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Abstract 
Coumarins possess a wide array of therapeutic capabilities, but often with unclear mechanism of action. We tested a small 
library of 18 coumarin derivatives against human invasive breast ductal carcinoma cells with the capacity of each compound 
to inhibit cell proliferation scored, and the most potent coumarin analogues selected for further studies. Interestingly, the 
presence of two prenyloxy groups (5,7-diprenyloxy-4-methyl-coumarin, 4g) or the presence of octyloxy substituent (coumarin 
4d) was found to increase the potency of compounds in breast cancer cells, but not against healthy human fibroblasts. The 
activity of potent compounds on breast cancer cells cultured more similarly to the conditions of the tumour microenviron-
ment was also investigated, and increased toxicity was observed. Results suggest that tested coumarin derivatives could 
potentially reduce the growth of tumour mass. Moreover, their use as (combination) therapy in cancer treatment might have 
the potential of causing limited side effects.
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Introduction

Breast carcinoma is considered the predominant and more 
common malignancy in women worldwide, with one in 
eight women potentially developing breast cancer dur-
ing their lifetime [1] and predictions of 3.2 million newly 
diagnosed cases per year by 2050 [2]. Early detection and 
intervention are essential to increase patients’ survival 
rate, yet the treatment of advanced cancer remains an 
issue. While many biological and physicochemical fac-
tors have been identified in cancer development, there is an 
increasing interest in the role of inflammation and involve-
ment of stromal component of the tumour microenviron-
ment [3]. The challenge of treating breast cancer resides 
not only in the identification of active compounds capable 
of targeting the cancer, but mainly in identifying potent 
therapies with low side effects [4]. In this perspective, 
natural compounds like coumarins have gained significant 
interest in the recent years for their numerous pharmaco-
logical activities including chemopreventive and antipro-
liferative properties against various cancer types [5–8].

Coumarins are heterocyclic organic compounds that 
are widely distributed in nature [4, 9]. Coumarin deriva-
tives have gained high scientific interest as promising drug 
candidates since they possess multiple pharmacological 

properties [10–13], such as antioxidant [14–16], antibac-
terial [17, 18], antimicrobial [18], antiviral [13], hepato-
protective [19] and anti-inflammatory effects [20–22]. 
Natural and synthetic coumarins have been also reported 
as effective chemopreventive and anticancer agents in vitro 
[23–26] and in vivo [27].

Chemical modification such as alkylation (the addition 
of unsaturated or saturated chain to the coumarin scaffold) 
has been shown to enhance the pharmacological profile of 
several coumarins, especially their anticancer activity [25]. 
In particular, the insertion of an unsaturated chain (prenyl, 
geranyl or farnesyl side chain) is known as prenylation and 
constitutes a metabolic pathway in nature (including plant 
kingdom and microorganism such as fungi and bacteria 
[28]). The process of prenylation is considered to further 
enhance the pharmacological activity of these metabolites 
mostly because it strengthens the lipophilicity of the mol-
ecules [29]. Recently, natural oxyprenylated coumarins (iso-
pentenyloxy (C5), geranyloxy (C10) and farnesyloxy (C15) 
compounds and their biosynthetic derivatives) have been 
studied for their pharmacological properties [28], mainly as 
potential anticancer agents [30]. Auraptene (7-geranyloxy 
coumarin) and umbelliprenin are the most common plant-
derived oxyprenylated coumarins, first isolated from citrus 
fruits and Ferula plant species, respectively, and present a 
wide range of bioactivities [25, 31–35]. The addition of an 
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aliphatic chain to the coumarin scaffold is another modifica-
tion shown to have anticancer effects as reported by Farley 
et al. [25], who reported that octyloxy-coumarins possess 
cytotoxicity against pancreatic cancer cells with concentra-
tions in the order of tens of nΜ. As a continuation to our 
previous work concerning the biological evaluation of struc-
turally modified coumarin analogues [14, 15], a series of 
bioinspired synthetic alkoxy coumarin derivatives (bearing 
saturated and unsaturated chains) were synthesized, struc-
turally characterized and evaluated for their cytotoxicity 
against breast cancer cell lines (MCF-7 and MDA-MB-231) 
and fibroblasts. Interestingly we found that the more potent 
coumarin compounds have no effect on fibroblast (off-target 
control) and increase their potency on breast cancer cells 
cultured under nutrient-deprived conditions similar to the 
tumour microenvironment.

Materials and methods

Coumarins analogues

Synthesis

The chemicals used for synthesis and analysis were pur-
chased from Sigma-Aldrich or Alfa Aesar (7-hydroxycou-
marin, 98%) and used without further purification. NMR 
spectra were recorded on a Varian 300 MHz and 600 MHz 
spectrometer at the Institute of Chemical Biology of the 
National Hellenic Research Foundation. The HRMS spectra 
were obtained using a UHPLC-MSn Orbitrap Velos-Thermo 
mass spectrometer. Melting points were determined on a 
Gallenkamp MFB-595 melting point apparatus and are 
uncorrected.

General procedure for  the  synthesis of  hydroxy or  dihy‑
droxy‑4‑substituted coumarin analogues The desired com-
pounds 3a and 3b were synthesized according to the method 
of Prousis et al. [36].

