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Abstract
In this article, a novel mass and momentum conservative semi-implicit method
is presented for the numerical solution of the incompressible free-surface
Navier–Stokes equations. This method can be seen as an extension of the
semi-implicit mass-conservative scheme presented by Casulli. The domain is
covered by the fluid, by potential solid obstacles, and by the surrounding void
via a scalar volume fraction function for each phase, according to the so-called
diffuse interface approach. The semi-implicit finite volume discretization of the
mass and momentum equations leads to a mildly nonlinear system for the pres-
sure. The nonlinearity on the diagonal of the system stems from the nonlinear
definition of the volume, while the remaining linear part of the pressure sys-
tem is symmetric and at least positive semi-definite. Hence, the pressure can be
efficiently obtained with the family of nested Newton-type techniques recently
introduced and analyzed by Brugnano and Casulli. The time step size is only
limited by the flow speed and eventually by the velocity of moving rigid obsta-
cles contained in the computational domain, and not by the gravity wave speed.
Therefore, the method is efficient also for low Froude number flows. Moreover
the scheme is formulated to be locally and globally conservative: for this rea-
son it fits well in the presence of shock waves, too. In the special case of only
one grid cell in vertical direction, the proposed scheme automatically reduces
to a mass and momentum conservative discretization of the shallow water
equations. The proposed method is first validated against the exact solution of a
set of one-dimensional Riemann problems for inviscid flows. Then, some com-
putational results are shown for non-hydrostatic flow problems and for a simple
fluid-structure interaction problem.
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1 INTRODUCTION

The method presented in this article is a momentum-conservative extension of the semi-implicit mass-conservative
scheme for complex non-hydrostatic free surface flows presented by Casulli.1 While in the previous publication, the
momentum equation was written in primitive variables; in this article, a fully conservative form of the governing
equations is used.

Nowadays, numerical modeling of free-surface hydrodynamics is widespread in environmental engineering appli-
cations; for example, in the simulation of water flow in rivers, lakes, and oceans or for the modeling of atmo-
spheric flows. The governing equations for all these different applications can be derived from the laws of con-
servation of mass, momentum, and energy, leading to the so-called Navier–Stokes equations. These equations
can be expressed in terms of conserved variables or primitive variables; still, using the first ones the equations
are physically based on conservation laws and there are also some advantages from the numerical point of
view.

The major difference between the various applications is the Mach number M = ||v||∕c, which is the ratio between
the flow velocity v and the sound speed c. While typical atmospheric flows present moderate Mach numbers, geophys-
ical or in general natural water flows present very low Mach numbers. It can be shown2 that when the Mach number
tends to zero the compressible Navier–Stokes equations converge to the incompressible Navier–Stokes equations, thus
leading, from the conservation of energy, to the divergence-free condition for the velocity. In that limit, the hydro-
dynamic pressure fluctuations are governed by an elliptic pressure Poisson equation, which keeps the velocity field
divergence-free. Numerical schemes for low Mach number flows and incompressible flows are usually based on stag-
gered meshes. For an overview that does not pretend to be complete, see, for example, References 3-15 and references
therein.

In most environmental applications, these equations are further simplified. In fact, with large spatial scales, the
vertical accelerations as well as the viscosity forces are small when compared to the gravity acceleration and to the
pressure gradient in the vertical direction. Consequently, by neglecting the advective and the viscous term in the third
momentum equation, the equation yields the hydrostatic pressure. These simplified equation describes three-dimensional
hydrostatic flows and solving this system is much more convenient than solving the original Navier–Stokes equations.
However, this hypothesis becomes less and less verified as the spatial scale decreases and becomes wrong when
complex free-surface dynamics are coupled with structure interaction. In order to consider weakly non-hydrostatic
effects in geophysical free surface flows, very frequently dispersive shallow water models are employed. For such
non-hydrostatic dispersive shallow water models and their numerical discretization, the reader is referred, for example,
to References 16-27.

The main aim of this article is to provide a novel pressure-based semi-implicit method for the incompressible free
surface Navier–Stokes equations, which can deal with embedded solid structures a complex free surface topologies that
are not limited to a single-valued function. Furthermore, the method is locally and globally conservative and its time
step is only limited by the flow and structures velocities instead of the gravity wave speed. In the proposed scheme, the
density equation is integrated to obtain an implicit finite volume discretization, and the nonlinear convective terms for
momentum equation are discretized explicitly, while the pressure in the momentum equation is taken implicitly. This
removes the stability condition on the gravity (pressure) wave speed and requires only a mild restriction of the time
step based on the velocity of the fluid and the moving solid bodies. Then, the discrete momentum equation is inserted
into the finite volume discretization of the mass conservation equation, leading to a mildly nonlinear system for the
pressure. The diagonal nonlinearity of this system stems from the definition of volume of fluid, while the remaining
linear part of the system is symmetric and at least positive semi-definite. Hence, the pressure can be efficiently obtained
with the family of nested Newton-type techniques recently introduced and analyzed by Brugnano and Casulli.28,29 The
nonlinear volume function yields a diffuse interface formulation that allows to treat complex free surface topologies with
almost arbitrary shape. For an overview of diffuse interface methods, see, for example, References 30-36 and references
therein.

The rest of this article is organized as follows: in Section 2, the governing differential equations and the new numerical
methods are presented; a thorough validation of one-dimensional inviscid flows is presented in Section 3; besides, some
computational results for non-hydrostatic and for some simple flows around a rigid solid obstacle are also shown in this
chapter. Finally, in Section 4, some concluding remarks are given.
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2 GOVERNING EQUATIONS AND NUMERICAL METHOD

2.1 Governing PDE

For simplicity, but without losing any generality, a two-dimensional incompressible free-surface flow is considered on
a simple rectangular computational domain. The extension to the three-dimensional case can be achieved by including
variability in a second horizontal direction with an additional momentum equation.

The governing differential equations are the incompressible Navier–Stokes equations. Introducing the volume frac-
tion 𝛼 and assuming the density as a constant 𝜌 = const, within a Cartesian coordinate system (x, y) where the x-axis is
horizontal and the vertical y-axis is oriented upward along the gravity direction, the governing equations are given by

𝛼t + (𝛼u)x + (𝛼v)y = 0,
(𝛼u)t + (u𝛼u)x + (v𝛼u)y = −𝛼px + 𝛼𝜈(uxx + uyy),
(𝛼v)t + (u𝛼v)x + (v𝛼v)y = −𝛼py + 𝛼𝜈(vxx + vyy) − 𝛼g, (1)

where u(x, y, t) and v(x, y, t) are the velocity components in the horizontal x and vertical z directions, t is the time,
p(x, y, t) is the normalized pressure with respect to the constant density, g is the gravity acceleration, 𝜈 = 𝜇∕𝜌 is the kine-
matic viscosity coefficient, and the volume fraction 𝛼 is related to the volume V occupied by the liquid in a control
volume Ωi by

V = ∫Ωi

𝛼(x, y, t)dydx. (2)

2.2 Computational grid and constitutive relationship

In order to solve the system (1) numerically in a fixed spatial domain Ω ⊂ R2, a staggered grid is introduced. This grid
consists of rectangular control volumes Ωi,j = [xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] with barycenters in (xi, yj) and having width Δxi =

xi+ 1
2
− xi− 1

2
and height Δyj = yj+ 1

2
− yj− 1

2
. The discrete flow variables u, v, and p at time level tn are defined at staggered

locations as represented in Figure 1. The discrete pressure pn
i,j is defined in the centers of the cells Ωi,j, the velocity un

i± 1
2
,j

is located at the center of each vertical edge, and the vertical velocities vn
i,j± 1

