
Recieved September xx, 2021, date of current version September xx, 2021.

Digital Object Identifier :Not Applicable

Model Predictive Control with
Environment Adaptation for Legged
Locomotion
NIRAJ RATHOD1,2, ANGELO BRATTA2,3, MICHELE FOCCHI 2, MARIO ZANON1, OCTAVIO
VILLARREAL2, CLAUDIO SEMINI2 AND ALBERTO BEMPORAD1
1The authors are with the IMT School for Advanced Studies Lucca, Lucca, Italy (e-mail: name.surname@imtlucca.it)
2The authors are with the Dynamic Legged Systems Lab, Istituto Italiano di Tecnologia (IIT), Genova, Italy (e-mail: name.surname@iit.it)
3Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Genova, Italy

Corresponding author: Niraj Rathod (e-mail: niraj.rathod@imtlucca.it).

ABSTRACT Re-planning in legged locomotion is crucial to track the desired user velocity while adapting
to the terrain and rejecting external disturbances. In this work, we propose and test in experiments a real-time
Nonlinear Model Predictive Control (NMPC) tailored to a legged robot for achieving dynamic locomotion
on a variety of terrains. We introduce a mobility-based criterion to define an NMPC cost that enhances
the locomotion of quadruped robots while maximizing leg mobility and improves adaptation to the terrain
features. Our NMPC is based on the real-time iteration scheme that allows us to re-plan online at 25 Hz with
a prediction horizon of 2 seconds. We use the single rigid body dynamic model defined in the center of mass
frame in order to increase the computational efficiency. In simulations, the NMPC is tested to traverse a set
of pallets of different sizes, to walk into a V-shaped chimney, and to locomote over rough terrain. In real
experiments, we demonstrate the effectiveness of our NMPC with the mobility feature that allowed IIT’s
87 kg quadruped robot HyQ to achieve an omni-directional walk on flat terrain, to traverse a static pallet,
and to adapt to a repositioned pallet during a walk.

INDEX TERMS Legged locomotion, Mobility, Nonlinear Model Predictive Control, Online re-planning

NOMENCLATURE

The list of most commonly used symbols used in this article.
Acronyms:

CoM Center of Mass.
GRFs Ground Reaction Forces.
NMPC Nonlinear Model Predictive Control.
RTI Real-time Iteration.
SRBD Single Rigid Body Dynamics.
VFA Vision-based Foothold Adaptation.
WBC Whole-Body Control.
ZMP Zero Moment Point.

Notation:
nx Number of states.
nu Number of control inputs.
na Number of model parameters.
T Prediction horizon.
N Number of control intervals.
µ Friction coefficient.
xp ∈ Rnx×(N+1) Predicted states by NMPC.
up ∈ Rnx×N Optimal control inputs from NMPC.

xref ∈ Rnx×(N+1) Reference states.
uref ∈ Rnx×N Reference control inputs.
pc ∈ R3 Robot’s CoM position.
vc ∈ R3 Robot’s CoM velocity.
Φ ∈ R3 Orientation of robot’s base.
ω ∈ R3 Angular velocity of robot’s base.
fi ∈ R3 GRF at ith foot.
pf,i ∈ R3 Foot position of ith foot.
δ ∈ R4 Contact status.
Cphf ∈ R12 Hip-to-foot distance in CoM frame.

I. INTRODUCTION
The main advantage of legged robots with respect to their
wheeled counterpart is their ability to traverse complex and
unstructured environment such as forests, obstacles, and de-
bris. However, the control of legged robots poses complex
problems related to underactuation (the body is controlled
only indirectly through the legs), and to the hybrid nature
of the forces required to generate motion, since the robot
needs to establish and interrupt contact between its feet and
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the ground. The control design for legged robots was ini-
tially dealt with by using heuristic approaches which yielded
successful results such as in the walking machines from
Raibert [1], the virtual model control of Pratt et al. [2] and in
the heuristic locomotion planning for quadrupedal robots by
Focchi et al. [3]. However, heuristic approaches have several
limitations, for example: 1) they cannot be easily generalized
to all kinds of terrain and motions; 2) they cannot account for
the future state of the robot hence, they have no possibility to
guarantee physical feasibility of the planned trajectories. The
challenge of avoiding these undesirable myopic behaviors
in heuristic planning approaches has motivated the research
towards new optimization-based predictive locomotion plan-
ning.

Formulating the locomotion planning as an optimization
problem allows one to represent high-level locomotion tasks
as cost functions and system dynamics using constraints.
Besides robot dynamics, the locomotion tasks should also
respect the contact dynamics such as unilateral force and
friction cone constraints, that are critical to stabilize the loco-
motion. The use of optimization techniques to design Whole-
Body Control (WBC) has enabled legged robots to traverse
soft terrains [5] and to be versatile in terms of type of gait
and motions that a legged robot can achieve [6]. The afore-
mentioned examples are based on the solution of a Quadratic
Program that only considers the instantaneous [7] effects
of the joint torques on the robot’s base. Further, similar to
heuristic approaches mentioned earlier, these approaches do
not consider the information about the future states of the
robot and hence cannot assure recursive feasiblity.

In order to address this issue, several approaches make use
of Trajectory Optimization (TO)-based locomotion planning
considering the full dynamics of the robot [8, 9]. However,
these approaches usually suffer from high computational
time hence they are often restricted to offline (open-loop) use.
In general, offline planners [10, 11] neither adapt to quick
terrain changes nor cope with state drifts and uncertainties.
To address this issue the concept of online re-planning can
be used. Online re-planning can intrinsically cope with the
problem of error accumulation in planned motion that is
common in real scenarios.

For online re-planning, MPC has gained broad interest
in the robotics community for legged locomotion. More-
over, the intrinsic feedback mechanism offered by MPC can
compensate for modeling errors and disturbances acting on
the system provided that the MPC is executed at a suffi-
ciently high rate in closed-loop. A careful choice of the
dynamic model inside MPC formulation is typically required
to achieve a desired re-planning frequency in closed-loop,
given the limited computational resources available for on-
line computations. For example, using a full dynamics model
of legged robots inside MPC [12, 13] with long prediction
horizon may result in an optimization problem which re-
quires excessive computations for real-time deployment at
high sampling rates. Using approximate models is a way
to reduce the complexity of the optimization, trading the

FIGURE 1. IIT’s quadruped robot HyQ traversing a pallet with the mobility
enhanced real-time NMPC.

accuracy with computational efficiency. Following this line,
[14] used a Centroidal Dynamics (CD) plus a full-kinematic
model to enforce the kinematic limits in TO to plan complex
behaviors on the humanoid robot Atlas. The CD model
considers contact forces as input and links the linear and
angular momentum of the robot to the external wrench [15].

A simplified version of the CD model is the Single Rigid
Body Dynamics (SRBD) model where the inertia of the legs
is neglected (assumption of massless legs) and the robot’s
body and legs are lumped into a single rigid body. This model
is well suited for quadrupeds, since they usually concentrate
their mass and inertia in the robot base, unlike humanoids.
The SRBD model was used for TO [16] and MPC [17]
to jointly optimize for footholds, Center of Mass (CoM)
trajectories and contact forces. By further linearizing the
angular part of the dynamics of the SRBD, [18] was able
to achieve a variety of quadrupedal gaits in experiments
but their approach was not suitable for motions that involve
large variations from the horizontal orientation. The simplest
among all the approximate models mentioned earlier is the
Linear Inverted Pendulum Model (LIPM) and it has been
used inside MPC for quadruped [19] and biped [20] loco-
motion. However, there are two main limitations in LIPM,
namely it neglects angular dynamics and assumes constant
robot height. Additionally, it does not account for friction
cones, so that the contact stability on non-flat terrain can not
be guaranteed.

While models play an important role in obtaining com-
putationally light MPC formulations, the choice of solution
method is also paramount to achieve fast online re-planning
with MPC. A Differential Dynamic Programming (DDP)
based approach demonstrated the real-time performance with
whole-body MPC [13] on HRP-2 humanoid. Recently, [21]
proposed a DDP-based MPC using a kinodynamic model
which re-plans at a frequency of 15 Hz with a prediction
horizon of 1 s on a quadruped. The main drawbacks of
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DDP based approaches is the difficulty in implementing
hard-inequality and switching constraints. Hard-inequality
constraints need to be implemented as penalties (e.g., with
relaxed-barriers) [22] while the switching constraints are
formulated using Augmented Lagrangian methods [23, 24].
Though not obvious at first sight, these methods are essen-
tially equivalent to direct optimal control based on multiple-
shooting [25] in combination with some form of Nonlinear
Programming (NLP) solvers using barrier functions in the
real-time iteration scheme [26]. One such framework is pro-
vided by acados [27].

