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A reduction in cognitive resources has been originally proposed to account for age-related 
decrements in several cognitive domains. According to this view, aging limits the pool of 
available cognitive supplies: Compared to younger adults, elderly exhaust the resources 
more rapidly as task difficulty increases, hence a dramatic performance drop. 
Neurophysiological indexes (e.g., BOLD response and EEG activity) may be instrumental 
to quantify the amount of such cognitive resources in the brain and to pinpoint the stage 
of stimulus processing where the decrement in age-related resources is evident. However, 
as we discuss in this mini-review, the most recent studies on the neurophysiological 
markers of age-related changes lack a consistent coupling between neural and behavioral 
effects, which casts doubt on the advantage of measuring neural indexes to study resource 
deployment in aging. For instance, in the working memory (WM) domain, recent cross-
sectional studies found varying patterns of concurrent age-related brain activity, ranging 
from equivalent to reduced and increased activations of old with respect to younger adults. 
In an attempt to reconcile these seemingly inconsistent findings of brain-behavior coupling, 
we focus on the contribution of confounding sources of variability and propose ways to 
control for them. Finally, we suggest an alternative perspective to explain age-related 
effects that implies a qualitative (instead of or along with a quantitative) difference in the 
deployment of cognitive resources in aging.

Keywords: cognitive aging, cognitive resources, working memory, interindividual variability, aging trajectories, 
neural correlates, age-related brain activity change

AGE-RELATED REDUCTION IN PROCESSING RESOURCES

A marked decline across several cognitive domains is a common feature of aging (Hedden 
and Gabrieli, 2004). To account for this performance reduction, the processing resources framework 
(Craik and Byrd, 1982; Salthouse, 1988, 1990) posits that aging implies a decline in the amount 
of available cognitive resources, in that older individuals exhaust them more rapidly than 
younger adults. According to this account, the performance drop, measured as task requests 
increase, occurs because old individuals consume processing resources already at low levels 
of cognitive demand. The age-related changes in working memory (WM) capacity, a hallmark 
of cognitive aging (Myerson et  al., 2003), nicely fit with this perspective. Indeed, in simple 
short-term memory tasks (mainly tapping on storage capacity, e.g., forward digit span), old 
adults are negligibly compromised. However, compared to young, they become impaired in 
WM tasks requiring additional cognitive processing (namely, concurrent storage and manipulation 
of items, e.g., backward or complex digit span; see Bopp and Verhaeghen, 2005, for a review). 
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These effects may be interpreted within the processing resources 
framework: The reduced pool of cognitive resources in aging 
is sufficient for the elderly to efficiently perform in simple 
tasks (e.g., short-term memory tasks), but not when they have 
to face higher cognitive demands (e.g., in WM tasks), and 
thus, a greater performance decrement is visible. An interesting 
approach has been proposed to substantiate the hypothesis of 
age-related reduction in processing resources (thought to 
be  responsible for the observed behavioral deficits): measuring 
the neural activity (e.g., BOLD response and M/EEG activity) 
during the execution of various tasks, and isolating specific 
indexes that mirror the hypothesized resource decrement (e.g., 
McEvoy et  al., 2001; Mattay et  al., 2006). This approach is 
beneficial for at least two reasons. First, it provides an additional 
(cerebral) measure to quantify the amount of available resources 
in the elderly; second, it individuates the specific neural and 
functional mechanism where age-related differences in processing 
deployment originate. As Salthouse (1988) originally suggested, 
the candidate neural index of cognitive resources should positively 
correlate with cognitive performance (i.e., the greater the cerebral 
recruitment, the better the performance) and negatively correlate 
with age (i.e., the older the participant, the more reduced the 
cerebral activity). However, finding a neural measure that 
satisfies these requirements has proven to be  difficult in the 
field of aging research. Indeed, results obtained from cross-
sectional studies highlight that a consistent coupling between 
neural and cognitive modulations is currently lacking, which 
complicates predictions on how the neural markers of cognitive 
resource deployment should be  modulated by age. A review 
of the most recent (in the last 5 years) imaging studies (fMRI 
and M/EEG) on WM provides substantial examples of these 
non-unidirectional patterns of age-related brain activity. Indeed, 
WM has been proposed as an ideal domain to test for the 
presence of any age-related variation in cognitive resources, 
since it is defined by a limited capacity and is relevant to 
other cognitive domains (Salthouse, 1990). In the next section, 
we  will briefly illustrate some of the most recent results (note, 
however, that similar conclusions can be  drawn when also 
considering articles published earlier than 2016). As we  will 
describe, linking brain and cognition in an attempt to quantify 
the amount of available processing resources in aging is far 
from being a straightforward research approach.