2

are defined at the center of each horizontal

edge. The fluid velocities are assumed to be constant along their respective edges, whereas pressure has variability in the
gravity direction. In particular, the pressure is assumed to be linear and hydrostatic within each cell with respect to the
value in the center:

p(x, y, tn) = pn
i,j + g(yj − y), ∀(x, y) ∈ Ωi,j. (3)

Furthermore, according to Reference 1 the volume of fluid within the cell Ωi,j is related to the local cell pressure by the
following constitutive relationship, which is more conveniently expressed in terms of a Jordan decomposition as

V n
i,j = V(pn

i,j) = P(pn
i,j)(p

n
i,j − 𝛽) − Q(pn

i,j)(p
n
i,j − 𝛽), (4)

where 𝛽 = gΔy
2

, and P and Q are step functions defined as

P(pn
i,j) =

⎧⎪⎨⎪⎩
(

1 − 𝛼s
i,j

)
Δx
g

if pn
i,j ⩾ −𝛽,

0 otherwise
and Q(pn

i,j) =
⎧⎪⎨⎪⎩
(

1 − 𝛼s
i,j

)
Δx
g

if pn
i,j > 𝛽,

0 otherwise.
(5)

Here, 𝛼s
i,j is the volume fraction of a potential solid obstacle contained in the cell i, j. For 𝛼s

i,j = 1, the corresponding cell
obviously cannot be occupied by the liquid. Thus, as illustrated in Figure 2, the fluid volume is defined, for each cell, as
a piecewise linear function of the local cell centered pressure. Finally, one also needs to define how to evaluate the edge
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F I G U R E 1 Discrete flow variables on a staggered grid

F I G U R E 2 Fluid volume defined as a piecewise linear function of the local cell pressure in
absence of any solid obstacle (𝛼s = 0)

lengths occupied by the fluid and denoted by 𝛿yi± 1
2

and 𝛿xi,j± 1
2
, respectively, which are available to fluid flow through the

edges.

2.3 Semi-implicit discretization on a staggered grid

The domain is covered by the fluid and by the surrounding void via scalar volume fraction functions 𝛼, according to the
so-called diffuse interface approach. Thus, the mass (volume) conservation equation in differential form reads

𝜕t𝛼 + 𝜕x(𝛼u) + 𝜕y(𝛼v) = 0. (6)

Integration of this mass conservation equation (6) over the space-time control volume Ωi,j = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] ×

[tn, tn+1] and use of the Gauss theorem yield

∫
xj+ 1

2

xi− 1
2

∫
yj+ 1

2

yi− 1
2

(
𝛼(x, y, tn+1) − 𝛼(x, y, tn)

)
dydx + ∫

tn+1

tn ∫
yj+ 1

2

yj− 1
2

(
𝛼u(xi+ 1

2
, y, t) − 𝛼u(xi− 1

2
, y, t)

)
dydt

+ ∫
tn+1

tn ∫
xi+ 1

2

xi− 1
2

(
𝛼v(x, yj+ 1

2
, t) − 𝛼v(x, yj− 1

2
, t)

)
dxdt = 0. (7)

With the definitions of the cell volume

V n
i,j = ∫

xi+ 1
2

xi− 1
2

∫
yj+ 1

2

yj− 1
2

𝛼(x, y, t)dydx, (8)

and the fluxes

fi+ 1
2
,j =

1
ΔtΔy∫

tn+1

tn ∫
yj+ 1

2

yj− 1
2

𝛼u(xi+ 1
2
, y, t)dydt, and gi,j+ 1

2
= 1

ΔtΔx∫
tn+1

tn ∫
xi+ 1

2

xi− 1
2

𝛼v(x, yj+ 1
2
, t)dxdt (9)

the following integral form of (6) is obtained

V n+1
i,j = V n

i,j − ΔtΔy(fi+ 1
2
,j − fi− 1

2
,j) − ΔtΔx(gi,j+ 1

2
− gi,j− 1

2
). (10)



2950 FERRARI and DUMBSER

Introducing the cell-average of the volume fraction

𝛼n
i,j =

1
ΔxΔy∫

xi+ 1
2

xi− 1
2

∫
yj+ 1

2

yj− 1
2

𝛼(x, y, t)dydx, (11)

it is possible to rewrite (12) as

𝛼n+1
i,j = 𝛼n

i,j −
Δt
Δx

(fi+ 1
2
,j − fi− 1

2
,j) −

Δt
Δy

(gi,j+ 1
2
− gi,j− 1

2
), (12)

which is the integral form of (6). Assuming the velocity field constant along each edge and denoting these velocities at
the new time by un+1

i+ 1
2
,j

and vn+1
i,j+ 1

2

, and defining the effective edge lengths that are occupied by the fluid as

𝛿yn+1
i+ 1

2
,j
= ∫

yj+ 1
2

yj− 1
2

𝛼(xi+ 1
2
, y, tn+1)dy, and 𝛿xn+1

i,j+ 1
2

= ∫
xi+ 1

2

xi− 1
2

𝛼(x, yj+ 1
2
, tn+1)dx, (13)

it is possible to define the following edge-averaged volume fractions

𝛼n+1
i+ 1

2
,j
=

𝛿yn+1
i+ 1

2
,j

Δy
, and 𝛼n+1

i,j+ 1
2

=
𝛿xn+1

i,j+ 1
2

Δx
. (14)

Defining the fluxes in terms of the edge velocities and the edge-averaged volume fractions as

fi+ 1
2
,j = 𝛼n+1

i+ 1
2
,j

un+1
i+ 1

2
,j
, and gi,j+ 1

2
= 𝛼n+1

i,j+ 1
2

vn+1
i,j+ 1

2

(15)

the volume conservation equation (12) can finally be written as

V n+1
i,j = V n

i,j − Δt
(
(𝛿yu)n+1

i+ 1
2
,j
− (𝛿yu)n+1

i− 1
2
,j

)
− Δt

(
(𝛿xv)n+1

i,j+ 1
2

− (𝛿xv)n+1
i,j− 1

2

)
. (16)

Equation (16) represents an implicit finite volume discretization of the continuity equation, as the semi-implicit method
proposed in Reference 1. For the two momentum equations in (1), a semi-implicit finite-difference discretization is derived
in such a fashion that the pressure gradient is discretized implicitly. Additionally, the nonlinear advective and viscous
terms in the momentum equation are discretized explicitly and represented by two nonlinear operators (𝛿yu)∗

i+ 1
2
,j

and

(𝛿xv)∗
i,j+ 1

2

. The semi-implicit discretization of the momentum equations reads

(𝛿yu)n+1
i+ 1

2
,j
= (𝛿yu)∗

i+ 1
2
,j
− Δt

Δx
𝛿yn+1

i+ 1
2
,j
(pn+1

i+1,j − pn+1
i,j ),

(𝛿xv)n+1
i,j+ 1

2

= (𝛿xv)∗
i,j+ 1

2

− Δt
Δy

𝛿xn+1
i,j+ 1

2

(pn+1
i,j+1 − pn+1

i,j ). (17)