In addition to DDP-based MPC, there also exist a few
implementations of NLP-based MPC for legged robots. One
such NMPC implementation with CoM dynamics plus full
kinematic model was demonstrated in [28] using a Sequential
Linear Quadratic (SLQ) algorithm for a trotting gait on flat
terrain. Neunert et al. [12] achieved a fast re-planning fre-
quency of 80-170 Hz for a small prediction horizon of 0.5 s
(125 nodes) with their NMPC using the full dynamics of the
robot, and optimizing foot locations, swing timing, and loco-
motion sequences along with full body dynamics. However,
in the real experiments they have only demonstrated slow
trotting on flat terrain. Moreover, since their approach does
not consider the map of the terrain, it has limited application
on uneven terrain conditions. An interesting observation is
that they did not see a noticeable degradation in the closed-
loop performance of the NMPC when the re-planning fre-
quency was dropped until 30 Hz, demonstrating that the
predictive nature of the MPC empowers the robot to tolerate
much lower re-planning frequency. A similar observation
was made in [29] with an MPC scheme which optimizes foot
locations, but requires a heuristic conditioning of the cost
function. In their experiments, the robot is stable if the re-
planning occurs at 20 Hz, unstable for lower frequencies and
the performance improvement is observed over 40 Hz.

The aforementioned approaches have been successful in
controlling legged robots, but neglected an important aspect
of these robots, which is usually referred to as mobility. In
this paper, we define the mobility as the attitude of the robot
leg to arbitrarily change its foot position [47]. We noticed
that maximizing mobility improves terrain adaptation hence
it is advantageous to account for it in the motion planning
of legged robots. Furthermore, as discussed in Section IV-A,
adding mobility in the NMPC cost eliminates the need to
specify references for the roll, pitch and height of the robot.

To achieve kinematically suitable configurations for the
legs, a common heuristic is to align the robot base with the
terrain inclination (estimated in [3] via fitting an averaging
plane through the stance feet). This approach aims to bring
the legs as close as possible to the middle of their workspaces
in order to avoid the violation of the kinematic limits. Opti-
mization of mobility allows to achieve a similar behaviour
in an automatic way. Fankhauser et al. in [30] maximized
mobility by encoding it in a cost function that penalizes the
distance with respect to a default foot position. Recently,
Cebe et al. [31] implemented TO using an SRBD model

and also incorporating the feet positions in the optimization.
They re-plan only at the feet touchdowns due to the high
computation demand of their TO algorithm and showed ex-
perimental results on uneven terrain. Since their planner does
not plan during the swing phase of the legs, they do not run
their planner in an MPC fashion. Apart from the previously
mentioned contributions, to the best of our knowledge no
prior work has addressed the mobility with MPC in legged
locomotion.

A. PROPOSED APPROACH AND CONTRIBUTION
In this work, we demonstrate in experiments with our 87 kg
Hydraulically actuated Quadruped (HyQ) robot [32] that a
suitably formulated NMPC can tackle rough terrain locomo-
tion, account for leg mobility, and provide the optimal base
orientation, while being real-time feasible. Indeed, optimiz-
ing for leg mobility allows our NMPC to devise a robot base
orientation and height that improves locomotion on rough
terrain.

This is particularly useful to achieve environment adap-
tation on rough terrains. Another advantage is that mini-
mal heuristics is required from the user i.e., no reference
trajectory for the robot’s height, and its base roll and pitch
orientation is needed.

This work is a system integration on the same line of our
previous work [33]. However, while in [33] only offline op-
timization was performed, here we achieve real-time feasible
online replanning in an MPC fashion. To achieve this goal:

a) We consider a simplified SRBD model that describes the
angular and translational dynamics of the robot base but
neglects the dynamics of legs.

b) We employ the real-time iteration (RTI) scheme [26,
34, 35] that allows us to run our NMPC online with
the prediction horizon of 2 s (50 nodes) as opposed to
the 0.5 s (125 nodes) used by [12]. Differently from
[31] (that re-plans at each foot touchdown event), we
continuously re-plan at the rate of 25 Hz.

c) We run our NMPC on a single computer along with the
rest of our locomotion framework1 unlike in [12, 31]
where they use dedicated computers for their TO and
NMPC, respectively.

We show in simulation the robot traversing a set of pallets
of different dimensions placed relatively at varying distances,
walking into a V-shaped chimney and lastly over a randomly
generated rough terrain. We present Experimental results that
demonstrate the capability of our NMPC to generate an omni-
directional walk and to traverse a pallet for our quadruped
robot HyQ (see Fig. 1). We tested the re-planning capability
of our approach by pushing a pallet in front of the robot while
walking, such that the control algorithm has to re-plan online
in order to adapt to a dynamically changing environment.
To summarize, the contributions of our work (in order of
importance) are as follows:

1Except the perception related modules that run on a dedicated com-
puter
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FIGURE 2. Block diagram of the planning pipeline with the NMPC in our locomotion framework. The reference generator provides the references (xref , uref ) to
NMPC after receiving the user inputs. Then, the NMPC passes optimal state xp and control xp trajectories to the Whole-Body Controller. The torque τd is given as
reference to low level joint torque controller τj. The state estimator provides the state estimation x̂ to the required blocks. Finally, the heightmap is generated by
Grid Map and given to the reference generator.

• Major experimental results are presented in Section VIII
where we demonstrate the capability of our NMPC planner
to generate an omni-directional walk and rough terrain
locomotion for our quadruped robot HyQ, by exploiting
an online evaluation of the map of the terrain and using
on-board state estimation.

• Additional (minor) contributions are:
a) We introduce a cost term which accounts for mobility

by penalizing hip-to-foot positions that do not provide
the highest mobility. To the best of our knowledge, this
is the first time that mobility has been addressed with
MPC.

b) The generation of the reference trajectory for the NMPC
takes into account premature and delayed touchdown of
the feet as well as continuously adjusting the footholds
according to the robot body motion and the terrain
features.

c) We use a parametric robot model that results in smaller
NMPC formulation.

B. OUTLINE
The paper is organized as follows: Section II gives an
overview of our planning pipeline whereas Section III de-
scribes the NMPC setup. The leg mobility and other features
are explained in Section IV, whereas the generation of the
references and the WBC are detailed in Sections V and
VI, respectively. We then summarize the RTI scheme for
our NMPC in Section VII. Further, Section VIII illustrates
simulation and experimental results with the HyQ robot.
Finally, we draw the conclusions in Section IX.

II. LOCOMOTION FRAMEWORK
Fig. 2 illustrates the planning pipeline of our locomotion
framework. The reference generator, as discussed in Section
V, takes the user input (longitudinal, lateral and angular
velocity), schedule of the gait (e.g., a crawl) timing, the
initial state of the robot, and a map of the terrain to generate
reference trajectories for the state xref and control input
uref required by the NMPC. The reference generator also
provides a vector of parameters a to the NMPC, that includes
foot locations and sequences of contact status. The NMPC

running at 25 Hz, delivers the optimal trajectories of the state
xp and control input up, as detailed in Section III.

All the components of the Whole-Body controller (high-
lighted with dashed box in Fig. 2) are discussed in Section
VI. The WBC interface interpolates the optimal state xp at a
rate of 250 Hz to generate a desired signal xd for a Cartesian
virtual impedance controller [4]. The WBC interface also
computes the feedforward wrench Wd

ff that is added to a
feedback wrench Wd

fb that renders the Cartesian impedance.
Moreover, the WBC interface provides the joint position qd

and velocities q̇d to a Joint Space PD controller running
at 1 kHz. After acquiring the feedback and feed-forward
wrenches, a Quadratic Programming (QP) optimization com-
putes the vector of desired Ground Reaction Forces (GRFs)
fd accounting for the friction cone constraints and penalizing
the the difference between fd and up coming from the NMPC
solution. Then, fd is mapped to the torque vector τ ∗ that is
added to the Joint Space PD torques τfb resulting into the
total desired torque τd. Ultimately, τd is passed to a low-level
joint torque controller as reference [36].

An online state estimator [37] that runs at 500 Hz provides
the estimation of the robot state x̂ to all the components
inside our locomotion framework that require it. A dedicated
on-board computer takes inputs from an RGB-D camera
(RealSense) mounted in front of the robot and generates a
2.5D heightmap at the rate of 30 Hz using the Grid Map
library from [38]. This heightmap is later sent to the reference
generator.

