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Abstract: EEG-based brain-computer interfaces (BCI) have promising therapeutic potential beyond 14 

traditional neurofeedback training, such as enabling personalized and optimized virtual reality (VR) 15 

neurorehabilitation paradigms where the timing and parameters of the visual experience is 16 

synchronized with specific brain-states. While BCI algorithms are often designed to focus on 17 

whichever portion of a signal is most informative, in these brain-state-synchronized applications, it 18 

is of critical importance that the resulting decoder is sensitive to physiological brain activity 19 

representative of various mental states, and not to artifacts, such as those arising from naturalistic 20 

movements. In this study, we compare the relative classification accuracy with which different 21 

motor tasks can be decoded from both extracted brain activity and artifacts contained in the EEG 22 

signal. EEG data was collected from 17 chronic stroke patients while performing six different head, 23 

hand, and arm movements in a realistic VR-based neurorehabilitation paradigm. Results show that 24 

the artifactual component of the EEG signal is significantly more informative than brain activity 25 

with respect to classification accuracy. This finding is consistent across different feature extraction 26 

methods and classification pipelines. While informative brain signals can be recovered with suitable 27 

cleaning procedures, we recommend that features should not be designed solely to maximize 28 

classification accuracy, as this could select for remaining artifactual components. We also propose 29 

the use of machine learning approaches that are interpretable to verify that classification is driven 30 

by physiological brain-states. In summary, whereas informative artifacts are a helpful friend in BCI- 31 

based communication applications, they can be a problematic foe in the estimation of physiological 32 

brain states. 33 

Keywords: EEG; Artifact; BCI; Classification; Virtual Reality; Naturalistic Movement; Stroke; 34 

Neurorehabilitation 35 

 36 

1. Introduction 37 

1.1 Motivation 38 

Brain-computer interfaces (BCI) are becoming increasingly applied in rehabilitative 39 

settings. At the root of every BCI is the transformation of recorded activity into 40 

quantifiable outputs. Yet, brain activity, recorded as data measured from 41 

electroencephalogram (EEG), is in general mixed with artifacts such as those arising from 42 

muscle activity during the same time period [1]. Since the voltage potentials of muscle 43 

activity measured with surface electrodes are several orders of magnitude higher than 44 

those generated by brain activity, this can cause BCI algorithms to learn to generate 45 

optimal output based on artifacts [2]. While this may be acceptable (and even increase 46 
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accuracy rates) in the use of BCI as an actuator (for example, in letter selection or 47 

wheelchair operation), the classification result is then not a reflection of high-level 48 

neuronal brain state but rather of concurrently generated artifacts. 49 

 50 

The mixing of brain signals and artifacts can be problematic in BCI applications 51 

designed to detect a specific brain state, such as in personalized neurorehabilitation [3]. 52 

Therefore, in these cases, it is essential to first distinguish between brain and artifact, 53 

especially when decoding brain activity during movement execution. The problem in 54 

distinguishing movement related artifacts from movement related neuronal activity is 55 

precisely that the artifacts are not random noise: They contaminate the signal of interest 56 

(i.e. the higher-level brain state) in a predictable way, and may thereby be even more 57 

informative from the point of view of an automated classifier. We therefore consider it 58 

relevant to compare classification accuracy from the artifact components of the EEG signal 59 

in relation to brain signal components. In this study, we (1) characterize movement 60 

artifacts from different movement primitives, (2) separate data into brain signal and 61 

muscle- and eye-based artifact signal, (3) use machine learning classifiers to predict 62 

movement from both brain and artifact components, and (4) interpret the results to 63 

understand what features the classifier identifies as informative. 64 

 65 

1.2 EEG Artifacts and Processing Pipelines 66 

The most obvious artifacts arise from muscle activity or eye movements, however, 67 

cardiac and sweat-related artifacts [4], as well as 50/60 Hz power line noise [5] also play a 68 

relevant role. Even though the application of EEG in rehabilitation paradigms is 69 

expanding, there is no generally consensus on the procedure for dealing with artifacts, 70 