The explicit operators (𝛿yu)∗
i+ 1

2
,j
, (𝛿xv)∗

i,j+ 1
2

for the discretization of the nonlinear convective terms are discretized in a

conservative way and are given below. Note that these operators can be seen as an explicit discretization of the advection
system of the flux-vector splitting scheme of Toro and Vázquez-Cendón.37 For simplicity, neglecting the viscous terms,
the advection subsystem of the flux-vector splitting scheme is represented by the following differential terms

𝜕t(𝛼u) + 𝜕x(u𝛼u) + 𝜕y(v𝛼u) = 0,
𝜕t(𝛼v) + 𝜕x(u𝛼v) + 𝜕y(v𝛼v) = 0. (18)

Once the edge-averaged volume fractions have been introduced, the transport of the two conserved quantities, (𝛿yu)n
i+ 1

2
,j

and (𝛿xv)n
i,j+ 1

2

, is discretized in an explicit and conservative way as follows:



FERRARI and DUMBSER 2951

(𝛿yu)∗
i+ 1

2
,j
= (𝛿yu)n

i+ 1
2
,j
− Δt

Δx

(
f n
i+1,j − f n

i,j

)
− Δt

Δy

(
gn

i+ 1
2
,j+ 1

2

− gn
i+ 1

2
,j− 1

2

)
,

(𝛿xv)∗
i,j+ 1

2

= (𝛿xv)n
i,j+ 1

2

− Δt
Δx

(
f n
i+ 1

2
,j+ 1

2

− f n
i− 1

2
,j+ 1

2

)
− Δt

Δy

(
gn

i,j+1 − gn
i,j

)
.

The numerical flux f n
i,j, necessary to compute (𝛿yu)∗

i+ 1
2
,j
, is given by

f n
i,j =

1
2

(
un

i+ 1
2
,j
(𝛿yu)n

i+ 1
2
,j
+ un

i− 1
2
,j
(𝛿yu)n

i− 1
2
,j

)
− 1

2
|smax| ((𝛿yu)n

i+ 1
2
,j
− (𝛿yu)n

i− 1
2
,j

)
, (19)

which is similar to the Rusanov flux, see, for example, Reference 38, with the choice of the speed smax equal to the
maximum wave speed present on the right or left side, as |smax| = max(|2un

i+ 1
2
,j
|, |2un

i− 1
2
,j
|). The numerical flux gn

i+ 1
2
,j+ 1

2

in

y-direction is given by

gn
i+ 1

2
,j+ 1

2

= 1
2

vi+ 1
2
,j+ 1

2

(
(𝛿yu)n

i+ 1
2
,j+1

+ (𝛿yu)n
i+ 1

2
,j

)
− 1

2
|vi+ 1

2
,j+ 1

2
| ((𝛿yu)n

i+ 1
2
,j+1

− (𝛿yu)n
i+ 1

2
,j

)
, (20)

where vi+ 1
2
,j+ 1

2
= 1

2
(vn

i,j+ 1
2

+ vn
i+1,j+ 1

2

) is an average in x direction of vn
i,j+ 1

2

and vn
i+1,j+ 1

2

and in this case, the numerical flux, is

reduced to an upwind method.
The terms related to liquid viscosity have been neglected up to this point. However, they can be easily considered

by adding them to the explicitly discretized conservative quantities (𝛿yu)∗
i+ 1

2
,j

and (𝛿xv)∗
i,j+ 1

2

. Denoting by (𝛿yu)∗v
i+ 1

2
,j

the

conservative quantity where the viscous terms are considered, it reads:

(𝛿yu)∗v
i+ 1

2
,j
= (𝛿yu)∗

i+ 1
2
,j
+ 𝜈(𝛿yu)n

i+ 1
2
,j

⎛⎜⎜⎝Δt
Δx

⎛⎜⎜⎝
un

i+ 3
2
,j
− un

i+ 1
2
,j

Δx
−

un
i+ 1

2
,j
− un

i− 1
2
,j

Δx

⎞⎟⎟⎠ + Δt
Δy

⎛⎜⎜⎝
un

i,j+ 3
2

− un
i,j+ 1

2

Δy
−

un
i,j+ 1

2

− un
i,j− 1

2

Δy

⎞⎟⎟⎠
⎞⎟⎟⎠ . (21)

The approach used for the operator in x direction (𝛿yu)∗v
i+ 1

2
,j

can be easily applied to obtain the expression for the second

explicit transport operator (𝛿xv)∗v
i,j+ 1

2

, necessary for the discrete momentum equation in y direction. Higher order in space

and time can be achieved at the aid of a MUSCL-Hancock TVD method, see Reference 38 for details.
Inserting the discrete momentum equations (17) into the finite volume discretization of the continuity equation (16)

yields the following preliminary system for the unknown pressure pn+1
i,j

V(pn+1
i,j ) − Δt2

Δx

(
𝛿yn+1

i+ 1
2
,j
(pn+1

i+1,j − pn+1
i,j ) − 𝛿yn+1

i− 1
2
,j
(pn+1

i,j − pn+1
i−1,j)

)
− Δt2

Δy

(
𝛿xn+1

i,j+ 1
2

(pn+1
i,j+1 − pn+1

i,j ) − 𝛿xn+1
i,j− 1

2

(pn+1
i,j − pn+1

i,j−1)
)

= bn
i,j, (22)

with the known right-hand side bn
i,j

bn
i,j = V(pn

i,j) − Δt
(
(𝛿yu)∗v

i+ 1
2
,j
− (𝛿yu)∗v

i− 1
2
,j

)
− Δt

(
(𝛿xv)∗v

i,j+ 1
2

− (𝛿xv)∗v
i,j− 1

2

)
. (23)

Discretizing also the edge-averaged volume fractions 𝛿xn+1
i,j+ 1

2

implicitly, the system (22) becomes strongly nonlinear and

thus difficult to solve. Therefore, a Picard iteration technique has to be adopted in order to make 𝛿xn+1
i,j+ 1

2

again explicit, as

suggested in Reference 39. Introducing k to denote the index of the Picard iterations, the following piecewise linear system
for the pressure pn+1,k+1

i,j is obtained

V(pn+1,k+1
i,j ) − Δt2

Δx

(
𝛿yn+1,k

i+ 1
2
,j
(pn+1,k+1

i+1,j − pn+1,k+1
i,j ) − 𝛿yn+1,k

i− 1
2
,j
(pn+1,k+1

i,j − pn+1,k+1
i−1,j )

)
− Δt2

Δy

(
𝛿xn+1,k

i,j+ 1
2

(pn+1,k+1
i,j+1 − pn+1,k+1

i,j ) − 𝛿xn+1,k
i,j− 1

2

(pn+1,k+1
i,j − pn+1,k+1

i,j−1 )
)

= bn
i,j. (24)
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The quantities 𝛿yn+1,k
i+ 1

2
,j

and 𝛿xn+1,k
i,j+ 1

2

are defined as

𝛿yn+1,k
i+ 1

2
,j
= Δy 1

2

(
𝛼(pn+1,k

i,j ) + 𝛼(pn+1,k
i+1,j )

)
= 1

2Δx

(
V(pn+1,k

i,j ) + V(pn+1,k
i+1,j )

)
, (25)