7‑Hydroxy‑4‑propyl‑2H‑chromen‑2‑one (3a) Beige 
solid; yield 80% (735.4 mg, 3.60 mmol); mp 130 °C (lit. 
m.p. 127–128 °C) [36]. 1H ΝMR (600 MHz, DMSO-d6): 
δ(ppm) 10.51 (s, 1H, 7-OH), 7.64 (d, J = 9.0 Hz, 1H, H-5), 
6.79 (d, J = 8.4 Hz, 1H, H-6), 6.71 (s, 1H, H-8), 6.08 (s, 1H, 
H-3), 2.70 (t, J = 7.5 Hz, 2H, 4-CH2CH2CH3), 1.62 (m, 2H, 
4-CH2CH2CH3), 0.96 (t, J = 7.2 Hz, 3H, 4-CH2CH2CH3).

5,7‑Dihydroxy‑4‑methyl‑2H‑chromen‑2‑one (3b) Beige 
solid; yield 93% (707.2 mg, 3.68 mmol); mp 288–289 °C 
(lit. m.p. 289–290 °C) [36]. 1H ΝMR (600 MHz, DMSO-
d6): δ(ppm) 10.51 (s, 1H, 7-OH), 10.29 (s, 1H, 5-OH), 6.25 
(s,1H, H-8), 6.16 (s, 1H, H-6), 5.84 (s, 1H, H-3), 2.48 (d, 
J =9.6 Hz, 3H, 4-CH3).

Synthesis of  geranylgeranyl iodide The following method 
was adapted from Alvarez-Manzaneda et  al. [37]; briefly, 
1170.0 mg (1.72 mmol, 1 eq.) of imidazole and 450.0 mg 
(1.72 mmol, 1 eq.) of triphenylphosphine were dissolved in 
10 mL of anhydrous dichloromethane (DCM) in a round-
bottom flask. 435.0  mg (1.72  mol, 1  eq.) of iodine was 
added slowly, and the mixture was stirred for 30 min. Then, 
the flask was covered with aluminium foil and placed in an 
ice bath, followed by slow addition of 0.57 mL (1.72 mol, 
1 eq.) of geranylgeranyl. The mixture was stirred for approx-
imately 2 h. After the reaction was complete (monitored by 
TLC in pure hexane), the mixture was filtered through a 
plug of silica, which was then washed with pure hexane. 
The solvent was evaporated in vacuo, resulting in a dark oily 
film. Υield 52% (51.9 mg).

General procedure for  the  synthesis of  alkoxy‑coumarins 
4a–4m One eq. of the hydroxy- or dihydroxy-4-substi-
tuted coumarins, 3a–3c, and 1 eq. of potassium carbonate 
 (K2CO3) were dissolved in dry acetone. Then, 1.2 eq. of the 
appropriate alkoxy-bromide or geranylgeranyl iodide was 
added dropwise at room temperature, and the mixture was 
refluxed for 6 h. After the completion of the reaction,  K2CO3 
was filtrated, the precipitate was washed with acetone and 
the solvent was removed in vacuo. The desired products 
were purified via silica gel column chromatography in a sol-
vent system of petroleum ether/ethyl acetate (9:1). Dipreny-
loxy coumarins were obtained in high purity after two steps 
of silica gel chromatography.

7‑Prenyloxy‑4‑methyl‑2H‑chromen‑2‑one (4a) White 
solid; yield 70% (61.1 mg, 0.25 mmol); mp 84 °C (lit. m.p. 
84–86 °C) [38].1H ΝMR (300 MHz,  CDCl3): δ(ppm) 7.48 
(d, J =8.7 Hz, 1H, H-5), 6.86 (dd, J =8.7 Hz & J =2.4 Hz, 
1H, H-6), 6.82 (d, J =2.4 Hz, 1H, H-8), 5.48 (t, J =6.9 Hz, 
1H, H-2′), 4.59 (d, J =6.9 Hz, 2H, H-1′), 2.42 (s, 3H, 4-CH3), 
1.83 (s, 3H, 3′-CH3), 1.79 (s, 3H, 4′-CH3).

7‑Geranyloxy‑4‑methyl‑2H‑chromen‑2‑one (4b) 
[14] Brown gummy solid; yield 68% (296.8 mg, 0.95 mmol). 
1H ΝMR (300 MHz, DMSO-d6): δ(ppm) 7.64 (d, J = 8.4 Hz, 
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1H, Η-5), 6.94–6.91 (m, 2H, H-6 & H-8), 6.18 (s, 1H, H-3), 
5.42 (t, J = 6.0 Hz, 1H, H-2′), 5.03 (br, 1H, H-6′), 4.65 (d, 
J = 6.6 Hz, 2H, Η-1′), 2.39 (s, 3H, 4-CH3), 2.08–2.06 (m, 
4H, H-4′ & H-5′), 1.73 (s, 3H, 3′-CH3), 1.61 (s, 3H, 8′-CH3), 
1.56 (s, 3H, 7′-CH3).

