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Featured Application: Our dataset can be used to train novel Machine Learning and Artificial
Intelligence models to automatically identify the quality of fNIRS signals.

Abstract: Despite technological advancements in functional Near Infra-Red Spectroscopy (fNIRS)
and a rise in the application of the fNIRS in neuroscience experimental designs, the processing of
fNIRS data remains characterized by a high number of heterogeneous approaches, implicating the
scientific reproducibility and interpretability of the results. For example, a manual inspection is
still necessary to assess the quality and subsequent retention of collected fNIRS signals for analysis.
Machine Learning (ML) approaches are well-positioned to provide a unique contribution to fNIRS
data processing by automating and standardizing methodological approaches for quality control,
where ML models can produce objective and reproducible results. However, any successful ML
application is grounded in a high-quality dataset of labeled training data, and unfortunately, no such
dataset is currently available for fNIRS signals. In this work, we introduce fNIRS-QC, a platform
designed for the crowd-sourced creation of a quality control fNIRS dataset. In particular, we (a)
composed a dataset of 4385 fNIRS signals; (b) created a web interface to allow multiple users to
manually label the signal quality of 510 10 s fNIRS segments. Finally, (c) a subset of the labeled
dataset is used to develop a proof-of-concept ML model to automatically assess the quality of fNIRS
signals. The developed ML models can serve as a more objective and efficient quality control check
that minimizes error from manual inspection and the need for expertise with signal quality control.

Keywords: fNIRS; machine learning; quality control

1. Introduction

Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging modal-
ity which allows the detection of cortical brain activity through the use of light in the
near-infrared spectrum (650–900 nm). Due to the difference in absorption of oxygenated
and deoxygenated hemoglobin, the fNIRS is able to measure the relative changes in the
concentrations of oxygenated and deoxygenated hemoglobin which are indicative of cere-
bral activation and deactivation. In recent years, the use of fNIRS has seen rapid growth in
neuroimaging studies [1], gaining traction in fields such as infant neuroimaging [2] and
cognitive neuroscience [3].

Despite the burgeoning use of fNIRS, a general consensus or standardization of the
best pre-processing practices for the NIRS signal has not been established, unlike other
neuroimaging modalities such as functional magnetic resonance imaging (fMRI; see [4,5]).
Differences in the use and combination of pre-processing pipelines have been demonstrated
to lead to different results in fNIRS studies [6]. Hence, the absence of standardization
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in pre-processing methods, analysis tools, and instrumentation can lead to the scarce
reproducibility of studies and results, similar to what occurs with other neurophysiological
signals (e.g., infant cry [7]).

One key pre-processing step in fNIRS data analysis is the signal quality check of the
raw signals for each channel. The presence of a strong cardiac component is one of the main
indicators of good optode-scalp coupling characterizing a high-quality fNIRS signal. Noise
in the fNIRS signal is typically the result of (i) body or head movements which causes fast
spikes or baseline shifts and physiological components such as cardiac, respiratory, and
blood pressure components. Usually, a manual visual inspection is conducted to assess
signal quality—for example, indicators such as the presence of large motion artifacts, heart-
beat oscillations indicative of good coupling between the scalp and optodes. The nature of
the manual visual inspection means that signal quality check is dependent on researcher
expertise and subjective judgments on a “good” quality signal. Hence, the development
of an objective signal quality check can address the issues of experience and subjectivity
in the signal quality control step. Machine Learning algorithms have been proven to be
effective in supporting researchers’ classification of signal quality. Li and colleagues, for
example, successfully employed Machine Learning for the automatic quality assessment of
pulsatile signals [8] and for multi-level ECG signals [9], while Gabrieli et al. [10] tested the
efficacy of different classifiers in the identification of the quality of pupillometry signals.

Currently, a number of algorithms based on morphological characteristics of the
fNIRS signal have been proposed for signal quality assessment: (i) Scalp Coupling Index
(SCI [11]), (ii) placing headgear optodes efficiently before experimentation (PHOEBE [12]),
and (iii) signal quality index (SQI [13]). The SCI and PHOEBE are algorithms that binarily
assign signals to “good” or “bad” categories based on the presence of the cardiac component
in the signal. The SQI algorithm provides five levels of a quantitative rating of signal quality
and was developed based on visual quality assessment markers used by experts in fNIRS.

These algorithms rely on a small number of human-defined signal quality indicators
and empirical thresholds. However, deep learning approaches have the key characteristic
of automatically extracting high-dimensional features and leverage on non-linear decision
functions. They are therefore a promising approach, similar to other studies.