NEURAL INDEXES UNDERLYING 
COGNITIVE RESOURCE DEPLOYMENT 
IN AGING

fMRI and M/EEG studies investigating WM in young and 
older adults have used various tasks (e.g., verbal and visuo-
spatial n-back, delayed match-to-sample, Corsi-Block Tapping, 
and Sternberg paradigm; see Table  1 for further details on 
recent studies). Across these paradigms, elderly usually exhibit 
a reduction of WM capacity compared to young adults. However, 
such decrements in performance are mirrored by different 
patterns of brain activity.

Recent fMRI studies (Gallen et  al., 2016; Heinzel et  al., 
2017; Kennedy et  al., 2017; Archer et  al., 2018; Bauer et  al., 
2018; Jamadar, 2020; Qin and Basak, 2020) show that the 
behavioral decrease in WM capacity of old adults is coupled 
with equal, increased, or reduced brain activation relative to 
younger adults. Moreover, different brain regions (or even 
different portions within the same region) show opposite patterns 
of age-related activity: While some of them are underrecruited, 
others appear overactive with respect to young. For instance, 
age-related decrement in WM performance can be accompanied 
by a reduced activation of task-related areas – middle frontal 
gyrus and bilateral precunei – together with increased activation 
of task-unrelated regions – cuneus, temporal gyrus, and 
cerebellum (Archer et  al., 2018). In addition, at lower levels 
of task demand elderly can exhibit larger activations in frontal 
and parietal areas (Heinzel et al., 2017), but also reduced BOLD 
activity in frontal and temporal regions, with concurrent larger 
activation in the bilateral cuneus (Jamadar, 2020). Likewise, 
connectivity measures for easy task conditions indicate increased 
connectivity between lateral frontal areas and other networks 
with increasing age (Gallen et  al., 2016), but no difference in 
connectivity strength between frontal and parietal regions 
(Heinzel et  al., 2017).

TABLE 1 | Neuroimaging studies comparing young and older adults in WM 
tasks and published from 2016 onwards.

Article Methodology Task

Archer et al., 2018 fMRI Spatial Addition Task

Bauer et al., 2018 fMRI
Modified version of Corsi-
Block-Tapping test

Crowell et al., 2020 fMRI
Verbal WM manipulation 
task of consonant strings

Gallen et al., 2016 fMRI Visual n-back task
Heinzel et al., 2017 fMRI Numerical n-back task

Höller-Wallscheid et al.,  
2017

fMRI
Verbal, spatial and object-
based delayed match-to-
sample task

Jamadar, 2020 fMRI
Visuo-spatial sequence 
paradigm

Kennedy et al., 2017 fMRI Numerical n-back task

Qin and Basak, 2020 fMRI
Modified 2n-back task with 
colored digits

Rieck et al., 2021 fMRI Verbal n-back task

Vellage et al., 2016 fMRI
Visuo-spatial delayed 
match-to-sample task

Billig et al., 2020 EEG
Visual delayed match-to-
sample task

Hou et al., 2018 EEG Verbal n-back task
Lubitz et al., 2017 EEG Spatial n-back task
Morrison et al., 2019 EEG Numerical n-back task
Sghirripa et al., 2021 EEG Sternberg task
Tagliabue et al.,  
2019, 2020

EEG
Visuo-spatial delayed 
match-to-sample task

Tran et al., 2016 EEG
Visuo-spatial delayed 
match-to-sample task

Leenders et al., 2018 MEG
Visuo-spatial delayed 
match-to-sample task

Proskovec et al., 2016 MEG Sternberg task

To simplify result comparison, articles using dual-task or dual-task-like paradigms are 
not included.
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Similar findings are observed when M/EEG studies are 
considered (Schwarzkopp et  al., 2016; Tran et  al., 2016; Lubitz 
et al., 2017; Morrison et al., 2019; Tagliabue et al., 2019, 2020): 
Taken together, the findings indicate that components reflecting 
attentional engagement and maintenance in WM may 
be  enhanced, reduced or similar between age groups, even in 
the presence of marked behavioral differences. For instance, 
some EEG studies found decrements in older adults’ WM with 
a concurrent less pronounced (Lubitz et al., 2017) or enhanced 
fronto-central P200 (Morrison et al., 2019), an ERP component 
reflecting deployment of attentional resources. Additionally, 
when individuals are presented with different memory loads, 
older adults might show either similar (Schwarzkopp et  al., 
2016; Tran et  al., 2016) or reduced (Tagliabue et  al., 2019, 
2020) load-related modulations of the CDA, an ERP response 
indexing the amount of items maintained in the WM short-
term storage.

