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1. Introduction

Let X ⊂ Pr be an integral and non-degenerate n-dimensional variety.
To recall the classical notion of abstract secant variety, its map to Pr and its differential

(computed in geometric term by A. Terracini) we use the following notation.
For any closed subscheme Z ⊂ Pr let 〈Z〉 denote its linear span. Let Xreg denote the

set of all smooth points of X. For any o ∈ Xreg let (2o, X) (or just 2o) denote the closed
subscheme of X with (Io)2 as its ideal sheaf. The scheme 2o is a zero-dimensional scheme
(2o)red = {o} and deg(2o) = n + 1. Moreover, 〈2o〉 is the Zariski tangent space of X at o.
For all finite subsets S ⊂ Xreg set 2S := ∪o∈S2o.

Fix a positive integer s < r. Let S(Xreg, s)′ denote the set of all S ⊂ Xreg such that
#S = s and S is linearly independent. The set S(Xreg, s)′ is a smooth quasi-projective
variety and its closure H(X, s) in the Hilbert scheme of X is an integral projective variety,
singular if n > 2. Let Σ0

s (Xreg) denote the set of all pairs (S, q) ∈ S(Xreg, s)′ × Pr such that
q ∈ 〈S〉 and q /∈ 〈S′〉 for all S′ ( S. The set Σ0

s (Xreg) is a smooth quasi-projective variety.
The closure Σs(X) of Σ0

s (Xreg) in H(X, s)× Pr is a closed and irreducible projective variety,
often called the abstract s-secant variety of X. Call π̃ : Σs(X) −→ Pr the morphism induced
by the projection H(X, s)× Pr −→ Pr. The irreducible variety σs(X) := π̃(Σs(X)) is the
s-secant variety of X, i.e., the closure in Pr of the union of all linear spaces 〈S〉 for some
subset of X with cardinality s. However, since Σs(X) is usually very singular (even for
nice X) we consider the differential of π̃ only at the points of Σ0

s (Xreg). Set π := π̃|Σ0
s (Xreg)

.

Fix (S, q) ∈ Σ0
s (Xreg). A. Terracini proved that the image of the differential dπ of π at

(S, q) does not depend on q: it is the linear span of all tangent spaces ToX, o ∈ S, i.e.,
it is 〈2S〉 ([1], Cor. 1.11). Since Alessandro Terracini’s classical papers the study of the
differential of π gave (for very good reasons: the results were both nice and useful) several
papers, most of them for the case S general in X so that the rank of dπ is the integer
dim σs(X). Some recent papers also considered the case in which S is not general ([2,3]).
Here we consider both cases, S general and S very specific. An arrow of Xreg is a connected
degree 2 scheme v ⊂ Xreg. Since v is assumed to be connected, its reduction vred is a point,
o ∈ Xreg. The Zariski tangent space ToX of X is the union of all arrows of X. Thus, the
linear span 〈2S〉 has the expected dimension if and only if all unions of s arrows, each of
them with as its support a different point of S, are linearly independent. This observation
due to K. Chandler ([4–6]) had many applications ([6–8]). A union of points and arrows
may also be used to describe tensors and homogeneous polynomials. For instance in the
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additive decomposition of degree d forms an arrow corresponds to a term in the sum of the
form `d−1µ, where ` and µ are non-proportional linear forms, while a point corresponds to
an addendum `d, ` 6= 0.

We consider a general S for the Veronese embeddings Xn,d of Pn, but we ask if
〈2S〉 ∩ Xn,d is scheme-theoretically the scheme 2S or not. This is tricky and we discuss
in more details why it is tricky in Section 4. For all positive integers n and d let t(n, d)
(resp. t1(n, d)) be the maximal integer x > 0 such that h1(IZ(d)) = 0 and IZ(d) is globally
generated (resp. h1(IZ(d)) = 0 and IZ(d) has no base points outside Zred), where Z is a
general union of x double points of Pn. These integers may be expressed with the geometric
language used for the additive decomposition of degree d forms in the following way.
Let νd : Pn −→ Pr, r = (n+d

n )− 1, denote the order d Veronese embedding of Pn, i.e., the
embedding given evaluating all degree d forms in n + 1 variables. Set Xn,d := νd(Pn).
The integer t(n, s) is the maximal integer x > 0 such that dim〈2S〉 = x(n + 1)− 1 and
Xn,d ∩ 〈2S〉 = 2S scheme-theoretically.

We prove the following result.

Theorem 1. Fix integers d ≥ 5 and z such that 0 ≤ 3z ≤ (d+2
2 )− 5. Let E ⊂ P2 be a general

union of z double points. Then h1(IE(d)) = 0 and IE(d) is globally generated.

The vanishing of h1(IE(d)) is well-known, but it is put in the statement because for
a non-general E (call if F) it is easy to obtain IF(d) globally generated for some F such
that h0(IF(d)) > h0(IE(d)). To prove Theorem 1 we use a degeneration of several planar
double points ([9]).

A natural question is the extension of Theorem 2 to the case n > 2. We ask also for the
proof of similar results for tensors of certain formats and certain tensor ranks and for the
case of partially symmetric tensors.

In Section 5 we consider the following uniqueness problem for tensors. For which
formats there is a concise tensor which can be irredundantly determined by the union of a
point and an arrow for more than one union of a point and an arrow? Propositions 1 and 2
and Theorem 3 give the list of the exceptional cases.

The last section is speculative. Suppose that at a certain (S, q) the differential of the
Terracini map has a kernel. Is there a condition (using higher derivatives) which says if the
fiber of π at (S, q) is positive-dimensional?

Unless otherwise stated we work over an algebraically closed field K of characteristic 0.

2. Preliminaries

Let X be an integral projective variety. Let D ⊂ X be an effective Cartier divisor of
X and Z a zero-dimensional closed subscheme of X. The residual scheme ResD(Z) of Z is
the closed subscheme of X with IZ:ID as its ideal sheaf. We have deg(Z) = deg(Z ∩ D) +
deg(ResD(Z)). For every line bundle L on X the following sequence

0 −→ IResD(Z) ⊗L(−D) −→ IZ ⊗L −→ IZ∩D,D ⊗L|D −→ ′ (1)

is exact. We will say that (1) is the residual exact sequence of D (without mentioning Z
and L). Take o ∈ Xreg ∩ Dreg. We have (2o, X) ∩ D = (2o, D) and ResD((2o, X)) = {o}.
Let v ⊂ X be an arrow such that vred = {o}. If v ⊂ D, then ResD(v) = ∅. If v * D, then
V ∩ D = {o} (as schemes) and ResD(v) = {o}. If H ⊂ X is an effective Cartier divisor,
then ResH(ResD(Z)) = ResH+D(Z), where H + D denote the sum as effective divisors.

Let X ⊂ Pr be an integral and non-degenerate variety. For any q ∈ Pr the X-rank rX(q)
of q is the minimal cardinality of a finite subset of X whose linear span contains q.

Fix a quasi-projective variety T of dimension at least 2 and o ∈ Treg. Let v, w ⊂ T
be arrows such that v 6= w and vred = wreg = {o}. The scheme v ∪ w is called a planar
double point or a planar double point of T. The next remark explains the properties of planar
double points.
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Remark 1. Fix a quasi-projective variety T of dimension at least 2 and o ∈ Treg. Let v, w ⊂ T
be arrows such that v 6= w and vred = wreg = {o}. Set Z := v ∪ w. We have deg(Z) = 3 and
Zred = 1. There are ∞1 arrows z ⊂ T such that zred = {o} and z ⊂ Z. Moreover, if z 6= v, then
Z = v ∪ z. The Zariski tangent space of Z at o has dimension 2 and there is a quasi-projective
variety M ⊆ T such that dim M = 2, o ∈ Mreg and Z ⊂ M. If dim T = 2, then we take M = T,
but if dim T > 2 there are infinitely many quasi-projective varieties M ⊆ T such that dim M = 2,
o ∈ Mreg and Z ⊂ M. Fix any such M. The scheme Z is the closed subscheme of M with (Io,M)2

as its ideal sheaf. If T is embedded in a projective space, then Z spans a plane.

3. Veronese Varieties

In this section, we prove Theorem 2. In Section 4 we discuss why it does not follow
from known results on weak nondefectivity and tangenential nondefectivity ([10–13]).