Machine learning involves the training of algorithms with known input-output pairs
of the function. For what concerns fNIRS signals, several studies have recently employed
different Machine Learning ad Deep Learning techniques to classify signals. Ortega and
Faisal [14], for example, employed a deep learning classifier to decode the strength of hand
movements in order to develop more accurate Brain-Computer Interfaces (BCI). Similarly,
Ma et al. [15] developed a Deep Learning classifier to classify motion imagery of three
different hand gestures. Deep Learning models have also been employed to assess and
classify the mental workload of difficult tasks, such as driving [16] or memory tasks [17].

Concerning signals’ quality estimation, a machine learning version of the SQI
(MLSQI [18]) has been developed based on the training dataset described in Sappia et al. [13].
However, the training dataset was collected from only 14 participants and labeled by
individuals working at the company that produces the fNIRS recording device used. The
limited number of collected signals is a crucial limitation for the efficient application of a
Deep Learning approach, which is however intrinsically connected with the fNIRS field for
multiple reasons. First, the novelty of the field results in a reduced availability of large-scale
fNIRS datasets that can be employed for secondary data analysis or for the development of
novel tools and techniques. Secondly, the difficulty in obtaining data labeled by experts
of the field, combined with the lack of a ground truth that determines the quality of a
signal makes it impossible to obtain large-scale labeling of the quality of fNIRS signals. To
overcome these limitations, in this paper, we introduce a crowd-sourced training dataset
consisting of 510 10-s segments of single-channel fNIRS signals. Through crowdsourcing,
we are able to leverage multiple fNIRS recordings from a wider range of participants.
By making use of a web interface, we were able to reach out to more individuals with
experience working with fNIRS and tapped onto their expertise in labeling the quality of
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the segments through this interface. The labeled dataset is here used to train and test a
machine learning model that can identify the quality of a signal, and that can therefore be
used to support non-experts of the field that approach the fNIRS signals for the first time
or to make pre-processing pipelines more objective, by introducing an objective way to
identify segments of signals of high quality that can be used for further analysis.

Aim of This Study

This study aims at improving the quality control step of fNIRS studies by introducing
an Artificial Intelligence framework that can support researchers in discriminating between
usable and unusable fNIRS segments. Overall, this work brings three main contributions.
First, an Open Source web interface that can be used to classify the quality of different
signals using a crowd-science approach has been designed and developed. While here we
employed it for the collection of fNIRS signals labels, a boilerplate of the platform that
can be adapted for other signals or digital objects that require labeling has been made
available, allowing other researchers to rapidly deploy citizen science platforms. The
second contribution of this study is the creation of a reference dataset of fNIRS signals
that can be used by researchers within the field to develop new tools for the preprocessing
and analysis of fNIRS data and to train non-experts to discriminate between usable and
unusable signals. Third, in this study, a proof-of-concept ML model that can support
researchers by automatically assessing the quality of fNIRS signals is presented. The latter
is of special interest considering the novelty of the field, the limited number of experts in
the visual examination of the quality of fNIRS signals, and the increasing amount of young
scholars with previous to no experience in fNIRS signal processing that may need support
to evaluate the quality of recorded data. Overall, we believe that the created dataset and
developed model favor a more objective and efficient approach to fNIRS quality control.

2. Materials and Methods
2.1. Dataset

The complete fNIRS dataset generated for this study consists of 4385 portions of
single-channel fNIRS signals with a duration of 10 s each. In order to obtain a better time
and space localization of signals’ quality, short portions of signals were selected. To avoid
biases introduced by different recording devices, all the signals have been collected using
a NIRSport device (NIRx Medical Technologies LLC). This equipment has a scan rate of
7.81 Hz and employs LED emission with source wavelengths of 760 nm and 850 nm.

Signals included within this dataset were drawn from four different studies, and all
belong to adult participants. The first study (Mother-Child Synchrony study) involves the
simultaneous recording of fNIRS data from mothers and children engaging in a passive
video viewing task [19]. Only data from mothers (N = 31, Mean Age = 34.9 ± 4.16 years)
are selected for the dataset used in this work (for details on the experimental procedure,
see [19]).

The second study (Father-Child synchrony study) consists of fNIRS recordings of
Fathers and Children engaging in both a passive video viewing task and an active play
task. Only data from fathers (N = 29, Mean Age = 38.1 ± 3.67) have been selected for the
current dataset [20].

The third study (3-Love study) consists of the data of 69 participants (Mean
Age = 21.21 ± 1.66) [21]. Participants were asked to watch three video clips depicting a
couple interacting while baking, eating, and exercising. Before presentation, participants
were informed (experimental manipulation) about the status of the couple, being either
romantic partners, friends, or siblings.

Finally, the fourth study (Mother-Father synchrony study) consists of the recordings
of both mothers and fathers while passively hearing audio stimuli of infants’ and adults’
vocalizations [22].

A breakdown of the number of signals per study is reported in Table 1.
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Table 1. Breakdown of the number of signals per study of origin that have been included in the
current dataset.