To summarize, recent findings on aging highlight an apparent 
lack of a unidirectional coupling between brain and behavioral 
outcomes. The absence of a consistent brain-behavior pattern 
ultimately questions the possibility of formulating testable 
hypotheses on age-related effects at the neural level and, more 
generally, whether we  can reliably interpret neural activity 
(being it BOLD signals, ERPs, neural oscillations, or functional 
connectivity) to infer the amount of deployed cognitive resources 
in aging. In the next section, we will consider potential sources 
of variability accounting for these different effects.

POTENTIAL SOURCES OF VARIABILITY 
ACCOUNTING FOR DIFFERENT AGE-
RELATED PATTERNS OF RESOURCE 
DEPLOYMENT IN WORKING MEMORY

At least two sources of variability can account for the different 
brain-behavior associations in the WM domain. First, as 
previously mentioned, various cognitive tasks have been used 
to test WM functioning. Even if meant to assess the same 
cognitive function, different experimental paradigms can yield 
different results for at least two (partially related) main reasons. 
Different tasks might selectively engage different cognitive 
subcomponents (and their respective neural substrates), 
depending on their experimental structure (e.g., delayed match-
to-sample paradigms tax more information maintenance and 
retrieval abilities, whereas n-back tasks rely more on information 
updating; see Daniel et  al., 2016; Yaple et  al., 2019) and type 
of material (verbal and visuo-spatial). Consequently, some tasks 
can intrinsically be  more difficult than others. For instance, 
regarding the experimental structure, the overall accuracy in 
an n-back task is lower than in a Sternberg test (see Heinzel 
et  al., 2016). With reference to stimulus material, elderly are 
usually more impaired with visuo-spatial than verbal items 
(Jenkins et  al., 2000).

The second source of variability that may account for 
non-unidirectional age-related patterns is interindividual 
variability. Interindividual variability is prominent in aging 

(Lindenberger and von Oertzen, 2006) and may lead to optimal 
or less successful aging trajectories (Reuter-Lorenz and Park, 
2010; Reuter-Lorenz and Park, 2014; Cabeza et  al., 2018). 
Indeed, in some studies, the sample of older adults might 
include high-performing participants that can bias the group 
average performance toward one direction (and vice versa in 
the case of low-performing elderly). This heterogeneity in aging 
trajectories is largely due to age-related changes at multiple 
levels of neurobiological function and structure (Raz and 
Daugherty, 2018), in interaction with environmental factors 
(Daffner et  al., 2011). Thus, interindividual variability in aging 
may underlie differences in the expression of brain activations 
(Cabeza et  al., 2018). Specifically, preserving a good cognitive 
level at old age could be  reflected by either a youth-like 
functioning brain (i.e., no age-related differences in brain 
activity; e.g. Pudas et  al., 2013), an overactivation of some 
areas and/or supplementary engagement of an alternative set 
of brain networks (see Spreng et  al., 2010 for a review) that 
might act as compensatory mechanisms to support the 
behavioral performance.

In the next section, we  will consider possible solutions to 
minimize task-related variability and to better operationalize 
individual differences. Indeed, when sources of variability are 
(at least partially) accounted for, a more consistent pattern of 
age-related neural effects emerges, that can be  more easily 
interpreted in the framework of cognitive resource deployment 
with a life span perspective.

HOW CAN COGNITIVE RESOURCES IN 
AGING BE  MORE RELIABLY MEASURED 
THROUGH NEURAL INDEXES?

The use of various experimental paradigms to address the 
same cognitive function and individual differences are two 
major sources of variability that could explain the heterogeneity 
of findings in aging research. In particular, since individual 
differences are typically more prominent in older than young 
adults, they have been suggested to bias (e.g., by under- or 
over-estimating) the age-related differences observed in cross-
sectional studies, where aging is implicitly treated as a uniform 
process (Schneider-Garces et  al., 2010).

