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This Supplementary Material contains the following sections. 

1. The list of the acronyms used in the text. 

2. The thermal behaviour simulated by the one-dimensional lake model General Lake Model 

(GLM) in lakes of different depth. 

3. A summary of the literature about modelling stream temperature in rivers. 

4. The list of the metrics used to evaluate the performance of machine learning (ML) and their 

values. 

5. The values of the hyperparameters optimized for the examined ML approaches. 
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1. Acronyms used in the text 

Table S1 reports the list of the acronyms used in the main text and in this Supplementary Material. 

Table S1. List of acronyms. 

ANFIS Adaptive Neuro-Fuzzy Inference System 

ANN Artificial Neural Network 

AP Air Pressure 

AT Air Temperature 

BPNN Back-Propagation Neural Network 

CWT Continuous Wavelet Transform 

DL Deep Learning 

DOY Day Of the Year 

DT Decision Tree 

DWT Discrete Wavelet Transform 

ERT Extremely Randomized Tree 

GA Genetic Algorithm 

GAM Generalized Additive Model 

GEP Gene Expression Programming, a variant of Genetic Programming 

GP Genetic Programming 

KNN K-Nearest Neighbour 

LSTM Long Short-Term Memory 

LSWT Lake Surface Water Temperature 

LWR Longwave Radiation 

ML Machine Learning 

MLPNN Multi-Layer Perceptron Neural Network 

PGRNN Physics-Guided Recurrent Neural Network 

PSO Particle Swarm Optimization 

R Rainfall 

RF Random Forest 

RH Relative Humidity 

RMSE Root Mean Square Error 

RNN Recurrent Neural Network 

RT Regression Tree 

SVM Support Vector Machine 

SVR Support Vector Regression 

SWR Shortwave Radiation 

T Temperature 

WS Wind Speed 

WT Wavelet Transform 
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2. Simulated thermal behaviour in lakes of different depth 

Fig. S1 shows the temporal evolution of water temperature along the water column in two versions 

of the synthetic lakes (shallow and deep), as obtained by numerical simulations with the one-

dimensional lake model, General Lake Model (GLM). Two subsequent years are shown to highlight 

the typical seasonal patterns, and who they differ from the shallow to the deep case. 

 

 

Figure S1. Evolution of water temperature in two lakes with the same hypsometry, but rescaled with different 

depths (a: maximum depth 5 m; b: maximum depth 60 m), as a function of depth and time (from 01/01/2015 

to 31/12/2016), obtained from the physically based model GLM. 

 

3. Modelling stream temperature in rivers 

A list of ML applications to predict stream temperature in rivers is reported in Table S2. For the 

case of rivers, the most influential predictors are AT, discharge, and DOY, while some features seem 

to influence the performances negatively, such as catchment extents and forest land cover in riparian 

zones (DeWeber and Wagner, 2014) and low flow rates (Rivers-Moore et al., 2005). We note that the 

relationship between AT and water temperature tends to be approximately linear in streams (Erickson 

and Stefan, 2000), similar to the case of shallow lakes. 
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Table S2. ML algorithms used to predict stream temperature in rivers, with the indication of the most important 

predictors. 

Type of 

ML 

algorithm 

Author(s) ML methods The best ML method Predictor(s) 

Linear 

and/or Non-

linear 

Regression 

Mohseni et al. 

(1998) 

Non-linear regression model Non-linear regression 

model 

Weekly AT 

Mohseni and 

Stefan (1999) 

Linear regression Linear regression AT 

Rivers-Moore 

et al. (2005) 

Linear regression, Non-linear 

regression model (Exponential 

model), Multiple linear regression 

model 

Multiple linear regression 

model 

AT, streamflow, rainfall, relative 

humidity (mean daily AT, 

minimum daily AT and RH are 

influential) 

Li et al. 

(2014) 

Varying coefficient regression 

model 

Varying coefficient 

regression model 

Maximum AT, time varying 

coefficient model (DOY) 

Logistic 

Regression 

Caissie et al. 

(2001) 

Regression model (second order 

Markov process), using Fourier and 

Sine function for pre-processing 

Regression model on 

weekly basis; stochastic 

for maximum AT 

AT 

Grbic' et al. 

(2013) 

Gaussian Process Regression - 

Linear regression, logistic and 

stochastic models 

Gaussian process 

regression model 

AT, streamflow 

 Laanaya et al. 

(2017) 

The generalized additive model 

(GAM), an extension of the 

generalized linear model; logistic 

model; linear regression; residual 

regression model (long-term annual 

and short-term) 

GAM AT, average streamflow 

Artificial 

Neural 

Network 

(ANN) 

Chenard and 

Caissie (2008) 

ANN ANN Minimum, maximum and mean 

AT, DOY, water level 

Sahoo et al. 

(2009) 

Empirical model (BPNN), a 

statistical model (multiple 

regression analysis, MRA), chaotic 

non-linear dynamic algorithms 

(CNDA) 

ANN SWR, AT 

Wenxian et al. 

(2010) 

BPNN PNN Monthly water T 

DeWeber and 

Wagner 

(2014) 

ANN ANN Daily averaged AT, prior 7-day 

mean AT, network catchment 

area, predicted mean daily water 

T (forest land cover at riparian 

and catchment extents impact 

negatively) 

Hadzima-

Nyarko et al. 

(2014) 

ANN; linear regression model and 

stochastic model 

ANN Daily average AT 

Napiorkowski 

et al. (2014) 

ANN ANN Daily average AT 

Piotrowski et 

al. (2014) 

ANN ANN Daily average AT, daily 

maximum AT, daily streamflow, 

daily average water T, declination 

of the sun 

Piotrowski et 

al. (2015) 

MLPNN; ANFIS ANN Mean, maximum and minimum 

daily AT, streamflow, SWR. 

Rabi et al. 

(2015) 

Linear regression, stochastic 

modelling (non-linear regression); 

MLPNN  

MLPNN Mean daily AT 

Piotrowski et 

al. (2016) 

ANFIS; MLPNN ANN SWR, streamflow, minimum 

daily AT, mean daily AT, 

maximum daily AT, sum of the 

daily averaged AT measured 2 to 

6 days before the day. 