Study Number of Signals

Mother-Child Synchrony 836
Father-Child Synchrony 2034

3-Love Study 1035
Mother-Father Synchrony 480

4385

From the totality of the signals, 510 segments from the Mother-Child synchrony study
were randomly selected for the current labeling stage. All the selected segments were
resampled at 10 Hz, but no additional preprocessing step was conducted on the raw signals.

2.2. Web Interface

In order to obtain labels for our classifier, a web platform written in HTML5 for the
human labeling of signals was designed and deployed on a shared hosting service. The
web platform consists of a back-end, where signals and ratings are stored, and a front-
end, which allows the users to rate the signals. when users register an account, they are
asked to specify their level of expertise, which could be Beginner (“worked on less than 2
datasets (less than 100 fNIRS recordings processed”), Intermediate (“worked on 2 4 datasets
(200 fNIRS recordings processed”), or Expert (“worked on more than 4 datasets (more than
200 fNIRS recordings processed)”).

One randomly selected signal is presented each time and the user is asked to assign
one out of three possible labels: Keep, Keep after correction, or Reject.

Visually, the User Interface presents colored buttons that can be used to rate the signals
in the upper part of the screen—the button Reject is in red, the button Keep after correction
is in yellow, and the button Keep is in green—followed by two rectangles, one above the
other, in which the two waveform components (wavelength 1 and 2) of the signals are
visually shown. The platform allows the user to zoom in on signals in order to obtain a
closer view of peaks and fluctuations. Finally, on the lower part of the screen, the interface
provides details about how many signals the user has rated. A screenshot of the interface
is shown in Figure 1. Each user can rate as many signals as are present on the server in
an anonymous way, with the only references to the user being an anonymous ID and the
expertise of the user.

The web interface was used to collect ratings for a subset of 510 segments of the com-
plete dataset, in order to develop the proof of concept of the automatic quality classification
based on Deep Learning.

2.3. Collected Data and Processing

The subset of 510 segments used for the proof-of-concept were selected from the
Mother-Child Synchrony study. A total of two thousand four hundred and one (N = 2401)
ratings were collected: a breakdown of the ratings by user is reported in Table 2.

Each rating consists of three pieces of information: the label of the signal quality, the
self-reported level of expertise of the rater, and the time required for the rater to assign
a label to the signal (reaction time). No identifiable or demographic data of the raters
are collected.

Overall, the Percent Agreement between self-described Expert fNIRS users is 62.4%,
between Intermediate users is 14.4%, and between Beginner users is 39.4%, while the
average percent agreement between expert and beginner users is 30.4%, and between expert
and intermediate users is 29.3%. The average percent agreement between intermediate and
beginner users is 33.9%.
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Figure 1. Screenshot of the fNIRS-QC web interface.

Table 2. Breakdown of the ratings by user (N = 9).

User ID Expertise Reject Keep after Correction Keep Total

1 Intermediate 153 249 100 502
2 Intermediate 5 7 18 30
3 Expert 52 51 33 136
4 Intermediate 8 81 11 100
5 Intermediate 5 95 0 100
6 Expert 18 6 8 32
7 Intermediate 188 281 33 502
8 Beginner 123 251 125 499
9 Beginner 319 57 124 500

871 1078 452 2401

The time required for the rating was used to compute the confidence weight (wc) for
each rating. All rating times of each user were assigned to four confidence levels, based
on thresholds corresponding to the 25th, 50th, and 75th percentile of the distribution of
the rating times. Ratings below the 25th percentile were associated with a high confidence
and assigned a wc = 1; similarly, other levels were associated with lower confidence and
assigned a wc = 0.75 (25th to 50th percentile), wc = 0.5 (50th to 75th percentile), and
wc = 0.25 (greater than 75th percentile). The self-reported expertise was also used to assign
and experience weight (we) to each user. Users self-reported as “Expert” were assigned
a we = 1 , “Intermediate” users were assigned a we = 0.66 and “Beginner” users were
assigned a we = 0.33

The ratings and the weight were used to compute the class of each segment in the
dataset. The three labels correspond to three different quality levels (q) of the signals:

• Accept. The presented segment of a signal has a good quality, that is deemed accept-
able by the user. This class was assigned a q = 3.

• Keep after correction. The portion is affected by noise or artifacts (e.g., spikes), but
after applying appropriate signal processing methods to increase the signal to noise
ratio and remove artifacts, the portion can likely be used for further analysis. This
class was assigned a q = 2.

• Reject. The portion is very noisy or affected by artifacts that cannot be corrected using
standard signal processing techniques. This class was assigned a q = 1.
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Three different methods were adopted to aggregate the ratings from different users
and compute a unique quality level Q for each segment. The first (Qm) method was simply
the majority vote, in which the most voted quality level q was assigned.