𝛿xn+1,k
i,j+ 1

2

= Δx 1
2

(
𝛼(pn+1,k

i,j ) + 𝛼(pn+1,k
i,j+1 )

)
= 1

2Δy

(
V(pn+1,k

i,j ) + V(pn+1,k
i,j+1 )

)
. (26)

The system (24) needs to be solved for the pressure pn+1,k+1
i,j at each Picard iteration. Using a more compact notation, the

above system can be written as follows

V(pn+1,k+1) + Tpn+1,k+1 = bn
, (27)

with the vector of the unknown new pressure pn+1,k+1 = (pn+1,k+1
i,j ) and where V(pn+1,k+1) =

(
V(pn+1,k+1

i,j )
)

denotes the
corresponding fluid volumes; bn is the known right-hand side vector and T is a sparse, symmetric, and penta-diagonal
matrix which arises from the linear terms in Equation (24). The matrix T in the system (27) is symmetric and at least
positive semi-definite. For the solution of system (27), we apply the nested Newton-type technique introduced by Casulli
et al.,28,29,39,40 associated with a matrix-free implementation of the conjugate gradient method. For implementation details
and the convergence proofs of these Newton-type techniques applied to mildly nonlinear systems, the reader is referred
to the above references.

Once the pressures pn+1,k+1
i,j are evaluated, the quantities 𝛿yn+1,k

i+ 1
2
,j

and 𝛿xn+1,k
i,j+ 1

2

at the next Picard iteration can be easily

obtained from (25) and (26). As confirmed by numerical simulations, only very few Picard iterations are needed to obtain
an accurate solution. In all test problems shown in this article, three Picard iterations are assumed.

At the end of the last Picard iteration pn+1
i,j ∶= pn+1,k+1

i,j is set and the velocity field is easily obtained from the discrete
momentum equations (17) as follows:

(𝛿yu)n+1
i+ 1

2
,j
= (𝛿yu)∗

i+ 1
2
,j
− Δt

Δx
𝛿yn+1

i+ 1
2
,j
(pn+1

i+1,j − pn+1
i,j ),

(𝛿xv)n+1
i,j+ 1

2

= (𝛿xv)∗
i,j+ 1

2

− Δt
Δy

𝛿xn+1
i,j+ 1

2

(pn+1
i,j+1 − pn+1

i,j ). (28)

The resulting scheme is written in flux form for both conservation equations, hence is formulated to be locally and globally
conservative for both mass and momentum. For this reason, it is also suitable for dealing with shock waves and dambreak
problems. The stability condition, followed by the time step is only limited by a mild CFL condition based on the flow
speed. The stability condition, followed by the time step is only limited by a mild CFL condition based on the flow speed.
It can be shown, see Casulli and Cattani,41 that the numerical stability of the semi-implicit method, represented by (16)
and (17), depends only on the choice of the operators f and g used for the discretization of the nonlinear convective terms
(𝛿yu)n

i+ 1
2
,j

and (𝛿xv)n
i,j+ 1

2

. In (19) and (20), a Rusanov type flux is proposed and then CFL time restriction reads:

Δt ≤ 1
smax

u
Δx

+ 2𝜈
Δx2 +

smax
v
Δy

+ 2𝜈
Δy2

. (29)

Therefore, the stability condition is not affected by the gravity wave speed, thus rendering the method efficient for low
Froude number flows, too. The proposed method has been presented in its simplest form. It represents a rather general
framework for future developments of more accurate and complete models, in terms of multi-physics problems in general
and incompressible and weakly compressible multi-phase flows in particular.

An extension of the semi-implicit part to up to second order in time can be achieved at the aid of the so-called
𝜃-method, where 𝜃 = 0.5 reduces to the Crank–Nicolson method. In this case, the discrete momentum and continuity
equations become:

(𝛿yu)n+1
i+ 1

2
,j
= (𝛿yu)∗

i+ 1
2
,j
− Δt

Δx
𝛿yn

i+ 1
2
,j
(pn+𝜃

i+1,j − pn+𝜃
i,j ),

(𝛿xv)n+1
i,j+ 1

2

= (𝛿xv)∗
i,j+ 1

2

− Δt
Δy

𝛿xn
i,j+ 1

2

(pn+𝜃
i,j+1 − pn+𝜃

i,j ), (30)



FERRARI and DUMBSER 2953

and

V n+1
i,j = V n

i,j − Δt
(
(𝛿yu)n+𝜃

i+ 1
2
,j
− (𝛿yu)n+𝜃

i− 1
2
,j

)
− Δt

(
(𝛿xv)n+𝜃

i,j+ 1
2

− (𝛿xv)n+𝜃
i,j− 1

2

)
(31)

with the pressure and the momentum at the intermediate time level given by

pn+𝜃
i,j = (1 − 𝜃) pn

i,j + 𝜃pn+1
i,j , (32)

(𝛿yu)n+𝜃
i+ 1

2
,j
= (1 − 𝜃) (𝛿yu)n

i+ 1
2
,j
+ 𝜃(𝛿yu)n+1

i+ 1
2
,j
, (𝛿xv)n+𝜃

i,j− 1
2

= (1 − 𝜃)(𝛿xv)n
i,j− 1

2

+ 𝜃(𝛿xv)n+1
i,j− 1

2

. (33)

The resulting pressure system then reads

V(pn+1
i,j ) − 𝜃2 Δt2

Δx

(
𝛿yn

i+ 1
2
,j
(pn+1

i+1,j − pn+1
i,j ) − 𝛿yn

i− 1
2
,j
(pn+1

i,j − pn+1
i−1,j)

)
− 𝜃2 Δt2
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(
𝛿xn

i,j+ 1
2
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i,j ) − 𝛿xn
i,j− 1

2

(pn+1
i,j − pn+1

i,j−1)
)

= bn
i,j (34)

with the right-hand side

bn
i,j = V(pn

i,j) − 𝜃Δt
(
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)
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(pn
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i,j) − 𝛿yn

i− 1
2
,j
(pn
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(
𝛿xn
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i,j) − 𝛿xn
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2
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i,j − pn
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. (35)

2.4 Remark

When the vertical mesh spacing Δy is large enough to contain the entire water layer of depth H, we can drop the vertical
index j and set (𝛿y)n

i+1∕2 = Hn
i+1∕2. Since for one single layer pn

i = g(𝜂n
i − yb) with 𝜂n

i the free surface elevation and yb the
location of the barycenters of the only row of cells in y direction, the previous scheme reduces to

V n+1
i = V n

i − Δt
(
(Hu)n+1

i+ 1
2

− (Hu)n+1
i− 1

2

)
, (36)

(Hu)n+1
i+ 1

2

= (Hu)∗
i+ 1

2

− Δt
Δx

Hn
i+ 1

2

(pn+1
i+1 − pn+1

i ), (37)

which is a consistent and mass and momentum conservative discretization of the 1D shallow water equations

𝜕𝜂

𝜕t
+ 𝜕(Hu)

𝜕x
= 0, (38)

𝜕(Hu)
𝜕t

+ 𝜕(Hu2)
𝜕x

+ gH 𝜕𝜂

𝜕x
= 0. (39)

3 NUMERICAL RESULTS

In the following, we present some numerical results obtained with the new scheme proposed in this article. For val-
idation purposes, we first run the method with only one vertical layer, where the scheme automatically reduces to a
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consistent mass and momentum conservative method for the 1D shallow water equations according to (36) and (37).
This is achieved by taking the vertical resolution Δy at least as large as the maximum vertical height of the flow. In
particular, the method is used to solve some 1D Riemann problems, for which the exact solution is known, see Ref-
erence 42. After this validation in the shallow water limit, some computational results for non-hydrostatic problems
with single and multi-valued free surface are shown, as well as a very simple flow around a rigid solid obstacle. In
all the tests, the global mass and momentum conservation have been checked and were found to be conserved for all
times.

