dz(t)〉
∣∣∣∣
δω/µ>0

≥ N

2

(
1− µ

2δω

)
. (25)

This inequality provides a nontrivial bound on the spin,
or flavor, fluctuations only for large δω > µ/4. Based on
the discussion of the equilibrium phase diagram of this
model, we expect to find the system in the gapped polar-
ized phase, with 〈Dz〉 large and positive, for sufficiently
large δω/µ values. An estimate for the transition can be
obtained by considering the minimum value of δω/µ for
which the first order fluctuations preserve the sign of the
order parameter. This can be obtained by ensuring

〈Dz(t)〉 −
√

Var[Dz](t) > 0 , (26)

with Var[Dz](t) = 〈D2
z(t)〉− 〈Dz(t)〉2 the variance of Dz.

Using the fact that 〈Jz〉 = 〈J2
z 〉 = 0 for our initial state,

we can find the following upperbound on the variance

Var[Dz](t) = 2
(
〈Z2

A〉+ 〈Z2
B〉 − 〈ZA〉2 − 〈ZB〉2

)
= 2

(
〈Z2

A〉+ 〈Z2
B〉
)
− 〈Dz(t)〉2

≤ N2

4
− 〈Dz(t)〉2 .

(27)

We therefore expect the system to be in the polarized
phase and experience little flavor evolution when

〈Dz(t)〉 >
N

2
√

2
⇒ δω

µ
>

1

2−
√

2
≈ 1.7 , (28)
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and possibly at somewhat smaller values due to the
bound Eq. (27) being not tight.

Finally, in the regime 0 < δω/µ ≤ 1/4 the total spin
J2, and correspondingly the flavor difference Dz, can ex-
perience strong fluctuations bounded by

N

2
≤ 〈J2(t)〉

∣∣∣∣
0≤δω/µ≤1/4

≤ N

2

(
1 + 2

δω
µ
N

)
. (29)

As expected from this qualitative discussion, the dy-
namical phase diagram delineated above corresponds to
a combination of the equilibrium phase diagrams of both
the ferromagnetic and anti-ferromagnetic cases, with
the exception that the transition at large δω/µ appears
shifted to larger values than δω/µ = 1.

As shown also in Ref. [37], the presence of these dif-
ferent dynamical phases is directly visible in the time
evolution of the half-chain entanglement entropy for dif-
ferent values of the one body energy asymmetry δω/µ.
In the frozen phases for either δω/µ < 0 or δω/µ ' 1
the entanglement entropy remains small with a maxi-
mum value independent of system size. For negative en-
ergy asymmetry δω/µ the entropy experiences fast oscil-
lations which bring SN/2 back to zero periodically. This
is shown in the top panel of Fig. 7 showing the evolution
of the half-chain entropy for a system of N = 96 neu-
trino amplitudes across the different dynamical phases.
In the gapless region 0 < δω/µ . 1 the entanglement
entropy shows strong fluctuations as a function of time,
with maximum values close to Smax = log2(N/2) and
monotonically decreasing for increasing one-body energy
asymmetry (see also Fig.3 of Ref. [37]). The special case
δω/µ = 0 matches the behavior presented in Fig. 3 above,

with a peak at tent ∝ µ−1
√
N and small fluctuations at

=
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FIG. 7. (Color online) Half-chain entanglement entropy for
a system with N = 96 neutrino amplitudes as a function of
time for six values of the energy asymmetry parameter δω/µ
(from top to bottom): −0.5, 0.0, 0.125, 0.25, 0.5, 1.0.
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line contains only the two body potential as in Fig. 1 and the
green, blue and orange lines correspond to positive asymme-
tries δω = (0.25, 0.5, 1.0)µ respectively.

late times. The scaling of time scales in the half-chain
entropy for the unstable region 0 < δω/µ . 1 shows a
logarithmic behavior as expected from the presence of
a DPT into a gapless phase, similarly to what we have
found for the SU(2)-broken model in Sec.I B.

In order to establish a closer connection to dynamical
phase transitions as defined in the previous sections, we
now consider the evolution of the Loschmidt echo L(t)
for different values of the asymmetry parameter δω in
all three dynamical phases. Contrary to the situation in
Sec. I A and Sec. I B, the initial Hamiltonian we consider
here (namely HID with δω < 0 and µ = 0) has a unique
ground-state. For all quenches with δω 6= 0 considered
in this section, we have always found L1(t) ≈ 0 for large
system sizes and a DPT will not appear as a crossing
of echoes as before, but instead as sharp peaks in the
Loschmidt rate λ(t) defined in Eq. (11) above.