Other methods were based on weights. First we computed the sum qk of the weights
wi of the ratings ri by quality level k (see Equation (1)), where ŵk

i = wi if ri = k; ŵk
i = 0

otherwise.
qk = ∑

i
ŵk

i (1)

Then we selected the level k corresponding to the maximum qk.
Thus, we computed the experience-weighted aggregated quality level (Qe) based on

the experience weights and the confidence-weighted aggregated quality level (Qc) based
on the confidence weights.

In case of ties, the lower class was assigned.
A breakdown of the labels assigned to the segment, given the aggregation method is

provided in Table 3, while a visual representation of the users’ response time by rating is
shown in Figure 2.

For the proof of concept DL model, we referred to the Qm quality levels. Since the
classes were highly unbalanced (with only N = 19 segments for the “Keep” class, we
focused on the binary classification of “Reject” class versus the others.

2.4. Deep Learning Experiments

The architecture of the Deep Neural Network (DNN) here employed is based on the
architecture described by Bizzego et al. [23], and consists of three sequential components: (i)
a Convolutional Branch; (ii) a Long Short-Term Memory (LSTM) module; a Fully Connected
Head (FCH). The Convolutional Branch consists of four convolutional blocks, each one
consisting of a convolutional layer with kernel size set to 3, a batch normalization layer [24],
a Rectified Linear Unit [25], and a pooling layer based on maximum, with kernel size
2. Additionally, in the second and third blocks a dropout layer was added to reduce
overfitting. In each block, the convolutional layer expands the channels’ number. The
first layer expands from 2 to 32 channels, while in the subsequent layers the number of
channels is duplicated iteratively reaching 256 channels. A pooling layer is then used to
compute the average of the convoluted signal at 10-time points, followed by an additional
dropout layer.

Table 3. Breakdown of the number of ratings (N = 510) per aggregation and class type.

Rating Qm Qe Qc

Keep 19 53 47
Keep after Correction 324 213 212
Reject 167 244 251

Following the Convolutional Branch is an LSTM Module [26,27], a recursive layer used
to leverage the specific properties of sequential data. The Network here employed contains
a single-layer LSTM module, with a number of features in the hidden state set to 100.

The DNN was implemented in Python (v. 3.8.10), using the Numpy [28], Pandas [29],
and Scikit-learn [30], and Torch [31] packages (Numpy v. 1.19.4, Scikit-learn v. 0.23.2,
Pandas v. 1.1.4, Torch v. 1.9.0 + cu102). The network was trained for 1000 epochs, with a
batch size of 128. The learning rate is initially fixed to 1, and divided by

√
10 every two

epochs. Network’s performances are evaluated in terms of accuracy, precision, and recall
scores, as well as of the F1 score and Matthew Correlation Coefficient (MCC). While the
accuracy of a model —the ratio between correctly classified segments and the total number
of segments— is commonly used as the main metric to assess the performances of a model,
it has been reported to be biased for dataset with an unbalanced number of labels per class,
as in the case of the dataset here presented. In such cases, the accuracy score has been
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proved to overestimate the performances of a classifier [10,32,33]. To take into account such
a bias, different metrics have been introduced to assess the performances of binary and
multiclass classifiers, such as the F1 score and the Matthew Correlation Coefficients. While
the first has obtained a higher adoption in the field, the score is not class-independent,
thus indicating different scores for binary classifiers accordingly to which class is labeled
as positive and which is labeled as negative. Additionally, the F1 score does not take into
account segments correctly classified as negative recall scores, therefore not providing a
complete and objective evaluation of a model’s performance. To overcome the limitations
of the F1 score, a new metric named Matthew Correlation Coefficient (MCC), based on a
special case of the φ correlation has been introduced [34,35]. As compared to the F1 score,
MCC has two main advantages. First, all the four categories of the confusion matrix (true
positives, false negatives, true negatives, and false positives) are considered in the metric, as
well as the ratio between elements of the different classes in the dataset, therefore providing
a more balanced performance indicator [36]. Secondly, the metric is class-independent,
thus not influenced by the assignment of the positive and negative labels to the different
classes. As a result of that, when classes are swapped, the metric does not change, as
opposed to the F1 score [37]. Quantitatively, the MCC metric is a value between −1 and +1,
where a value of −1 is indicative of a discrepancy between predictions and observations,
while a coefficient of 1 represents a perfect forecasting capability of the model. As a result,
the higher the MCC score, the better a model is performing.

Figure 2. Distribution of users’ response time by signals’ quality rating.

3. Results

A copy of the segments used in this study, labeled dataset, and pre-trained network
are available online on the data repository of this project [38], while the template for the
web platform fNIRSQC has been released as an open sourced project under the name
cisciqc (Citizen Science Quality Control [39]).