Obviously t(1, d) = t1(n, d) = dd/2e for all d ≥ 1.
For all positive integers n and d let α(n, d) denote the maximal cardinality of a finite

set S ⊂ Pn such that h1(I2S(d)) = 0. Obviously α(1, d) = dd/2e and α(n, 1) = 1. Since
the singular locus of a quadric hypersurface is a linear space, α(n, 2) = 1. A key theo-
rem due to Alexander and Hirschowitz ([14–17]) computes α(n, d) for all n, d and says
that α(n, d) = b(n+d

n )/(n + 1)c for all d ≥ 3, unless (n, d) ∈ {(2, 4), (3, 4), (4, 3), (4, 4)}.
Moreover, α(2, 4) = 4, α(3, 4) = 8, α(4, 3) = 6 and α(4, 4) = 13.

Remark 2. Obviously t(n, d) ≤ t1(n, d) ≤ α(n, d). Please note that t1(n, d) ≤ α(n, d)− 1 if
n ≥ 2 (and hence I2S(d) is not the trivial line bundle) and (n+d

n )− (n + 1)α(n, d) ≤ n for all
n ≥ 2 and d ≥ 3, except in the 4 exceptional cases (n, d) ∈ {(2, 4), (3, 4), (4, 3), (4, 4)}.

Remark 3. Let S ⊂ Pn be a general subset such that #S = α(n, d− 1). The Castelnuovo–Mumford
lemma gives that I2S(d) is spanned and that h1(I2S(d)) = 0. Thus, t(n, d) ≥ α(n, d− 1).

Remark 4. Since any 2 points of a projective space are collinear, t(n, 3) = t1(n, 3) = 1. Take
n = 2 and d = 4. Since 4 general points of P2 are the complete intersection of 2 conics and
α(2, 4) = 4, we have t(2, 4) = t1(2, 4) = 4. Thus, in a few cases the upper bound in Remark 3
is sharp.

Lemma 1. t(2, 5) = t1(2, 5) = 6.

Proof. Since α(2, 5) = 7 and 3 · 7 = (7
2), t1(2, 5) ≤ 6. Thus, it is sufficient to prove that

t(2, 5) ≥ 6. Fix a smooth cubic D ⊂ P2 and take S1 ⊂ D such that #S1 = 5. Take
o ∈ P2 \ D such that o is not contained in any line spanned by 2 of the points of S1. We
need to prove that I2S(5) has no base points outside S and that h1(I2S(5)) = 0. We have
ResD(2S) = 2o ∪ S1. Since OP2(1) is very ample, the residual exact sequence of D shows
that IS1∪2o(3) has no base locus outside D ∪ {o}. Thus, it is sufficient to use that D ∼= P1 is
projectively normal and that OD(5)(−2(2S1, D)) ∼= OD.

To prove Theorem 1 we prove the following result.

Theorem 2. Fix integers d ≥ 5 and z such that 0 ≤ 3z ≤ (d+2
2 )− 4. Then there is a connected

zero-dimensional scheme Z ⊂ P2 such that Z is a flat limit of a family of z pairwise disjoint double
points, h1(IZ(d)) = 0 and |IZ(d)| has no base points outside Zred.

Lemma 2. Let C ⊂ P2 be a smooth curve. Fix o ∈ C and positive integers z, w such that
3z/2 < w ≤ 2z. Then there is a zero-dimensional scheme Z ⊂ P2 such that Zred = {o},
deg(Z) = 3z, Z is a flat limit of a family of unions of z pairwise disjoint double points, Z ⊂ 2C
and deg(Z ∩ C) = w.

Proof. If w = 2z we use ([18], Proposition 5.1.2), which corresponds in the set-up
of [9] to the front collision, which just adds the escaliers of the z double points. As-
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sume 3z/2 < w < 2z and set e := 2z− w. Please note that w = 2(z− e) + e. We take a
specialization Z of a family of general unions A = B ∪ E with B a general unions of z− e
double points of P2 with as reduction general points of C and E a general union of e double
points of P2. Then we apply e times (each time to a different connected component of E)
([18], §5.2) with the escalier (2, 1) of a double point of P2.

Proof of Theorem 2: Let t be the maximal positive integer such that t ≤ d and (d+2
2 )−

(d−t+2
2 )− 2 ≤ 2z.

Claim 1: t > d/2.

Proof of Claim 1: Assume t ≤ d/2. Since t is maximal, (d+2
2 )− (d/2+1

2 ) ≤ 2z− 1, i.e., (3d2 +

10d + 4)/8 ≤ 2z − 1, i.e., 16z ≥ 3d2 + 10d + 12. We have 3z ≤ (d+2
2 ) − 4, i.e., 6z ≤

d2 + 3d− 6, contradicting the assumption d ≥ 5.
Fix a general C ∈ |OP2(t)|. Thus, C is smooth and h0(OC(d)) = (d+2

2 )− (d−t+2
2 ). Set

w := (d+2
2 ) − (d−t+2

2 ) − 2. By Lemma 2 there is a connected zero-dimensional scheme
Z ⊂ P2 such that Z ⊂ 2C and deg(Z ∩ C) = w. Thus, ResC(Z) is a general con-
nected zero-dimensional subscheme of C of degree 3z− w. By [19] h1(C, IZ∩C,C(d)) = 0
and h1(C, IResC(Z)(t)) = 0. Since h1(C, IResC(Z)(t)) = 0 and C is projectively normal,
h1(IResC(Z)(t)) = 0. The residual exact sequence of C gives h1(IZ(d)) = 0 and that the re-
striction map ρ : H0(IZ(d)) −→ H0(C, IC∩Z,C(d)) is surjective. Call W the scheme-theoretic
base locus of |IZ(d)|. Since C is a smooth curve and Z ∩ C is a general connected degree w
subscheme of C, [20] gives that no point of C \ C ∩ Z is a base point of H0(C, IC∩Z,C(d)).
The surjectivity of ρ gives that no point of C \ Zred is a base point of H0(IZ(d)). Since a
general osculating space of a curve is not hyperosculating and ρ is surjective, we obtain
C ∩W = C ∩ Z as schemes. Since t > d/2, H0(OP∈(d − t)) ∼= H′(OC(d − t)). Since
ResC(Z) is a general connected degree 3z − w subscheme of the smooth curve C and
h0(OC(d − t)) ≥ 3‡ − w + ∈, [20] gives W ∩ 2C = Z. Thus, IZ(t) has no base point
outside C. Since no point of C \ Zred is a base point of H0(IZ(d)), no a ∈ P2 \ Zred is a base
point of |IZ(d)|.

Proof of Theorem 1: Being globally generated is an open condition in families of coherent
sheaves with constant cohomology. Thus, it is sufficient to prove that if 3z 6= (d+2

2 )− 4 the
scheme Z constructed in the proof of Theorem 2 is globally generated. Let IW(d) ⊆ IZ(d)
be the image of the evaluation map H0(IZ(d))⊗OP2 −→ IZ(d). Since W ⊇ Z, to conclude
the proof it is sufficient to prove that W ⊆ Z. Since |IZ(d)| has no base points outside
Zred, W is a connected zero-dimensional scheme. Take C, t and w as in the proof of
Theorem 2. We saw that W ∩ C = Z ∩ C. Since deg(Z) ≤ (d+2

2 ) − 4, deg(ResC(Z)) ≤
h0(OC(d − t)) − ∈. Please note that ResC(Z) is a general connected zero-dimensional
scheme of degree 3z− w ≤ h0(OC(d − dd/∈e))− ∈. Hence H0(C, IResC(Z)(d− dd/2e))
has no base points ([20]; note that in [20] “curve” means “smooth curve”). Consider the
residual exact sequence

0 −→ IResC(Z)(d− t) −→ IZ(d) −→ IZ∩C,C(d) −→ 0 (2)

We saw that h1(IResC(Z)(d− t)) = h1(C, IZ∩C,C(d)) = 0 and that IResC(Z)(d− t) and
IZ∩C,C(d) are globally generated. Thus, IZ(d) is globally generated.

4. Base Point Freeness

In this section, we point out why it is still open, even for generic symmetric rank,
although very similar statements are true, stated and proved in the literature ([10–13]).

Assume characteristic zero.
Let X ⊂ Pr be an integral and non-degenerate variety. Set n := dim X and fix an

integer s > 0 such that s(n + 1) ≤ r and dim σs(X) = s(n + 1)− 1, i.e., X is not secant
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s-defectivity. Fix a general S ⊂ Xreg such that #S = s and set Z := ∪o∈S2o. Since
dim σs(X) = s(n + 1)− 1, L := 〈Z〉 has dimension s(n + 1)− 1. Take a general hyperplane
H ⊂ Pr containing Z. There are key notions due to C. Ciliberto and L. Chiantini (weak
nondefectivity and tangential nondefectivity) ([10–12]) which when they are satisfies imply
that H is tangent to Xreg only at the points of S. This true statement does not imply
that L meets Xreg only at S and the linear spaces contained in X and containing at least
one point of S, even when L has codimension ≥ n + 1. It would seem intuitively true,
but it is only conjectural for curves and false in some cases for higher-dimensional smooth
manifolds ([21]).