Temizyurek 

and Dadaser-

Celik (2018) 

ANN ANN AT, WS, RH, previous water T 

https://www.scopus.com/authid/detail.uri?authorId=57193773100&amp;eid=2-s2.0-85016487673
https://www.scopus.com/authid/detail.uri?authorId=57193773100&amp;eid=2-s2.0-85016487673
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Zhu et al. 

(2018)  

ANN; GPR; BA-DT  Gaussian Process 

Regression (GPR), 

Bootstrap Aggregated 

Decision Trees (BA-DT) 

 

 

AT  

Graf et al. 

(2019) 

WT-ANN; linear and non-linear 

regression; ANN 

WT-ANN Daily water T, daily AT 

Trinh et al. 

(2019) 

Regression models (linear, non-

linear and stochastic regression); 

ANN 

ANN Daily maximum AT 

Zhu and 

Heddam 

(2019) 

Optimally Pruned Extreme 

Learning Machine (OPELM); 

Radial Basis Functions Neural 

Networks (RBFNN) 

OPELM AT, streamflow, DOY 

Zhu et al. 

(2019 a and b) 

MLPNN; ANFIS MLPNN AT, streamflow, DOY 

Zhu et al. 

(2019) 

MLPNN and ANFIS with and 

without WT 

WT-MLPNN and WT-

ANFIS 

Daily AT, DOY 

Zhu et al. 

(2019) 

Extreme Learning Machine (ELM) 

- MLPNN and simple multiple 

linear regression (MLR) 

ELM AT, streamflow, DOY 

Zhu et al. 

(2019) 

MLPNN; Gaussian process 

regression (GPR); DT; air2stream 

air2stream model 

outperformed the three 

ML methods  

AT, streamflow, DOY 

Zhu et al. 

(2019) 

MLPNN; ANFIS MLPNN AT, streamflow, DOY 

Piotrowski et 

al. (2020) 

ANN ANN AT, streamflow, declination of 

the sun 

Qiu et al. 

(2020) 

BPNN; radial basis function neural 

network; wavelet neural network; 

general 

regression neural network; Elman 

neural network 

BPNN AT, streamflow, DOY 

Radulescu 

(2020) 

MLPNN MLPNN AT 

Zhu et al. 

(2020) 

MLPNN; MLPNN integrated model 

(WT_MLPNN); non-linear 

regression model (S-curve); 

air2stream 

WT_MLPNN (air2stream 

outperformed the other 

models) 

Daily LSWT and AT 

Decision 

Tree (DT) 

Goyal et al. 

(2012) 

Tree algorithms (single conjunctive 

rule learner, decision table, M5 

model tree, and REPTree) 

M5 model tree Specific humidity, geopotential 

height, meridional (north-south 

direction) WS, zonal (west-east 

direction) WS, AT 

Support 

Vector 

Machines 

(SVM) 

Rehana 

(2019) 

Multiple Linear Regression Model 

(MLRM); SVR 

SVR AT, streamflow 

k-nearest 

Neighbour 

algorithm 

(KNN) 

St-Hilaire et 

al. (2012) 

KNN KNN Water T from the two previous 

days and an indicator of 

seasonality (DOY), daily AT and 

daily streamflow 

Random 

Forest (RF) 

Holthuijzen 

(2017) 

Gradient Boosting Machines 

(GBM); RF; Spatial Statistical 

Network (SSN); Generalized 

Additive Models (GAM); Linear 

regression 

GBM SWR, summer streamflow, 

maximum weekly maximum AT, 

summer mean AT 

Lu and Ma 

(2020) 

Extreme Gradient Boosting 

(XGBoost), RF  

RF 1875 data 

 



Yousefi and Toffolon, Use of ML algorithms for predicting LSWT - SM 6/24 

4. Metrics used to evaluate ML performance 

• 4.1 Standard metrics 
Our analysis of the ML performance is based on the values of the root mean square error (RMSE), 

which is computed for both the training and test data using the standard definition  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)2

𝑁

𝑖=1
 (S1) 

where 𝑖 is the time index, 𝑁 is the number of samples, 𝑠𝑖𝑚𝑖 (simulated) is the LSWT modelled by 

ML, and 𝑜𝑏𝑠𝑖 is the observed value (obtained from GLM simulation). Perfect fit is obtained for RMSE 

= 0.  

However, different metrics are also used. In this section, we review the most common ones. First, 

the Nash-Sutcliff Efficiency index (NSE) is equivalent to RMSE if the variance of the observations, 

𝜎𝑜𝑏𝑠
2 , does not change: 

𝑁𝑆𝐸 = 1 −
∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)

2𝑁
𝑖=1

∑ (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠̅̅ ̅̅ ̅)
2𝑁

𝑖=1

= 1 −
𝑅𝑀𝑆𝐸2

𝜎𝑜𝑏𝑠
2  (S2) 

where 𝑜𝑏𝑠̅̅ ̅̅ ̅ is the mean of the observations. NSE = 1 indicates perfect fit, while suing the mean of the 

observations as a predictive model would lead to NSE = 0.  

Other metrics that are used to compute the performance of models are the mean absolute error 

(MAE) 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖|

𝑁

𝑖=1

 (S3) 

 

which considers the absolute value of the error instead of the square as in equation (S1), and the mean 

squared error (MSE) 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)

2
𝑁

𝑖=1
= 𝑅𝑀𝑆𝐸2 (S4) 

which is simply the square of RMSE. 

Another metric is the Index of Agreement presented by Willmott (1981), 

𝐼𝐴 = 1 −
∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)

2𝑁
𝑖=1

∑ (|𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠̅̅ ̅̅ ̅| + |𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠̅̅ ̅̅ ̅|)
2𝑁

𝑖=1

 (S5) 

which is the ratio of MSE and the potential error. 𝐼𝐴 is sensitive to extreme values because of the 

squared differences. The values of 𝐼𝐴 range between 0 and 1, where 1 represents the perfect prediction 

and 0 the worst. 
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The coefficient of determination, or R-squared (𝑅2), yields the same information as NSE. 