7‑Farnesyloxy‑4‑methyl‑2H‑chromen‑2‑one (4c) Yel-
low gummy solid; yield 60% (319.6 mg, 0.84 mmol). 1H 
ΝMR (300 MHz,  CDCl3): δ(ppm) 7.48 (d, J = 8.7 Hz, 1H, 
H-5), 6.86 (dd, J = 8.7 Hz & J =1.8 Hz, 1H, H-6), 6.82 (d, 
J =1.8 Hz, 1H, H-8), 6.13 (s, 1H, H-3), 5.47 (t, J = 6.9 Hz, 
1H, H-2′), 5.10- 5.07 (m, 1H, H-6′), 4.60 (d, J = 6.6 Hz, 1H, 
H-1′), 2.39 (s, 3H, 4-CH3), 2.12–1.95 (m, 8H, H-4′ & H-5′ 
& H-8′ & H-9′), 1.76 (s, 3H, 3′-CH3), 1.67 (s, 3H, 7′-CH3), 
1.59 (s, 6H, 11′-CH3 & 12′-CH3). 13C NMR (75 MHz, 
DMSO-d6): δ(ppm) 162.0, 160.6, 155.1, 153.9, 141.5, 135.1, 
131.1, 126.8, 124.5, 123.9, 119.5, 113.5, 113.1, 111.5, 
101.8, 65.6, 39.7, 39.3, 26.6, 26.0, 25.9, 18.6, 17.9, 16.9, 
16.3. HRMS (ESI) calcd for  C25H32O3Na: m/z: 403.2244, 
found: 403.2245.

4‑Methyl‑7‑octyloxy‑2H‑chromen‑2‑one (4d) Pale 
yellow solid; yield 55% (180 mg, 0.62 mmol); mp 51 °C 
(lit. m.p. 48–50  °C) [24].1H ΝMR(600  MHz, DMSO): 
δ(ppm) 8.58 (d, J = 8.4 Hz, 1H, H-5), 6.78 (dd, J = 9 Hz & 
J = 2.4 Hz, 1H, H-6), 6.68 (d, J = 2.4 Hz, 1H, H-8), 6.15 (s, 
1H, H-3), 4.06 (t, J = 6.6 Hz, 2H, H-1′), 2.39 (s, 3H, 4-CH3), 
1.72 (m, 2H, H-2′), 1.40 (m, 2H, H-7′), 1.29 (m, 8H, H-3′ & 
H-5′ & H-4′ & H-6′), 0.86 (t, J = 6.9 Hz, 3H, 7′-CH3).

7‑Prenyloxy‑4‑propyl‑2H‑chromen‑2‑one (4e) Yel-
low solid; yield 60% (135.0 mg, 0.49 mmol); mp 89 °C. 
1H ΝMR (600 MHz,  CDCl3): δ(ppm) 7.51 (d, J = 8.4 Hz, 
1H, H-5), 6.85 (dd, J = 9.0 Hz & J = 2.4 Hz, 1H, H-6), 
6.82 (d, J = 2.4 Hz, 1H, H-8), 6.11 (s, 1H, H-3), 5.47 (t, 
J = 6.9 Hz, 1H, H-2′), 4.57 (d, J = 7.2 Hz, 2H, H-1′), 2.69 (t, 
J = 7.5 Hz, 2H, 4-CH2CH2CH3), 1.80 (s, 3H, 3′-CH3), 1.76 
(s, 3H, 4′-CH3), 1.72–1.69 (m, 2H, 4-CH2CH2CH3), 1.04 
(t, J = 7.5 Hz, 3H, 4-CH2CH2CH3). 13C NMR (150 MHz, 
 CDCl3): δ(ppm) 161.9, 161.7, 156.5, 155.6, 139.3, 125.4, 
118.8, 113.0, 112.9, 110.9, 101.8, 77.6, 77.2, 76.7, 65.5, 
33.9, 25.9, 21.6, 18.4, 14.1. HRMS (ESI) calcd for  C17H21O3 
(M + H)+: m/z: 273.1485, found: 273.1485.

7‑Octyloxy‑4‑propyl‑2H‑chromen‑2‑one (4f) Beige 
solid; yield 60% (350.0 mg, 1.11 mmol); mp 47 °C. 1H 
ΝMR (600 MHz,  CDCl3): δ(ppm) 7.51 (d, J = 9.0 Hz, 1H, 
H-5), 6.84 (dd, J = 8.4 Hz & J = 1.8 Hz, 1H, H-6), 6.81 (d, 
J = 2.4 Hz, 1H, H-8), 6.12 (s, 1H, H-3), 4.01 (t, J = 6.6 Hz, 
2H, H-1′), 2.71 (t, J = 7.5 Hz, 2H, 4-CH2CH2CH3), 1.80 (m, 
2H, H-2′), 1.73 (m, 2H, 4-CH2CH2CH3), 1.45 (m, 2H, H-7′), 
1.31 (m, 8H, H-3′ & H-5′ & H-4′ & H-6′), 1.04 (t, J = 7.2 Hz, 

3H, 4-CH2CH2CH3), 0.88 (t, J = 6.9 Hz, 3H, 7′-CH3). 13C 
NMR (150 MHz,  CDCl3): δ(ppm) 162.2, 161.8, 156.6, 
155.7, 125.4, 112.9, 110.8, 101.6, 68.8, 33.9, 31.9, 29.4, 
29.3, 29.1, 26.1, 22.8, 21.7, 14.2, 14.1. HRMS (APCI) calcd 
for  C20H29O3(M + H)+: m/z: 317.2116, found: 317.2105.