3.1 Dambreak problems

The so-called dambreak problem is a common test for numerical methods applied to the shallow-water equations. It
consists of removing a vertical weir instantly, which separates two different piecewise constant states of water from each
other. In the initial stages of dambreak flow, the shallow water assumption of small vertical velocities and accelerations
does not hold. For this reason, it is of interest to apply a more complete model that is able to deal with non-hydrostatic
flows. First, in this section the new numerical method proposed in this article is run on a mesh that consists of only vertical
layer and thus simplifies to a consistent and conservative discretization of the hydrostatic one-dimensional shallow water
equations. The obtained results are compared against the exact solutions of the shallow water equations, both, for the wet
bed and for the dry bed case. For exact solutions of the Riemann problem of the shallow water equations see Reference 42.

Then, in 2D, it is interesting to compare the behavior at small times and at large times with each other. For an
experimental study of the initial instants of dambreak flow, see, for example, Reference 43.

3.1.1 Hydrostatic simulations with only one vertical layer

The two-dimensional conservative method is simplified to a discretization of the hydrostatic one-dimensional equations
by taking the vertical resolution Δy as large as the maximum vertical flow height. This one-dimensional resulting method
is used to solve the following 1D Riemann problems, which represent the dambreak problem over a wet bed and over a
dry one. The exact solution of the dambreak problem over a dry bed has been derived by Ritter.44 The tests are run over
a fixed spatial domain Ω = [−0.5; 0.5] × [0; 1] covered by a uniform grid consisting of 100 × 1 cells, with mesh spacing
Δx = 0.01 in the x-direction, while in the vertical y-axis, oriented upward along the gravity direction, a single cell of size
Δy = 1 is taken. The simulations are carried out using a CFL number of CFL = 0.9, based on the maximum eigenvalue of
the system, until the final time. For the first Riemann problem, RP1, the initial left and right states are defined as follows:
𝜂L = 1, 𝜂R = 0.1 for the initial free surface elevation of the water and uL = uR = 0 for the velocities. The pressures are in
an initially hydrostatic condition and are computed from 𝜂. This situation represents the dam break over a wet bed. For
the second Riemann problem, RP2, the initial left and right states are defined as follows: 𝜂L = 1, 𝜂R = 0 for the initial free
surface elevation of the water and uL = uR = 0 for the velocities. This configuration represents the dam break over a dry
bed. Wall friction and fluid viscosity are neglected, and the gravity is assumed to be constant and equal to g = 1. The results
obtained with the new method are depicted for RP1 in Figure 3 and for RP2 in Figure 4. These figures clearly show that
the problems are solved correctly even in the numerically more complex case over a dry bed. In Figure 3, it is possible to
observe that the shock is located in the right position and the post-shock values are also correct. It is furthermore possible
to note the typical numerical dissipation (numerical viscosity) at the waves, which, however, is reasonably low for the
numerical method used here, since the shock wave is well resolved. In Figure 4, the Riemann problem over a dry bed is
shown and compared against the exact solution of the shallow water equations obtained by Ritter.44 In this case, there are
no shock waves involved and the flow can be considered as smooth. An important task is the verification of the expected
accuracy of a numerical method, which in this case has to be first-order accurate due to the presence of discontinuities in
the solution. To verify this order of accuracy, various numerical solutions of RP1 with different mesh sizes are considered.
Since the exact value for h or for hu is known, the standard way to get a precise number for the order of accuracy is to
halve the mesh spacing and to look at the ratio of the errors. Denoting by Δxk the mesh spacing of mesh k considered in
the study, the numerical convergence rate OL1 can be computed as

log

(
L1

k−1

L1
k

)
∕ log

(
Δxk−1

Δxk

)
= (L1

k), (40)
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F I G U R E 3 Exact and numerical solutions evaluated with the conservative method for the (RP1), at time 0.25 s
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F I G U R E 4 Exact and numerical solutions evaluated with the conservative method for the (RP2), at time 0.2 s

where L1
k is the L1 error on mesh k. The second column of Table 1 shows the mesh size Δxk for the sequence of meshes;

in the third column the number of elements Nd are reported; the fourth column shows the errors norms L1
k; and the last

column contains the corresponding convergence rates (L1). As expected, for this discontinuous problem, our mass and
momentum conservative scheme converges to the exact solution of the Riemann problem with first order of accuracy. In
Figure 5, the L1 error is represented graphically against the number of elements of the mesh. For the new conservative
method, the empirically obtained convergence rates are consistent with the theoretically expected first order of accuracy.
Furthermore, in the same figure it is also possible to see that when the convective terms are discretized with a second order
MUSCL-Hancock scheme in time and space in combination with the 𝜃-method to approximate the remaining system,
globally, the method remains first order accurate due to discontinuities in the solution, as expected. However, for the
same mesh, the solution is more accurate using the 𝜃 method in combination with the MUSCL-Hancock scheme.

3.1.2 Non-hydrostatic simulations with multiple vertical layers

In this case, the governing equations solved for the following numerical examples are the incompressible Euler equations
without any simplification concerning the number of layers in y-direction. To achieve this, it is enough to take multiple
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F I G U R E 5 Error against the number of elements of the
mesh, for both the simplest conservative method and one
modified to improve accuracy

k 𝚫xk Nd L1 OL1

1 0.01 100 1.420E-02

2 0.005 200 8.307E-03 0.77

3 0.0025 400 4.671E-03 0.93

T A B L E 1 Numerical convergence rates for the conservative method

vertical layers, which means taking the vertical resolution Δy smaller than the maximum vertical flow height. In this
manner, the non-hydrostatic behavior of the flow is preserved.

Dry bed
First, the classical dambreak over a dry bed is presented. As mentioned before, the exact solution to this problem, using
the hydrostatic shallow-water model, is the Ritter solution. The rectangular computational domain is Ω = [−5; 5] × [0; 2],
the fluid is at rest and is confined in the leftmost part of the domain Ωl = [−5; 0] × [0; 1.5]. The velocities are imposed
equal to zero u = v = 0 everywhere and the pressure is set in order to get an initially hydrostatic pressure profile
p0

i,j = g(𝜂(xi, 0) − yj). The domain is covered by a uniform grid consisting of 200,000 cells, with mesh spacing Δx = 0.01,
Δy = 0.01 in both the x-direction and y-direction. The simulations are carried out using a Courant–Friedrichs–Lewy num-
ber of CFL = 0.9, based on the maximum eigenvalue of the system until the final time tend = 0.5. The boundary conditions
are reflective wall on all the borders of the computational domain Ω. Wall friction and fluid viscosity are neglected, and
the gravity is assumed to be constant and equal to g = 9.81. The results obtained at time t = 0.5 with our new method pro-
posed in this article are presented in Figure 6. The results are compared against the exact solution of the shallow water
equations obtained by Ritter44 for each time. At early times, the non-hydrostatic results are in good agreement with the
previously computed results by Dumbser,30 which have been compared with the results obtained by the smooth particle
hydrodynamics (SPH) scheme of Ferrari et al..45 It can be shown that the free-surface profile tends to be a good approx-
imation of the analytical solution of the one-dimensional shallow water equations only as the spatial and the temporal
domain increase. This is in total agreement with the fact that in the initial times, the vertical acceleration, as well as
the pressure gradient in the vertical direction, are the main component of the flow, and thus the hydrostatic pressure
assumption of the shallow water model is not verified. This initially strongly non-hydrostatic behavior can also be seen in
the pressure field depicted in Figure 6. Here, the pressure field turns sharply to the x-axis until it becomes orthogonal to it.