Usually, it is defined as 

𝑅2 = 1 −
∑ (𝑜𝑏𝑠𝑖̂ − 𝑜𝑏𝑠𝑖)

2𝑁
𝑖=1

∑ (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠̅̅ ̅̅ ̅)
2𝑁

𝑖=1

 (S6) 

where the only difference is the interpretation of the term 𝑜𝑏𝑠𝑖̂ , which in this case is the prediction 

from a statistical model based on the observations, and not from the results of a simulation model as 

for NSE. We do not report the 𝑅2 values as we prefer to indicate them as NSE. 

 Finally, we use the mean error (ME), or bias, to compute the average difference between simulated 

and observed values: 

𝑀𝐸 =
1

𝑁
∑(𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)

𝑁

𝑖=1

= 𝑠𝑖𝑚̅̅ ̅̅ ̅ − 𝑜𝑏𝑠̅̅ ̅̅ ̅ (S7) 

where 𝑠𝑖𝑚̅̅ ̅̅ ̅ is the average of the simulated LSWT. 

• 4.2 Robustness of multiple runs 
The results of the ML models depend on the initial guess of their parameters, which are then suitably 

calibrated by means of algorithms as GA. In order to test the possible variability of the results due to 

the random choice of the initial parameters, we decided to run all ML models 𝑁𝑟 times, and we 

assumed 𝑁𝑟 = 20. 

Here we introduce two concepts: the robustness and the accuracy of the ML model. The 

robustness shows how much the results of the 𝑁 different simulations are close to each other. In order 

to have an estimate of the robustness, at each time step 𝑖 we compute the standard deviation among 

the 𝑁𝑟 runs: 

𝜎𝑖 =
1

𝑁𝑟
∑(𝑠𝑖𝑚𝑖,𝑗 − 𝜇𝑠𝑖𝑚,𝑖)

2

𝑁𝑟

𝑗=1

 (S8) 

where 𝑗 is the index of the run, and 𝜇𝑠𝑖𝑚,𝑖 is the mean of the simulated LSWT. Then, we compute the 

average over the whole record (Equation S8) to obtain the index for the train and test sets separately. 

 

𝜎𝑅 =
1

𝑁
∑𝜎𝑖

𝑁

𝑖=1

 (S9) 

The accuracy represents how much the prediction is close to the observed values. We already 

defined the RMSE in equation (S1) as a measure that can be used for a single run. Here, we define 

two metrics for the set of 𝑁𝑟 runs. The first one is the mean of the RMSE of the single runs, 
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𝑅𝑀𝑆𝐸𝐴 =
1

𝑁𝑟
∑𝑅𝑀𝑆𝐸𝑗

𝑁𝑟

𝑗=1

 (S10) 

and 𝑅𝑀𝑆𝐸𝐵 is the best RMSE of 20 runs; the second one is the RMSE of the average of the 𝑁𝑟 runs, 

𝑅𝑀𝑆𝐸𝐴𝑆 = √
1

𝑁
∑ (𝑠𝑖𝑚̅̅ ̅̅ ̅𝑖 − 𝑜𝑏𝑠𝑖)2

𝑁

𝑖=1
 (S11) 

where 𝑠𝑖𝑚̅̅ ̅̅ ̅𝑖 is the mean simulated value at the time step 𝑖, 

𝑠𝑖𝑚̅̅ ̅̅ ̅𝑖 =
1

𝑁𝑟
∑𝑠𝑖𝑚𝑖,𝑗

𝑁𝑟

𝑗=1

 (S12) 

• 4.3 Differences between individual runs 
For each case study, an individual run of the ML model provides a simulation that is not identical to 

the other runs even if the hyperparameters are the same, because the number of the parameters is so 

large that their calibration in the training phase produces results that depend on the initial (random) 

guess. Therefore, we introduced a measure (equation S7) for the robustness of the single prediction. 

It is interesting to analyse a case where two runs have a very similar RMSE, but they differ 

significantly from each other. In Fig. S2, the simulated values in two runs (number 1 and 17) are 

shown: the mean difference between the two simulations is 0.308°C, although the RMSE is almost 

identical (1.221°C and 1.238°C, respectively). 

 

Figure S2. Simulated LSWT from two individual runs compared with observations. The two simulations have 

similar RMSE, although they differ from each other. 
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• 4.4 Analysis of the performances 
Tables S3, S4, S5 and S6 report the list of all the metrics defined above to measure the performance 

of ML models, considering different inputs, pre-processing strategies, and ML algorithms. 
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Table S3. Metrics of the BPNN model for the shallow (depth = 5 m) lake, depending on the predictors used and separating the performances of the training and test 

data sets.  

Depth = 5 m RMSEA (°C) MSE (°C2) MAE (°C) NSE (-) IA (-) ME (°C) 𝜎𝑅 (°C) RMSEB (°C) RMSEAS (°C) 

Variable(s) train test train test train test train test train test train test train test train test train test 