We say that Assumption 1 holds if the following conjectural statement is true:

Assumption 1. Assume char(K) = 0. Let X ⊂ Pr, r ≥ 3, be any integral and non-degenerate
curve. For a general p ∈ Xreg the tangent line TpX of X at p meets X only at p.

An assumption similar to Assumption 1 trivially fail for all X such that dim X > 1
and X is covered by lines. However, an example due to M. Ohno shows that it may fail
even for smooth manifolds of general type [21]. See [22,23] for many partial solutions and
applications of Assumption 1. Thus, we cannot freely extend to general unions of double
points the following observation concerning general finite sets.

Remark 5. Let X ( Pr be an integral and non-degenerate variety. Set n := dim X. Let S ⊂ X
be a general set such that #S = r− n. In characteristic 0 an easy application of the linear general
position of a general codimension n linear section gives S = X ∩ 〈S〉 (scheme-theoretic intersection).

For any o ∈ Xreg and all positive integer m let mo denote the closed subscheme
of Xreg with (Io)m as its ideal sheaf. The linear space Om(X)o := 〈(m + 1)o〉 is the m-
osculating linear space of X at o. Motivated by [20] we consider the following Condition
(Assumption 2):

Assumption 2. Assume char(K) = 0. Fix integers r ≥ m + 2 ≥ 3. Let X ⊂ Pr be any integral
and non-degenerate curve. For a general p ∈ Xreg the m osculating space Om(X)p of X at p meets
X only at p and the support of the union of the point and the arrow. Usually, this support is a very
small part of the Segre variety.

We are working over an algebraically closed field of characteristic zero, because As-
sumption 1 fails in positive characteristic even for some smooth curves ([24], Example 4.1).
In characteristic 0 Assumptions 1 and 2 holds for all smooth curves ([20,23,24], Theorem 3.1)

5. Tensors

Tensors associated with an arrow are exactly the tensors contained in the tangential
variety of the Segre variety related to the format of the tensor. In this section we describe
all concise tensors which are linear combinations in two different ways of a rank 1 tensor
and a tensor associated with an arrow (Theorem 3). Theorem 3 lists 7 cases with for each
case a quotation of an example or remark of the paper. The remark or example describes
in detail each exceptional case. In each case we describe by how many parameters the
possible unions of an arrow and a point depend.

We recall the following properties of the Segre varieties and their connection with
tensors and the tensor rank of a tensor ([25]).

Let Y = Pn1 × · · · × Pnk , k ≥ 1, ni > 0, 1 ≤ i ≤ k, be a multiprojective space. Let
πi : Y −→ Pni denote the projection of Y onto its i-th factor. If k ≥ 2 set Yi := ∏h 6=i Pnh and
let ηi : Y −→ Yi denote the projection. The map ηi is the map forgetting the i-th coordinate
of each (a1, . . . , ak) ∈ Y. Let νi denote the Segre embedding of Yi.

For all (d1, . . . , dk) ∈ Zk set OY(d1, . . . , dk) := ⊗k
i=1π∗i (OPni (di)). The line bundles

OY(d1, . . . , dk), (d1, . . . , dk) ∈ Zk, form a Z-basis of the abelian group Pic(Y). The Künneth
formula gives h0(OY(d1, . . . , dk)) = 0 if some di < 0, h0(OY(d1, . . . , dk)) = ∏k

i=1 (
ni+di

ni
) if
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di ≥ 0 for all i and h1(OY(d1, . . . , dk)) = 0 if di ≥ −1 for all i. For any i ∈ {1, . . . , k} let
OY (↑〉) (resp. OY(ε̂i)) be the line bundleOY (a∞, . . . ,a‖) on Y with multidegree (a1, . . . , ak)

with ai = 1 and aj = 0 for all j 6= i (resp. We have h0(OY (↑〉)) = \〉 + ∞. Set r :=
−1 + ∏k

i=1(ni + 1). Let ν : Y −→ Pr denote the Segre embedding of Y.
For any tensor T of format (n1 + 1)× · · · × (nk + 1), T 6= 0, the tensor rank of T is the

ν(Y)-rank rν(Y)([T]) of the element [T] ∈ Pr associated with T.
The main result of this section is the following one.

Theorem 3. Let A ⊂ Y = Pn1 × · · · × Pnk be a union of a point and an arrow. Assume that Y
is the minimal multiprojective space containing Y. Fix q ∈ 〈ν(A)〉 such that q /∈ ν(A′)〉 for any
A′ ⊆ A. Assume the existence of a union B ⊂ Y of a point and an arrow such that B 6= A and
q ∈ 〈ν(A)〉 ∩ 〈ν(B)〉. Then Y is as in one of the following cases (assuming ni ≥ nj for all i ≤ j):

1. deg(B) = 1 and either k = 1, n1 ≤ 2 or k = 2 and n1 = n2 = 1.
2. deg(B) = 2 and either k = 1, n1 ≤ 2 or k = 2 and n1 = n2 = 1.
3. k = 2, n1 ≤ deg(B)− 1 and A, B, q are as in Remark 10.
4. deg(B) = 3, Y = (P1)3 and A, B, q are as in Remark 11.
5. deg(B) = 3, Y = (P1)4 and A, B, q are as in Example 9.
6. deg(B) = 3, Y = P2 × P1 × P1 and A, B are as in Example 3.
7. deg(B) = 3 and (Y, q, B) is as in Examples 4, 5, 6, 7 or 8.

In each case we give a rough description of the possible B’s. The one with deg(B) = 1
(resp. deg(B) = 2) are listed in Remark 10 (resp. 11). The last case, i.e., Examples 4, 5, 7 or 8
are the only cases which allow any k ≥ 5.

Remark 6. Let Z ⊂ Y be a zero-dimensional scheme of degree z ≥ 2. The minimal multiprojective
subspace of Y containing Z is the multiprojective space Y′ := ∏k

i=1〈πi(Z)〉. Write Y′ = Pm1 ×
· · · × Pms for some positive integers s and mh, 1 ≤ h ≤ s. We have mi ≤ deg(Z)− 1 for all i
and this is in general the only restriction we may obtain from the isomorphism class of Z as an
abstract scheme. Of course, s ≤ k and if the h-th positive-dimensional factor of Y′ is contained in
the i-th-dimensional factor of Y, then mh ≤ ni.

Remark 7. ([26], Lemma 4.4) Let W ⊂ Y be a zero-dimensional scheme such that deg(W) ≤ 3
and ν(W) is linearly dependent. Since ν is an embedding, deg(W) = 3 and 〈ν(W)〉 is a line.
Since ν(Y) is scheme-theoretically cut out by quadrics and W ⊆ 〈ν(E)〉 ∩ ν(Y), then 〈ν(E)〉 ⊂ Y.
Since the only linear subspaces contained in the Segre variety X are the one contained in a fiber of
one of its k rulings, there is of i ∈ {1, . . . , k} such that deg(πh(W)) = 1 for all h 6= i, πi|W is an
embedding and πi(W) ⊆ Pni is a line.

Remark 8. Take q ∈ 〈ν(B)〉 with B ⊂ Y, deg(B) ≤ 3 and B curvilinear. The point q has border
rank b ≤ deg(A) ([27], Proposition 1.1 and Theorem 1.2) and the minimal multiprojective space
Y′ ⊆ Y with q ∈ 〈ν(Y′)〉 contains all curvilinear degree b schemes E ⊂ Y such that deg(E) = b
and q ∈ 〈ν(E)〉 are contained in Y′ ([28], Theorem 2.5).

Example 1. Let W ⊂ Pn be a zero-dimensional scheme such that deg(W) = 4, W spans Pn, W
is linearly dependent, but all proper subschemes are linearly independent. Obviously n = 2. Since
h0(OP4(2)) = 6 and deg(L ∩W) ≤ 3 for all lines L ⊂ P2, dim |IW(2)| = 2 and either W is the
complete intersection of 2 conics or deg(L ∩W) = 3 for exactly one line L and there is o ∈ P2

such that all E ∈ |IW(2)| is of the form E = L ∪ R with R ∈ |Io(1)|. In both cases there are
non-curvilinear W’s. In the latter case the latter case o ∈ L and W is the union of the fat point 2o
and some p ∈ L \ {o}.