5,7‑Diprenylox y‑4‑methyl‑2H‑ chromen‑2‑ one 
(4  g) Green solid; yield 40% (272.6  mg, 0.83  mmol); 
mp 90 °C. 1H ΝMR (600 MHz,  CDCl3): δ(ppm) 6.43 (d, 
J =2.4 Hz, 1H, H-6), 6.31 (d, J =1.8 Hz, 1H, H-8), 5.93 (d, 
J =0.6 Hz, 1H, H-3), 5.47 (pseudotriplet, 2H, H-2′ & H-2″), 
4.53 (dd, J =7.2 Hz & J =9.6 Hz, 4H, H-1′ & H-1″), 2.53 (s, 
3H, 4-CH3), 1.81 (s, 3H, 3′-CH3), 1.80 (s, 3H, 4′-CH3), 1.76 
(s, 3H, 3″-CH3), 1.73 (s, 3H, 4″-CH3). 13C NMR (150 MHz, 
 CDCl3): δ(ppm) 162.1, 161.4, 158.4, 157.1, 154.8, 139.4, 
138.7, 118.8, 111.3, 105.1, 96.9, 94.1, 65.9, 65.4, 25.9, 25.8, 
24.5, 18.4, 18.3. HRMS (ESI) calcd for  C20H24O4 (M + H)+: 
m/z: 351.1567, found: 351.1561.

5,7‑Diprenylox y‑4‑propyl‑2H‑ chromen‑2‑ one 
(4 h) White solid; yield 42% (272.5 mg, 0.76 mmol); mp 
71–72 °C. 1H ΝMR (600 MHz,  CDCl3): δ(ppm) 6.44 (d, 
J =2.4 Hz, 1H, H-6), 6.32 (d, J =1.8 Hz, 1H, H-8), 5.94 (s, 
1H, H-3), 5.50 (t, J =7.2 Hz, 1H, H-2″), 5.47 (t, J =6.0 Hz, 
1H, H-2″), 4.54 (d, J =6.6 Hz, 2H, H-1′), 4.51 (d, J =6.6 Hz, 
2H, H-1″), 2.84 (t, J =7.8 Hz, 2H, 4-CH2CH2CH3), 1.81 
(s, 6H, 3′-CH3 & 4′-CH3), 1.76 (s, 3H, 3″-CH3), 1.74 (s, 
3H, 4″-CH3), 1.61–1.57 (m, 2H, 4-CH2CH2CH3), 0.97 
(t, J =7.8 Hz, 3H, 4-CH2CH2CH3). 13C ΝMR (150 MHz, 
 CDCl3): δ(ppm) 161.9, 161.5, 158.6, 158.0, 157.4, 139.4, 
139.3, 118.8, 118.6, 110.8, 104.4, 96.9, 94.3, 65.7, 65.4, 
38.8, 25.9, 25.8, 23.4, 18.4, 18.3, 13.9. HRMS (ESI) calcd 
for  C22H28O4 (M + H)+: m/z: 379.1880, found: 379.1869.

5,7‑Digeranyloxy‑4‑propyl‑2H‑chromen‑2‑one 
(4i) White solid; yield 41% (262.6 mg, 0.53 mmol); mp 
79  °C. 1H ΝMR (600  MHz,  CDCl3): δ(ppm) 6.45 (d, 
J =1.8 Hz, 1H, H-6), 6.33 (d, J =1.8 Hz, 1H, H-8), 5.95 (s, 
1H, H-3), 5.51 (t, J =6.6 Hz, 1H, H-1′), 5.46 (t, J =6.6 Hz, 
1H, H-1″), 5.09 (pseudotriplet, 2H, H-6′ & H-6″), 4.57 (d, 
J =6.6 Hz, 2H, H-2′), 4.54 (d, J =6.6 Hz, 2H, H-2″), 2.85 
(t, J =7.8  Hz, 2H, 4-CH2CH2CH3), 2.13–2.09 (m, 8H, 
H-4′, H-5′ & H-4″, H-5″), 1.76 (s, 3H, 3′-CH3), 1.73 (s, 
3H, 3″-CH3), 1.68 (s, 3H, 7′-CH3), 1.67 (s, 3H, 8′-CH3), 
1.61 (s, 6H, 7″-CH3 & 8″-CH3), 0.98 (t, J =7.8 Hz, 3H, 
4-CH2CH2CH3). 13C NMR (150 MHz,  CDCl3) :δ(ppm) 
162.0, 161.6, 158.6, 158.0, 157.4, 142.5, 142.4, 132.1, 
132.0, 123.8, 123.7, 118.6, 118.4, 110.8, 104.4, 96.9, 94.3, 
65.8, 65.4, 39.7, 39.6, 38.8, 31.0, 26.4, 26.3, 25.8, 25.7, 
23.3, 17.9, 17.8, 16.9, 16.8, 14.1. HRMS (APCI) calcd for 
 C32H45O4 (M + H)+: m/z: 493.3312, found: 493.3302.
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7‑Prenyloxy‑2H‑chromen‑2‑one (4j) White solid; yield 
65% (59.9 mg, 0.26 mmol); mp 77 °C (lit. m.p. 77–78 °C) 
[39]. 1H ΝMR (300  MHz,  CDCl3): δ(ppm) 7.63 (d, 
J =9.6 Hz, 1H, H-4), 7.36 (d, J =8.4 Hz, 1H, H-5), 6.86–6.82 
(m, 2H, H-6 & H-8), 6.25 (d, J =9.3 Hz,1H, H-6), 5.48 (t, 
J =8.1 Hz, 1H, H-2′), 4.59 (d, J =6.9 Hz, 2H, H-1′), 1.84 (s, 
3H, 3′-CH3), 1.79 (s, 3H, 4′-CH3).