The dataset was divided into two partitions: Train (80% of the segments) and Test
(20% of the segments). After the training phase, the model reported an Accuracy of 0.70 on
the train set (MCC = 0.18). For what concerns the results on the validation set, the network
obtained an Accuracy score of 0.63, a Precision score of 0.61, Recall score of 0.95, F1 score
of 0.74, and an MCC score equal to 0.25 (Table 4).

Confusion Matrices for the train and test partitions are reported, respectively, in
Tables 5 and 6. Overall, the model performs better on the training partition, suggesting a
possible over-fitting problem.

Focusing on the confusion matrix, the model seems to wrongly report signals that
users labeled as to reject, and therefore not usable signals, as signals that must be kept in
subsequent steps of the analysis process.
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Table 4. Summary of the results by metrics and partition.

Metric
Partition

Train Test

Accuracy 0.70 0.63
MCC 0.18 0.25

Precision 0.61
Recall 0.95

F1 0.74

Table 5. Confusion matrix for the train partition.

Predictions

Reject Keep

User labels Reject 29 92
Keep 30 257

Table 6. Confusion matrix for the test partition.

Predictions

Reject Keep

User labels Reject 10 35
Keep 3 54

4. Discussion

In this work, we tested the possibility of using a Deep Neural Network model to
support researchers in identifying usable and unusable fNIRS signals. First, a web platform
for the collection of human labels for fNIRS signals has been designed and implemented,
then ratings for 510 segments of fNIRS signals were obtained by raters of different expertise
levels. Collected labels were then fed to train a DNN model.

The model’s accuracy performances in train and test partitions indicate that the model
is learning well on the test partition, but the performance drops on the test partition,
suggesting a possible overfitting during the training phase. While the recall score (0.95)
indicates that the majority of the relevant elements—which are usable segments—are
correctly identified as usable, the precision score (0.61) suggests that a significant amount
of signals labeled from the users as unusable are mislabeled by the model, as shown in the
Confusion Matrix of the test partition (Table 6).

Imagining a possible implementation in a real research setting, the results here re-
ported suggest that the model can successfully help researchers identifying usable fNIRS
segments from a pool of segments that contains both usable or unusable segments, which
is the typical case of fNIRS experimental studies. In fact, segments may contain a different
type of artifacts, some of which can be corrected, while some are so extensively tied to the
signals that require a portion of signals to be discarded. However, the current implementa-
tion fails at excluding completely unusable segments, which are labeled by the model so as
to include them in further analysis. Presently, the model can still support researchers by
reducing the number of segments requiring a manual inspection. The ability of the model
to match users’ labels for usable signals is also reflected by the F1 score (0.74), while the
inability to correctly label non-usable signals with a high degree of precision is highlighted
by the MCC score (0.25).

The limits in our model’s classification accuracy can be explained by different factors.
First, the limited number of segments that have been included in the dataset for this work
(N = 510). In fact, the small number of segments may not have been sufficient to cover all
the possible combinations of artifacts and noises that can affect the fNIRS signals. However,
while a higher number of segments may have been helpful to reduce the bias of the model
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toward the segments used for training—with a possible reduction in the accuracy on the
train partition and the simultaneous increase of the precision on the test partition—the
labeling stage of the segments would have required more extensive resources in terms of
time and users. By limiting the number of segments, we have been able to obtain a higher
number of ratings per each signal, therefore reducing the impact of a single rater on the
overall label used for training, which is evaluated as described in Section 2.3. Future works
may try to increase the quality of the predictions, by involving both more users and by
adding more signals to the dataset, in order to obtain a bigger and more balanced number
of segments, which may cover a higher number of possible cases.

For what concerns the network’s performances, another way to improve the classifica-
tion accuracy of the network is by improving its structure. In this work, we aimed at using
a simple network, that has been adapted from a previous work in which the aim was not
to classify the usability of a signal, but its nature [40]. The adoption of this simple network
has some benefits. First, the linearity of the structure and the simplicity of the architecture
allows for easy explainability—which is crucial especially when AI algorithms are used
for medical data—and to rapidly modify it, to better adapt it to different scenarios (e.g.,
rating from more users, a higher number of samples, etc.) and computational resources
(e.g., laptop, Cloud clusters, High-Performance Computers, etc.). Currently, the network
trains on an average laptop (Intel i7-8565U, 16 GB of RAM) in less than 30 min, and is
able to provide predictions within seconds, making it suitable for both offline and online
classification of fNIRS segments.

Overall, in this work, we have demonstrated a proof-of-concepts of how a DNN model
can be trained and employed to classify the usability of fNIRS signals. The developed
model can help researchers estimate the quality of an fNIRS signal segment, and its usability
for research purposes in a more objective way, by reducing the subjectivity introduced by a
manual inspection stage.