In an attempt to reduce the joint influence of task-related 
and interindividual variability, some studies (e.g., Höller-
Wallscheid et  al., 2017) have exploited procedures to equate 
the subjectively perceived difficulty of a specific task between 
age cohorts (and, in turn, across participants). These studies 
often apply titration procedures to match the difficulty level 
between young and older adults, namely, a stimulation “threshold” 
yielding the same accuracy value is chosen for each individual. 
WM studies using these procedures often find that elderly 
exhibit equal or increased neural activity (with reference to 
the compensation mechanism previously discussed) or similar 
load-related modulations (but see Billig et  al., 2020). Indeed, 
recent fMRI studies with no age-related difference in accuracy 
found a similar modulation as a function of task demands in 
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frontal and parietal areas between young and old adulthood 
(Höller-Wallscheid et al., 2017; Crowell et al., 2020), recruitment 
of a more extended network of areas (Vellage et  al., 2016), 
and increased between-networks integration with increasing 
difficulty in the elderly (Crowell et  al., 2020). In addition, M/
EEG aging studies with individually titrated difficulty levels 
(Leenders et al., 2018) or no absolute difference in performance 
between age groups (Proskovec et  al., 2016; Sghirripa et  al., 
2021) revealed that elderly showed greater increase in cortical 
excitability (as indexed by greater alpha power decrease; see 
Rihs et  al., 2009) in both hemispheres (Leenders et  al., 2018; 
Sghirripa et  al., 2021) with respect to young participants (in 
which larger cortical excitability was instead specific to the 
hemisphere primarily processing targets, i.e., the contralateral 
hemisphere), or greater oscillatory activity in the alpha and 
beta bands in additional homologous frontal and parieto-occipital 
regions (Proskovec et  al., 2016).

However, matching task difficulty between groups (likely 
selecting easier task conditions for the elderly) cancels out 
baseline differences in performance between age cohorts and 
(only) reveals (potential) age-related modulations of neural 
activity to attain the same accuracy level. In other words, this 
approach proves to be  useful when the research focus is on 
within-subject effects (e.g., in the case of individual gains in 
training procedures), rather than on between-groups differences. 
Indeed, when difficulty-matching procedures are adopted, what 
remains to be  explained is why older adults are deficient in 
their WM capacity (see Ramscar et  al., 2014) from the very 
beginning (i.e., why they perceive the same subjective difficulty 
of younger adults at easier task levels).

When the research focus is on the comparison between 
different ages, two approaches can be  adopted to overcome 
some of the limitations imposed by cross-sectional studies 
previously described. On one hand, dividing individuals (both 
young and old) in high and low performers may offer a less 
spurious estimate of age-related neural changes in the utilization 
of cognitive resources. For instance, in an EEG study by Daffner 
et  al. (2011), low and high performers similarly allocated 
processing resources with increasing difficulty, regardless of 
age (see also Lubitz et  al., 2017 and Morrison et  al., 2019 for 
more recent EEG studies). Similarly, an fMRI study of Nagel 
et  al. (2009) showed that, when considered altogether, elderly 
exhibited compromised brain responsivity compared to younger 
adults. Interestingly, when participants were instead split in 
high and low performers, the neural pattern of high-performing 
older adults resembled those of low-performing, equally accurate 
younger adults (see also Heinzel et  al., 2017, Bauer et  al., 
2018 and Vaqué-Alcázar et al., 2020 for more recent fMRI studies).

A second approach to account for interindividual variability 
and overcome the drawbacks of cross-sectional studies consists 
of longitudinal investigations. Indeed, results obtained from 
cross-sectional studies might be biased by cohort effects related 
to preexisting generational differences (e.g., educational 
attainment; see Archer et  al., 2018) that can “anticipate” 
age-related decrements (Rönnlund et  al., 2005). Longitudinal 
studies allow researchers to (partially) isolate the effects due 
to aging from those linked to other experience-related variables 

(e.g., historical/social background). Notably, some discrepancies 
between cross-sectional and longitudinal studies have been 
found also in neural results. For instance, several cross-sectional 
studies documented over-recruitment of prefrontal areas in 
old compared to younger adults (e.g., Rajah and D’Esposito, 
2005; Davis et  al., 2008). However, some longitudinal studies 
(Nyberg et  al., 2010; Rieckmann et  al., 2017) reported an 
age-related reduction in frontal activity. More specifically, older 
adults defined as decliners (i.e., individuals with WM performance 
decline across time, as opposed to so-called maintainers) showed 
decreased recruitment of the prefrontal cortex (Rieckmann 
et  al., 2017; Vaqué-Alcázar et  al., 2020, 2021). To reduce the 
confound of cohort effects, it might be  worth contemplating 
the administration of routine assessment of cognitive functions 
throughout an individual’s life span.