Wet bed
Here, a dambreak into a wet bed case is considered. The rectangular computational domain is Ω = [−7.5; 5] × [0; 2]. The
fluid is initially at rest and is confined in both the left and right parts of the domain, that is, the initial liquid domain
is Ωl = ([−7.5; 0] × [0; 1.5]) ∪ ([0; 5] × [0; 0.75]). The velocities are imposed equal to zero u = v = 0 everywhere and the
pressure is set in order to get two different initial hydrostatic pressure profiles p0

i,j = g(𝜂(xi, 0) − yj). The domain is covered
by a uniform grid consisting of 250,000 cells, with mesh spacing Δx = 0.01 in the x-direction, Δy = 0.01 in the y-direction.
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F I G U R E 6 Numerical solutions for free surface profile and pressure field, evaluated with the 2D non-hydrostatic conservative
methods for the dambreak into dry bed problem, at time t = 0.5. In the first row, the volume fraction (density contours) and shallow water
model (red line) are represented. In the second row, pressure field is depicted [Colour figure can be viewed at wileyonlinelibrary.com]

The CFL, and the boundary conditions are the same as for the dambreak into dry bed. Wall friction and fluid viscosity
are neglected, and the gravity is assumed to be constant and equal to g = 9.81. The computation is carried out until
the final time tend = 1. Experimental observations46 show that wave breaking can occur in a dambreak into a wet bed.
However, the higher the water level on the right side of the dam, the smaller becomes the breaking wave. In this test
case, the level of the right layer of water is quite high, so at most, a very small breaking wave can occur. At the time
t = 1.0, in Figure 7, small-scale free surface waves are visible in the constant region between the shock and the rarefaction
wave. Again, the results are in agreement with those previously obtained by the two-phase flow model of Dumbser30

and by the SPH method of Ferrari et al..45-47 Furthermore, the solution is even closer to the one achieved with the SPH
method. In fact, smaller surface waves are predicted by the latter and particularly it shows a small breaking of waves at
the moving right front. In Figure 7, the volume fraction shows a tendency for the crest of the wave to break via smaller
volume fractions. We emphasize that at the initial stages the obtained solution does not agree with the solution of the
shallow-water model, represented by a red line in Figure 7. This disagreement, for short times, is due to the fact that the
hydrostatic shallow water model neglects vertical accelerations, which are quite important in the early stages of dambreak
flow.

Wet bed with bottom step
The last dambreak problem is into a wet bed with a bottom step. This problem is similar to the previous one. The only
difference is that a step of height hs = 0.2 is introduced in the bottom from x = 0 to x = 5. As described in Section 2.3,
the domain is covered by the fluid and by the surrounding void via scalar volume fraction functions, according to the
so-called diffuse interface approach. For this reason, it is obvious to treat also fixed and kinematically moving rigid
obstacles contained in the computational domain, via two different scalar volume fraction functions for water 𝛼w and
solid bodies 𝛼s. Therefore, the step in the domain is treated as a solid obstacle where there cannot be any liquid vol-
ume fraction. The computational domain is Ω = [−7.5; 5] × [0; 2] and the initial domain covered by the liquid is Ωl =
([−7.5; 0] × [0; 1.5]) ∪ ([0; 5] × [0.2; 0.5]). The velocities are imposed equal to zero u = v = 0 everywhere and pressure is
set in order to get two different initial hydrostatic pressure profiles p0

i,j = g(𝜂(xi, 0) − yj). The mesh, the CFL number and
the boundary conditions are the same as for the other dambreak problems. Wall friction and fluid viscosity are neglected,
and the gravity is assumed to be constant and equal to g = 9.81. The computation is carried out until the final time tend = 1.
The computational results are depicted at time t = 1.0 in Figure 8. The obtained results agree qualitatively with those
obtained in References 30 and 45. However, it is interesting to see how model is accurate evaluating the pressure field and

http://wileyonlinelibrary.com
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F I G U R E 7 Numerical solutions for free surface profile and pressure field, evaluated with the 2D non-hydrostatic conservative
methods for the dambreak into wet bed problem, at time t = 1.0. In the first row, the volume fraction (density contours) and shallow water
model (red line) are represented. In the second row, pressure field is depicted [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 8 Numerical solutions for free surface profile and pressure field, evaluated with the 2D non-hydrostatic conservative
methods for the dambreak over a bottom step into wet bed at time wet bed, at time t = 1.0. In the first row, the volume fraction (density
contours) is represented. In the second row, pressure field is depicted [Colour figure can be viewed at wileyonlinelibrary.com]

the recirculation zone in the vicinity of the bottom step, in Figure 9. Furthermore, this example also shows the ability of
the method to treat well rigid obstacles contained in the computational domain.

3.2 Flow over a weir

In this section, the flow over a sharp-crested weir is presented. The rectangular computational domain is Ω = [0; 12] ×
[0; 2]. It contains an infinitely thin, sharp weir of height h = 1.2, which is located at x = 7.5 and is modeled as a reflec-
tive wall boundary. The fluid is initially at rest and is confined in the leftmost part of the domain Ωl = [0; 7.5] × [0; 2],
which leads to a level of water over the weir. Velocities are imposed equal to zero u = v = 0 everywhere and the pres-
sure is set in order to get an initially hydrostatic pressure profile. Wall friction and fluid viscosity are neglected, and the

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 9 Zoom into the recirculation zone in the vicinity of
the bottom step for the pressure field, at time t = 1.0. The velocity
field and the streamline (yellow solid line) are also shown [Colour
figure can be viewed at wileyonlinelibrary.com]

gravity is assumed to be constant and equal to g = 9.81. The domain is covered by a uniform grid consisting of 240,000
cells, with mesh spacing Δx = 0.01 in the x-direction and Δy = 0.01 in the y-direction. The computation is carried out
using a Courant–Friedrichs–Lewy number of CFL = 0.9 until the final time tend = 1. The boundary conditions are reflec-
tive wall on all the borders of the computational domain Ω. For times close to t = 1.0, the overflow profile is rather
steady and it is possible to compare it with the experimental reference solution of the profile found by Scimemi.48 The
lower streamline of this experimental reference solution can be evaluated, as reported in Reference 49, by the following
equation:

y(x) = ym − 0.47ho

(
x − xm

ho

)1.85

, (41)

where xm and ym are the coordinates of the maximum of the curve, and ho is the vertical distance between the crest of
the weir and the free surface at the weir’s location. The computational results obtained at the time t = 1.0 are depicted
in Figure 10, and a zoom of the overflow profile is shown in Figure 11. According to the obtained results, it is possible
to evaluate the quantities required to assess the experimental reference solution of Scimeni (41). These quantities are
xm = 7.636, ym = 1.236, and ho = 0.4040, see also Reference 49. In Figures 10 and 11, the reference solution, evaluated
by these quantities, is shown as a red solid line. It can be seen that the numerical results are in good agreement with the
experimental reference solution.