While the performances of the model are not excellent, the limits of the dataset—in
terms of number of segments, and of number and expertise of the raters—and of the archi-
tecture of the network can help explain the results here reported. Future work should aim
at collecting data from a higher number of raters, with different expertise levels, for a higher
number of fNIRS segments, and try to use more sophisticated networks designed ad-hoc
for this classification task. Moreover, future studies may aim at combining different signals
(e.g., fNIRS and EEG) in order to increase the performances of the classification model.

5. Conclusions

In this work, we presented a proof-of-concept for a DNN classifier able to help
researchers identifying the quality of fNIRS signals. Moreover, as artifacts of this work,
we created an open-source boilerplate for the creation of a citizen science platform for
the human labeling of digital elements, called cisciqc, and its implementation for the
collection of fNIRS signals labels, called fNIRSQC, as well as a dataset quality-labeled
fNIRS signals that can be used by others to train and test different ML models. Our
results demonstrate that a simple network, trained on a small number of signals labeled by
users of different expertise levels can successfully help researchers identify high-quality
fNIRS signals.

Author Contributions: Conceptualization, G.G., A.B. and G.E.; methodology, G.G., A.B. and G.E.;
software, G.G. and A.B.; validation, G.G. and A.B.; formal analysis, G.G. and A.B.; investigation,
G.G., A.B. and G.E.; resources, G.G., A.B. and G.E.; data curation, G.G. and A.B.; writing—original
draft preparation, G.G., A.B. and M.J.Y.N.; writing—review and editing, G.G., A.B., M.J.Y.N. and
G.E.; visualization, G.G.; supervision, G.E.; project administration, G.E.; funding acquisition, G.E. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by grants from the NAP SUG to GE (M4081597, 2015-2021).

Institutional Review Board Statement: Not applicable.



Appl. Sci. 2021, 11, 9531 10 of 11

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
original studies.

Data Availability Statement: https://doi.org/10.21979/N9/C8VYZG (accessed on 13 October 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yücel, M.A.; Lühmann, A.v.; Scholkmann, F.; Gervain, J.; Dan, I.; Ayaz, H.; Boas, D.; Cooper, R.J.; Culver, J.; Elwell, C.E.; et al.

Best practices for fNIRS publications. Neurophotonics 2021, 8, 012101.
2. Azhari, A.; Truzzi, A.; Neoh, M.J.Y.; Balagtas, J.P.M.; Tan, H.H.; Goh, P.P.; Ang, X.A.; Setoh, P.; Rigo, P.; Bornstein, M.H.; et al. A

decade of infant neuroimaging research: What have we learned and where are we going? Infant Behav. Dev. 2020, 58, 101389.
[CrossRef] [PubMed]

3. Pinti, P.; Tachtsidis, I.; Hamilton, A.; Hirsch, J.; Aichelburg, C.; Gilbert, S.; Burgess, P.W. The present and future use of functional
near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N. Y. Acad. Sci. 2020, 1464, 5. [CrossRef] [PubMed]

4. Strother, S.C. Evaluating fMRI preprocessing pipelines. IEEE Eng. Med. Biol. Mag. 2006, 25, 27–41. [CrossRef] [PubMed]
5. Poldrack, R.A.; Fletcher, P.C.; Henson, R.N.; Worsley, K.J.; Brett, M.; Nichols, T.E. Guidelines for reporting an fMRI study.

Neuroimage 2008, 40, 409–414. [CrossRef] [PubMed]
6. Hocke, L.M.; Oni, I.K.; Duszynski, C.C.; Corrigan, A.V.; Frederick, B.D.; Dunn, J.F. Automated Processing of fNIRS Data—A

visual guide to the pitfalls and consequences. Algorithms 2018, 11, 67. [CrossRef]
7. Gabrieli, G.; Scapin, G.; Bornstein, M.H.; Esposito, G. Are cry studies replicable? An analysis of participants, procedures, and

methods adopted and reported in studies of infant cries. Acoustics 2019, 1, 866–883. [CrossRef]
8. Li, Q.; Clifford, G.D. Dynamic time warping and machine learning for signal quality assessment of pulsatile signals. Physiol.

Meas. 2012, 33, 1491. [CrossRef]
9. Li, Q.; Rajagopalan, C.; Clifford, G.D. A machine learning approach to multi-level ECG signal quality classification. Comput.