Example 2. Let W ⊂ P1 × P1 be a degree 4 scheme. Since h0(OP1×P1(1, 1)) = 4,
h1(IW(1, 1)) > 0 if and only if there is D ∈ |OP∞×P∞(∞, ∞)| containing W. If ν(W ′) is
linearly independent for all W ′ ( W, then D is unique, because h1(IW(1, 1)) = 1 in this case.
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Proposition 1. Let v ⊂ Y be an arrow such that Y is the minimal multiprojective space. Set
o := vred. Fix q ∈ 〈ν(v)〉 \ {o}. There is a zero-dimensional scheme Z ⊂ Y such that deg(Z) ≤ 2,
Z 6= v, and q ∈ 〈ν(Z)〉 if and only if one of the following cases occur:

1. k = 1, n1 = 1;
2. k = 1, n1 = 2;
3. k = 2, n1 = n2 = 1.

(a) In case (1) we may take deg(Z) = 1 (with ν(Z) = {q}), deg(Z) = 2 and reduced
or deg(Z) = 2 and Z an arrow.

(b) In case (2) ν(v∪Z) is the complete intersection of two conics in the plane 〈ν(W ∪Z)〉.
(c) In case (3) there are ∞2 reduced Z (parametrized by a plane minus a line) and ∞1

arrows Z (parametrized by a line minus the point corresponding to v).

Proof. Cases (1), (2) and (3) occur and in each case the possible schemes Z described in (a),
(b) and (c) are the schemes which occur (Examples 1 and 2).

Now we prove the “only if” part. Set W := v ∪ Z. Thus, deg(W) ≤ 4. Since v 6= Z,
deg(W) ≤ 3. First assume deg(W) = 3. We are in the case (1) by Example 1. Now assume
deg(W) = 4 and hence Z ∩ v = ∅. Theorem 7 gives that we are in one of these cases (1), (2)
and (3).

Remark 9. Proposition 1 describes all degree 4 schemes W ⊂ Y, W not reduced and not containing
a connected component of degree at least 3, such that Y is the minimal multiprojective space contain-
ing W, ν(W) is linearly dependent and all proper subschemes of ν(W) are linearly independent.
For the case W reduced, see [29] and/or [30]. For an arbitrary W of degree 4, see [31]. In [26,29–31]
there are related results obtained under assumptions with minor differences. For instance in [26] we
assume that q has rank 3 and that Y is the minimal multiprojective space such that q ∈ 〈ν(Y)〉.
Here we do not assume that ν(Y) is the minimal Segre spanning q, because it seems too restrictive.
Making the assumption that ν(Y) is concise for q would drastically cut some proofs. Requiring that
q has not cactus rank ≤ 2 would allow the interested reader to omit Propositions 1 and 2.

Remark 10. Assume k = 2.
(a) Assume ni = 1 for at least one i, say n2 = 1. Since any (n1 + 1)× 2 matrix has rank

≤ 2, for each q ∈ Pr \Y there are infinitely many S ⊂ Y such that q ∈ 〈ν(S)〉 and #S = 2. Now
assume n1 ≤ 2. Since Pr is the tangential variety of τ(ν(Y)), we obtain the existence of an arrow
Z ⊂ Y such that q ∈ 〈ν(Z)〉. By ([32], Ex. II.3.22(b)) we see that q is associated with at least ∞2

sets S and ∞1 arrows Z.
(b) Assume n1 = n2 = 2 and hence r = 8. There are q ∈ P8 with tensor rank 2 and tensors

spanned by ν(Z) with Z connected and of degree 2. As in part (a) we obtain q ∈ 〈ν(A)〉 with
deg(A) = 3 and A union of an arrow and a point.

Proposition 2. Let A ⊂ Y be the union of an arrow v and a point p 6= o := vred. Assume
that Y is the minimal multiprojective space containing A. Fix q ∈ 〈ν(A)〉 such that there is no
A′ ( A with q ∈ 〈ν(A′)〉. There is a zero-dimensional scheme Z ⊂ Y such that deg(Z) ≤ 2 and
q ∈ 〈ν(Z)〉 if and only if A, Y and Z are as follows:

1. k = 1 and n1 = 1 (here q ∈ ν(Y), say q = ν(o′));
2. k = 2, n1 = n2 = 1;
3. k = 2, n1 + n2 = 3; k = n1 = n2 = 2;
4. k = 3, n1 = n2 = n3 = 1.

(i) In case (1) the schemes Z are as follows:

(i1) deg(Z) = 1 and Z is the point of Y such that q = ν(Z);
(i2) Z is any degree 2 subscheme.

(ii) In case (2) there are ∞2 schemes Z formed by 2 points and ∞1 schemes Z which
are arrows.
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(iii) In cases (3) and (4) there are at least ∞2 schemes Z formed by 2 points and at least ∞1

schemes Z which are arrows; in this case Y is not the minimal multiprojective space
such that q ∈ 〈ν(Y)〉.

Proof. All listed cases are associated with some Z and the schemes Z are as described in
Remarks 10 and 11. Thus, it is sufficient to prove the “only if” part.

Since deg(A) = 3 and Y is the minimal multiprojective space containing A, ni ≤ 2 for
all i.

Set W := Z ∪ A. Please note that deg(W) ≤ 5. Since there is no A′ ( A such that
q ∈ 〈ν(A′)〉, we have deg(W) ≥ 4. Since Y is the minimal multiprojective space containing
A, ni ≤ 2 for all i. If ni = 1, then deg(πi(A)) ≥ 2. If ni = 2, then deg(πi(A)) = 3 and
πi(A) is linearly independent. Proposition 1 covers the case deg(W) = 4. Thus, we may
assume deg(W) = 5, i.e., Z ∩ A = ∅.

If k = 1, then Z is any degree 2 scheme spanning a line containing o′ and not in-
tersecting A. All cases with k = 2 are covered by Remark 10. Thus, we may assume
k > 2.

(a) Assume for the moment ni > 1 for some i, say n1 > 1 and hence n1 = 2. Since Y is
the minimal multiprojective space containing Y, deg(π1(A)) = 3 and π1(A) is linearly
independent. Take H1 ∈ |Iv(ε1)| and H2 ∈ |Iu(ε2)|. The scheme E := ResH1∪H2(W) is
contained in Z.

(a1) Assume E 6= ∅. Since Z ∩ A = ∅, quoting ([33], Lemma 5.1) we obtain
h1(IE(0, 0, 1, . . . , 1)) = 0. Since E ⊆ Z and OY(0, 0, 1, . . . , 1) is globally gener-
ated, we obtain E = Z and deg(πi(Z)) = 1 for all i > 2. Thus, |IZ(ε3)| 6= ∅.
Fix M ∈ |IZ(ε3)|. Since Z ∩ A = ∅ and A * M, ([33], Lemma 5.1) gives
h1(IResM(W)(ε̂3)) > 0. Since ResM(W) ⊆ A and π1|A is an embedding with
linearly independent image, we obtain a contradiction.

(a2) Assume E = ∅, i.e., assume W ⊂ H1 ∪ H2. By step (a1) we may also assume
W ⊆ H1 ∪ H3 with H3 ∈ |Iu(ε3)|. Set {M1}:= |I{o,u}(ε1)| and take M2 ∈ |Io(ε2)|
and M3 ∈ |Io(ε3)|. Since A ⊂ (M1 ∪ M2) ∩ (M1 ∪ M3), we also obtain Z ⊂
M1 ∪ M2 and Z ⊂ M1 ∪ M3. Assume that either Z ∩ H1 = ∅ or Z ∩ M1 = ∅,
say Z ∩ H1 = ∅. We get Z ⊂ H2. The residual exact sequence of H2 and ([33],
Lemma 5.1) give a contradiction because deg(π1(A)) = 3 and π1(A) is linearly
independent. Assume that either Z ⊂ H1 or Z ⊂ M1, say Z ⊂ H1. The residual
exact sequence of H1 gives a contradiction. Thus, deg(Z ∩ H1) = deg(Z ∩M1) =
1. Using H1 we obtain h1(IResH1 (W)(ε̂1)) > 0 with ResH1(W) the union of u and

a point of Ared, call it e. Since h1(IResH1 (W)(ε̂1)) > 0, πi(u) = πi(e) for all i > 1.