AT 
3.044 3.105 9.266 9.644 2.127 2.178 0.864 0.869 >0.999 >0.999 0.000 0.239 0.137 0.183 3.007 3.059 3.021 3.076 

DOY 
1.856 2.125 3.482 4.539 1.326 1.524 0.949 0.938 >0.999 >0.999 0.000 -0.738 0.257 0.257 1.782 2.065 1.796 2.069 

SCDOY 
1.781 2.070 3.172 4.286 1.262 1.470 0.953 0.942 >0.999 >0.999 0.000 -0.738 0.013 0.013 1.778 2.055 1.777 2.067 

AT+SCDOY 
1.312 1.460 1.720 2.131 0.921 1.013 0.975 0.971 >0.999 >0.999 0.000 -0.354 0.028 0.029 1.299 1.432 1.301 1.450 

SWR 
5.575 5.556 31.082 30.865 4.376 4.355 0.543 0.581 >0.999 >0.999 0.000 -0.311 0.017 0.021 5.572 5.548 5.574 5.554 

LWR 
5.810 5.904 33.757 34.857 4.628 4.771 0.504 0.527 >0.999 >0.999 0.000 0.128 0.079 0.099 5.792 5.885 5.803 5.896 

RH 
7.928 8.141 62.847 66.272 7.119 7.238 0.076 0.101 >0.999 >0.999 0.000 -0.693 0.040 0.034 7.922 8.133 7.925 8.139 

WS 
8.030 8.452 64.479 71.432 7.228 7.560 0.052 0.031 >0.999 >0.999 0.000 -0.765 0.070 0.071 8.011 8.431 8.025 8.448 

R 
8.227 8.594 67.677 73.849 7.507 7.754 0.005 -0.002 >0.999 >0.999 0.003 -0.716 0.002 0.003 8.224 8.590 8.226 8.593 

AP 
7.520 7.884 56.579 62.182 6.533 6.822 0.168 0.156 >0.999 >0.999 0.001 -0.492 0.642 0.618 7.472 7.840 7.479 7.846 

AT + SCDOY + WS 
1.313 1.452 1.723 2.108 0.921 1.006 0.975 0.971 >0.999 >0.999 0.000 -0.351 0.035 0.036 1.300 1.439 1.299 1.439 

AT + SCDOY + AP 
1.308 1.455 1.712 2.117 0.919 1.010 0.975 0.971 >0.999 >0.999 0.000 -0.344 0.040 0.042 1.298 1.432 1.293 1.440 

AT + SCDOY + SWR 
1.381 1.534 1.906 2.354 0.963 1.063 0.972 0.968 >0.999 >0.999 0.000 -0.400 0.034 0.035 1.369 1.514 1.368 1.523 

AT + SCDOY + LWR 
1.287 1.422 1.657 2.021 0.901 0.987 0.976 0.973 >0.999 >0.999 0.000 -0.360 0.041 0.043 1.270 1.399 1.271 1.406 

AT + SCDOY + SWR + LWR 
1.375 1.525 1.892 2.327 0.964 1.060 0.972 0.968 >0.999 >0.999 0.000 -0.370 0.048 0.049 1.357 1.501 1.358 1.509 

AT + SCDOY + SWR + LWR + WS 
1.369 1.509 1.874 2.277 0.956 1.047 0.972 0.969 >0.999 >0.999 0.000 -0.361 0.046 0.049 1.352 1.481 1.352 1.493 

AT + SCDOY + SWR + LWR + WS + RH 
1.371 1.497 1.879 2.240 0.960 1.038 0.972 0.970 >0.999 >0.999 0.000 -0.326 0.050 0.055 1.351 1.475 1.353 1.478 

AT + SCDOY + SWR + LWR + WS + RH + R 
1.358 1.484 1.844 2.201 0.951 1.028 0.973 0.970 >0.999 >0.999 0.000 -0.302 0.054 0.059 1.339 1.461 1.338 1.464 

AT + SCDOY + SWR + LWR + WS + RH + R +AP 
1.363 1.496 1.858 2.240 0.956 1.039 0.973 0.970 >0.999 >0.999 0.000 -0.285 0.065 0.071 1.340 1.461 1.339 1.473 
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Table S4. Metrics of the BPNN model for the deep (depth = 60 m) lake, depending on the predictors used and separating the performances of the training and test 

data sets. 

 

Depth = 60 m RMSEA (°C) MSE (°C2) MAE (°C) NSE (-) IA (-) ME (°C) 𝜎𝑅 (°C) RMSEB (°C) RMSEAS (°C) 

Variable(s) train test train test train test train test train test train test train test train test train test 

AT 
3.629 3.911 13.187 15.303 2.837 2.989 0.779 0.757 >0.999 >0.999 0.000 0.154 0.258 0.266 3.587 3.881 3.596 3.878 

DOY 
1.596 1.746 2.654 3.185 1.186 1.353 0.956 0.950 >0.999 >0.999 -0.001 -0.743 0.482 0.482 1.436 1.579 1.474 1.644 

SCDOY 
1.434 1.579 2.056 2.492 1.041 1.223 0.966 0.960 >0.999 >0.999 0.000 -0.742 0.012 0.012 1.431 1.571 1.430 1.575 

AT+SCDOY 
1.160 1.292 1.345 1.670 0.868 1.007 0.978 0.974 >0.999 >0.999 0.000 -0.477 0.027 0.028 1.147 1.271 1.148 1.281 

SWR 
6.182 6.383 38.222 40.740 5.259 5.410 0.361 0.354 >0.999 >0.999 0.000 -0.401 0.005 0.006 6.181 6.380 6.182 6.382 

LWR 
5.300 5.285 28.086 27.932 4.236 4.243 0.530 0.557 >0.999 >0.999 0.000 0.081 0.068 0.084 5.289 5.273 5.293 5.277 

RH 
7.604 7.884 57.815 62.154 6.828 6.973 0.033 0.015 >0.999 >0.999 0.000 -0.802 0.081 0.096 7.593 7.782 7.598 7.878 

WS 
7.520 7.799 56.544 60.818 6.709 6.883 0.054 0.036 >0.999 >0.999 0.000 -0.767 0.030 0.030 7.515 7.791 7.518 7.797 

R 
7.703 7.946 59.333 63.142 6.958 7.060 0.008 -0.001 >0.999 >0.999 0.015 -0.705 0.037 0.042 7.699 7.940 7.700 7.944 

AP 
7.112 7.385 50.582 54.544 6.200 6.435 0.154 0.135 >0.999 >0.999 0.000 -0.515 0.056 0.050 7.102 7.373 7.108 7.382 

AT + SCDOY + WS 
1.151 1.294 1.326 1.675 0.862 1.007 0.978 0.973 >0.999 >0.999 0.000 -0.478 0.037 0.041 1.137 1.278 1.135 1.278 

AT + SCDOY + AP 
1.164 1.284 1.354 1.650 0.871 1.004 0.977 0.974 >0.999 >0.999 -0.001 -0.469 0.040 0.041 1.152 1.267 1.146 1.268 

AT + SCDOY + SWR 
1.204 1.328 1.449 1.764 0.895 1.034 0.976 0.972 >0.999 >0.999 0.000 -0.511 0.037 0.039 1.188 1.311 1.188 1.313 