7‑Geranyloxy‑2H‑chromen‑2‑one (auraptene) 
(4k) White solid; yield 60% (268.5 mg, 0.90 mmol); mp 
63 °C (lit. m.p. 62–63 °C) [40]. 1H ΝMR (300 MHz,  CDCl3): 
δ(ppm) 7.63 (d, J = 9.3 Hz, 1H, H-4), 7.36 (d, J = 8.4 Hz, 1H, 
H-5), 6.86–6.82 (m, 2H, H-6 & H-8), 6.24 (d, J = 9.3 Hz, 
1H, H-3), 5.47 (t, J = 6 Hz, 1H, H-2′), 5.09 (t, J = 5.7 Hz, 
1H, H-6′), 4.62 (d, J = 6.6 Hz, 2H, Η-1′), 2.15–2.11 (m, 4H, 
H-4′ & H-5′), 1.79 (s, 3H, 3′-CH3), 1.69 (s, 3H, 8′-CH3), 
1.63 (s, 3H, 7′-CH3).

7‑Farnesyloxy‑coumarin (umbelliprenin) (4l) Yellow-
ish solid; yield 80% (439.8 mg, 1.20 mmol); mp 61 °C (lit. 
m.p. 58–60 °C) [40]. 1H ΝMR (300 MHz,  CDCl3): δ(ppm) 
7.62 (d, J = 9.3 Hz, 1H, H-4), 7.35 (d, J = 8.1 Hz, 1H, H-5), 
6.86–6.82 (m, 2H, H-6 & H-8), 6.24 (d, J = 9.6 Hz, 1H, 
H-3), 5.48 (t, J = 6.6 Hz, 1H, H-2′), 4.62 (d, J = 6.6 Hz, 1H, 
H-1′), 2.18 -2.01 (m, 8H, H-4′ & H-5′ & H-8′ & H-9′), 1.79 
(s, 3H, 3′-CH3), 1.70 (s, 3H, 8′-CH3), 1.63 (s, 6H, 11′-CH3 
& 12′-CH3).

7‑Geranylgeranyloxy‑coumarin (4m) [41] Yellow solid; 
yield 64% (365.0 mg, 0.94 mmol); mp 72–73 °C. 1H ΝMR 
(400 MHz,  CDCl3): δ(ppm) 7.63 (d, 1H), 7.36 (d, 1H), 6.86–
6.82 (m, 2H), 6.24 (d, 1H), 5.47 (td, 1H), 5.10–5.07 (m, 3H), 
4.60 (d, 2H), 2.15–2.03 (m, 8H), 1.99–1.95 (m, 4H), 1.76 
(s, 3H), 1.67 (s, 3H), 1.60 (s, 3H), 1.59 (s, 3H), 1.58 (s, 3H).

5,7‑Diacetyloxy‑4‑methyl‑2H‑chromen‑2‑one (5) 1 eq 
of the coumarin 3b and 2 eq of acetic anhydride were added 
to the appropriate amount of pyridine, and the mixture was 
heated at 80 °C. After the completion of the reaction, pyri-
dine was removed in vacuo and a solid product was obtained. 
The final pure coumarin was selected after recrystallization. 
Green solid; yield 72% (273.5 mg, 0.99 mmol); mp 143–
144 °C (lit. m.p. 150–151 °C) [42]. 1H ΝMR (600 MHz, 
 CDCl3): δ(ppm) 7.06 (s, 1H, H-8), 6.87 (s, 1H, H-6), 6.20 
(s, 1H, H-3), 2.50 (s, 3H, 4-CH3), 2.37 (s, 3H, 7-CH3CO), 
2.32 (s, 3H, 5-CH3CO).

Cell culture

Dulbecco’s modified Eagle’s medium (DMEM, D6429), 
foetal bovine serum (FBS, F9665), trypsin (T3924), l-glu-
tamine (G7513), antibiotics (penicillin − streptomycin, 

P0781) and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide) (MTT, M2128) were purchased 
from Sigma-Aldrich (Gillingham, UK). Dulbecco’s modi-
fied Eagle’s medium with no glucose (DMEM, A1443001) 
was purchased from Gibco Thermo Fisher Scientific, 
UK. Human breast adenocarcinoma cell lines MCF-7 
(HTB-22™) and MDA-MB-231 (HTB-26™) were kindly 
donated from Manchester Cancer Research Labs (Univer-
sity of Manchester, UK). Human colon fibroblasts 18-Co 
(CRL-1459™) were purchased from ATCC.

General cell culture

Unless otherwise specified, all cell culture experiments were 
performed in a humidified 5% (v/v)  CO2 air atmosphere at 
37 °C in complete medium, and cell culture growth media 
were supplemented with 10% (v/v) foetal bovine serum and 
2 mM l-glutamine. Human breast adenocarcinoma cell lines 
were cultured, maintained at densities lower than 1 × 106 
cells/cm2 and discarded upon reaching passage number 60. 
Stromal healthy cells (human colorectal fibroblasts, 18Co) 
were cultured using complete DMEM medium supple-
mented also with 1% (v/v) penicillin–streptomycin. Cells 
were maintained at densities less than 1 × 106 cells/cm2 and 
discarded upon reaching passage number 12.