CONCLUDING REMARKS

In a framework arguing for a reduction of processing resources 
in aging (Craik and Byrd, 1982; Salthouse, 1988, 1990), recent 
neuroimaging evidence in the domain of WM has not conveyed 
a unidirectional coupling between behavioral and neural data. 
However, apparent discrepancies can be  reconciled if (at least) 
two sources of variability are controlled for, namely, task-related 
and interindividual differences. Indeed, when these factors are 
considered, two consistent findings emerge as: (1) elderly exhibit 
similar or augmented neural activity with respect to younger 
adults and (2) older low performers or longitudinal decliners 
engage task-related areas to a lesser extent than their more 
cognitively fit peers.

Taken together, results on age-related differences in brain 
activity prompt for a deeper understanding of these effects, 
especially in the case of neural over-recruitment in the 
elderly, which would ideally challenge the view of reduced 
processing resources in aging (Salthouse, 1988). In this 
respect, we  suggest to enlarge the hypothesis space: Rather 
than having a limited pool of resources as originally postulated 
(Craik and Byrd, 1982; Salthouse, 1988, 1990), older individuals 
may use them in a different (sometimes less efficient) way 
compared to young adults. This interpretation would imply 
a shift from the original view that sees aging as a (quantitative) 
reduction of processing resources to a novel viewpoint 
considering a qualitative change, not necessarily a reduction, 
in resource allocation (Figure  1). Several pieces of evidence 
support this latter perspective. First, it is well documented 
that aging is characterized by increased susceptibility to 
distraction (e.g., Hasher and Zacks, 1988; Gazzaley et  al., 
2008) and broader attentional focusing (Greenwood and 
Parasuraman, 1999, 2004). These deficits are responsible for 
the inadvertent processing of irrelevant material, and this 
may result in the typical age-related WM capacity reduction 
(e.g., Jost et  al., 2011; Tagliabue et  al., 2019). Since WM 
storage has a limited capacity (Cowan, 2010), WM may 
become deficient because old adults tend to maintain both 
target and distracting items. Similarly, evidence of age-related 
reduced suppression of the default mode network (Raichle 
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et  al., 2001) during task execution has been linked to a 
deficit in cognitive control, which hampers efficient resource 
allocation to task-related areas with a consequent negative 
impact on WM performance in the elderly (Sambataro et al., 
2010). Finally, the idea of an alternative use of processing 
resources would also be  in line with the Compensation-
Related Utilization of Neural Circuits Hypothesis (CRUNCH; 
Reuter-Lorenz and Cappell, 2008). CRUNCH states that, 
compared to younger adults, elderly recruit more neural 
resources (and exhaust them) at lower loads and are left 
without additional cognitive supplies when task demands 
further increase. A practical example of age-related qualitative 
changes in resource allocation might come from studies on 
the Posterior-Anterior Shift in Aging (PASA; Davis et  al., 
2008) research line: Elderly show increased engagement of 
frontal areas that correlates with reduced activity of posterior 
regions. Such activation pattern was suggested to reflect 

the involvement of high-order cognitive processes in response 
to deficits of posterior brain areas.

Some final considerations need to be  addressed. Given 
that we  focused our mini-review on the WM domain, our 
conclusions might not be  generalized to other cognitive 
domains, even though age-related limitations in WM seem 
to account for age-related differences across different tasks 
(including memory – Baudouin et al., 2009 – and non-memory 
related domains – Van der Linden et  al., 1999; Chen and 
Li, 2007; Borella et  al., 2011). Moreover, while it would 
be desirable to obtain measures of general cognitive functioning 
to correlate with neural activations (e.g., Wiegand et al., 2018), 
such a unique and exhaustive performance index is not easy 
to choose or compute.

To conclude, on the basis of the recent findings discussed 
in this mini-review, we  suggest that neural measures represent 
a powerful tool when investigating age-related differences in 
cognitive resource deployment, provided that some confounding 
factors are taken into account. Moreover, according to our 
view, a qualitative change in the deployment of cognitive 
resources instead or along with a quantitative reduction in 
the pool of available resources is an alternative hypothesis that 
deserves further consideration.
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