AT + SCDOY + LWR 
1.153 1.282 1.329 1.644 0.859 1.003 0.978 0.974 >0.999 >0.999 0.000 -0.487 0.037 0.039 1.141 1.266 1.137 1.267 

AT + SCDOY + SWR + LWR 
1.189 1.322 1.413 1.747 0.888 1.029 0.976 0.972 >0.999 >0.999 0.000 -0.485 0.039 0.040 1.172 1.304 1.172 1.307 

AT + SCDOY + SWR + LWR + WS 
1.186 1.328 1.406 1.764 0.886 1.031 0.977 0.972 >0.999 >0.999 0.000 -0.486 0.049 0.050 1.165 1.304 1.165 1.309 

AT + SCDOY + SWR + LWR + WS + RH 
1.185 1.309 1.405 1.714 0.887 1.013 0.977 0.973 >0.999 >0.999 0.000 -0.432 0.054 0.059 1.165 1.290 1.162 1.286 

AT + SCDOY + SWR + LWR + WS + RH + R 
1.175 1.307 1.382 1.708 0.878 1.012 0.977 0.973 >0.999 >0.999 0.000 -0.419 0.060 0.070 1.151 1.262 1.149 1.280 

AT + SCDOY + SWR + LWR + WS + RH + R +AP 
1.176 1.301 1.382 1.692 0.880 1.008 0.977 0.973 >0.999 >0.999 0.001 -0.411 0.055 0.059 1.152 1.290 1.152 1.278 
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Table S5. Comparison of the metrics obtained with different pre-processing methods and considering the input of AT from previous days, for the shallow and deep 

lake (ML method: BPNN). 

Depth = 5 m 

Method RMSEA (°C) MSE (°C2) MAE (°C) NSE (-) IA (-) ME (°C) 𝜎𝑅 (°C) RMSEB (°C) RMSEAS (°C) 

set train test train test train test train test train test train test train test train test train test 

Min-Max 1.312 1.460 1.720 2.131 0.921 1.013 0.975 0.971 >0.999 >0.999 0.000 -0.354 0.028 0.029 1.299 1.432 1.301 1.450 

Moving Average + Min-Max 1.061 1.136 1.126 1.292 0.743 0.802 0.983 0.982 >0.999 >0.999 0.000 -0.097 0.026 0.032 1.047 1.108 1.049 1.123 

AT from previous days 0.959 0.943 0.920 0.890 0.652 0.668 0.986 0.988 >0.999 >0.999 0.001 0.030 0.056 0.059 0.937 0.898 0.930 0.912 

DWT 1.754 1.968 3.077 3.871 1.260 1.418 0.955 0.948 >0.999 >0.999 -0.454 0.024 0.039 1.747 1.948 1.747 1.958 -0.454 

CWT 1.801 2.085 3.245 4.346 1.282 1.488 0.952 0.941 >0.999 >0.999 -0.740 0.025 0.025 1.796 2.073 1.795 2.079 -0.740 

Depth = 60 m 

Min-Max 1.160 1.292 1.345 1.670 0.868 1.007 0.978 0.974 >0.999 >0.999 0.000 -0.477 0.027 0.028 1.147 1.271 1.148 1.281 

Moving Average + Min-Max 0.983 1.189 0.967 1.414 0.741 0.876 0.984 0.978 >0.999 >0.999 0.000 -0.202 0.031 0.036 0.973 1.153 0.968 1.174 

AT from previous days 0.887 1.136 0.788 1.291 0.664 0.811 0.987 0.980 >0.999 >0.999 0.000 -0.088 0.067 0.072 0.869 1.103 0.849 1.104 

DWT 1.365 1.538 1.863 2.364 1.011 1.160 0.969 0.963 >0.999 >0.999 0.000 -0.333 0.024 0.041 1.356 1.514 1.356 1.524 

CWT 1.421 1.558 2.020 2.429 1.034 1.212 0.966 0.962 >0.999 >0.999 0.000 -0.742 0.023 0.023 1.415 1.552 1.413 1.551 
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Table S6. Comparison of the metrics obtained using different ML algorithms using AT and SCDOY as input (pre-processing: MM). 

Depth = 5 m 

Method RMSEA (°C) MSE (°C2) MAE (°C) NSE (-) IA (-) ME (°C) 𝜎𝑅 (°C) RMSEB (°C) RMSEAS (°C) 

set train test train test train test train test train set train test train test train test train test 