Take R ∈ |Iu(ε3)|. Using R we obtain h1(Iv∪ResR(Z)(ε̂3)) > 0. Using H2 we
obtain h1(Iv∪ResH2 (Z)(ε̂2)) > 0. Thus, πi(ResH2(Z)) ⊆ πi(v) for all i 6= 2. Since
dim |OY(ε2)|+ dim |OY(ε3)| ≥ 2, there are T ∈ |OY(ε2)| and T′ ∈ |OY(ε2)| such
that Z ⊂ T ∪ T′. First assume A * T ∪ T′. Since A ∩ Z = ∅, ([33], Lemma 5.1)
gives h1(IResT∪T′ (A)(1, 0, 0, . . . )) > 0. Since deg(π1(A)) = 3 and π1(A) is linearly
independent, we obtained a contradiction. Now assume A ⊂ T ∪ T′. If Z ⊂ T
(resp. Z ⊂ T′) we may take instead of T′ (resp. T) a general element of its
complete linear system and obtain a contradiction, because Y is the minimal
multiprojective space containing A. Thus, T ∩ Z 6= ∅ and T′ ∩ Z 6= ∅. One of
the two divisors T or T′, say T, contains v. Set {a} := ResT(Z). Please note that
a ∈ T′. We obtain h1(I{u,a}(ε̂2)) > 0, i.e., πi(a) = πi(u) for all i 6= 2. If a = e we
obtain a = u, a contradiction. Please note that a = e if Z is connected. Assume
a 6= e and hence Z = {a, e}. Since A * T, u ∈ T′. Hence π3(a) = π3(u). Since
a 6= e, we obtain ResT′(W) ⊆ v. Hence the residual exact sequence of T′ gives a
contradiction.

(b) Assume Y = (P1)k. All cases with k ≤ 3 are listed. Thus, we assume k ≥ 4. Let e1
be the maximal integer such that e1 = deg(H ∩W) for some i ∈ {1, . . . , k} and some



Symmetry 2021, 13, 2344 9 of 16

H ∈ |OY(εi)|. With no loss of generality we may assume i = 1. Set W1 := ResH(W).
Let e2 be the maximal integer such that e2 = deg(M ∩W1) for some i ∈ {2, . . . , k}
and some M ∈ |OY(εi)|. With no loss of generality we may assume i = 2. Set
W2 := ResH(W1). Obviously e1 ≥ e2. Since Y is the minimal multiprojective space
containing A, 1 ≤ i ≤ 4.

(b1) Assume e1 = 4. Quoting ([33], Lemma 5.1) we obtain a contradiction.
(b2) Assume e1 = 2. Thus, 1 ≤ e2 ≤ 2. If e2 = 2 applying ([33], Lemma 5.1) to H ∪M

we obtain a contradiction. Assume e2 = 1. The definition of e1 gives that each
πi|W1

, i > 2, is an embedding. Fix D ∈ |OY(ε3)| intersecting W2. Please note
that deg(ResD(W2)) = 1. The residual exact sequence of H ∪M ∪ D and ([33],
Lemma 5.1) gives a contradiction.

(b3) Assume e1 = 1. The definition of e1 gives that each πi|W is an embedding. Take
D ∈ |OY(ε3)| such that D ∩W2 6= ∅ and set W3 := ResD(W2). Please note
that deg(D ∩W) = 1 and that deg(W3) = 2. Since π4|W2

is an embedding,
h1(IW2(0, 0, 0, 1, . . . )) = 0, contradicting ([33], Lemma 5.1).

(b4) Assume e1 = 3. If e2 = 1 quoting ([33], Lemma 5.1) we obtain a contradiction.
Now assume e2 = 2, i.e., assume W ⊂ H ∪ M. If there are i ∈ {3, . . . , k} and
D ∈ |OY(εi)| with deg(W1 ∩ D) = 1, then quoting ([33], Lemma 5.1) with respect
to H ∪ D we obtain a contradiction. Thus, we may assume deg(πi(W1)) = 1 for
all i ≥ 2. Hence π1|W1

is an embedding. Set E := ResM(W). Since in step (b1) we
excluded the case e1 = 4 and W1 ⊂ M, we have 2 ≤ deg(W ∩M) ≤ 3 and hence
2 ≤ deg(E) ≤ 3. By assumption E ⊂ H and hence deg(π1(E)) = 1.

(b4.1) Assume deg(E) = 2. Using M instead of H in the first part of step (b4)
we obtain deg(πi(E)) = 1 for all i 6= 2. Take Hi ∈ |OY(εi)|, 3 ≤ i ≤ k,
containing E. We obtain W ⊂ M + Hi. We also have W ⊂ H ∪M. Please
note that the set M ∩ H ∩ H3 ∩ · · · ∩ Hk is a point and that ν(M ∩ H3 ∩
· · · ∩ Hk) is a line of the Segre variety ν(M). We obtain Wred ⊂ M. Since
deg(W ∩ M) = 3, we obtain#Wred = 3, i.e., Z is not reduce. Using H
instead of M we obtain Wred ⊂ H ∩M. Using M and Hi, 3 ≤ i ≤ k, we
obtain Wred is contained in the point H ∩M ∩ H3 ∩ · · · ∩ Hk, absurd.

(b4.2) Assume deg(E) = 3. In the set-up of step (b4.1) we may also assume
that E ∩ Hi = ∅ for all i = 3, . . . , k. Set H2 := M. Let w ⊂ E be a degree
2 scheme. Since ν is an embedding, there is iw ∈ {2, . . . , k} such that
πiw |w is an embedding. Let Mw be an element of |OY(εiw)| containing a
point of wred. Fix i ∈ {2, . . . , k} \ {iw} and set F := ResHi+Mw(W). Since
deg(F ∩ w) = 1, 1 ≤ deg(F) ≤ 2. By ([33], Lemma 5.1) we first obtain
deg(F) = 2 and then deg(πh(F)) = 1 for all h /∈ {i, iw}. Either E is the
union of 3 points, say E = {a, b, c}, or the union of a point a and an
arrow z.

(b4.2.1) Assume E = {a, b, c}. Thus, E 6= A. Take w := {b, c}. Taking
Mw containing c we obtain πh(a) = πh(b) for all h /∈ {i, iw}.
Taking Mw containing b we obtain πh(a) = πh(c) for all h /∈
{i, iw}. Thus, deg(πh(E)) = 1 for all h /∈ {i, iw}. Varying i we
obtain deg(πh(E)) = 1 for all h 6= iw. In this case 〈ν(E)〉 is a
line contained in the iw-ruling of the Segre ν(Y). Thus, ν(E) is
linearly dependent. Since k > 2, Proposition 1 gives q /∈ ν(Y).
Since q ∈ 〈ν(A)〉 ∩ 〈ν(Z)〉 and q /∈ 〈ν(A′)〉 for any A′ ( A, we
obtainh1(IW(1, . . . , 1)) ≥ 2. Since ν(A) is linearly independent,
h1(IW(1, . . . , 1)) = 2. Thus, ν(Z) is contained in the plane, 〈ν(A)〉,
which also contains the line 〈ν(E)〉 ⊂ ν(Y). Since q /∈ 〈ν(Z′)〉
for any Z′ ( Z, q /∈ 〈ν(A′)〉 for any A′ ( A and Z ∩ A = ∅,
h1(IW ′(1, . . . , 1)) ≤ 1 for all W ′ 6= W. Thus, 〈ν(E)〉 ∩ ν(W) = E
(scheme-theoretically). Since ν(Y) contains no plane 〈ν(A)〉 *
ν(Y). Since ν(W) ⊂ 〈ν(A)〉 and ν(Y) is scheme-theoretically cut
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out by quadrics, ν(Y) ∩ 〈ν(A)〉 is the union of 2 lines. Since Y is
the minimal multiprojective space containing A, we obtain k = 2
(([29], Proposition 5.2) or ([30], Proposition 1.1) or Theorem 1),
a contradiction.

(b4.2.2) Assume E = z ∪ {a} and set {b} := zred. Take w = z. We obtain
πh(a) = πh(b) for all h /∈ {i, iw}. Varying i we obtain πh(a) =
πh(b) for all h 6= iw. Take w = {a, b}, but call iw′ the integer
associated with this degree 2 scheme. We obtain πh(a) = πh(b)
for all h 6= iw′ . Thus, iw = iw′ . Thus, 〈{a, b}〉 is a line contained in
the w-th ruling of ν(Y). If ν(E) ⊂ 〈{a, b}〉 we conclude as in step
(b4.2.1). Assume ν(E) * 〈{a, b}〉. Either z = v or Z is connected
and Z = z. Take h 6= iw and D ∈ |Ia(εh)|. By construction
deg(W ∩ (Hiw ∪ D)) = 4. Thus, h1(IResHiw∪D ) = 0, contradicting
([33], Lemma 5.1).

Remark 11. Take Y := (P1)3 and hence r = 7. A general q ∈ P7 is contained in 〈ν(A)〉 for ∞4

sets A ⊂ Y such that #A = 3, ∞3 unions A of an arrow and a point and for exactly one set A ⊂ Y
such that #A = 2. A general q in the tangential variety of ν(Y) ⊂ P7 is contained in 〈ν(A)〉 for
∞4 sets A ⊂ Y such that #S = 3, ∞3 unions A of an arrow and a point and exactly one arrow,
but no set A with cardinality 2.