III. NMPC
In our planning algorithm, we choose a real-time NMPC
formulation because it has the ability to handle both the
nonlinear system dynamics and the constraints, explicitly.
NMPC is based on solving an Optimal Control Problem
(OCP) given the current state x̂0 of the system. Only the
first element of the optimized input trajectory is applied to
the system, then the state is measured and the OCP is solved
again based on the new state measurement to close the loop.

We define the decision variables as the predicted state
and control input with xp = {x0, . . . ,xN} and up =
{u0, . . . ,uN−1}, respectively, such that an NLP formulation
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can be stated as:

min
xp,up

N−1∑
k=0

` (xk,uk,ak) + `T (xN ) (1a)

s.t. x0 = x̂0, (1b)

xk+1 = f (xk,uk,ak) , k ∈ IN−1
0 , (1c)

h (xk,uk,ak) ≤ 0, k ∈ IN−1
0 , (1d)

where, ` : Rnx ×Rnu ×Rna → R is the stage cost function;
`T : Rnx → R is the terminal cost function. The initial condi-
tion (1b) is expressed by setting x0 equal to the state estimate
x̂0 received from the state estimator. The vector of model
parameters ak is not optimized but it is computed externally
by the reference generator and provided to the optimization
problem formulation. The nonlinear system dynamics are
introduced by the equality constraints (1c). Finally, the path
constraints are included with (1d) which, for example, can be
bounds on the decision variables. The NLP (1) is defined for
a prediction horizon T that is divided into N discrete time
control intervals of lengths Ts = T

N . Hereafter, we will refer
to Ts as the sampling time.

A. COST
In our NMPC formulation we use a cost function of the form:

` (xk,uk,ak) = `t + `m + `r, (2a)

`t = ‖ xk − xref
k ‖2Q + ‖ uk − uref

k ‖2R, (2b)

`m = ‖ Cphfk − Cpref
hfk
‖2M, (2c)

`r = ρ ‖ Kuk ‖2P (2d)

• The tracking cost (2b) is associated to state and control
input and the references trajectories xref

k ,uref
k are provided

by the reference generator for each sampling instance k
(refer Section V).

• The mobility cost (2c) is one of the contributions of this
work that accounts for improving the leg mobility by
penalizing the difference between the hip-to-foot distance
Cphf and the reference value Cpref

hf of maximum mobility.
This cost allows the NMPC to optimize the robot base
orientation (e.g. align it to the terrain shape) in order to
increase the leg mobility which has as a desirable con-
sequence to stay far from kinematic limits during loco-
motion. The derivation of Cpref

hf is detailed separately in
Section IV-A.

• In some locomotion scenarios [4], to cope with uncer-
tainties in the contact normal estimation and increase ro-
bustness to external disturbances, it is desirable to have
the GRFs fi as close as possible to the center of the
friction cone. This can be achieved with by penalizing X-
Y components of u in a frameK (see Fig. 3) that is aligned
to the normal of the contact and it is included in our cost
function by a control input regularization term (2d), refer
Section IV-C for the details.

The positive definite weight matrices Q ∈ Snx
+ ,R ∈ Snu

+ ,
M ∈ S12

+ , P ∈ Snu
+ act as important tuning parameters in

the NMPC formulation. The regularization factor ρ decides
the trade-off between force robustness cost (2d) and both the
tracking (2b) and mobility (2c) cost. Finally, we define the
terminal cost `T =‖ xN − xref

N ‖QN
and use the weight

matrix QN = Q for this cost.

B. ROBOT MODEL
The inertial frame W and the CoM frame C are shown in
Fig. 3. The CoM frame is aligned with the base of the robot
and its origin is located at the CoM. A variable with left
subscript denotes its frame of reference. For example Cω
represents the angular velocity of the robot base expressed
in the CoM frame C. Note that, unless explicitly specified, all
the relevant quantities in this paper are defined in the inertial
frameW . Throughout this paper we define (a, . . . , b) as the
column vector stacking any generic column vectors a, . . . , b.

FIGURE 3. HyQ schematic showing the inertial frame (W), the CoM frame
(C) attached to the CoM of the robot, and the contact frame (K). The robot
legs are shown in the default configuration.

We use a simplified reduced-order SRBD model [16]
defined in a 6D space that describes the translational and
angular dynamics of the robot while neglecting the dynamics
of its swinging legs. This is a valid approximation for the
HyQ robot because most of its mass is concentrated in the
base, as mentioned in [32] (the mass of the base is 61 kg and
the mass of each leg is 6.5 kg). The robot is approximated as
a rigid body with the inertia computed considering the robot
in a default leg configuration as shown in Fig. 3. We choose
to define the SRBD model in the CoM frame (specifically
the angular dynamics) because this choice yields a constant
inertia tensor. Thus, the angular dynamic equations are much
simpler i.e., less non-linear because the inertia tensor is not
time varying. In the SRBD model, GRFs are applied as inputs
to control the position and orientation of the robot base. The
SRBD model is:

mv̇c = mg +

4∑
i=1

δifi (3a)

CIc Cω̇ + Cω × CIcCω =

4∑
i=1

δiCpcf,i × Cfi (3b)
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where m is the robot mass, v̇c ∈ R3 is the CoM acceleration,
g is the gravitational acceleration, fi ∈ R3 is the ground reac-
tion force at foot i, CIc ∈ R3×3 is the inertia tensor computed
at the CoM frame origin, Cω̇ ∈ R3 is the angular acceleration
of the robot’s base, pcf,i ∈ R3 is the distance between the
CoM position pc ∈ R3 and the position pf,i ∈ R3 of foot
i. We introduce binary parameters δi = {0, 1} to define
whether foot i is in contact with the ground and can therefore
generate contact forces or not.

The robot dynamics governed by (3) can be expressed as
the continuous-time state-space model:

ṗc

v̇c

Φ̇

Cω̇

 =


vc

1/m
∑4
i=1 δifi + g

E′−1(Φ)Cω

−CI−1
c (Cω × CIc)Cω +

∑4
i=1 δiCI

−1
c Cpcf,i × Cfi


(4)

where vc is the CoM velocity of the robot. The robot base
orientation is represented by the sequence of Z-Y -X Euler
angles 1 [39] Φ = (φ, θ, ψ) i.e., roll (φ), pitch (θ) and
yaw (ψ), respectively. The relation between the Euler Angles
rates Φ̇ and angular velocity Cω is well-known and discussed
in Appendix A for the sake of completeness. We define
the state and control vectors as x = (pc, vc, Φ, Cω), and
u = (f1, . . . , f4). Equation (4) can be concisely written as:

ẋ(t) = g(x(t),u(t),a(t)), (5)

where a = (pf , δ) is a vector of parameters that includes the
feet positions pf and the contact status δ ∈ R4.

The rigid-body dynamics (5) are discretized using numer-
ical integration [40, 41, 42, 43] to obtain the discrete-time
model:

xk+1 = f (xk,uk,ak) , (6)

which defines equality constraints (1c) imposed at every
stage k in MPC to ensure that the state trajectory satisfies
the system dynamics for the given control inputs.

One specific feature of legged robots is the need to ensure
that the values of the GRFs equal to zero for a swinging
leg. This is typically done by introducing complementarity
constraints [31, 44]. These constraints, however, pose several
difficulties in the solution of the optimization problem, since
the vast majority of the NLP algorithms cannot handle them
and tailored solvers are required. Ultimately, this results in
a significant increase in computation time. An alternative
to complementarity constraints consists in providing the
sequence of contact status δ as input parameters in the
state space model (5). In this manner, a contact mode δi is
multiplied with the terms involving force fi in (4) and the
contribution of that force is nullified during the swing phase
of the corresponding leg i. Hence, there is no more need to

1Note that Euler angles can suffer from singularities that occur in certain
configurations [45]. Because in this work we do not consider motions that
involve such configurations, using Euler angles does not pose any issue. A
singularity-free implementation is out of the scope of this work and is left
for future research.

include complementarity constraints separately in (1) which
results in fewer constraints and, consequently, in a relatively
smaller NMPC formulation.

C. FRICTION CONE AND UNILATERAL CONSTRAINTS
Friction cone constraints are encoded with their square pyra-
mid approximation:

−µifz,i ≤ fx,i ≤ µifz,i (7a)
−µifz,i ≤ fy,i ≤ µifz,i (7b)

f z ≤ fz,i ≤ f z (7c)

where, f z and f z are upper and lower bounds on GRFs Z
component, respectively, and µi is the friction coefficient of
the contact surface. Choosing fz greater than or equal to
zero enforces unilateral constraints on the normal forces fz.
The friction cone and unilateral constraint are represented by
h (xk,uk,ak) ≤ 0 in the NMPC formulation.