In this test, some of the most relevant features of this novel momentum-conservative scheme can be seen. First, the
ability to model non-hydrostatic free surface flows with a multi-valued free surface is evident. In addition, the flow results
from the interaction of a liquid with a fixed rigid obstacle contained in the computational domain. These features arise
from the so-called diffuse interface approach, which has been adopted to describe the domain. The domain is covered
by the fluid and by the solid via two different scalar volume fraction functions for water and solid bodies. Moreover, the
so-called diffuse interface approach provides a solution that is suitable for situations in which changes of the interface
topology are involved (e.g., breaking a water jet into drops as in flow over a weir). Therefore, as it is shown in Figure 11,
the model also allows to evaluate what is a break in drops of the overflow profile, too. This, by evaluating a water volume
fraction which decreases as one moves further away from the weir.

3.3 Oscillating basin

With regard to the non-breaking waves, in this section an oscillating basin test is considered. In the case in which a
relatively large ratio of total depth h to the wave length 𝜆 is assumed, the hydrostatic pressure assumption no longer holds

http://wileyonlinelibrary.com
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F I G U R E 10 Numerical solutions for free surface profile and pressure field, evaluated with the 2D non-hydrostatic conservative
methods for the flow over a sharp weir, at time t = 1.0. In the first row, the volume fraction (density contours) is represented. In the second
row, pressure field is depicted [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 11 Zoom into the flow over a weir. Volume fraction (left) and pressure field (right). The velocity field and the experimental
profile found by Scimemi (red solid line) are also shown [Colour figure can be viewed at wileyonlinelibrary.com]

true. Furthermore for small wave amplitude, the wave celerity c is approximated by the following dispersion relation:

c =

√
g𝜆
2𝜋

tanh
(

2𝜋h
𝜆

)
. (42)

The computational domain is Ω = [−5; 5] × [0; 10.5]. The fluid is initially at rest and it is confined in both the left and
right parts of the domain, the flow is driven by an initial free-surface of constant slope h = 10 + 0.01x. The pressure is
set in order to get an initial hydrostatic pressure profile. Wall friction and fluid viscosity are neglected, and the grav-
ity is assumed to be constant and equal to g = 9.81. The domain is covered by a uniform grid consisting of 7500 cells,
with mesh spacing Δx = 0.1 in the x-direction and Δy = 0.14 in the y-direction. The computation is carried out using a
Courant–Friedrichs–Lewy number of CFL = 0.9 until the final time tend = 0.5𝜆∕c.

Defining L = 10 equal to the domain length in x-direction, the solution consists of a standing wave of length 𝜆 = 2L
and frequency f = c∕𝜆. In order to compare the analytical and numerical solution more easily, it is useful to define a height
coefficient ch, which can be defined as follows, knowing the initial maximum free surface perturbation hmax = 0.05 and

http://wileyonlinelibrary.com
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F I G U R E 12 Water surface elevations in terms of height coefficient ch in time. Exact solution (solid line) and numerical solutions with
hydrostatic pressure assumption (dashed line) and with non-hydrostatic one (circles) are represented

the average height ho = 10:

ch = h − ho

hmax
. (43)

A quantitative comparison with the analytical solution of the numerical non-hydrostatic result as well as the numer-
ical solutions with hydrostatic pressure assumption is depicted in Figure 12, where the height coefficient ch has been
plotted over the time t. Both numerical solutions are achieved with the non-hydrostatic model presented in this article,
taking for the hydrostatic case simply a single layer in the y-direction.

In Figure 12, it is possible to note that the surface elevation has a periodicity with respect to the time t, but the two
numerical solutions have different frequencies. It is quite clear how the hydrostatic solution is wrong and thus different
from the analytical solution, since in this case the wave celerity chyd is equal to

√
gh . Then, the celerities, respectively,

read c ≃ 5.58 for the dispersion relation in (42) and ch ≃ 9.90 for the hydrostatic case. This explains the two different
frequencies that are shown by the numerical results in Figure 12. The results clearly show that the frequency computed
with the non-hydrostatic model is in good agreement with the analytical solution which is approximated by the dispersion
relation in (42).

3.4 Smooth flow over a bottom variation

To achieve a second-order convergence, a smooth flow over a bottom variation is considered. It is necessary that this
flow represent a stationary problem, due to the fact that a flux-vector splitting scheme is used in the numerical method.
Furthermore, the discrete formulation is centered for pressure terms, then for a stationary problem in which momentum
is constant in x, the method has to be accurate up to the second order.

The governing differential equation for a stationary shallow-water problem reads:

𝜕(hu)
𝜕x

= 0, (44)

𝜕(hu2)
𝜕x

+ gh
(
𝜕h
𝜕x

+ 𝜕b
𝜕x

)
= 0, (45)
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F I G U R E 13 The stationary solution of a smooth flow over a bottom variation. Analytical (solid lines) and numerical (circle) solution
for the free surface (left) and for the velocity field (right), at time t = 3.0

k 𝚫xk Nd L2 OL2

1 0.1 100 7.8701e-04

2 0.05 200 2.0436e-04 1.95

3 0.025 400 5.2072e-05 1.97

4 0.0125 800 1.3220e-05 1.98

T A B L E 2 k-number of the test, mesh size Δxk, number of elements Nd,
L2-error norm, and numerical convergence rates OL2 , applied to the stationary
problem

where h(x) is the free surface height over the bottom, u(x) is the velocity component in the horizontal x direction, b(x)
is the bottom elevation, and g is the gravity acceleration. By imposing a smooth perturbation of the free surface h(x) as
follows:

h(x) = 1 − 1
4

e−
1
2

x2
, (46)

it is possible to evaluate the variation of the bottom which generates this perturbation of the free surface as a stationary
solution. Thus the bottom elevation b(x) yields:

b(x) = 1 + 1
2

q2
o

g
− 1

2
q2

o

gh(x)2 − h(x), (47)

where qo is the initial momentum at t = 0, which is constant in time. In Figure 13, these two analytical solution are
represented by solid lines.

To solve this test case numerically, the full Navier–Stokes method is used but only one discrete cell is assumed in the
vertical direction to return to a one-dimensional case, and then the stationary shallow-water problem is solved.

This test case is defined over a fixed spatial domain Ω = [−10; 10], where continuous exact solutions (47) are dis-
cretized according to the mesh adopted. In this way, the stationary analytical solutions provide the initial conditions for
h, u over the discrete domain.

Since the exact value for h or for u is known, the standard way to get a precise number for the order of accuracy is to
halve the mesh spacing and to look at the ratio of the errors. In Table 2, the k-tests are listed that are carried up, specifying
for the sequence the mesh size Δxk and the number of elements Nd. The momentum is set to be constant in x and equal
to qo = 1, wall friction and fluid viscosity are neglected, and the gravity is assumed to be equal to g = 9.81. The domain
at the boundaries is not closed, at x = −10 there is an inflow and at x = 10 an outflow, respectively, qoL = qoR = qo are
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F I G U R E 14 L2-norm error
against reciprocal of mesh size. The
dashed line shows the theoretical
second-order for comparison
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imposed. The simulations are carried out using a CFL number of CFL = 0.9, based on the maximum eigenvalue of the
system, until the final time tend = 3.