Example 3. Take Y = P2 × P1 × P1 and take q ∈ Pr such that rν(Y)(q) = 3 and there is
H ∈ |OY(0, 1, 1)| with q ∈ 〈ν(H)〉. This case covers cases (4) and (5) of ([26], Theorem 7.1), case
(4) being the case H irreducible, while case (5) being the case H reducible. If H is irreducible (resp.
it is reducible), then q is in the linear span of ∞3 (resp. ∞4) subsets of ν(Y) with cardinality 3. For
many q ∈ Pr we have q ∈ 〈ν(A)〉 for some union A of an arrow and a point.

Lemma 3. Let E ⊂ Y be a planar double point. Set {o} := E and write E = v ∪ w with v and
w arrows with o as their reduction. Fix u, z ∈ Y \ {o} such that u 6= z and set W := E ∪ {u, z}
and A := v ∪ {u}. Assume that Y is the minimal multiprojective space containing v ∪ {u}, that
〈ν(A)〉 ∩ 〈ν(w ∪ {z})〉 contains a point q and that q /∈ 〈ν(A′)〉 for any A′ ( A. Then k ≤ 2 and
n1 = n2 = 1 if k = 2.

Proof. By assumption q ∈ 〈ν(E)〉 ∩ 〈{ν(u), ν(z)}〉. Thus, there is an arrow τ ⊂ E such that
q ∈ 〈ν(τ)〉 ∩ 〈ν(w ∪ {z})〉. Proposition 1 shows that the minimal multiprojective space Y′

containing W ′ := τ∪{u, z} is either a projective space or P1×P1. If v ⊂ Y′, then the lemma
is true. Assume v * Y′. Since 〈ν(Y′)〉 ∩ ν(Y) = ν(Y′), we obtain 〈ν(A)〉 = 〈ν({o, u}〉,
a contradiction.

Example 4. Assume k ≥ 3. We do the construction for the first 2 positive integers, but the case in
which we take any two distinct elements of {1, . . . , k} is similar. Fix arrows u′, v′ ⊂ Y′ := P1×P1

such that u′ ∩ v′ = ∅ and Y′ is the minimal multiprojective space containing u′ ∪ v′, but that
〈ν(u′ ∪ v′)〉 is a plane. Thus, 〈ν(u′)〉 ∩ 〈ν(v′)〉 is a single point. Fix n1 ∈ {1, 2} and n2 ∈ {1, 2}.
Set Y := Pn1 × Pn2 × (P1)k−2 with Y′ embedded in the first two factors of Y. Fix ai, oi ∈ P1,
3 ≤ i ≤ k, such that ai 6= oi for all i. Set u := v′ × {(a3, . . . , ak)}. Thus, 〈ν(u)〉 ∩ 〈ν(v)〉 is a
single point, q′. Fix o1 ∈ Pn1 and o2 ∈ Pn2 with the restriction that o1 /∈ P1 if n1 = 2 and o2 /∈ P1

if n2 = 2. Set o := (o1, . . . , ok)}. Please note that 〈ν(u ∪ {o})〉 is the line spanned by q′ and ν(o).
Please note that Y is the minimal multiprojective space containing u ∪ {o} if and only if one of the
following conditions holds:

1. Y′ is the minimal multiprojective space containing u′.
2. Y′ is not the minimal multiprojective space containing u′, i.e., deg(πi(u′) = 1 for exactly

one i ∈ {1, 2}; in this case we require ni = 1 and πi(u′) 6= oi.
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Example 5. The construction done in Example 4 works if instead of the arrow v′ we take 2 distinct
points of Y′.

Example 6. Assume k ≥ 3. We do the construction for the first 2 positive integers, but the
case in which we take any two distinct elements of {1, . . . , k} is similar. Set Y′ := P1 × P1

and fix a ∈ Y′. Let L and L′ be the elements of |OY′(1, 0)| and |OY′(0, 1)| containing a. Let
u′ (resp. v′) be the arrow of L (resp. L′) containing a. Fix n1 ∈ {1, 2} and n2 ∈ {1, 2}. Set
Y := Pn1 × Pn2 × (P1)k−2 with Y′ embedded in the first two factors of Y. Fix ai, oi ∈ P1,
3 ≤ i ≤ k, such that ai 6= oi for all i. Set u := u′ × {(a3, . . . , ak)} and v := u′ × {(a3, . . . , ak)}.
Fix o1 ∈ Pn1 and o2 ∈ Pn2 with the restriction that o1 /∈ P1 if n1 = 2 and o2 /∈ P1 if n2 = 2. Set
o := (o1, . . . , ok)}. Please note that 〈ν(u ∪ {o})〉 ∩ 〈ν(v ∪ {o})〉 is the line spanned by ν(a) and
ν(o) and it is not contained in ν(Y). We obtain that a general q ∈ 〈〈ν(u ∪ {o})〉 ∩ 〈ν(v ∪ {o})〉
has rank 2. Please note that Y is the minimal multiprojective space containing u ∪ {o} if and only
if n2 = 1 and π2(u) 6= o2.

Example 7. Take either Y = (P1)k or Y = P2 × (P1)k−1, k > 1. Fix o ∈ Y and take an arrow
v ⊂ Y such that vred = {o} and πi(v) = πi(o) for all i > 1. Please note that 〈ν(v)〉 = ν(L)
with L = P1 × (o2, . . . , on) ⊂ Y. Fix u ∈ Y such that πi(u) 6= πi(o) for i = 2, . . . , k.
If Y = P2 × (P1)k−1 assume π1(o) /∈ π1(L). Set A := v ∪ u. Please note that Y is the minimal
multiprojective space containing A. Each q ∈ 〈ν(A)〉 has tensor rank at most 2, because there is
aq ∈ L such that q ∈ 〈ν({aq, u})〉.

Example 8. Take either Y = (P1)k or Y = P2 × (P1)k−1, k > 1. Fix o, u ∈ Y such that o 6= u
and πi(o) = πi(u) for all i > 1. Take an arrow v ⊂ Y such that vred = {o} and deg(πi(v)) = 2
for all i > 1. Please note that 〈ν({o, u})〉 = ν(L) with L = P1 × (o2, . . . , on) ⊂ Y. If Y =
P2 × (P1)k−1 assume π1(v) /∈ π1(L). Set A := v ∪ u. Please note that Y is the minimal
multiprojective space containing A and that 〈ν(A)〉 = 〈ν(v ∪ o′)〉 for all o′ ∈ L.

Lemma 4. Take Y = P2 × P2 × Pn3 × · · · × Pnk , k ≥ 3. Theorem 3 is true for Y and all B such
that deg(B) = 3 and A ∩ B = ∅.

Proof. Assume the existence of B ⊂ Y such that B is either the union of an arrow and a
point or the union of 3 distinct points, B 6= A and q ∈ 〈ν(B)〉. Set W := A ∪ B. By Propo-
sitions 1 and 2 we may assume that ν(B) irredundantly spans q. Since dim |OY(ε2)| +
dim |OY(ε3)| ≥ 3, there is H′ ∈ |OY(ε2)| and H′′ ∈ |OY(ε3)| such that H := H′ ∪ H′′

contains B. Since h0(OY (↑∞)) = deg(A) and Y is the minimal multiprojective space con-
taining A, h1(IA(ε1)) = 0. Thus, the residual exact sequence of H and ([33], Lemma 5.1)
give W ⊂ H. This is true for all H′, H′′ whose union contains B. Since Y is the minimal
multiprojective space containing A, π2(A) spans P2. Thus, deg(H′ ∩ A) ≤ 2. We obtain
that π2(B) spans P2. Thus, we obtain that the lines of P2 spanned by degree 2 subschemes
of A and B are the same. We also obtain that π3|B is an embedding and then we get that
π3|A is an embedding. Since A ∩ B = ∅, ([33], Lemma 5.1) and the residual exact sequence
of H′′ gives h1(IResH′ (W)(ε̂2)) > 0. Please note that ResH′(W) is a degree 2 reduced scheme,
one of its 2 points being in Ared, while the other one is an element of Bred. Since π3|B and
π3|A are embeddings with the same set-theoretic image, B is the union of an arrow and
a point, say B = v′ ∪ {u′} with π3(u′) = π3(u). Taking H′′ containing π2(u′) we obtain
πj(u′) = πj(u) for all j 6= 2. Using |OY(ε1)| and |OY(ε3)| in the same way we obtain
πj(u′) = πj(u) for all j 6= 1, contradicting the assumption A ∩ B = ∅.

Lemma 5. Take Y = P2× (P1)k−1, k ≥ 4. Theorem 3 is true for Y and all B such that deg(B) = 3
and A ∩ B = ∅.

Proof. Assume the existence of B ⊂ Y such that B is either the union of an arrow and
a point or the union of 3 distinct points, B 6= A and q ∈ 〈ν(A)〉. Set W := A ∪ B.