IV. LOCOMOTION-ENHANCING FEATURES
In this section we discuss the main distinctive features of our
approach, which we found relevant to improve locomotion
ability of our quadruped robot. These features are mobility,
force robustness and Zero Moment Point (ZMP) margin.

A. MOBILITY AND MOBILITY FACTOR
Terrain adaptability is vital when it comes to locomotion
of the legged robots. Adjusting the posture of the robot
depending on the environment is important for safe loco-
motion. A way to enable our NMPC to choose robot ori-
entation adaptively to any terrain is to employ the concept
of mobility [46]. In order to rigorously discuss mobility in
mathematical terms, we first define it in words as the attitude
of a manipulator (leg) to arbitrarily change end-effector posi-
tion/orientation [47].

In order to penalize low leg mobility in the cost function
(2c) we need to compute the reference value of hip-to-
foot distance Cpref

hfk
. Our goal in this section is to define a

convenient metric to represent mobility and compute Cpref
hfk

corresponding to the maximum value of such a metric.
Among several ways to compute mobility [46], the velocity
transformation ratio [48] allows one to evaluate mobility in
a particular direction. However, the velocity transformation
ratio cannot be used in our setting because it requires prior
knowledge of the evolution of the relative foot position with
respect to CoM. In our case it is not available in advance
because it is an output the NMPC.

As an alternative approach, we consider the volume of the
manipulability ellipsoid

(
v(JJ>)−1v = 1

)
[47] as a metric

to evaluate mobility. A change in the volume of the manipula-
bility ellipsoid with different leg configurations is visualized
in Fig. 4 (left). Inspecting Fig. 4 (top right), it can be seen
that the maximum volume V is in the vicinity of the most ex-
tended leg configuration because the mobility becomes very
big in the X and Y direction, even if it is still very limited in
the Z direction. However, because it is desirable to achieve a
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FIGURE 4. Manipulability ellipsoid changing with leg configuration (left) of the
right front leg. Volume of the ellipsoid (top right) and Eccentricity of the
ellipsoid (bottom right).

good mobility in all the directions of the leg configuration, a
better metric to do so is the one that accounts for the isotropy
of the manipulability ellipsoid. A measure of the isotropy of
an ellipsoid can be expressed as the inverse of its eccentricity
E. Hence, a new manipulability index that we call mobility
factor (8) can be defined in terms of both the eccentricity
and the volume of manipulability ellipsoid. Again from Fig.
4, it can be visualized that to keep a good mobility (left
plot) in all directions, the volume (top right plot) should
be maximized while the eccentricity (bottom right plot) as
small as possible. Defining a foot Jacobian J(q) ∈ R3×3

computed at a particular joint configuration q, the volume V
of a manipulability ellipsoid is evaluated as a product of the
eigenvalues of

(
J(q)J(q)>

)−1
while the eccentricity is the

ratio between its maximum and minimum eigenvalue [46].
First, the volume and eccentricity of manipulability ellipsoid
are normalized by their ranges V̄ and Ē. Then we define the
mobility factor as:

mf = β
V

V̄
− γE

Ē
(8)

The minus sign in (8) represents conflicting contributions
of the V and E in the definition of the mobility factor (i.e.
the goal is to achieve high volume and low eccentricity).
Parameters β and γ are introduced to find a best trade-off
between volume and eccentricity while deciding a mobility
factor.

The mobility factor is a convex nonlinear function mf :
R3 → R that can be numerically evaluated inside the
workspace of each leg. By selecting β = 1 and γ = 4, and
after conducting a numerical analysis for all the feet positions
in the workspace of a leg of the HyQ robot we found that
hip-to-foot distance Cphf = (0, 0,−0.55) m maximizes mf .
In Fig. 5 (left) we show a slice of the scalar function mf in
the X-Y plane for Cphf,z = −0.55 m obtained for the Right-
Front (RF) leg. Instead, in Fig. 5 (right) we plot mf against
the change of foot position in the Z direction considering the
hip under the foot (X = 0, Y = 0) which clearly highlights
Cphf,z = −0.55 m corresponding to the maximum value of

-0.7 -0.6 -0.5 -0.4
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-4

0.2

-2

0.20

0

0
-0.2 -0.2

FIGURE 5. Slices of the mobility factor function for the RF leg: the left figure
plots it against the X-Y components keeping Z constant. The red dot in the
left plot represents the maxima. The right figure plots it against the Z
component for a constant X-Y foot position.

the mobility factor mf (i.e., around 0.41). We use the output
of this analysis as a reference for the hip-to-foot distance
Cp

ref
hf in the mobility cost (2c) for all the legs.
In the mobility cost, we multiply δi to the term correspond-

ing to the ith leg. Thus, the mobility cost solely accounts
for stance legs because the robot can only use them to
control its base orientation. Since, including the mobility cost
enables NMPC to provide the optimal base orientation for a
particular locomotion that retains mobility, there is no need
to separately specify tracking cost for roll and pitch in the
NMPC. This relieves a user from the burden of implementing
a customized heuristic (e.g., to align the robot base to the
terrain), as was necessary in, e.g., [3, 44, 49]. The relative
tracking task for the CoM Z position is no longer required
either, because maximizing the mobility in the Z direction
automatically takes care of keeping an average distance of
hips from the terrain to Cphf,z, consequently keeping the
robot base at a certain height.

Moreover, the yaw motion results by penalizing the mo-
bility cost along the X-Y directions. This has the effect of
driving the hips of the robot base over the feet, naturally
aligning the base to the feet, similar to what was done in [50].
However, a tracking cost on yaw was still necessary in the
NMPC to track the heading velocity ωusr

z commanded by the
user and to avoid oscillations.

Remark: The concept of mobility is model independent
hence, it can also be used with other models such as full body
dynamics in the MPC setting.

B. ZMP MARGIN
In legged locomotion, the robot is often operated close to
unstable configurations which require a controller to contin-
uously compensate for model inaccuracies and external dis-
turbances while maintaining locomotion stability. However, a
configuration in which the ZMP [51] is close to the boundary
of the support polygon [52] could cause instability even with
small perturbations due to the loss of control authority.

In our case, the reference generator computes references
for the GRFs by dividing the robot mass with the number
of legs as explained in Section V. Penalizing GRFs Z com-
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ponent heavily in the tracking cost (2b) ensures that they
stay close to the reference, consequently maintaining a higher
loading on the diagonally opposite leg to the swinging one,
and therefore maintaining some margin for the locomotion
stability. To evaluate the locomotion stability, we define the
ZMP margin which is computed as the minimum of the
distance of the ZMP from each support polygon edge, i.e.,

mc = min(d) (9)

where d is a vector of the distances of ZMP projection (on a
horizontal plane) from the support polygon edges.

C. FORCE ROBUSTNESS
Similar to the considerations on mobility, in order to ef-
fectively compensate for disturbances acting on the system,
robustness in the GRFs is required. The closer the GRF is to
the friction cone boundary, the less lateral force is available
to compensate for perturbations. An approach penalizing
GRFs that are in the vicinity of the cone boundaries has
been proposed in [4, 5] inside the WBC. These WBC based
approaches instantaneously generate GRFs that are as close
as possible to the normals of the cones while yielding the
prescribed resultant wrench on the robot base. However,
WBC does not account for the future state of the robot and
hence, it leaves some room for the NMPC to compensate for
the contact normal estimation error and recover from external
disturbances. Introducing these margins on GRFs from the
cone boundaries is especially important in some scenarios,
such as the one reported in simulation in Section VIII-B2.

In this paper, we adopt a similar idea to [4, 5] and introduce
the additional cost term (2d) in the NMPC, which penalizes
the tangential components of GRFs in the contact frame K
(see Fig. 3) to obtain the resultant GRFs as close as possible
to the contact normals. The weight matrix P used in this cost
is defined in Table 2 (Section VIII). Note that it is required to
penalize the X-Y components higher than Z component of
GRFs in the contact frame to achieve this behaviour.

V. REFERENCE GENERATOR
In our approach, the NMPC requires a reference trajectory of
the state and control input along with the model parameters
i.e., foot positions and contact status. For the very first run of
the NMPC, this reference trajectory also serves as an initial
guess. The references are generated for the length of control
intervals N , since the reference generator is called before
every iteration of the NMPC in order to obtain prompt adap-
tation to terrain changes and user set-point. Our reference
generator is based on heuristics and it takes as inputs:
• the user commanded longitudinal and lateral CoM ve-

locity Hvusr
c ∈ R2 in the horizontal frameH,1

• user commanded heading velocity ωusr
z ∈ R,

• current pose of the robot (pc,Φ),
• current feet positions pf ∈ R12,

1The horizontal frame is placed like the CoM frame but with the Z-axis
aligned with the gravity

• heightmap of the terrain
The reference generator outputs:
• the references for the NMPC cost: states xref ∈
Rnx×(N+1), control uref ∈ Rnu×N ,

• parameters a of the model: sequence of the contact
status δ (∈ R4×N ) and sequence of the foot locations
pf (∈ R12×N ),

• normals of the terrain at the foothold locations, which
are provided as inputs to the NMPC for the cone con-
straints.