DT 1.230 1.626 1.514 2.642 0.859 1.090 0.978 0.964 >0.999 >0.999 0.000 -0.340 0.000 0.002 1.230 1.623 1.230 1.625 

RF 1.159 1.540 1.344 2.373 0.769 1.025 0.980 0.968 >0.999 >0.999 -0.033 -0.383 0.010 0.013 1.157 1.528 1.155 1.536 

ERT 1.295 1.479 1.677 2.188 0.883 1.006 0.975 0.970 >0.999 >0.999 -0.033 -0.424 0.011 0.013 1.288 1.460 1.291 1.475 

KNN 1.243 1.525 1.544 2.327 0.860 1.047 0.977 0.968 >0.999 >0.999 -0.006 -0.413 0.000 0.000 1.243 1.525 1.243 1.525 

SVR 1.369 1.497 1.873 2.240 1.052 1.121 0.973 0.970 >0.999 >0.999 0.107 -0.259 0.000 0.000 1.369 1.497 1.369 1.497 

MLPNN 1.319 1.467 1.739 2.153 0.926 1.022 0.974 0.971 >0.999 >0.999 -0.025 -0.383 0.043 0.042 1.299 1.446 1.302 1.453 

LSTM 1.353 1.490 1.831 2.222 0.983 1.074 0.973 0.970 >0.999 >0.999 -0.024 -0.349 0.085 0.092 1.322 1.424 1.321 1.460 

BPNN 1.312 1.460 1.720 2.131 0.921 1.013 0.975 0.971 >0.999 >0.999 0.000 -0.354 0.028 0.029 1.299 1.432 1.301 1.450 

Depth = 60 m 

DT 1.428 1.668 2.056 2.811 1.044 1.241 0.966 0.955 >0.999 >0.999 0.000 -0.472 0.750 0.916 1.264 1.447 1.143 1.377 

RF 1.117 1.362 1.247 1.856 0.847 1.056 0.979 0.971 >0.999 >0.999 -0.001 -0.472 0.007 0.009 1.114 1.351 1.114 1.359 

ERT 1.141 1.292 1.302 1.668 0.853 1.011 0.978 0.974 >0.999 >0.999 0.000 -0.522 0.003 0.004 1.136 1.285 1.140 1.290 

KNN 1.093 1.311 1.196 1.719 0.808 1.026 0.980 0.973 >0.999 >0.999 -0.009 -0.510 0.000 0.000 1.093 1.311 1.093 1.311 

SVR 1.171 1.302 1.371 1.695 0.914 1.025 0.977 0.973 >0.999 >0.999 0.107 -0.355 0.000 0.000 1.171 1.302 1.171 1.302 

MLPNN 1.212 1.378 1.469 1.901 0.918 1.085 0.975 0.970 >0.999 >0.999 -0.083 -0.603 0.033 0.034 1.177 1.296 1.198 1.366 

LSTM 1.286 1.264 1.656 1.598 0.986 0.962 0.972 0.975 >0.999 >0.999 0.405 -0.054 0.019 0.023 1.233 1.223 1.279 1.255 

BPNN 1.160 1.292 1.345 1.670 0.868 1.007 0.978 0.974 >0.999 >0.999 0.000 -0.477 0.027 0.028 1.147 1.271 1.148 1.281 
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5.Hyperparameters optimized for the examined ML approaches 

Eight of the ML methods considered in this paper were implemented in the Python environment 

using the libraries ‘Keras’ for Multilayer Perceptron Neural Network (MLPNN) and Long Short-

Term Memory (LSTM) and ‘Sklearn’ for the other ML methods. Only for one method (ANFIS) we 

referred to a MATLAB library. 

The hyperparameters were chosen by GA optimization. A more detailed explanation is available 

for ‘Keras’ in Chollet (2015) and for ‘Sklearn’ in Cournapeau (2007), where we also took most of the 

following description. In this document, we restrict the analysis to the hyperparameters that were 

calibrated and provide a brief description of the meaning and a table with adopted values. For the 

other hyperparameters that are not mentioned here, we used the default values suggested in the 

libraries.  

Since GA choice of the best hyperparameters is approximate, the adopted hyperparameters may 

not be the optimal values in absolute terms. Different hyperparameters can be obtained by varying 

the population size and number of iterations in GA. The objective function is the absolute value of 

the difference of RMSE (°C) between the training and test data sets, plus the training RMSE (°C). 

With respect to this objective function, not only the chosen hyperparameters make the model to have 

lower RMSE but also the difference between the results of training and test data set would be the 

minimum. 

• Decision Tree (DT) 
The hyperparameters for DT (optimized in Table S7) are: 

o Criterion= [ ‘MSE’, ‘friedman_MSE’, ‘MAE’, ‘Poisson’] 

A measure of the quality of a split into two branches: 

o ‘MSE’: mean squared error 

o ‘friedman_MSE’: mean squared error with Friedman’s improvement score for potential 

splits, 

o  ‘MAE’: mean absolute error  

o ‘poisson’: reduction in Poisson deviance to find splits. 

o Max_depth 

The maximum depth of the tree. The ‘none’ is imposed, nodes are expanded until all leaves are 

pure or until all leaves contain less than min_samples_split (the minimum required number of 

samples for splitting an internal node) samples, where min_samples_split is a hyperparameter to 

be defined. 

o Max_features= [int, float, ‘auto’, ‘sqrt’, ‘log2’] 

The number of features to consider each time to make the split decision.  

o int: max_features at each split 

https://en.wikipedia.org/wiki/David_Cournapeau
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o float: max_features is a fraction at each split; max_features * n_features (the number of 

features seen during fit) is the value to consider as features. 

o ‘auto’: max_features is n_features. 

o ‘SQRT’: max_features is the square root of n_features. 

o ‘log2’: max_features is logarithm of n_features. 

o None: max_features is n_features. 

Table S7. Optimized values of DT hyperparameters. 

Lake’s depth (m) Criterion max_depth max_features 

5 'MSE'  8 'auto'  

60 'friedman_MSE'  7 'log2'  

 

• Random Forest (RF) 
The hyperparameters for RF (optimized in Table S8) are: 

o N_estimators 

The number of trees in the forest. 

o Criterion= [’MSE’, ‘MAE’] 

The function to measure the quality of a split, where ‘MSE’ and ‘MAE’ are explained in previous 

section. 

o Max_depth 

The maximum depth of the tree. ‘None’ means that the nodes are expanded until all leaves are 

pure or until all leaves contain less than min_samples_split samples. 

Table S8. Optimized values of RF hyperparameters. 

Lake’s depth (m) n_estimators Criterion max_depth 

5 42 'MAE' 9 

60 26 'MSE' 7 

 

• Extremely Randomized Tree (ERT) 
The explanation of the hyperparameters of ERT is similar to RF. The optimized values are reported 

in Table S9. 

Table S9. Optimized values of ERT hyperparameters. 

Lake’s depth (m) n_estimators Criterion max_depth 

5 85 'MAE' 7 

60 181 'MSE'  7 

 

• K-nearest neighbour (KNN) 
The hyperparameters for KNN (optimized in Table S10) are: 

https://scikit-learn.org/stable/glossary.html#term-fit
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o N_neighbors 

Number of neighbours required for each sample.  

 

o Weights= [Uniform’, ‘Distance’, Callable] 

Weight function used in prediction. Possible values: 

o ‘Uniform’: all points in each neighbourhood are weighed equally. 

o ‘Distance’: weight points by the inverse of their distance. In this case, closer neighbours 

of a query point will have a greater influence than neighbours which are further away. 

o Callable: a user-defined function which accepts an array of distances, and returns an 

array of the same shape containing the weights. 