Nutrient‑deprived conditions

Cells were culture using nutrient-deprived cell culture condi-
tions (i.e. cell culture media with no glucose, l-glutamine, 
HEPES and sodium pyruvate) to mimic conditions similar to 
the tumour microenvironment. Note that these experiments 
were performed only using breast cancer cells. MCF-7 and 
MDA-MB-231 cells were seeded in 96-well plates (Corning 
Inc., NY, USA) at a density of 1 × 104 and 6.7 × 103 cells/
cm2, respectively. Cells were incubated with coumarin deriv-
atives at concentrations of 0.1, 1, 10, 50, 100 and 250 μM 
up to 48 h. Untreated cells (negative) and cells incubated 
with 0.5% (v/v) DMSO in complete media (positive) were 
used as controls.

Coumarins cytotoxicity

The full library of coumarins was tested in both breast can-
cer cell lines, i.e. MCF-7 and MDA-MB-231. Fibroblast 
were used as “healthy” control. Stocks of compounds 3a–3c, 
4a–4m and 5 were dissolved in pure DMSO and then diluted 
in complete media. (Note that DMSO concentration was kept 
lower than 0.5% (v/v).) Briefly, MCF-7 and MDA-MB-231 
cells were seeded in 96-well plates (3799, Corning Inc., NY, 
USA) at a density of 1 × 104 and 6.7 × 103 cells/cm2, respec-
tively, whereas 18Co fibroblasts were seeded at a density 
of 1 × 104 cells/cm2. Cells were incubated with coumarin 
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derivatives at concentrations 0.1, 1, 10, 50, 100 and 250 
μM for 48 h. Untreated cells (negative) and cells incubated 
with 0.5% (v/v) DMSO in complete media (positive) were 
used as controls.

Cell metabolism assay

For each treatment, cell viability was measured via MTT 
assay after 48-h incubation as following described. Cell cul-
ture medium was replaced with 150 μL of fresh medium and 
30 μL of MTT solution, and cells were incubated for 4 h 
(37 °C, 5%  CO2). After the formazan crystal formation, cell 
culture medium was removed from each well and replaced 
with 200 μL of DMSO. The absorbance was measured at 
540-nm wavelength using a plate reader (Synergy 2 Biotek 
plate reader, Gen5 software).

Toxicity  (IC50) and identification of potent coumarins

IC50 values were calculated (nonlinear regression, normal-
ized response–variable slope) with GraphPad Prism (version 
7.04). Values were ranked and classified as: high toxicity, 
moderate toxicity, poor toxicity and no toxicity. Threshold 
were set as 60, 80 and > 100 μM, respectively. The selection 
was used in order to test only the most toxic coumarins under 
cell culture condition more relevant to the tumour microen-
vironment, i.e. deprived cell culture media (Sect. 3.3).

Results and discussion

Design and synthesis of coumarin analogues

Our previous results concerning the cytotoxic activity evalu-
ation of natural oxyprenylated coumarins [14] in combina-
tion with the latest literature data led us to design, a new 
series of diprenyloxy as well as dialkyloxy coumarins. The 
new series were designed in order to evaluate the influence 
of the disubstitution as well as the length of the lipophilic 
chain in the cytotoxicity against breast cancer cell lines.

In order to efficiently synthesize the desired coumarin 
analogues and the naturally occurring oxyprenylated cou-
marins, the appropriate hydroxy-4-substituted coumarins 3a 
and 3b were firstly synthesized via Pechmann reaction using 
iron (III) chloride  (FeCl3) as the catalyst [36]. Compounds 
3a and 3b as well as the commercially available 7-hydroxy-
coumarin (umbelliferone, 3c) were subsequently alkylated 
with the appropriate commercially available alkyl bromide 
using potassium carbonate  (K2CO3) in acetone (Scheme 1). 
For the preparation of 4m, the required geranylgeranyl 
iodide was prepared according to the method of Alvarez-
Manzaneda et al. [37].

All the coumarin derivatives were purified using flash col-
umn chromatography and were structurally identified using 
1H and 13C NMR spectroscopy and HRMS spectrometry.

Scheme 1  Synthesis of 3a, 3b, 4a–4m and 5; Reagents and conditions: a  FeCl3/70 °C, 80–90%, b  R2Br or geranylgeranyl iodide,  K2CO3, ace-
tone, 50–60%, c  Ac2O, pyridine, 80 °C
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Cytotoxicity towards breast cancer cells

The systematic variations on the alkyl chain as well as the 
position of substitution at the coumarin scaffold were exam-
ined as potential factors which could affect anticancer activ-
ity. The first set of experiments identified the most potent 
candidates among the coumarin derivatives herein synthe-
sized. Cytotoxicity was firstly evaluated on two breast cancer 
cell lines: MCF-7 and MDA-MB-231. MCF-7 cells were 
selected as they retain several characteristics of differenti-
ated mammary epithelium proliferation, as well as express-
ing oestrogen receptor, whereas MDA-MB-231 was selected 
as expressing a more aggressive and metastatic cells that 
do not express high levels of the oestrogen, progesterone or 
HER2 receptors (i.e. triple negative).