First we compute the X-Y components of the total ve-
locity vref

c ∈ R3, which depend on both vusr
c and the X-

Y components of the tangential velocity due to the heading
velocity ωusr = (0, 0, ωusr

z ).

vref
c,(x,y) = vusr

c + (ωusr × pref
c )(x,y) (10)

The X-Y CoM position pref
c,(x,y) is obtained by integrating

the vref
c,(x,y) with the explicit Euler scheme. The references

for CoM Z, roll and pitch are set to 0 because we do not
track them in the NMPC cost (2b). Instead, the reference for
the yaw ψ is obtained by integrating the user defined yaw
rate ψ̇usr with Φ̇usr = E−1(Φref)ωusr (see Appendix A for
the transformation between angular velocity and Euler rates).
The reference for angular velocity, instead, coincides with
ωusr.

The references for GRFs uref are calculated by simply
dividing the total mass of the robot by the number of legs
in stance. Dividing the forces equally onto the legs is correct
only if the robot is static, but, in case of dynamic conditions,
it is a better approximation than passing no references.

The sequence of contact status δ and of footholds are
computed by the gait scheduler and robocentric stepping
strategy, respectively. It is important to mention that the
reference generator does not compute the swing trajectories
and they are obtained from the WBC interface discussed in
Section VI-A.

1) Gait scheduler
The gait scheduler is logically decoupled from the reference
trajectory generation and determines if a leg is either in swing
or in stance (δi) at each time instance for the entire gait cycle
as shown in Fig. 6 (left).

The leg duty factorDi and offsets oi can be used to encode
different gaits such as crawl, trot and pace. The gait scheduler
implements a time parametrization s ∈ [0, 1] (stride phase)
which is normalized about the cycle time duration Tc such
that the leg duty factor Di and offsets oi are independent
from the cycle time. Each trigger ltri (red flag in Fig. 6 (left))
corresponds to a new lift-off event. We can express the value
of δ for leg i as:

δi =

{
1, s < oi ∨ s > ((oi + (1−Di)) mod 1)

0, otherwise
(11)

Every time the reference generator is called, it extracts
N points from the gait schedule starting from an index
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Delayed 
haptic flag

Gait counter
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FIGURE 6. Gait schedule for a walk. Offsets o = [0.05, 0.3, 0.55, 0.8],
duty-factors D = [0.85, 0.85, 0.85, 0.85]. The red arrows represent the
trigger ltri for a swing leg i. Right part shows the fast-forwarding (top) or
re-winding (bottom) of the gait counter to recover synchronization between
actual (haptic) and planned touchdown.

called gait counter. It keeps memory of the index of the
gait schedule achieved by the previous call of the reference
generator. The synchronization between the first point of a
contact sequence δik computed by the reference generator
and the actual contact state of the robot avoids the reference
generator to compute a zero reference force while the leg is
in stance and vice-versa. In the case of premature or delayed
touchdown events, the synchronization is lost and the gait
counter is shifted backwards or forward to re-conciliate the
planned touchdown with the actual touchdown as shown in
Fig. 6 (right). This is a crucial feature when dealing with
rough terrains.

2) Robocentric stepping
The choice of the foothold is a key element in locomotion,
since it deals with the kinematic limits of the robot. Inspired
by [1], we use an approach that continuously computes
footholds consistent with the current position of the robot.
To compute a foothold for a swinging leg i, we consider
its hip position hi instead of using the foot position at the
moment of lift-off. In this way a disturbance acting on the
robot or a tracking error occurred during a swing can be
recovered in the following swing. For a leg i, dropping the
index to simplify the notation and defining the lift-off trigger
as ltrk = δk ∧ δk+1, the foot position is computed as:

pfk+1
=

{
ptd

fk
ltrk = 1

pfk ltrk = 0
(12)

Notice that at the lift-off condition ltr = 1 at instance k, pf

is set equal to the touchdown point ptd
f and it is kept constant

until the next lift-off event occurs. The X-Y component of
the touchdown point is given by:

ptd
fk,(x,y) = hk + αT d

sw(vusr
c + (ωusr × pbh)(x,y)) (13)

The second term in (13) represents the step length (red arrow
in Fig. 7) which is computed with respect to the hip instead
of the previous foot location. Parameter α is an empirically
chosen scaling factor. Parameter T d

sw is the default swing
duration computed starting from user-defined offsets o and

 

FIGURE 7. Representation of the robocentric stepping strategy and of the
Swing Frame, located at the lift-off point. The red arrow shows the distance
between the touchdown point ptd

f and the hip h. The blue vector Lsw

connects lift-off and touchdown point.

duty-factors D. The distance between hip and center of the
base is denoted by pbh ∈ R3. A 2.5D heightmap of the
terrain is evaluated in correspondence of the touchdown point
ptd

fk,(x,y) to obtain ptd
fk,z

that does not penetrate the terrain. If
ptd

f is located near to an edge or leads to collisions (e.g., of
the foot or the shin) during the step cycle, this can be harmful
for the robot’s balance. To prevent this from happening,
the robot acquires a local heightmap in the vicinity of the
touchdown point ptd

f and adjusts the foot landing location
using the Vision-based Foothold Adaptation (VFA) module
presented in [53].

VI. WHOLE-BODY CONTROLLER
In this section, we describe the WBC that tracks planned
trajectories xp and up provided by the NMPC. The WBC first
computes feed-forward Wd

ff and feedback Wd
fb wrenches

from the planned trajectories and then the sum of these
wrenches are mapped into GRFs through the QP optimization
(17). The WBC also maps the GRFs into the joint torques
τ ∗. This joint torque along with low-impedance feedback
torque τfb results in the total torque τd required by the low-
level joint torque control block. Refer to Fig. 2 for the block
representation of WBC inside our locomotion framework.

A. WBC INTERFACE

In our planning framework, the NMPC runs at re-planning
frequency of 25 Hz whereas the WBC requires state and con-
trol inputs at 250 Hz (we will call this the WBC frequency).
Hence, we introduce a WBC interface block that re-samples
state and control inputs at the WBC frequency. In particular,
in order to obtain the desired ud we use a zero-order hold
filter of up. The planned states xp from the NMPC, instead,
are re-sampled with a linear interpolation to obtain xd. 1

1The rigorous approach is to use the model (3) to predict the evolution
of the system in the Ts time interval, considering the up coming from the
NMPC, but for the motions considered in this paper the result is very similar,
so a linear interpolation is a fair approximation.
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Finally, the feed-forward wrench Wff ∈ R6 is computed
from the desired GRFs ud as:

Wd
ff =

[∑4
i=1 ud

i

∑4
i=1 pd

cf,i × ud
i

]>
(14)

B. FEEDBACK WRENCH
We use the approach of [4] to define desired feedback wrench
obtained from a Cartesian impedance and briefly recall it next
for completeness:

Wd
fb = K

[
pd

c − pc

e(wR>b wRd)

]
+ D

[
vd

c − vc

ωd
b − ωb

]
(15)

where wRb and wRd ∈ R3×3 are the rotation matrices
representing actual and desired orientation of the base with
respect to the inertial frame, respectively, e(·) : R3×3 → R3

is a mapping from a rotation matrix to the associated rotation
vector. Matrices K and D are diagonal matrices containing
the proportional and derivative gains and they can be inter-
preted as impedances.

Remark: At each re-planning instance of NMPC, the state
reference is computed from the current state of the robot
x̂0. Thus, at each re-planning instance the feedback term is
nullified.

C. PROJECTION OF THE GRFs
While the feedforward wrenches Wd

ff provided by MPC sat-
isfy the friction cone and unilateral constraints by construc-
tion, this guarantee is lost with the addition of the feedback
term Wd

fb to the wrenches. Therefore, one needs to project
the total wrenches Wd

ff + Wd
fb onto the set of wrenches that

satisfy the constraints. The matrix representation[
δ1I . . . δ4I

δ1 [pcf,1×] . . . δ4 [pcf,4×]

]
︸ ︷︷ ︸

A

 f1
...
f4


︸ ︷︷ ︸

f

= Wd
ff + Wd

fb︸ ︷︷ ︸
b

(16)
is derived from a simplified SRBD model [4] and allows us to
map the desired wrenches into GRFs. To compute the desired
GRFs fd we solve the following QP:

fd = argmin
f

‖ Af − b ‖2S + ‖ f − ud ‖2T (17a)

s.t. d ≤ Cf ≤ d (17b)

The term ‖ f − ud ‖2T in the cost (17) allows the tracking
of the desired forces ud received from the NMPC. Matrices
S ∈ S6

+ and T ∈ S12
+ are positive-definite weight matrices.