This is illustrated in of Fig. 8 where the Loschmidt
rate λ(t) is shown for different values of δω in a system of
N = 96 neutrino amplitudes. The purely two-body case
at δω = 0 has a DPT generated by crossing Loschmidt
echoes at t = t∗ (shown as a dot in Fig. 8), followed
by additional sharp features at later times. For negative
values of δω, in the frozen phase, the rate λ(t) remains
smooth at all times, while for positive δω sharp features
start to appear at even shorter times than the t∗ cross-
ing time and a DPT can occur in the system. Obtaining
an estimate for the critical time where a DPT might oc-
cur in this case is complicated by it’s expected evolution
with system size, in parallel to the case δω = 0 consid-
ered in Sec. I A above. This has prevented a reliable
extraction of a unique critical time t∗ in the unstable re-
gion 0 < δω/µ . 1 using results up to N = 128 and a
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single value for the time-step of the evolution (here we
used 0.05µ−1 as in Ref. [37]). This observation high-
lights the usefulness of entanglement measures such as
the half-chain entropy as a more robust indicator of the
presence of qualitative changes in the dynamical phase of
a many-body quantum system. Future explorations em-
ploying either semi-classical approaches, like those used
for instance in [50], or specialized simulations exploit-
ing more directly symmetries of the system, are expected
to be able to clarify the role of fidelity measures as the
Loschmidt echo in characterizing the different dynamical
phases found in models of neutrino flavor evolution.

III. SUMMARY AND CONCLUSIONS

The presence of collective oscillations in the dynam-
ical evolution leading to neutrino flavor transport has
long been recognized as an important effect in describing
the dynamics of astrophysical environments like super-
novae and the early universe [1, 2, 4, 6]. Early explo-
rations by Sawyer and coworkers [32, 34, 66] suggested
that quantum correlations, in the many-body spin system
corresponding to a neutrino cloud, could lead to a coher-
ent speed-up of collective oscillations, with possibly im-
portant consequences for the dynamics of these environ-
ments. This idea, which invites caution on the interpre-
tation of results for the neutrino flavor evolution obtained
using mean-field approximations (which neglect quantum
entanglement), has been challenged in the past by pre-
senting counter-examples in solvable models where the
qualitative prediction of the mean-field are matched by
the exact solution [30, 67]. The absence of entanglement
in the neutrino dynamics more generally has also being
argued as a justification for the mean-field approach to
the problem [31]. This debate has recently re-emerged
thanks to works like Ref. [68] and Ref. [69] which showed
that entanglement is indeed produced when solving ex-
actly the many-body neutrino problem encoded in the
forward scattering Hamiltonian of Eq. (2) and it’s time-
dependent generalizations. The explored systems were
however too small (N = O(10)) to draw general con-
clusions applicable to the large collections of neutrino
amplitudes needed for realistic simulations.

Exploiting the expectation that the entanglement en-
tropy is unlikely to grow too large in these many-body
systems, due to the infinite range of interactions in the
spin model of Eq. (2), the present work extends the
idea presented in the companion paper Ref. [37] to use
a Matrix Product State (MPS) representation in order
to efficiently describe the neutrino wave-function as it
evolves from an initial product state. As explained in
more detail in Ref. [37], this approach is ideal for low
levels of bipartite entanglement in the system and allows
to easily simulate systems with ≈ 100 neutrino ampli-
tudes with modest computational resources. This simu-
lation strategy is used here with two main goals, the first
one was to validate the early small scale simulations by

Sawyer et al. [32, 34] which, correctly, predicted flavor
evolution to occur (in their model) at a fast time-scale
τF ≈ µ−1 log(N). This shows that indeed many-particle
neutrino interactions cause a novel coherent effect not
captured by the mean-field approximation. A similar ef-
fect is also found in the more familiar bipolar oscillations
described in detail in Ref. [37] and Sec. II of the present
work. The second goal was to explain the presence of
this fast time scale as being generated by an underlying
Dynamical Phase Transition. This observation explains
the absence of the effect in the exactly solvable models
discussed in Refs. [30, 67] and provides a more direct link
between the presence of coherently-enhanced flavor oscil-
lations and non-negligible levels of entanglement in the
many-body state generated by the dynamics.