especially those arising from naturalistic movements during the EEG recording. Typically, 71 

processing pipelines include a step to remove bad channels and then perform either 72 

principal component analysis (PCA) or independent component analysis (ICA) with the 73 

components selected manually by visual inspection [2, 6-8]. However, important 74 

methodological details are often omitted in literature [1, 2, 8, 9]. 75 

 76 

A typical subsequent step in standard state-of-the-art EEG signal classification 77 

pipelines is to use spatial filters to increase class separability [10]. One of the most robust 78 

and effective methods is the common spatial pattern (CSP) algorithm, which finds spatial 79 

pattern projections that maximize the variance between classes [11, 12]. However, since 80 

this method blindly maximizes separation, it could be susceptible to maximizing the 81 

importance of co-occurring artifacts. Apart from CSP, a large variety of different EEG 82 

preprocessing pipelines have been put forward using different parameters [13, 14] and it 83 

has become a separate area of study to compare the accuracy of automated detection 84 

algorithms. 85 

 86 

In general, artifacts are considered in the literature to be detrimental to classification 87 

accuracy [1], even though their advantage in special cases is acknowledged [15, 16], such 88 

as the use of eye blinks or facial muscles to control computers. Whether or not EEG 89 

artifacts are problematic in BCI-based neurorehabilitation during naturalistic movements 90 

is an open question that we address in this study. 91 

 92 

1.3 Study Design 93 

BCIs in neurorehabilitation are typically related to recovering a specific lost or 94 

impaired function (see a recent review for extensive background information [17]. We 95 

therefore designed our paradigm to test the influence of physiologically relevant 96 

movements that are frequently impaired by stroke on the EEG signal. Our participants 97 

were guided through a virtual reality (VR) paradigm, in which they observed the task 98 

environment and their arms from a first-person point-of-view perspective. We chose a 99 
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VR-based paradigm because the combination of EEG and VR allows for a future “closed- 100 

loop” application where the EEG-signal influences the VR-paradigm in real-time to 101 

optimize treatment outcome. Additionally, VR paradigms are also reported to be more 102 

engaging, motivating, and fun than their traditional therapeutic counterparts [18, 19], and 103 

we have successfully created a similar closed-loop system using EMG [20]. 104 

 105 

In order to investigate the relative contribution of brain signal vs. artifact signal to 106 

decoding accuracy, we separate the EEG signal into an artifact part and a brain activity 107 

part using ICA with an automated algorithm. We then test how well the specific 108 

naturalistic movement that occurred during the respective trial is predicted from each set 109 

of data. This is done with two different feature extraction methods (one quantifying 110 

average spectral power per channel, and the other considering the time-course of the 111 

activity) and two multiclass linear machine learning classifiers. Simultaneous to the EEG 112 

recording, we also recorded electromyography (EMG) from the upper limb and neck 113 

muscles as a “benchmark” for the classification accuracy that can be achieved from the 114 

muscle activity during the movement. 115 

2. Materials and Methods 116 

2.1 Participants 117 

The study protocol was approved by the local Ethics Review Committee of the 118 

Medical Faculty of Eberhard Karls University Tübingen (Protocol BNP-2019-11). The 119 

study was conducted in accordance with the latest version of the Declaration of Helsinki. 120 

After giving written informed consent, 17 patients who had previously been diagnosed 121 

with stroke were included in the study fulfilling the following pre-established inclusion 122 

criteria: (i) age of 18–80 years, (ii) participant had an ischemic stroke more than 12 months 123 

ago, (iii) participant has a motor impairment of the arm and/or hand as a result of the 124 

stroke (iv) participant is otherwise in good physical and mental health. 125 

 126 

2.2 Experimental Set-up 127 

Scalp EEG was recorded using a 64-channel EEG cap (Easycap GmbH, Munich) in a 128 

10-5 system layout [21] with an additional concentration of electrodes over the motor 129 

cortex (see Appendix, Figure A1). Muscle activity was recorded using 7 bipolar surface 130 