Inequality (17b) encodes the friction cone and unilateral
constraints similar to (7) for which further details can be
found in [4]. It is important to note that gravity compensation
is already incorporated in the NMPC formulation through the
SRBD model.

D. MAPPING GRFs TO JOINT TORQUES
The GRFs fd must be mapped into joint torques τ ∗. We do
so by exploiting the joint dynamics:

τ ∗ = −J(q)>fd + h(q, q̇) (18)

where J(q) ∈ Rnu×nx is the contact Jacobian and h(q, q̇)
the vector of gravity/Coriolis terms in the leg joint dynamics.
We neglect the joint acceleration contribution, because it is
very small with respect to the other terms.

E. JOINT-SPACE PD
A 1 kHz Joint-Space PD is put in cascade with the WBC
before sending torques to the low-level controller. In this way,
we track the desired trajectories of the swinging legs and we
increase the robustness in case a foot loses contact with the
ground. The WBC interface provides the joint trajectories
qd and q̇d required by the Joint-Space PD. To compute the
joint trajectories, inverse kinematics is required which in
turn needs the swing trajectory psw

f . We define the swing
frame S [50] (Fig. 7), whose X-axis is aligned with the
vector that links lift-off and touchdown point (Lsw), Y -axis
is perpendicular to the X-axis of the swing frame and to the
Z-axis of the world frame. Finally the Z-axis is such that S
is a counter-clockwise coordinate system. The origin of the
swing frame S coincides with the lift-off point. In this way
the swing trajectory lies on the X-Z plane and we shape it as
a semi-ellipse with Lsw and Hsw as lengths of the axes:

Sp
sw
f =

Lsw

2 (1− cos(πfswtsw))
0.0

Hswsin(πfswtsw)

 (19)

where tsw is the time elapsed from the beginning of a swing
and fs = 1/T d

sw is the swing frequency. We map Spsw
f and

its derivative in the inertial frame W to obtain psw
f and

ṗsw
f , respectively. Finally, after evaluating the relative foot

position Cpcf and velocity Cṗcf we can obtain qd and q̇d via
inverse kinematics.

VII. REAL-TIME ITERATION FOR NMPC
One of the main drawbacks of NMPC is its computational
burden, thus efficient tailored algorithms are necessary in
order to achieve fast sampling rates for complex systems with
fast dynamics. While many approaches have been developed
for optimal control, a complete discussion about all possible
approaches is beyond the scope of this paper. We focus on
direct multiple shooting methods derived from Sequential
Quadratic Programming (SQP) that have been specifically
developed for real-time NMPC [34].

In multiple shooting methods both state x and control input
u are decision variables unlike in single shooting where the
decision vector only includes the control input. We ought to
stress that this does not increase the computational complex-
ity with respect to single shooting (where computations are
moved from linear algebra to the evaluation of derivatives).
Furthermore, multiple-shooting allows one to provide an
initial guess also for the state trajectory, which is typically
beneficial for unstable systems in an NMPC context [34].

SQP is a popular algorithm which solves an NLP by
iteratively solving local quadratic approximations (QPs) of
the problem [35]. At each SQP iteration, the solution from the
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previous step is recycled to define an initial guess (xL
k ,u

L
k ),

which is then used to construct a QP approximation of the
NLP (1), given by

min
∆x,∆u

N−1∑
k=0

1

2

[
∆xk
∆uk

]>
Hk

[
∆xk
∆uk

]
+ J>k

[
∆xk
∆uk

]
(20a)

s.t. ∆x0 = x̂0 − xL
0 , (20b)

∆xk+1 = Ak∆xk + Bk∆uk + rk, (20c)
Ck∆xk + Dk∆uk + hk ≥ 0, (20d)

where, ∆xk = xk − xL
k ,∆uk = uk − uL

k , x̂0 is the current
system state, and

Ak =
∂f(x,u,ak)

∂x

∣∣∣∣
xL
k ,u

L
k

, Bk =
∂f(x,u,ak)

∂u

∣∣∣∣
xL
k ,u

L
k

,

Ck =
∂h(x,u,ak)

∂x

∣∣∣∣
xL
k ,u

L
k

, Dk =
∂h(x,u,ak)

∂u

∣∣∣∣
xL
k ,u

L
k

,

rk = g
(
xL
k ,u

L
k ,ak

)
− xL

k+1, hk = h
(
xL
k ,u

L
k ,ak

)
Jk = Wk

[
xL
k − xref

k

uL
k − uref

k

]
(21)

Matrix Hk is the diagonal blocks of a suitable approximation
of the Lagrangian Hessian. Since our problem relies on
a least-squares cost, we adopt the popular Gauss-Newton
Hessian approximation [35] that gives Hk = Wk.

While in SQP one solves several QPs until convergence is
reached, the RTI scheme consists in solving a single QP per
sampling time. This is motivated by the observation that in
NMPC two subsequent problems have very similar solutions.
Therefore, by reusing the solution of the previous NMPC
problem, one obtains a very good initial guess for the next
problem, which essentially only needs to correct for external
perturbations and model mismatch. For all details on the RTI
scheme, we refer to [26, 35] and references therein. We limit
ourselves to observe that, since (xL

k ,u
L
k ) is known before the

next state measurement is available, one can already evaluate
the functions and their derivatives (21) before the initial state
x̂0 is available. Consequently, the QP can be constructed and
prepared beforehand; note that this also includes the first
factorization of the QP Hessian. Once x̂0 is available, one
only has to finish solving the QP. Therefore, while the overall
sampling time must still be long enough to prepare the next
QP, the latency between the time at which x̂0 is available
and the time at which the control input can be applied to the
system is very small.

Note that in the RTI scheme proposed above, the func-
tions and their derivatives (21) are evaluated along a guess
obtained from the previous solution, rather than along the
reference trajectory. Another important aspect to highlight is
the fact that there exist several approaches to compute (21).
One choice consists of first linearizing the continuous-time
system dynamics and then using the matrix exponential to
obtain a discrete-time linear system. This approach presents
some advantages, but can be computationally demanding.

For the time-varying and infeasible references, however, it
is preferred to first discretize and then linearize [35]. In this
work we deal with time-varying and infeasible references,
hence we opt for first discretize and then linearize approach.
An advantage of this apporach is that after numerically
approximating the discrete-time dynamics, the linearization
can be obtained at a desired accuracy.

A very popular way to obtain discret-time dynamics is
with the explicit Euler integrator, which is computationally
inexpensive, but can be inaccurate and unstable. Therefore, it
is usually more efficient to resort to higher-order integration
schemes, such as, e.g., the popular Runge-Kutta methods.
Finally, we should further stress that there also exist implicit
integration schemes, which require more computations per
step, but they are typically much more stable and accurate
than explicit schemes for some classes of systems. Unfortu-
nately, the selection of the least computationally demanding
integrator which delivers sufficient accuracy depends on the
problem setting and typically requires some trial-and error
approach, which can be educated using some guidelines
based on the theoretical properties of each integrator [40, 41,
42, 43, 54].

In this work, we relied on the RTI implementation pro-
vided by acados [27], which consists of tailored effi-
cient implementations of QP solvers, numerical integration
schemes, and all other components of the RTI scheme.

VIII. RESULTS
In this section we discuss the implementation details and
results obtained from the simulations and experiments with
the NMPC scheme proposed in Section III.

A. IMPLEMENTATION DETAILS
To check the efficacy of our RTI based NMPC algorithm
with the proposed features mentioned in Section IV, we
performed several simulations and experiments in challeng-
ing scenarios. The simulation and experiments were per-
formed on the HyQ robot of mass m = 87 kg. The CoM
is computed considering the mass of the individual link
of the robot and the actual position of the link’s CoM.
The position of the link’s CoM in their local frame is ob-
tained from their CAD models. The feedback gains used in
the WBC are K = diag(1500, 1500, 1500, 100, 100, 100)
and D = diag(1000, 1000, 1000, 50, 50, 50). We chose
the weights S = diag(5, 5, 10, 10, 10, 10) and T =
diag(1000, · · · , 1000) for the QP (17). The parameters and
weights used by the NMPC are reported in Table 1 and 2,
respectively. In all of our simulations and experiments, we
do not set any weights on the CoM position (pc), roll (φ) and
pitch (θ) tasks because we wanted the NMPC to sort out these
CoM trajectories autonomously.