The work presented here and in the accompanying
paper Ref. [37] opens the way to accurate many-body
simulation of the full quantum dynamics of neutrino
flavor transport with controllable errors. The use of
entanglement-efficient methods, like the MPS representa-
tion used here, will allow for the first time a more direct
comparison with popular approximation methods work-
ing in the mean field for large system sizes. This will
be critical to allow for the inclusion of rich energy/angle
distributions and avoid the limitations of special sym-
metric points like the model studied in Ref. [30] and cov-
ered in Sec. I A of the present work. Possible failures of
this program would be associated to situations where the
entanglement entropy grows substantially with system
size. The identification of the parameter regimes where
this happens would shed light on potentially interesting
candidates to study using quantum computing devices
as recently explored in Ref. [54]. Finally, a better un-
derstanding of the dynamical phase diagram of neutrino
models, as the one described in Eq. (2) and it’s general-
ization to the full 3 flavor case, would help identify the
conditions (beyond linear stability analysis) required for
collective oscillations to appear in complex environments
like supernovae explosions by an appropriate analysis of
simulation results. Work is ongoing to extend the re-
sults presented in this work to more realistic conditions
in order to better asses the impact of entanglement in
astrophysical settings with large neutrino densities.
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Iztok Pižorn, Henri Verschelde, and Frank Verstraete,
“Time-dependent variational principle for quantum lat-
tices,” Phys. Rev. Lett. 107, 070601 (2011).

[60] G. Vidal, “Class of quantum many-body states that can
be efficiently simulated,” Phys. Rev. Lett. 101, 110501
(2008).

[61] G. Evenbly and G. Vidal, “Tensor network states and
geometry,” Journal of Statistical Physics 145, 891–918
(2011).

[62] Dong-Ling Deng, Xiaopeng Li, and S. Das Sarma,
“Quantum entanglement in neural network states,” Phys.
Rev. X 7, 021021 (2017).

[63] Szabolcs Vajna and Balázs Dóra, “Disentangling dynami-
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Appendix A: Details on equilibrium phase diagrams

1. Phase diagram for single angle model

In the quantum quench relevant for the single angle
case studied in Sec. I A the full Hamiltonian reads

H =
µ

N
J2 +

ν

N
ZAZB , (A1)

with µ, ν positive constants. As discussed in the main
text, in the limit ν = 0 the system is gapless and the
groundstate has zero total angular momentum and zero
energy. In the limit µ = 0 instead, the system has two
degenerate ground-states which, in the angular momen-
tum basis |sA,mA〉⊗|sB ,mB〉 of the two set of spins with

total angular momenta ~SA and ~SB , we can write as

|GS0〉 =

∣∣∣∣N4 ,−N4
〉
⊗
∣∣∣∣N4 , N4

〉
|GS1〉 =

∣∣∣∣N4 , N4
〉
⊗
∣∣∣∣N4 ,−N4

〉
.

(A2)

In these configurations the system has an anti-
ferromagnetic order across beams characterized by
〈ZAZB〉 = −N2/16. In the gapless phase the order pa-
rameter is zero. The expectation value of the full Hamil-
tonian in either of the anti-ferromagnetic states reads

〈GSk|H|GSk〉 =
µ

2
− ν N

16
, (A3)

and becomes negative for a sufficiently large antiferro-
magnetic coupling ν > 8µ/N . In the thermodynamic
limit we expect the critical point to be at ν = 0 for any
µ > 0. As we will see in a more general case below, if we
allow ν to become negative other phases emerge.

2. Phase diagram of the two-beam model

In this section we provide more details on the calcula-
tion of the mean-field phase diagram presented in Fig. 4
of the main text. This corresponds to the ground-state
phase diagram of the following Hamiltonian (cf. Eq.(19))

H =
Γ

N

[
J2
A + J2

B + (∆− 1)
(
ZA

2 + ZB
2
)]

+
2

N

[
~JA · ~JB + (∆− 1)ZAZB

]
,

(A4)

with a positive coupling constant Γ = JAA/JAB .
The order parameters of interest here are the average

staggered magnetizations of the two beams

MXY
AB =

1

N
〈XAXB〉+ 〈YAYB〉

MZ
AB =

1

N
〈ZAZB〉

MV
AB =

1

N
〈 ~JA · ~JB〉 = MXY

AB +MZ
AB

(A5)

We start the discussion of the equilibrium phase dia-
gram by considering first some special cases:

• at the SU(2) symmetric point, corresponding to
∆ = 1, we have the following Hamiltonian

H∆=1 =
1

N
J2 +

Γ− 1

N

(
J2
A + J2

B

)
. (A6)

For Γ < 1 the system is in an anti-ferromagnetic
gapless phase characterized by MV

AB = −N
16 and

undefined values for MXY
AB and MZ

AB . For Γ > 1
we have instead a disordered gapless phase char-
acterized by a vanishing order parameters MV

AB =
MXY
AB = MZ

AB = 0. At the single angle point Γ = 1,
the three order parameters are undefined. Note
that, when the initial state is |Ψ0〉 from Eq. (6),
the resulting evolution is the same for any value of
Γ since S2

A and S2
B are conserved quantities.