Methods Programs Biomed. 2014, 117, 435–447. [CrossRef]
10. Gabrieli, G.; Balagtas, J.P.M.; Esposito, G.; Setoh, P. A Machine Learning approach for the automatic estimation of fixation-time

data signals’ quality. Sensors 2020, 20, 6775. [CrossRef]
11. Pollonini, L.; Olds, C.; Abaya, H.; Bortfeld, H.; Beauchamp, M.S.; Oghalai, J.S. Auditory cortex activation to natural speech and

simulated cochlear implant speech measured with functional near-infrared spectroscopy. Hear. Res. 2014, 309, 84–93. [CrossRef]
12. Pollonini, L.; Bortfeld, H.; Oghalai, J.S. PHOEBE: a method for real time mapping of optodes-scalp coupling in functional

near-infrared spectroscopy. Biomed. Opt. Express 2016, 7, 5104–5119. [CrossRef]
13. Sappia, M.S.; Hakimi, N.; Colier, W.N.; Horschig, J.M. Signal quality index: an algorithm for quantitative assessment of functional

near infrared spectroscopy signal quality. Biomed. Opt. Express 2020, 11, 6732–6754. [CrossRef]
14. Ortega, P.; Faisal, A.A. Deep learning multimodal fNIRS and EEG signals for bimanual grip force decoding. J. Neural Eng. 2021,

18, 0460e6. [CrossRef]
15. Ma, T.; Chen, W.; Li, X.; Xia, Y.; Zhu, X.; He, S. fNIRS Signal Classification Based on Deep Learning in Rock-Paper-Scissors

Imagery Task. Appl. Sci. 2021, 11, 4922. [CrossRef]
16. Liu, R.; Reimer, B.; Song, S.; Mehler, B.; Solovey, E. Unsupervised fNIRS feature extraction with CAE and ESN autoencoder for

driver cognitive load classification. J. Neural Eng. 2021, 18, 036002. [CrossRef] [PubMed]
17. Saikia, M.J.; Brunyéa, T.T. K-means clustering for unsupervised participant grouping from fNIRS brain signal in working memory

task. In Proceedings of the Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics, International Society for
Optics and Photonics, Online, 6–12 March 2021; Volume 11629, p. 116292M.

18. Sappia, M.S.; Hakimi, N.; Svinkunaite, L.; Alderliesten, T.; Horschig, J.M.; Colier, W.N. fNIRS signal quality estimation by means
of a machine learning algorithm trained on morphological and temporal features. Biophotonics in Exercise Science, Sports
Medicine, Health Monitoring Technologies, and Wearables II. Int. Soc. Opt. Photonics 2021, 11638, 116380F.

19. Azhari, A.; Leck, W.; Gabrieli, G.; Bizzego, A.; Rigo, P.; Setoh, P.; Bornstein, M.; Esposito, G. Parenting stress undermines
mother-child brain-to-brain synchrony: A hyperscanning study. Sci. Rep. 2019, 9, 11407. [CrossRef] [PubMed]

20. Azhari, A.; Bizzego, A.; Esposito, G. Father-child dyads exhibit unique inter-subject synchronisation during co-viewing of
animation video stimuli. Soc. Neurosci. 2021, 16, 522–533. [CrossRef]

21. Azhari, A.; Rigo, P.; Tan, P.Y.; Neoh, M.J.Y.; Esposito, G. Viewing Romantic and Friendship Interactions Activate Prefrontal
Regions in Persons With High Openness Personality Trait. Front. Psychol. 2020, 11, 490. [CrossRef] [PubMed]

22. Azhari, A.; Lim, M.; Bizzego, A.; Gabrieli, G.; Bornstein, M.H.; Esposito, G. Physical presence of spouse enhances brain-to-brain
synchrony in co-parenting couples. Sci. Rep. 2020, 10, 7569. [CrossRef] [PubMed]

23. Bizzego, A.; Gabrieli, G.; Esposito, G. Deep Neural Networks and Transfer Learning on a Multivariate Physiological Signal
Dataset. Bioengineering 2021, 8, 35. [CrossRef] [PubMed]

24. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015,
arXiv:1502.03167.

https://doi.org/10.21979/N9/C8VYZG
http://doi.org/10.1016/j.infbeh.2019.101389
http://www.ncbi.nlm.nih.gov/pubmed/31778859
http://dx.doi.org/10.1111/nyas.13948
http://www.ncbi.nlm.nih.gov/pubmed/30085354
http://dx.doi.org/10.1109/MEMB.2006.1607667
http://www.ncbi.nlm.nih.gov/pubmed/16568935
http://dx.doi.org/10.1016/j.neuroimage.2007.11.048
http://www.ncbi.nlm.nih.gov/pubmed/18191585
http://dx.doi.org/10.3390/a11050067
http://dx.doi.org/10.3390/acoustics1040052
http://dx.doi.org/10.1088/0967-3334/33/9/1491
http://dx.doi.org/10.1016/j.cmpb.2014.09.002
http://dx.doi.org/10.3390/s20236775
http://dx.doi.org/10.1016/j.heares.2013.11.007
http://dx.doi.org/10.1364/BOE.7.005104
http://dx.doi.org/10.1364/BOE.409317
http://dx.doi.org/10.1088/1741-2552/ac1ab3
http://dx.doi.org/10.3390/app11114922
http://dx.doi.org/10.1088/1741-2552/abd2ca
http://www.ncbi.nlm.nih.gov/pubmed/33307543
http://dx.doi.org/10.1038/s41598-019-47810-4
http://www.ncbi.nlm.nih.gov/pubmed/31388049
http://dx.doi.org/10.1080/17470919.2021.1970016
http://dx.doi.org/10.3389/fpsyg.2020.00490
http://www.ncbi.nlm.nih.gov/pubmed/32265795
http://dx.doi.org/10.1038/s41598-020-63596-2
http://www.ncbi.nlm.nih.gov/pubmed/32371912
http://dx.doi.org/10.3390/bioengineering8030035
http://www.ncbi.nlm.nih.gov/pubmed/33800842