Coumarins were classified as possessing high 
 (IC50 < 80 µM), moderate (80 µM < IC50 < 100 µM) and 
poor toxicity (100 µM < IC50 < 250 µM); compounds with 
 IC50 values > 250 µM were classified as non-toxic. Coumarin 
derivatives 4c, 4d, 4g, 4k and 4l were identified as the top-
five most potent compounds tested in this study (Table 1) 
and were selected for further investigation.

One of the main drawbacks of cytotoxic compounds is 
the poor selectivity towards cancer cells, with undesired 
effects on healthy cells, e.g. fibroblasts and epithelia. In an 
effort to understand whether coumarins have any effect on 
‘healthy’ cells, human fibroblasts (18-Co) were treated with 
the most potent coumarin derivatives. As control, fibroblasts 
were also treated with a non-toxic coumarin (i.e. umbel-
liferone, 3c). Interestingly, cytotoxicity data evidenced no 
effect of the selected coumarins on fibroblasts (shown in 
Table 2) with the exception of coumarin 4k that showed 
some toxicity towards ‘healthy’ cells. The tested compounds 
were not as toxic as typical chemotherapeutics with  IC50s at 
the scale of few hundred nM such as doxorubicin [43–46] 
or gemcitabine [47–49], but they did appear to have no sig-
nificant effects on ‘healthy’ fibroblasts as compared to the 
aforementioned chemo-agents. This is a very positive result 
in view of development of (nano)formulations and further 
translation of such compounds.

Auraptene (4j) was found to be the most potent compound 
among the library of coumarins tested in this study, confirm-
ing what has been already observed in other in vitro stud-
ies and in various in vivo animal models [50]. Its effect on 
cancer cells is still not clear and could be associated with 
induction of carcinogen-detoxifying enzymes, inhibition of 
free radical generation or metalloproteinase production [51]. 
The length of the prenyl chain seems to affect the activity of 
the compounds: auraptene (4k, 10 carbons) is more potent 

compared to its prenyloxy analogue (4j, 5 carbons) against 
the tested breast cancer cells. However, umbelliprenin (4l, 
15 carbons) and coumarin 4m (20 carbons) exhibited lower 
antitumour potency, with umbelliprenin being more toxic 
than coumarin 4m in both cancer cell lines (Fig. 1).

The number of substituents on the aromatic ring could 
also play a role in the activity: 5,7-diprenyloxy-4-methyl-
coumarin (4g) is approximately 2.5 times more cytotoxic 
compared to its monosubstituted analogue (compound 4a) 
against MCF-7 cells. Increasing the chain length of the sub-
stituents, as in 7-geranylgeranyloxy-coumarin (4n), results 
in complete loss of activity against both cell lines (Fig. 1, 
Table 1).

In an effort to better investigate the role of unsaturation 
on cytotoxicity, the coumarin analogues 4d and 4f, which 
possess a saturated alkyloxy substituent, were synthesized. 
Only coumarin 4d exhibited a moderate potency against 
MCF7 cells, whereas only a slight toxic effect was observed 
on MDA-MB-231 (Table 1); moreover, no toxicity was 
observed on fibroblasts (Table 2). These results suggest that 
this specific modification can participate in different bio-
chemical pathways compared to unsaturated substituents; 
however, further research is necessary to confirm this and 
identify specific pathways.

Finally, we investigated the activity of derivatives as 
function of lipophilicity through the introduction of a methyl 
group at position 4 of the coumarin scaffold. The methylated 
coumarin derivatives 4b, 4a and 4c exhibited a rather mod-
erate cytotoxic effect compared to their corresponded non-
methylated analogues 4k, 4j and 4l. This observation sug-
gests that substitution at position 4 might not directly link to 
increased toxicity. Furthermore, comparing the compounds 
with different substitutions at position4 (e.g. coumarins 4d 
vs 4f, coumarins 4g vs 4h) increased toxicity was observed 
in both cancer cell lines for compounds with methyl substi-
tution (Fig. 1).

Cytotoxicity in tumour relevant in vitro models

In accordance with the work of Jun et al. [52] and Devji 
et al. [41], we were motivated to assess the activity of some 
selected derivatives under nutrient-deprived conditions 
(NDCs). Cancer cells are programmed in a non-ordinary 
way to exhibit high glycolytic activity even under sufficient 
aerobic conditions [53]. In hypoxic tumour conditions, when 
oxygen depletion and low vascularization take place, can-
cer cells often find the way to proliferate rapidly by fore-
going oxidative phosphorylation and instead ferment large 
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Table 1  IC50 values (µM) 
of coumarin derivatives (18 
compounds) on MCF-7 and 
MDA-MB-231 breast cancer 
cells obtained after 48-h 
incubation

Coumarin 

derivative Chemical structure
MCF -7

IC 50 values (µM)

MDA-MB-231

IC50 values (µM)

3a 225 ± 19 206 ± 9

3b > 250 > 250

3c > 250 > 250

4a 179 ± 35 169 ± 23

4b 129 ± 13 137 ± 9

4c 105 ± 3 110 ± 29

4d 82 ± 19 113 ± 7
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Table 1  (continued)

4i > 250 133 ± 34

4j 143 ± 11 175 ± 33

4k 70 ± 5 60 ± 4

4e > 250 > 250

4f 124 ± 39 143 ± 34

4g 69 ± 14 144 ± 16

4h 234 ± 76 159 ± 61

Coumarin 

derivative Chemical structure
MCF -7

IC 50 values (µM)

MDA-MB-231

IC50 values (µM)
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amounts of glucose into lactate under aerobic glycolysis, 
known as the Warburg effect [54, 55]. Moreover, hypoxia 
tends to boost this phenomenon by up-regulating the HIF-1a 
factor that “switches on” glycolytic and glucose transporter 
gene expression [56]. Breast carcinoma cell lines behave 
in a glucose-dependent manner and derive the majority of 
energy needed from high-throughput glycolysis [56, 57]. 
Hyperglycaemic systemic conditions, i.e. diabetes, have 
been proved to further promote the migratory invasiveness 
of breast malignancies in patients [55].