The computational results for the coarsest mesh, at the final time tend = 3.0, for free surface h(x) and velocity u(x) over
the bottom profile b(x), are depicted in Figure 13. It is quite clear that the numerical solution preserves the initial steady
state even up to the final time. Since the mesh spacing for the sequence is denoted by Δxk, the numerical convergence
rate OL2 for the L2 error norm can be computed as

log

(
L2

k−1

L2
k

)
∕ log

(
Δxk−1

Δxk

)
= (L2

k). (48)

In Figure 14, the L2-error norm is represented graphically against the number of elements of the mesh with respect to the
optimal second-order convergence. The fourth column of Table 2 shows the L2

k-error norm and the last column contains
the corresponding computed convergence rates (L2). As expected, for this steady problem, our mass and momentum
conservative scheme converges to the exact solution up to the second order of accuracy.

3.5 Flow past a circular cylinder in two dimensions

In this section, the steady-state flow past a circular cylinder in two dimensions is considered, as if the x − y plane is
orthogonal to the gravity. The computational domain adopted is a square Ω = [−5; 5] × [−5; 5], and in the center the
circular section of the cylinder with radius R = 1 is located. The fluid in the domain is initially at rest, so velocities are
imposed equal to zero u = v = 0 and the pressure is set uniformly equal to an external reference value pout = 10𝛽, where 𝛽
is 𝛽 = gΔy

2
as defined in Section 2.2. The incoming flow is parallel to the x-axis and it is flowing from the leftmost boundary

wall with velocity u∞ = 8 × 10−7. For such a configuration and flow regime, the potential flow approximation is valid
and therefore it provides a reference solution. The analytical solution for this potential flow is obtained easily in polar
coordinates r and 𝜃. The velocity components in polar coordinates vr, v𝜃 , pressure field p, and the pressure coefficient cp
of the potential flow are given analytically by:

vr = u∞

(
1 − R2

r2

)
cos 𝜃, v𝜃 = −u∞

(
1 + R2

r2

)
sin 𝜃, p = 1

2
𝜌(u2

∞ − v2) + p∞, cp =
p − p∞

1
2
𝜌u2

∞
, (49)
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F I G U R E 15 The velocities field and cp distribution for the flow past a circular cylinder evaluated with the 2D non-hydrostatic
conservative methods (left) and comparison of cp with the analytical potential flow solution (right) [Colour figure can be viewed at
wileyonlinelibrary.com]

where v2 is v2 = v2
r + v2

𝜃
. The computational domain is covered by a uniform rectangular grid consisting of 1.96 × 106 cells,

with mesh spacing Δx = 0.00714 in the x-direction and Δy = 0.00714 in the y-direction. The cylinder is immersed in the
domain by setting the solid volume fraction inside the cylinder to 𝛼s = 1, which means that this area cannot be occupied
by the fluid. The computation was performed for 2 × 105 time-steps, with a fixed time-step dt = 2.0, up to the final time
of t = 4 × 105. The resulting velocity field together with the cp distribution as well as a quantitative comparison with the
potential flow model is depicted in Figure 15. On the right, the pressure coefficient cp has been plotted over the azimuthal
angle 𝜃 for two concentric circles with radii r = 1.25 and r = 2. The potential flow solution is depicted with the black solid
line, it is symmetric with respect to the coordinate axes and has two minimum and two maximum points. The numerical
simulation respects this symmetry very well with respect to the x axis, but with respect to the y axis the numerical solution
is not symmetric, in particular the second stagnation point results underresolved. This disagreement with the reference
solution is most likely due to the numerical viscosity in the scheme and due to the staircase representation of the solid
obstacle. Note that usually high order finite volume schemes on unstructured meshes with polynomial reconstruction on
boundary interfaces are needed to improve the quality of the numerical results.

4 CONCLUSIONS

In this article, a new efficient momentum-conservative extension of the semi-implicit mass-conservative scheme pre-
sented by Casulli1 is proposed. The domain is covered by the fluid and by the surrounding void via scalar volume fraction
functions for each phase, according to the so-called diffuse interface approach. The particular discretization on a stag-
gered grid allows to reduce the problem to the solution of a mildly nonlinear system for the fluid pressure, which can
be efficiently solved by a Newton-type technique. The diagonal nonlinearity stems from the piecewise linear definition
of the volume, while the remaining linear part of the system is symmetric and at least positive semi-definite. In a fully
implicit formulation, a simple Picard iteration technique has to be adopted in order to make again explicit the unknown
edge-averaged volume fractions. Once the pressure is known at the new time level, the momentum can be readily obtained
via a conservative update formula, which allows the subsequent calculation of the corresponding velocity field.

The stability condition, followed by the time step is only limited by a mild CFL condition based on the flow speed
and on the velocity of the moving structures; yet, it is not affected by the gravity wave speed, thus rendering the method
efficient for low Froude number flows, too.

In terms of accuracy, the choice to use a fully implicit discretization to approximate the pressure gradient and the
velocities in the momentum and the continuity equations yields a numerical scheme whose time step is only limited by
the flow velocity, instead of the gravity wave speed. However, excessive wave damping may result. To reduce this effect,

http://wileyonlinelibrary.com
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the numerical scheme has been extended to up to second order of accuracy in time by introducing the 𝜃-method, where 𝜃
is an implicitness parameter in the range 1

2
≤ 𝜃 ≤ 1. To further improve the accuracy the advective terms can be calculated

using a second order MUSCL-Hancock method.
A thorough validation of one-dimensional inviscid flows has been presented. For one single vertical layer, the

two-dimensional method automatically simplifies to a consistent mass and momentum conservative discretization of the
hydrostatic one-dimensional shallow water equations. With this simplification the method was used to solve some 1D
Riemann problems, for which the exact solution of the shallow water equations is known.

Then the new model has been applied to a set of dambreak problems where the non-hydrostatic behavior is preserved.
To achieve this, it is enough to take multiple vertical layers. For these tests, the free surface profile has been compared
against analytical and numerical reference solutions. At early times, the vertical acceleration, as well as the pressure
gradient in the vertical direction, are the main component of the flow, and thus the hydrostatic pressure assumption of the
shallow water model is not verified. The non-hydrostatic results obtained with our new method are in good agreement
with the previous results shown in References 30, 34, and 45.

In the last computational examples, it has been shown how this new semi-implicit scheme can be easily extended
to simple multi-phase flows, via the use of two different scalar volume fraction functions for water and fixed solid
bodies.

Future work will consist in an extension to three space dimensions. In order to improve the computational efficiency,
it is possible to proceed with a parallel implementation based on domain decomposition. In future developments, we plan
to extend the model by adding the dynamics of a surrounding weakly compressible gas, see, for example, Reference 13,
in order to obtain a three-phase flow model which can contain incompressible liquids, rigid and moving solids and a
weakly compressible gas phase in the same simulation. Thus, this method may become the basis of a multi-scale and
multi-physics model whose applicability ranges from non-hydrostatic multi-valued free surface flows with solid bodies
interaction to large scale geophysical flows.
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