Appl. Sci. 2021, 11, 9531 11 of 11

25. Shang, W.; Sohn, K.; Almeida, D.; Lee, H. Understanding and improving convolutional neural networks via concatenated rectified
linear units. In Proceedings of the ICML’16: Proceedings of the 33rd International Conference on International Conference on
Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 2217–2225.

26. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
27. Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013

IEEE International Conference on Acoustics, Speech and Signal Processing, Piscataway, NJ, USA, 26–31 May 2013; pp. 6645–6649.
28. Van den Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy array: A structure for efficient numerical computation. Comput. Sci.

Eng. 2011, 13, 22–30. [CrossRef]
29. McKinney, W. Pandas: A foundational Python library for data analysis and statistics. In Proceedings of the Workshop

Python for High Performance and Scientific Computing (SC11), Seattle, WA, USA, 18 November 2011; Volume 14. Available
online: https://www.dlr.de/sc/portaldata/15/resources/dokumente/pyhpc2011/submissions/pyhpc2011_submission_9.pdf
(accessed on 13 October 2021).

30. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

31. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:
An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037.

32. Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond accuracy, F-score and ROC: a family of discriminant measures for
performance evaluation. In Australasian Joint Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2006;
pp. 1015–1021.

33. Bekkar, M.; Djemaa, H.K.; Alitouche, T.A. Evaluation measures for models assessment over imbalanced data sets. J. Inf. Eng.
Appl. 2013, 3, 7633.

34. Guilford, J.P. Psychometric Methods; McGraw-Hill: Washington, DC, USA, 1954.
35. Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary

classification evaluation. BMC Genom. 2020, 21, 6. [CrossRef]
36. Baldi, P.; Brunak, S.; Chauvin, Y.; Andersen, C.A.; Nielsen, H. Assessing the accuracy of prediction algorithms for classification:

an overview. Bioinformatics 2000, 16, 412–424. [CrossRef]
37. Gorodkin, J. Comparing two K-category assignments by a K-category correlation coefficient. Comput. Biol. Chem. 2004,

28, 367–374. [CrossRef]
38. Gabrieli, G.; Bizzego, A.; Esposito, G. Replication Data for: fNIRS-QC: Crowd-Sourced Creation of a Dataset and Machine Learning

Model for fNIRS Quality Control. 2021. Available online: https://researchdata.ntu.edu.sg/dataset.xhtml?persistentId=doi:
10.21979/N9/C8VYZG (accessed on 13 October 2021) [CrossRef]

39. Gabrieli, G. sanlab-ntu/cisciqc: 0.0.1.1. 2021. Available online: https://zenodo.org/record/5163238 (accessed on 13 October 2021).
40. Bizzego, A.; Gabrieli, G.; Furlanello, C.; Esposito, G. Comparison of wearable and clinical devices for acquisition of peripheral

nervous system signals. Sensors 2020, 20, 6778. [CrossRef]

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/MCSE.2011.37
https://www.dlr.de/sc/portaldata/15/resources/dokumente/ pyhpc2011/submissions/pyhpc2011_submission_9.pdf
http://dx.doi.org/10.1186/s12864-019-6413-7
http://dx.doi.org/10.1093/bioinformatics/16.5.412
http://dx.doi.org/10.1016/j.compbiolchem.2004.09.006
https://researchdata.ntu.edu.sg/dataset.xhtml?persistentId=doi:10.21979/N9/C8VYZG
https://researchdata.ntu.edu.sg/dataset.xhtml?persistentId=doi:10.21979/N9/C8VYZG
http://dx.doi.org/10.21979/N9/C8VYZG (accessed on 13 October 2021)
https://zenodo.org/record/5163238
http://dx.doi.org/10.3390/s20236778

	Introduction
	Materials and Methods
	Dataset
	Web Interface
	Collected Data and Processing
	Deep Learning Experiments

	Results
	Discussion
	Conclusions
	References