1) Discretization
For the discretization of the dynamic constraints, we mainly
investigated two integration schemes, i.e, a single step of
the explicit Euler of order 1 and implicit midpoint method
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TABLE 1. NMPC parameters

Parameter Symbol Value Unit

Number of state nx 12 -
Number of control inputs nu 12 -
Number of model parameters na 16 -
Prediction horizon T 2 s
Sampling time Ts 0.04 s
Number of control intervals N 50 -
Friction coefficient µ 0.7 -
GRFs lower bound fz 0 N

GRFs upper bound fz 500 N
Hip-to-foot distance reference Cp

ref
hf,i (0.0, 0.0,−0.55) m

Regularization parameter ρ 3× 10−5 -

TABLE 2. Weights used in the NMPC

Cost Weight Value

State

Qpc diag(0, 0, 0)
Qv diag(100, 100, 100)
QΦ diag(0, 0, 100)
Qω diag(100, 100, 1000)

Force
Rx 1× 10−3

Ry 1× 10−3

Rz 8× 10−4

Mobility
Mx 1× 10−4

My 2× 10−3

Mz 1000

Force
robustness

Px 100
Py 100
Pz 1

of order 2 due to their low computational complexity that
favors our real-time implementation needs. We chose the
implicit midpoint method of order 2 because of its stability
and accuracy properties. The sampling time Ts = 40 ms was
chosen and it was sufficient to conduct NMPC computation
online along with the other necessary computations for the
re-planning.

2) NMPC software
We use the acados software package [27] to implement the
RTI scheme described in Section VII. Since acados comes
with a Python interface allowing rapid prototyping, we first
tuned the algorithm in simulation and then used the generated
C-code to perform real experiments. We employ the QP
solver High-Performance Interior Point Method (HPIPM)
[55], which exploits the sparsity structure of the MPC QP
sub-problem (20), and supports inequality constraints.

The computation time required by the NMPC was in the
range of 5-7 ms with the prediction horizon of 2 s and control
intervals N equal to 50 on the on-board computer (a Quad
Core Intel Pentium PC104 @ 1GHz) of HyQ for all the
experiments. This computation time corresponds to the feed-
back phase of the RTI scheme where the QP (20) is solved
after receiving the current state of the robot. The preparation

phase of the RTI takes about 2-3 ms which is a fraction of
the sampling time we chose. Refer to Section VII for more
details on these phases of the RTI scheme. Even though
the computation time of NMPC is mostly consistent, we
observed some outliers. Hence we opted for a conservative
approach to run the NMPC at 25 Hz to guarantee that the
computation time stays always less than 40 ms. Besides the
computation time of the NMPC, we also account for the time
required by other blocks such as reference generator so that
the total computation time does not exceed 40 ms.

3) Integration with the locomotion framework
The NMPC is integrated in a ROS node that publishes xp and
up at a frequency of 25 Hz. The on-board computer along
with our locomotion framework (WBC Interface, WBC, etc.,
illustrated in Fig. 2) runs a real-time node that subscribes
to the topic of the NMPC ROS node. ROS is not a real-
time operating system, so it can introduce quite a significant
and unpredictable communication delay if the NMPC is run
on an external (e.g. more powerful) computer. These delays
are difficult to compensate for and they can cause a loss
of synchronization between the NMPC ROS node and the
WBC interface. Therefore, we decided to launch the NMPC
node natively on the on-board computer to avoid communi-
cation delays between two different computers. Even though
we chose not to use a more powerful dedicated off-board
computer for the NMPC ROS node, we obtained a better
performance in the overall implementation by avoiding the
communication delays of ROS.

B. SIMULATIONS
We show our NMPC planner in action on challenging terrain
starting with simulations. These simulations are pallet cross-
ing, walking over unstructured rough terrain and walk into a
V-shaped Chimney.

1) Pallet crossing
In this simulation, HyQ traverses pallets of different heights,
placed at varying distances form each other. This simulation
highlights the importance of including mobility in the NMPC
formulation (2c). In particular, the simulation scenario in-
cludes a set of pallets, each one of 1 m length, with variable
heights between 0.13 and 0.17 m and placed at unequal gap
lengths ranging from 0.2 and 0.7 m. We performed multiple
trials commanding the robot to move forward at different
velocities i.e., 0.05 m/s and 0.1 m/s to show the repeatability
of our approach. To avoid stepping on undesired locations
such as pallet edges and to prevent foot or shin collisions,
the nominal footholds are adjusted by using the VFA (see
Section V-2). Fig. 9 shows the results of five different trials
for each of the commanded velocities. The middle plot shows
the pitch angle θ of the robot as it traverses the scenario.
Since the robot is only commanded to move along its X
direction with a constant forward velocity and the foot lo-
cations are provided as known quantities to the NMPC, the
adjustment in pitch is the result of minimizing the deviation

12 VOLUME 4, 2016



N. Rathod et al.: Model Predictive Control with Environment Adaptation for Legged Locomotion

from the hip-to-foot distance configuration corresponding to
high mobility for all four legs. Without this feature, the robot
would maintain a constant horizontal orientation (refer Fig.
8) eventually reaching low mobility in some legs as shown in
the attached video1 for a single pallet simulation. We have

10 20 30 40 50 60 70 80
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0

0.1

0.2

FIGURE 8. Comparison of the robot pitch θ in simulation for with and without
mobility cost in the NMPC. The red and green lines represent the planned
pitch values delivered by the NMPC. The blue and black dashed lines are
actual pitch of the robot. Without mobility cost, the robot maintains a horizontal
orientation, whereas the robot pitches to improve leg mobility when it is
included.

also showed in the accompanying video the simulation of
a walk on randomly generated rough terrain (using terrain
generation tool by [56]) with the forward velocity of 0.3 m/s
further stressing the advantages of mobility cost mentioned
earlier.
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FIGURE 9. Simulation of pallet crossing scenario for five different trials
commanding the robot to cross at 0.1 m/s (blue) and 0.05 m/s (red). The top
graph shows the pitch angle and the dashed vertical lines indicate the edges
of the pallets for that specific location in the plot. The bottom graph shows the
CoM Z position for all the trials and the feet trajectories for one of the trials
performed at 0.1 m/s. The color of swings are related to the different legs.

2) Walk into a V-shaped chimney
In this simulation, we show HyQ walking at 0.03 m/s com-
manded velocity in the X direction into a V-shaped chimney
with friction coefficient µ = 0.7 and walls inclined at 35◦ to
the ground. This simulation exploits the cone constraints and
force robustness cost defined inside the NMPC formulation
that is vital for the success of this task. The robot receives
online an update of the map of the environment through an

1https://www.dropbox.com/sh/le7sunqq6sebbou/AADi0S1Lbg3iiS63H
HBstyoja?dl=0

on-board camera to get the information about the normals
at the location of the contact. These normals are used to
formulate the force robustness cost (2d) in the contact frame
K. With this cost, the NMPC provides optimal GRFs to stay
close to the normals of the friction cones at the contacts.

As shown in the accompanying video, without the cone
constraints the robot slips while climbing the chimney and
ultimately falls. When the force robustness cost is enabled,
the forces are regularized to stay in the middle of the cones,
thanks to the robustness feature described in Section IV-C.
In this case the robot walks successfully into the chimney. In
Fig. 10, it can be seen that the longitudinal and lateral com-
ponents of the GRF at the Left-Front (LF) foot stay within
the bound µfz (in red) imposed by the cone constraints.
Moreover, Fig. 11 plots the normal versus the tangential
force of the GRF together with the cone bound µfz (red
line). The picture shows that the GRF stays well within the
bound without any violation. Therefore, including the force
regularization term enables the NMPC to account for the
estimation error in the orientation of contact normals and
increase robustness to the external disturbances.
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FIGURE 10. Walk into a V-shaped chimney simulation: GRFs of LF leg for a
single gait cycle with cone constraints and regularization cost. Both the
longitudinal fx and lateral fy lie conservatively within the bound µfz imposed
by cone constraints.
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FIGURE 11. Walk into a V-shaped chimney simulation: Normal force fz
versus tangential force

√
f2
x + f2

y of the LF leg for a single gait cycle
expressed in the contact frame. The red line is the cone bound µfz.