Symmetry 2021, 13, 2344 12 of 16

By Propositions 1 and 2 we may assume that ν(B) irredundantly spans q. Fix i ∈ {2, . . . , k}.
Mimicking the proof of Lemma 4 using |OY(ε1)| and |OY(εi)| instead of |OY(ε2)| and
|OY(ε3)| and doing it for all i we obtain that B is the union of a point u′ and an arrow
v′ that each πh|B and πh|A are embeddings with the same images, that π1(B) spans P2

and that πj(u) = πj(u′) and πj(v) = πj(v′) for all j > 1. Set o′ := v′red. We proved that
πh(o′) = πh(o) for all h > 1. Take M ∈ |OY(ε2) containing o′ and M′ ∈ |OY(ε3)|. Please
note that ResM∪M′(W) = {o, o′}. Since A∩ B = ∅, ([33], Lemma 5.1) and the residual exact
sequence of M ∪M′ give π1(o′) = π1(o). Thus, A ∩ B 6= ∅, a contradiction.

Remark 12. Assume that Y is the minimal multiprojective space containing A = v ∪ {u},
o := vred, and that k ≥ 2. Fix i ∈ {1, . . . , k} and assume that ηi|A is not an embedding. Since Y is
the minimal multiprojective space containing A, we obtain deg(η1(A)) = 2, nh = 1 for all h 6= i
and that πi|A is an embedding. Since πi|A is an embedding, we obtain that ηh|A is an embedding
for all h 6= i.

(a) Assume ηi(A) = ηi({o, o′}). In this case ηi(v) = ηi(o). We obtain that 〈ν(v)〉 is a line
contained in Y. Thus, all points of 〈ν(A)〉 have tensor rank at most 2. This is Example 7.

(b) Assume ηi(A) = ηi(v). In this case πh(u) = πh(o) for all h 6= i. Thus, 〈ν({o, u})〉 is
a line contained in the i-th ruling of the Segre ν(Y), say 〈ν({o, u})〉 = ν(R). For each
u′ ∈ R \ {o} we have 〈ν(A)〉 = 〈ν(v ∪ u′)〉. In particular uniqueness fails for each q
irredundantly spanned by ν(A). This case obviously occurs both with ni = 1 and with
ni = 2. This is Example 8.

(c) Fix a set S ⊂ Y such that #S = 3 and Y is the minimal multiprojective space containing Y.
Assume the existence of i ∈ {1, . . . , k} such that ηi|S is not injective. By ([26], Remark 1.10)
each point of 〈ν(S)〉 has tensor rank at most 2.

Since ν(A) is linearly independent, there is B′ ⊆ B such that ν(A ∪ B′) is linearly
dependent and B′ is minimal with this property. If B′ 6= B we obtain 〈ν(A)〉∩ From now on

Lemma 6. Take Y = (P1)k, k ≥ 5. Theorem 3 is true for Y and all B such that deg(B) = 3 and
A ∩ B = ∅.

Proof. Assume the existence of B ⊂ Y such that B is either the union of an arrow and
a point or the union of 3 distinct points, B 6= A and q ∈ 〈ν(A)〉. Set W := A ∪ B.
By Propositions 1 and 2 we may assume that ν(B) irredundantly spans q. If B contains an
arrow, then #Wred = 4. If B is formed by 3 distinct points, then #Wred = 5.

(a) Assume for the moment that Y is not the minimal multiprojective space containing B.
Thus, there is i ∈ {1, . . . , k} and H ∈ |OY(εi)| such that B ⊂ H and hence ResH(W) ⊆
A. Since A ∩ B = ∅, ([33], Lemma 5.1) gives h1(IResH(W)(ε̂1)) = 0. Since A ⊆
ResH(W), either ηi|A is not an embedding or A = ResH(W) and deg(πj(A)) = 1 for
k− 2 indices j, contradicting the minimality of Y. Thus, Y is the minimal multiprojective
space containing B. If there is i ∈ {1, . . . , k} such that ηi|B is not an embedding, we
apply Remark 12 to B.

(b) By assumption we are not as in Example 7 or 8 for A or B. Thus, we may assume that all
ηi|B and all ηi|A are embeddings. There are 4 degree 2 schemes E ⊂W formed by one
point of Ared and one point of Bred. Since k > 4, there is i ∈ {1, . . . , k} such that ηi|W is
an embedding. With no loss of generality we may assume i = 1.

(b1) Assume that π1|W is an embedding. Take M ∈ |OY(ε1)| containing a reduced
connected component a of B. Please note that ResM(W) = W \ {a}. Since
A ⊂W ′ and Y is the minimal multiprojective space containing Y, Y1 is the min-
imal multiprojective space containing η1(A) ⊂ η1(ResM(W)) and ν1(η1(A))
is linearly independent by Remark 7. Since η1|W is an embedding, η1|ResH(W) is
an embedding. Thus, h1(IResH(W))(ε̂1)) = h1(Y1, Iη1(ResH(W)(1, . . . , 1)). Since
A ∩ B = ∅ and η1|W is an embedding, ([33], Lemma 5.1) gives
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h1(Y1, Iη1(W\{a})(1, . . . , 1)) > 0. Since k ≥ 3 and Y is the minimal multiprojec-
tive space containing Y, ν1(A) is linearly independent by ([26], Lemma 4.4).
Let W1 ⊆ η1(W \ {a}) the minimal subscheme of η1(W \ {a}) containing A
such that h1(Y1, IW1(1, . . . , 1)) > 0. If deg(W1) = 4 (resp. deg(W1) = 5),
Proposition 1 (resp. Proposition 2) gives that η1(A) depends on at most 2 (resp.
3) factors of Y1. Thus, A depends on at most 4 factors of Y, a contradiction.

(b2) Assume that π1|W is not an embedding. If there is M ∈ |OY(ε1)| such that
M ∩ B 6= ∅ and M ∩ A = ∅, then we may repeat the proof of step (b1). Since
Y is the minimal multiprojective space containing B by step (a), we conclude if
there is M ∈ |OY(ε1)| such that M ∩ A 6= ∅ and M ∩ B = ∅. Thus, we may
assume π1(A)red = π1|(B)red. Since A ∩ B = ∅ and A * H, ([33], Lemma
5.1) gives h1(IResH(W))(ε̂1)) > 0. Since η1|W is an embedding, η|ResH(W) is an
embedding. Thus, h1(IResH(W))(ε̂1)) = h1(Y1, Iη1(ResH(W)(1, . . . , 1)). Let W1 ⊆
η1(ResH(W)) be a minimal subscheme of such that h1(Y1, IW1(1, . . . , 1)) > 0.
If W1 = η1(ResH(W)), then Proposition 2 gives that ResH(W1) depends on at
most 3 factors of Y, one of them being the first one.

Example 9. Assume Y = (P1)4, that Y is the minimal multiprojective space containing A. Fix
q ∈ 〈ν(A)〉 with tensor rank > 2. If q has tensor rank 3, then its tensor rank is evinced by ∞1 sets
ν(S) with #S = 3, because σ3(Y) is defective ([34–36]).

Observation 1: Assume that πi|A is an embedding for all i = 1, 2, 3, 4. There are ∞1 morphisms
fi : P1 −→ P1 such that fi(0) = πi(o) and fi(∞) = πi(u). Thus, we obtain ∞4 different morphism
f : P1 −→ Y such that f (0) = o and f (∞) = u and the linear spans of the images of (20,P1) by
these morphisms covert= the projective tangent space PToY except its 4 hyperplanes tangents to
the hypersurfaces π−1

i (o). Hence A ⊂ f (P1) for some f . Thus, ν(A) is contained in the rational
normal curve C := ν( f (P1)) of the 4-dimensional space 〈ν( f (P1))〉. The point q has cactus rank
≤ 3 with respect to C. By Sylvester’s theorem rC(q) = 3 and the C-rank is achieved by ∞1 subsets
of C with cardinality 3.

Now assume that πi|A is not an embedding for some i, say for i = 1. We extend Σ0
3(ν(Y))

taking instead of S(ν(Y), 3) the open subset U of the irreducible component H(X, 3) of the Hilbert
scheme of ν(Y) containing S(ν(Y), 3) and formed by degree 3 linearly independent schemes. Please
note that A ∈ U and that A is limit of elements A′ ∈ U such that each A′ is a union of an arrow
and a point and πi(A′) is an embedding for all i = 1, 2, 3, 4 and all A′ 6= A. Use Observation 1
and ([32], Ex. II.3.22) to see that in this case q is spanned by infinitely many ν(A′). Since A has 2
connected components, each nearby A′ has at least 2 connected components, i.e., it is the union of
either 3 points or a point and an arrow.