 

o Algorithm= [‘auto’, ‘Ball_Tree’, ‘KD_Tree’, ‘Brute’] 

Algorithm used to compute the nearest neighbours: 

o ‘Ball_tree’: recursively divides the data into nodes defined by a centroid C and radius r, 

such that each point in the node lies within the hyper-sphere defined by r and C.   

o ‘KD_Tree’: a binary tree structure which recursively partitions the parameter space along 

the data axes, dividing it into nested orthotropic regions into which data points are filed.   

o ‘Brute’: the brute-force computation of distances between all pairs of points in the 

dataset. 

o ‘auto’: decide the most appropriate algorithm based on the values passed to fit method. 

o Leaf_size 

Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, 

as well as the memory required to store the tree. The optimal value depends on the nature of the 

problem. 

o P 

Power parameter for the Minkowski metric.  

o P = 1: Manhattan_distance, 

o P = 2: Euclidean_distance, 

o Arbitrary P: Minkowski_distance. 

Table S10. Optimized values of KNN hyperparameters. 

Lake’s depth (m) N_neighbors Weights Algorithm Leaf_size P 

5 23 'uniform' 'KD_Tree' 22 3 

60 20 'uniform' 'KD_Tree' 22 3 

 

• Support Vector Regression (SVR) 
The hyperparameters for SVR (optimized in Table S11) are: 

o Kernel= ['Linear', 'Poly', 'RBF', 'Sigmoid', 'Precomputed'] 

The choice of the kernel type to be used in the algorithm. The first two kernels are linear and 

polynomial, and the other kernels are: 

o 'RBF': Radial Basis Function (RBF) kernel. 

o 'Sigmoid': based on the hyperbolic tangent,  

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor.fit
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K(X, Y) =  tanh(αX𝑇Y +  c) (S13) 

where α is slope, and  C  is the constant term; X and Y are inputs of the model and observed 

outputs, respectively. 

o 'Precomputed': used to pre-compute the kernel matrix from data matrices; matrix should 

be a square array of size number of samples. 

o Degree 

Degree of the polynomial kernel function (‘Poly’). Ignored by all other kernels. 

o Gamma= [‘Scale’, ‘auto’] 

Kernel coefficient for ‘RBF’, ‘Poly’ and ‘Sigmoid’: 

′scale′ =
1

n_features × X. var()
 

(S14) 

Where ‘.var’ is the variance, or 

‘auto’ =
1

n_features
 

(S15) 

o C 

Regularization parameter. The strength of the regularization is inversely proportional to C. Must 

be strictly positive. 

o Epsilon 

Epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty is 

associated in the training loss function with points predicted within a distance epsilon from the 

actual value. 

o Cache_size 

Specify the size of the kernel cache. 

Table S11. Optimized values of SVR hyperparameters. 

Lake’s depth (m) Kernel Degree Gamma C Epsilon cache_size 

5 'Poly' 5 'auto' 93.16 0.0555 162.9 

60 'RBF' 1 'auto' 158.4 0.0555 161.2 

 

• Multilayer Perceptron Neural Network (MLPNN)  
The meaning of the number of layers and neurons is explained in Appendix B of the main text (see 

the section for ANN). The hyperparameters for MLPNN (optimized in Table S12) are: 

o Number of hidden layers 

The number of neurons in the hidden layer which is also used for LSTM and BPNN in the 

following methods. 

o Activation function= [‘RELU’’, ‘Sigmoid’, ‘Softmax’, ‘Softplus‘, ‘Softsign’, ‘Tanh’, 

‘SELU’, ’ELU’, ‘Exponential’] 

o ‘RELU’’: linear unit activation function 

o ‘Softmax’: converts a real vector to a vector of categorical probabilities. 

o ‘Softplus‘:  
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softplus(x)  = log(exp(x) +  1) (S16) 

o ‘Softsign’: 

softsign(x)  =  x / (abs(x)  +  1) (S17) 

o ‘SELU’: Scaled Exponential Linear Unit 

o ’ELU’: Exponential Linear Unit.  

o Optimization= [‘SGD’, ‘RMSprop’, ‘Adam’, ‘Adadelta’, ‘Adagrad’, ‘Adamax’, 

‘Nadam’, ‘Ftrl’] 

o ‘SGD’: Stochastic gradient descent (with momentum) optimizer. 

o ‘RMSprop’: maintains a moving (discounted) average of the square of gradients and 

divides the gradient by the root of this average. 

o ‘Adam’: a stochastic gradient descent method that is based on adaptive estimation of 

first-order and second-order moments, proposed by Kingma and Ba (2014). 

o ‘Adadelta’: a stochastic gradient descent method that is based on adaptive learning rate 

per dimension to address the continual decay of learning rates throughout training and 

the need for a manually selected global learning rate. 

o ‘Adagrad’: with parameter-specific learning rates, which are adapted relative to how 

frequently a parameter gets updated during training. The more updates a parameter 

receives, the smaller the updates. 

o ‘Adamax’: a variant of Adam based on the infinity norm. Adamax is sometimes superior 

to adam, especially in models with embeddings. 

o ‘Nadam’: much like Adam is essentially RMSprop with momentum, Nadam is Adam 

with Nesterov momentum. 

o ‘Ftrl’: obtained from McMahan et al. (2013) 

 

o Learning rate 

The parameter that controls how much to change the model in response to the estimated error each 

time the model weights are updated.  

o Batch size 

The number of samples to work through before updating the internal model parameters. 

o Number of epochs 

The number of times that the whole set of patterns is presented to the network affected by other 

hyperparameters such as number of training data, number of hidden layers and number of neurones 

(Rafiq et al., 2011). 

Table S12. Optimized values of MLPNN hyperparameters. 

https://keras.io/api/optimizers/sgd
https://keras.io/api/optimizers/rmsprop
https://keras.io/api/optimizers/adam
https://keras.io/api/optimizers/adadelta
https://keras.io/api/optimizers/adagrad
https://keras.io/api/optimizers/adamax
https://keras.io/api/optimizers/Nadam
https://keras.io/api/optimizers/ftrl
https://keras.io/api/optimizers/sgd
https://keras.io/api/optimizers/rmsprop
https://keras.io/api/optimizers/adam
https://keras.io/api/optimizers/adadelta
https://keras.io/api/optimizers/adagrad
https://keras.io/api/optimizers/adamax
https://keras.io/api/optimizers/Nadam
https://keras.io/api/optimizers/ftrl
https://machinelearningmastery.com/author/jasonb/
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Lake’s 

depth 

(m) 

Number 

of hidden 

layers 

Number 

of 

neurons 

Activation 

function 

Dropout Optimiz

ation 

Learning 

rate 

Batch 

size 

Number 

of epochs 

5 1 9 'RELU’' 0 SGD 0.08465 

 

43 188 

60 15 14 'RELU’' 0.007955 

 

SGD 0.10555 43 161 

 

• Long Short-Term Memory (LSTM) 
The hyperparameters are similar to MLPNN section. The optimized values are reported in Table S13. 