• at the single angle point Γ = 1 we have instead

HΓ=1 =
1

N
J2 +

1

N
(∆− 1)Ztot

2

=
1

N

(
X2
tot + Y 2

tot

)
+

1

N
∆Ztot

2 ,

(A7)

with Ztot = ZA+ZB the total spin in the z direction
(and similarly for Xtot and Ytot). The groundstate
of this model for ∆ < 0 is a (gapped) ferromagnet
with MZ

AB = N
16 , for ∆ ≥ 0 the groundstates are

the singlet states with zero total spin and with un-
defined order parameters. Given our initial state
|Ψ0〉, and the fact that [Ztot, HΓ=1] = 0, the time
evolution is exactly equivalent to the the single an-
gle case studied above for any value of ∆.

• for collimated beams with Γ = 0 we have simply

H =
2

N

[
~JA · ~JB + (∆− 1)ZAZB

]
. (A8)

For ∆ > 1 the ground states are |Ψ0〉 and the spin
reversed partner |Ψ1〉 introduced in Sec. I A of the
main text. The system has anti-ferromagnetic or-
der with MZ

AB = −N
16 and there is a finite energy

gap to excited states. For −1 < ∆ < 1 the system
is gapless with MZ

AB = 0, in fact we have a con-
tinuum of zero-energy modes polarized in the XY
plane with MXY

AB = −N
16 . Finally, for ∆ < −1 the

system is a ferromagnet along the Z direction with
MZ
AB = N

16 and MXY
AB = 0.

In order to get the rest of the phase diagram we will
compare energies of the different phases in the mean field
limit. Let’s first rewrite the Hamiltonian as

H =
Γ

N

[
J2
A + J2

B

]
+

Γ

N
(∆− 1)

[
ZA

2 + ZB
2
]

+
2

N
[XAXB + YAYB ] +

2∆

N
ZAZB .

(A9)
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FIG. 9. (Color online) Equilibrium phase diagram for the
two beam model in Eq. (A4), see text for description of the
phases and properties of the boundaries. The solid circle is
the SU(2) invariant model in the single angle approximation.
Also shown are the values of the order parameters.

The mean field states we will consider here are:

|ΦFM 〉 =

N⊗
i=1

|↑〉

|ΦAFM 〉 =

N/2⊗
i=1

|↑〉

⊗
N/2⊗
i=1

|↓〉


|ΦXY 〉 =

N/2⊗
i=1

|+〉

⊗
N/2⊗
i=1

|−〉


(A10)

together with the disordered state |ΦDIS〉 with zero to-
tal spin in beam A and B. In the expression above we
use the notation |±〉 to indicate the eigenstates of the

Pauli X operator with positive and negative eigenvalue
respectively. The corresponding expectation values for
the energy in the full Hamiltonian Eq. (A4) are

EFM =
Γ

2
+
N

8
∆ (Γ + 1) ,

EAFM =
Γ

2
+
N

8
∆ (Γ− 1) ,

EXY =
Γ

2
+
N

8
(Γ− 1) ,

EDIS = 0 .

(A11)

The resulting phase diagram is depicted in Fig. 9.
Along the critical lines separating the different phases
we have the following

• boundaries between AFM and DIS and between
XY and DIS (dashed black curve in Fig. 9): all
the order parameters are undefined due to the de-
generacy of the spectrum for states with different
values of the total spin in the two beams but zero
total angular momentum.

• boundary between AFM and XY (dotted black
curve in Fig. 9): the direction-independent mag-
netization takes the smallest value MV

AB = −N
16

while the other two order parameters are undefined
thanks to the SU(2) invariance of the system. At
the critical point for Γ = 1 also MV

AB is undefined.

• boundary between DIS and FM (dash dotted
black curve in Fig. 9): similarly to the boundary
between DIS and the other two ordered phases, all
the order parameters can take values in [−N/16, 0].

• boundary between FM and XY (solid black curve
in Fig. 9): the direction independent magnetiza-
tion can take any value (both positive and negative)
while MXY

AB ∈ [−N/16, 0] and MZ ∈ [0, N/16].
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