Apart from the simulation mentioned above, we also have
added in the attached video, the simulations regarding the
ZMP margin (see Section IV-B) and the importance of the
re-planning at a higher rate. For the ZMP margin simulation,
the robot is pushed with 200 N of lateral force for 1 s both in
case of sufficient (higher weight on GRFs Z) and no (lower
weight on GRFs Z) ZMP margin. The ZMP margin plots for
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FIGURE 12. Plot of the ZMP margin mc used to measure locomotion stability.
The robot is pushed immediately after 2 s with lateral force of 200 N while
walking on a flat terrain at 0.1 m/s CoM X velocity. The discontinuities are
due to the switching between 3/4 stance legs in a crawl gait.

this simulation can be seen in Fig. 12 where the ZMP margin
is improved in case of the red line compared to the blue
one because the GRFs Z components are penalized relatively
more (100 times) for the red line. Because of the improved
margin the robot walks stably, whereas it falls while walking
when there is no margin.

In the second simulation, the robot is commanded with
a constant CoM X velocity and heading velocity simulta-
neously. In case of re-planning at lower rate of 0.8 Hz, the
robot becomes unstable and falls due to increase in the model
uncertainties and tracking errors. We would like to stress
that when the re-planning is done at a lower frequency than
25 Hz, the robot is in open-loop for the time interval between
two consecutive re-planning instances, hence, it is no more
NMPC but an online open-loop trajectory optimization. On
the other hand, at a higher re-planning frequency of 25 Hz the
robot walks successfully because the NMPC compensates for
the model uncertainties and tracking errors.

C. EXPERIMENTS
We performed three different experiments to demonstrate the
real-time implementation of our NMPC running on the on-
board computer of the robot as follows.

1) Omni-directional walk
With this experiment, we show the omni-directional walk
performed by HyQ with the NMPC on a flat terrain. This
experiment validates that the NMPC computes feasible tra-
jectories after receiving different velocity commands from
the user while walking. In this experiment, the robot is
commanded with a longitudinal velocity Hvusr

c,x by the user
to walk forward/backward and then a lateral velocity Hvusr

c,y .
Finally, a heading velocity ωusr

z is commanded to turn in the
left/right direction. Fig. 13 shows the CoM X-Y position
and yaw angle of the robot base and it can be noticed that
the actual values track very closely the planned trajectories
provided by the NMPC. Fig. 14 depicts the deviation of the
actual velocities from the reference values while following
the planned trajectories form NMPC. It can be seen in Fig. 15
that the GRFs generated by the WBC are compliant with

the planned values up and again the actual values of GRFs
track closely the planned values. From these plots, it can be
observed that the continuous re-planning with NMPC plays
an important role to achieve good tracking of the planned
trajectory.
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FIGURE 13. CoM X-Y position and yaw ψ in omni-directional walk
experiment. The blue, dotted red and dashed green line represent the actual,
planned and reference values, respectively.
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FIGURE 14. The longitudinal ṗc,x, lateral ṗc,y and angular ωz velocity of the
robot in omni-directional walk experiment. The blue, dotted red and the green
line represent the actual, planned and reference values, respectively.

2) Traversing a static pallet
The purpose of this experiment is to demonstrate that the
mobility cost (2c) incorporated in the NMPC formulation
provides the necessary body pitch for the robot to traverse
over a static pallet while maintaining good leg mobility. The
pallet used in this experiment is 0.13 m in height and 0.8 m
in length. Fig. 16 shows that the robot pitches up while
climbing up the pallet and pitches down consequently while
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FIGURE 15. GRFs from one gait cycle in the omni-directional walk
experiment (We show only one cycle for better visibility of the data). The
green, dotted red and dashed blue line represent the output from WBC i.e.,
fd
z,i, planned and reference values, respectively.

climbing down from the pallet. As shown in the attached
video in simulation, when the mobility cost is deactivated,
the NMPC maintains the horizontal base orientation. This
causes a reduced hip-to-foot distance while stepping up/down
on the pallet ultimately resulting in low leg mobility. When
mobility cost is activated, it directs the NMPC solution to
achieve the necessary pitch that allows to maintain the hip-to-
foot distance at the reference value and hence the leg mobility
is improved. Moreover, the VFA provides the corrected foot
position (i.e., to avoid shin or feet collisions with the edges of
the pallet) to the NMPC and this further enhances the overall
locomotion.
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FIGURE 16. Planned (red) and Actual (dashed blue) pitch of the robot base
while traversing a static pallet in the experiment at a commanded CoM X
velocity of 0.03 m/s.

3) Traversing a repositioned pallet
In this experiment we test our NMPC to plan the robot motion
in real-time by adapting the changes in the environment with
the help of VFA. As it can be seen from the attached video,
when the pallet (0.13 m in height and 0.8 m in length) is
pushed in front of HyQ while walking, the heightmap detects
the pallet and the VFA provides updated foot locations to

the NMPC. The NMPC after receiving these updated foot
locations delivers a solution by pitching up the robot base
in order to adapt to the change in the environment while
maintaining the mobility. Even though the mobility cost is
defined for the stance legs, it is interesting to notice that the
NMPC decides to adjust the base pitch while swinging the
RF leg onto the pallet (see Fig. 17) by forecasting the change
in hip-to-foot distance at the touchdown. This experiment
highlights the advantage of the predictive control over the
traditional control apporaches for its ability to incorporate the
knowledge of the future states. It also validates the effective-
ness of our mobility cost in the NMPC coupled with the VFA
to adapt to the changes in the locomotion environment.

-0.15

-0.1

-0.05

0

18 19 20 21 22 23 24 25

-0.5

-0.4

-0.3

FIGURE 17. Robot base pitch achieved during the swing of RF leg while
traversing a repositioned pallet in the experiment a commanded CoM X
velocity of 0.05 m/s. The red and dashed blue line are planned and actual
values.

IX. CONCLUSION
In this work, we have demonstrated in experiments a real-
time NMPC which leverages optimization of leg mobility to
achieve terrain adaptation. The contact sequence parameters
embedded inside the SRBD model allows us to encode the
complementarity constraints directly, and without a need
to enforce these constraints separately in the NMPC. We
exploited the RTI scheme for our NMPC that enable us to
close the loop at 25 Hz on the NMPC with a prediction
horizon of 2 s. Closing the loop on NMPC at 25 Hz allows us
to compensate for the state drifts due to model uncertainties
and tracking errors, and also adapt to the changes in the
environment while following user velocity commands both
in the simulations and experiments.

In our NMPC, the mobility cost penalizes the hip-to-foot
distance from a reference value corresponding to a high
mobility factor and hence it directs the NMPC to compute
essential robot orientation to maintain a high mobility while
respecting the kinematic limits. This is evident from the
pallet experiments where we also included VFA to correct
undesired foot positions defined by the heuristics and avoid
possible foot and shin collision. Accounting for the ZMP
margin in our NMPC improved the locomotion stability
of the robot in all of our experiments and simulation by
keeping a sufficiently large ZMP margin from support poly-
gon boundaries. Incorporating a force robustness term in
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the NMPC ensures that the GRFs stay close to the contact
normals and hence, it enables the robot to cope with the
estimation error of the orientation of the contact normals.

With our NMPC, we have performed successful dynamic
locomotion in simulation as well as in the experiments on
different rough terrains. In our future work we would like to
extend our NMPC to optimize the step timing and foot loca-
tions. Additionally, the reference generator does not provide
references by rejecting the external disturbances acting on the
robot state, hence the robot complies transparently with these
disturbances. Therefore, in the future we plan to empower the
reference generator to reject disturbances to bring back the
robot from a perturbed state to a state coherent with the user
commands.

.

APPENDIX A ANGULAR VELOCITY
We employ the Z-Y -X convention [39] for the Euler angles
sequence Φ = (φ, θ, ψ)> to represent the orientation of the
robot base where, φ, θ and ψ are the roll, pitch and yaw,
respectively. The angular velocity in inertial and CoM frame
is related to the Euler angle rates with the following relations:

ω = E(Φ) Φ̇ (22)

Cω = E′(Φ) Φ̇ (23)

E(Φ) and E′(Φ) are the Euler angle rates matrix and conju-
gate Euler angle rates matrix respectively given by,

E(Φ) =

cos(θ) cos(ψ) − sin(ψ) 0
cos(θ) sin(ψ) cos(ψ) 0
− sin(θ) 0 1

 (24)

E′(Φ) =

1 0 − sin(θ)
0 cos(φ) cos(θ) sin(φ)
0 − sin(φ) cos(θ) cos(φ)

 (25)

Remark: E depends on pitch and yaw, whereas E′ on roll and
pitch. Thus, the Euler angle rates Φ̇ is

Φ̇ = E−1(Φ)ω (26)

Φ̇ = E′−1(Φ) Cω (27)
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