Table S13. Optimized values of LSTM hyperparameters. 

Lake’s 

depth 

(m) 

Number 

of hidden 

layers 

Number 

of 

neurons 

Activation 

function 

Dropout Optimiz

ation 

Learning 

rate 

Batch 

size 

Number 

of epochs 

5 1 8 'Tanh' 0.02787 Adam 0.06281 177 149 

60 1 8 'Tanh' 0 Adam 0.06281 177 149 

 

• Back Propagation Neural Network (BPNN) 
The hyperparameters for BPNN (optimized in Table S14) are: 

o Activation= [‘Identity’, ‘Logistic’, ‘Tanh’, ‘RELU’’] 

Activation function for the hidden layer(s): 

o ‘Identity’: useful to implement linear bottleneck, returns the following equation: 

f(x)  =  x  (S18) 

o ‘Logistic’: the logistic sigmoid function, returns the following equation: 

f(x)  =  1 / (1 +  exp(−x)) (S19) 

o ‘Tanh’: the hyperbolic tan function, returns the following equation: 

f(x)  =  tanh(x) (S20) 

o ‘RELU’’: the rectified linear unit function, returns the following equation:  

f(x)  =  max(0, x) (S21) 

o Solver (Optimizer)= [‘LBFGS’, ‘SGD’, ‘Adam’] 

The solver for weight optimization: 

o ‘LBFGS’: an optimizer in the family of quasi-Newton methods. 

o ‘SGD’: stochastic gradient descent. 

o ‘Adam’: explained in MLPNN. 
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o Batch_size 

Size of minibatches, which the gradient is calculated across the entire batch before updating 

weights, for stochastic optimizers. If the solver is ‘LBFGS’, the classifier will not use minibatch. 

When set to “auto”, batch_size is equal to minimum of 200 and n_samples. 

o learning_rate= [‘Constant’, ‘Invscaling’, ‘Adaptive’] 

Learning rate schedule for weight updates: 

o ‘Constant’: a constant learning rate given by ‘learning_rate_init’. 

o ‘Invscaling’: gradually decreases the learning rate at each time step ‘t’ using an inverse 

scaling exponent of ‘power_t’. 

o ‘Adaptive’: keeps the learning rate constant to ‘learning_rate_init’ as long as training loss 

keeps decreasing. Each time two consecutive epochs fail to decrease training loss or fail 

to increase validation score, the current learning rate is divided by 5. 

o Learning_rate_init 

The initial learning rate used. It controls the step-size in updating the weights.  

o Max_iter 

Maximum number of iterations. The solver iterates until convergence (determined by ‘tol’) or this 

number of iterations. For stochastic solvers (‘SGD, ‘Adam’), note that this determines the number 

of epochs (how many times each data point will be used), not the number of gradient steps. 

Table S14. Optimized values of BP hyperparameters 

Lake’s 

depth 

(m) 

Number 

of hidden 

layers 

Number 

of 

neurons 

Activation 

function 

Optimiz

ation 

Learning 

rate 

Learning 

rate initial 

Maximum 

iteration 

5 19 20 'RELU’' 'LBFGS' 'Adaptive' 0.00431 211 

60 15 19 'RELU’' 'LBFGS' 'Adaptive' 0.00471 196 

 

• Adaptive Network-based Fuzzy Inference System (ANFIS)  
The features considered in this method are taken from the MATLAB toolbox for ANFIS. Based on 

our available data, the best hyperparameters are shown in Table S15. 

 

o Input Membership function 

The function based on the fuzzy logic principles train the model set to calculate the parameters of 

membership function, which represents the degree of truth in fuzzy logic (Opeyemi and Justice, 

2012). The following functions are introduced: 

o Gaussian (Gaussmf): 

f(x)  =  e
−(𝑥−𝑐)2

2𝜎2  
(S22) 

where 𝜎 is the standard deviation, 𝑐 is the mean. 

o Generalized bell (Gbellmf): 
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f(x)  =  
1

1 + |
𝑥 − 𝑐
𝑎 |

2𝑏 
(S23) 

where 𝑎, 𝑏, and 𝑐 are parameters. 

o Sigmoid (Sigmf): 

f(x)  =  
1

1 + 𝑒−𝑎𝑘(𝑥−𝑐𝑘)
 

(S24) 

where 𝑎𝑘 and 𝑐𝑘 parameters. 

o Triangular membership function (Trimf): 

f(x)  =  

{
 
 

 
 
0,                          𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
,          𝑎 ≤ 𝑥 ≤ 𝑏   

𝑐 − 𝑥

𝑐 − 𝑏
,          𝑏 ≤ 𝑥 ≤ 𝑐 

0,                           𝑐 ≤ 𝑥 }
 
 

 
 

 

(S25) 

where 𝑎, 𝑏, and 𝑐 are parameters. 

o Output Membership function 

The output type of the membership function should be chosen in one of these two ways: 

o Linear 

o Constant 

o Optimisation method 

Method used to train the model. Two optimization methods are used to reduce the error: 

o Backpropagation: for all parameters (as explained in Appendix B). 

o Hybrid method: consisting of backpropagation for the parameters associated with the 

input membership functions, and least squares estimation for the parameters associated 

with the output membership functions. 

o Epochs 

A measure of the number of times that the model is trained to update the weights. 

Table S15. Optimized values of BP hyperparameters 

Lake’s 

depth (m) 

Input MF Output MF Optimization Epochs 

5 Trimf Linear Hybrid 100 

60 Trimf Linear hybrid 100 
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