EMG electrodes (Kendall): Five electrodes were placed on the arm used in the task on the 131 

brachioradialis, extensor digitorum, flexor digitorum profundus, biceps, and deltoid, and 132 

two more electrodes were placed on the left and right sternocleidomastoid. EEG and EMG 133 

signals were acquired simultaneously using a biosignal amplifier (NeurOne Tesla, 134 

Bittium, Finland) at a sample rate of 1 kHz in DC. Participants were seated in a 135 

comfortable chair, while visual stimulation was provided using the HTC Vive Virtual 136 

Reality Headset1. Hand positioning and movement was measured using the Valve Index 137 

Knuckle Controllers2. Timestamps and event triggers were sent into the NeurOne data 138 

stream through a user data protocol (UDP) at the start and end of the reference phase, 139 

wait period, and task. Synchronization between the task and EMG/EEG activity was 140 

achieved through timestamp alignment.  141 

 142 

2.3 Virtual Reality Presentation 143 

Tasks were implemented using Unreal Engine 4 3 , and were presented to the 144 

participant through the VR headset. Prior to beginning the experiment, a proper fit of the 145 

headset was achieved for each patient, and verbal confirmation of a “clear image” was 146 

 
1 https://vive.com/ 

2 https://store.steampowered.com/valveindex/ 

3 https://www.unrealengine.com/ 
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obtained. Hand position calibration was performed before the experimental session began 147 

by establishing a comfortable position on the chair of the arm, thereby allowing each task 148 

to be presented within the patient's reach.  149 

 150 

2.4 Task Protocol 151 

Two 3-minute eyes-open resting-state EEG measurements were recorded in 152 

sequence, with and without wearing the VR headset, in order to visually inspect the data 153 

quality. Patients were then given written instructions accompanied by verbal 154 

explanations on how to perform each task. Then, a practice round was carried out, where 155 

patients performed each task under verbal guidance until executed correctly. Six different 156 

tasks in total were performed, requiring the execution of a particular movement sequence. 157 

Each task began with a 2-second fixation phase, where the respective task was indicated 158 

by the virtual environment, and during which patients moved toward the starting 159 

positions. A 4-second preparation phase followed, which required the patient to maintain 160 

a steady head and hand position at the starting position. This 4-second countdown was 161 

programmed to automatically restart if any movement was detected during the fixation 162 

phase. Once the fixation phase was completed, the patient was free to perform the task 163 

without a time limit. A 2-second rest phase then followed, after which the next task was 164 

initiated, beginning again with the fixation phase. The lamp task was not included in 165 

subsequent analysis due to the trial duration of a button press being too short. The 166 

remaining five tasks were used for EEG-classification. Representations of each task can be 167 

seen below in Figure 1. 168 

Figure 1. The five tasks with VR visualization and movement depiction. (Painting) Wrist extension, followed by flexion, 169 
followed by extension. (Faucet) Forearm supination of >20°, followed by a pronation. (Glass) A complex movement 170 
consisting of an elbow extension, a grasp, elbow flexion, elbow extension, and a release of the grasp. (Head Slow) Smooth 171 
pursuit of the head while tracking a target moving to the right, then left, then right. (Head Fast) Saccadic movement of the 172 
head toward a target appearing to the right, then left, then right. (Lamp) Button press with the index finger or thumb (only 173 
included in EMG analysis). 174 
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These phases taken together represent the process for a single trial (see Figure 2). In 175 

a single run, 10 trials of each task movement were required, followed by a break. Study 176 

participants performed 3 runs, fewer if they found it too strenuous. Tasks were presented 177 

in random order, with the constraints that the same task would not appear more than 178 

twice in a row. 179 

Figure 2. Visualization of one complete trial, along with timings. Rest phase between trials not shown. 180 

2.5 Data Preprocessing 181 

Data processing was performed using custom scripts in MATLAB4 (R2020a), using 182 