Proof of Theorem 3. If deg(B) ≤ 2, then we are in the set-up of Propositions 1 and 2. Thus,
we may assume deg(B) = 3.

If k = 2 we use Remark 10. Thus, we may assume k ≥ 3.
If A ∩ B 6= ∅ we use Proposition 2 and the examples listed in case (7) of the theorem.

Thus, we may assume A ∩ B = ∅.
If n1 = n2 = 2 we use Lemma 4.
If n1 = 2 and n1 = 1 we use Lemma 5.
Example 9 consider the case Y = (P1)4.
Lemma 6 exclude the case Y = (P1)k, k ≥ 5.

6. Speculations on the Higher Derivatives and Uniqueness

Fix integral and non-degenerate varieties X ⊂ Pr and W ⊂ Pr. Set n := dim X and
m := dim W. Fix a finite set S ⊂ Xreg, S 6= ∅, u ∈ Xreg and v ∈Wreg. Set k := #S. Suppose
that dim〈∪o∈S(2o, X)〉 < k(n + 1)− 1 (resp. dim〈(2u, X) ∪ (2v, W) ≤ n + m), i.e., assume
that S is in the k-Terracini locus of S (resp. the pair (u, v) is in the Terracini locus of the
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join of X and W). Thus, the differential of a certain map, call it f , is not injective at S (resp.
at (u, v)). It is natural to ask if this is due that the fact that the fiber of f containing S
(resp. (u, v)) has a positive-dimensional component passing through S (resp. (u, v)). Easy
examples shows that this is not always the case (Examples 10 and 11).

Example 10. Fix integer r ≥ 3. We claim the existence of a smooth, rational and non-degenerate
curve X ⊂ Pr and u, v ∈ X such that u 6= v, TuX = TcX and dim〈O(X, 2)u ∪O(X, 2)v〉 = 3,
i.e., dim O(X, 2)u = dim O(X, 2)v = 2 and O(X, 2)u ∩O(X, 2)v = TuX. In this case the fiber
of the abstract 2-secant map of X at (u, v) is finite. Fix an integer d ≥ 7. Let C ⊂ Pd be the
rational normal curve. Fix o, p ∈ C such that o 6= p. Since C is a rational normal curve and d ≥ 7,
the degree 6 scheme (3o, C) ∪ (3p, C) is linearly independent. Thus, dim〈(2o, C) ∪ (2p, C)〉 = 3.
Fix a general line L ⊂ 〈(2o, C) ∪ (2p, C)〉 and a general linear subspace M ⊂ Pd such that
dim M = d− r− 1 and L ⊆ M. Since r ≥ 3 and M is general, M ∩ 〈(3o, C) ∪ (3p, C)〉 = L.

Claim 1: M ∩ σ2(C) = ∅ and the linear projection ` : Pd \ M −→ Pr from M induces an
isomorphism between C and the degree d curve X := `(C) ⊂ Pr.

Proof of Claim 1: Since C is smooth, each point of σ2(C) is contained in a tangent line or
a secant line of C. Since C ⊂ Pd is a rational normal curve, every closed subscheme of
C of degree at most d + 1 is linearly independent. Thus, the assumption d ≥ 7 implies
σ2(C) ∩ 〈(3o, C) ∪ (3p, C)〉 = (2o, C) ∪ (2p, C). Since L is general in 〈(2o, C) ∪ (2p, C)〉 and
M has codimension at least 3 in Pd, M ∩ σ2(C) = ∅ and hence M ∩ C = ∅ and `|C induces
an isomorphism between C and the degree d non-degenerate curve X.

Claim 1 shows that dim O(X, 2)u = dim O(X, 2)v = 2 and O(X, 2)u ∩O(X, 2)v = TuX.
Since dim X = 1, the fibers of the map π : Σ0

2(X) −→ σ2(X) have dimension 0.

Example 11. Fix integer r ≥ 4. We claim the existence of a smooth, rational and non-degenerate
curve X ⊂ Pr and u, v ∈ X such that u 6= v, TuX 6= TvX is a point not in X and dim〈O(X, 2)u ∪
O(X, 2)v〉 = 4, i.e., dim O(X, 2)u = dim O(X, 2)v = 2 and O(X, 2)u ∩O(X, 2)v = TuX ∩
TvX. In this case the fiber of the abstract 2-secant map of X at (u, v) is finite. Fix an integer d ≥ 8.
Let C ⊂ Pd be the rational normal curve. We adapt Example 10. Instead of L we take a general
c ∈ 〈ToC ∪ TpC〉 and take as M a general linear subspace of codimension d− r− 1 containing c.

Fix an integral and non-degenerate n-dimensional variety X ⊂ Pr and a positive
integer s such that σs(X) ( Pr. Let σ00

s (X) denote the set of all q ∈ Pr with X-rank r. Let
σ00

s (X)uni denote the set of all q ∈ σ00
s (X) which are in the linear span of a unique subset

of X with cardinality. The sets σ00
s (X) and σ00

s (X)uni are constructible and the first one
contains a non-empty open subset of σs(X). Assume that σs(X) has the expected dimension,
s(n + 1) − 1, to hope to have σ00

s (X)uni 6= ∅. There are criterion which guarantee that
σ00

s (X)uni is dense in σs(X), (for any X weak nondefectivity and tangential nondefectivity
([10–12]), for tensors and partially symmetric tensors the famous Kruskal criterion and its
modifications; up to now for tensors the best results are in [37]).

Question 4. Assume σ00
s (X)uni dense in σ00

s (X). Describe in specific cases the non-uniqueness
set σ00

s (X) \ σ00
s (X)uni.

There are examples with σs(X) = Pr, σ00
s (X) containing a general q ∈ Pr, σ00

s (X)uni 6=
∅ and σ00

s (X)uni very small (linearly normal embeddings of elliptic curves). If z := rX(q) <
r, say q = 〈S〉 with S ⊂ X and #S = z = 1, q is in the linear span of all S ∪ {o}, o ∈ S \ {o},
but none of these sets irredundantly spans q. For tensors a general tensor of each rank
s is irredundantly spanned by sets of t points if s < t ≤ s in infinitely many ways ([38],
Theorem 3.8). The following example with z any positive integer shows that sometimes
above its rank z := rX(q) a point q may be irredundantly spanned by a unique set of
cardinality z + 1.
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Example 12. We first construct a smooth curve X ⊂ Pr, r ≥ 3, and q ∈ X such that there is a
unique S ⊂ X \ {q} with #S = 2 and q ∈ 〈S〉. Let C ⊂ Pdr + 1 be a rational normal curve of
degree r + 1. Fix 3 distinct points a, b and c of C and let o be a general element of 〈{a, b, c}〉. Let
`o : Pr+1 \ Pr denote the linear projection from o. By Sylvester theorem (or because any subscheme
of C of degree ≤ d + 1 is linearly independent) there is no Z ⊂ C such that deg(Z) ≤ 2 and
o ∈ 〈Z〉. Thus, o /∈ C and ` = `o|C induces an embedding of C into Pr. Set X := `(C), q := `(a)
and S := `({b, c}). Thus, q ∈ X and the set S irredundantly spans q. Assume the existence of a set
S′ ⊂ X such that #S′ = 2 and S′ irredundantly spans q, i.e., q /∈ S′ and q ∈ 〈S′. Set E := `−1(S′)
and F := {a, b, c} ∪ E. Since ` is an embedding, #F = 5. Since r + 1 ≥ 4, dim〈F〉 = 4. Thus,
dim `o(〈F〉 \ {o}) = 3 contradicting the fact that the lines 〈S〉 and 〈S′〉 meets at q. Now we fix
an integer z > 1 and modify the previous example to obtain one for z. Fix an integer r ≥ 3z.
Let C ⊂ Pr+1 be a rational normal curve. Fix 2z + 1 general points a1, . . . , az, b1, . . . , bz+1 and
a general o ∈ 〈{a1, . . . , az, b1, . . . , bz+1}〉. Since r ≥ 3z, any closed subscheme of C of degree
≤ 3z + 2 is linearly independent. Let `o : Pr+1 \ Pr denote the linear projection from o. The map
`o induces an embedding ` : C −→ Pr+1. Set X := `(C). By construction the (z− 1)-dimensional
space 〈`({a1, . . . , az})〉 meets the z-dimensional space 〈`({b1, . . . , bz+1})〉 at a unique point, q.
Since any 3z + 2 points of C are linearly independent, we first see that q has X-rank z, then that
`({a1, . . . , az}) is the unique set evincing the X-rank of q and then that `({b1, . . . , bz+1}) is the
unique subset of X with cardinality z + 1 irredundantly spanning q.
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