On that basis, we exposed the breast cancer cells to nutri-
ent-deprived conditions where culture media were supple-
mented only with 2.5% v/v FBS, but not additional glucose, 
l-glutamine, sodium pyruvate. The coumarins tested were 
auraptene (4k), umbelliprenin (4l) and analogues 4d, 4c 

and 4g. As shown in Table 3, the tested compounds showed 
selective preferential cytotoxicity under nutrient-deprived 
conditions with umbelliprenin (4l) to be the most potent 
candidate as its pharmacological activity was remarkably 
enhanced by 15 times  (IC50 = 9.0 and 7.0 for MCF7 and 
MDA-MB231 cells, respectively). In similar studies, Zhang 
et al. and Jun et al. reported the high preferential cytotoxic-
ity of umbelliprenin (4l) and its C6 analogue under NDC 
against pancreatic cancer cells [52, 58]. It should be there-
fore noted that these derivatives could represent a poten-
tial new tool for treating aggressively metastatic hypoxic 
tumours. The exact mechanism of action, though, should be 
further investigated.

Table 1  (continued) Coumarin 

derivative Chemical structure
MCF -7

IC 50 values (µM)

MDA-MB-231

IC50 values (µM)

4l 98 ± 9 88 ± 3

4m > 250 187 ± 66

5 > 250 > 250

Data are expressed as mean ± SD. of two independent experiments (n = 3 samples for each experiment). 
As control, MCF-7 and MDA-231 were incubated with [0.001–50] μg/mL of doxorubicin for 48  h, 
reporting  IC50 values of (0.97 ± 0.60) μM and (0.48 ± 0.14) μM, respectively
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Table 2  IC50 values (µM) 
of the most potent coumarin 
derivatives (five compounds: 
4c, 4d, 4g, 4k and 4l) on 18Co 
colon fibroblasts (healthy 
control)

Coumarin derivative Chemical structure 18-Co

IC50 values (µM)

3c > 250

4c > 250

4d 206 ± 17

4g 216 ± 23

4k 176 ± 62

4l > 250

Data are expressed as mean ± SD and are obtained from n = 2 independent experiments
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Fig. 1  Effect of substituents on 
coumarins on MCF-7 cells: cell 
viability was measured after 
48-h incubation with different 
concentrations of coumarins and 
 IC50 values determined using 
nonlinear regression (GraphPad 
Prism, v7). Coumarins were 
compared on the basis of the 
following structural features: 
a length of lipophilic chain, 
coumarin 4k versus 4j (10 vs 
5 carbons) and coumarin 4l 
versus 4m (15 vs 20 carbons); 
b position of the substituent on 
the coumarin scaffold, coumarin 
4g vs 4a; c effect of the satura-
tion degree (substitution at 
position C7), coumarin 4d vs 
4f; d the presence of methyl 
group (substitution at position 
C4), coumarin 4b versus 4k and 
coumarin 4a versus 4j (data not 
shown), coumarin 4c versus 4l 
(data not shown); e the presence 
of propyl group (substitution at 
position C4), coumarins 4g ver-
sus 4h and coumarins 4d versus 
4f (data not shown)
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Conclusions

A series of novel alkoxy-coumarin derivatives were 
synthesized and tested for their cytotoxicity against the 
MCF7 and MDA-MB-231 breast cancer cells. The results 
of this study indicate that alkylation modification induces 
noticeable differentiation in pharmacological activity 
of coumarins. Auraptene (4k) was found to possess the 
most potent cytotoxic activity among the tested deriva-
tives followed by compounds 4c, 4d, 4g and 4l. The tested 
compounds seemed not to affect the cell viability of the 
healthy 18Co fibroblasts but for the highest dose only. The 
amplification of the cytotoxic effect of the above pharma-
cophores under nutrient-deprived conditions, with umbel-
liprenin (4l) being the lead compound, indicates that these 
compounds could lead to potential new therapeutics for 
highly metastatic hypoxic tumours once their mechanisms 
are fully understood.
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Table 3  IC50 values (μM) of 
the tested coumarin derivatives 
4c,4d, 4g, 4k and 4l. Values 
were obtained for both MCF-7 
and MDA-MB-231 breast 
cancer cells cultured under 
nutrient-deprived conditions 
and incubated with coumarin 
derivatives up to 48 h

Coumarin
derivative

Chemical structure
MCF -7

IC 50 values 
(µM)

MDA-MB-231

IC50 values 
(µM)

4c 19 ± 3 51 ± 9

4d 29 ± 3 63 ± 5

4g 35 ± 9 11 ± 2

4k 14 ± 5 12 ± 8

4l 9 ± 1 7 ± 2

Data are expressed as average ± SD of n = 3 independent experiments
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