EEGLab Toolbox 2020_0 [22], and FastICA toolbox v. 2.5 [23]. EEG and EMG data were 183 

down-sampled to 500Hz, high-pass filtered with a cut-off frequency of 0.5Hz and notch- 184 

filtered to attenuate 50 Hz electrical line noise. The data was then epoched according to 185 

the triggers sent during the tasks. In particular, for each single trial, a preparation epoch was 186 

extracted between onset of the fixation timer and the onset of the task, and an execution 187 

epoch was extracted between the task onset and completion. Checks were also performed 188 

to ensure that no false triggers were present and/or used. Finally, data was split into EMG 189 

and EEG, as seen by the full pipeline visualized in Figure 3. 190 

 191 

 
4 https://www.mathworks.com/products/matlab.html 
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Figure 3. Method Pipeline, split into EMG and EEG pathways. 192 

 193 

2.5.1 EMG Data 194 

The resulting epochs were of differing lengths, due to variance in the duration of 195 

movement execution. EMG data consisted of 7 bipolar channel recordings, 5 ‘arm’ 196 

electrodes and 2 ‘neck’ electrodes. To prepare features from the EMG data for the machine 197 

learning classifier task, the data was first high-passed filtered with a cut-off frequency of 198 

10Hz. Then, the envelope of the data was computed using a root mean square (RMS) 199 

sliding window of 250ms. This envelope was then gaussian smoothed with a 100ms 200 

sliding window. Next, the duration of each envelope was normalized and resampled to 201 

contain 1000 time points. This data was then binned by averaging over every 100 time 202 

points for each trial, creating a vector containing 10 elements. This procedure was 203 
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performed for each channel, resulting in 70 feature vectors per participant, per trial; which 204 

was used for subsequent classification. The process is visualized in Figure 4. 205 

 206 

Figure 4. EMG processing steps. (a) RMS of high-passed EMG data. (b) Positive portion of the envelope. (c) Gaussian 207 
smoothed and broken into equal 100-point time bins. (d) Averaged time bins, resulting in 10 values, plotted here as a line. 208 

2.5.2 EEG Data 209 

Given the nature of a study examining artifacts, we purposefully chose not to remove 210 

any of the trials or electrodes in our preprocessing pipeline. EEG data were down-sampled 211 

to 500Hz, and then high-pass filtered with a cut-off frequency of 0.5Hz. The data was then 212 

notch filtered and then re-referenced to a common average reference. The EEG data was 213 

further processed by a baselining in the form of subtracting the mean from each trial 214 

epoch. The next step involved performing ICA over each participant’s complete set of task 215 

execution data (aggregated across all tasks). We then used an automated process 216 

(EEGLAB’s IClabel function) to classify the resulting independent components. 217 

Components were ranked according to type (Brain, Muscle, Eye, Artifact, Cardiac, Other), 218 

and in order of their variance. Using IClabel, we selected the top-10 ranked ‘brain’ 219 

independent components, as well as the top-10 ranked ‘artifact’ (combined ‘Muscle’ and 220 

‘Eye’) independent components to extract the respective signal portions. This resulted in 221 

our 3 EEG conditions: brain-only, artifact-only, and all. 222 

 223 

At this point, our EEG processing pipeline split into two approaches: The Bandpower 224 

Approach and The Time-Frequency Approach.  225 

 226 

2.5.3 The Time-Frequency Approach 227 

For each condition separately, time frequency analysis (TFA) was performed using 228 

FFT in the range of 3-40Hz across each participant, task, and individual trial. We selected 229 

5 different frequency bands: theta (3-7Hz), alpha (7-13Hz), low beta (13-16Hz), beta (16- 230 

26Hz), and gamma (26-40Hz), and then averaged across each of these ranges for all trials 231 

within a task for each participant. In the brain and artifact conditions, this trial-averaged 232 

TF-data was then binned to create 10 time bins for each of the 5 frequency bands for each 233 

of the 10 components over each task and each participant, creating 500 (10 x 5 x 10) features 234 

for each participant. Whereas in the ‘all’ condition, all 64 components remained, creating 235 

3200 (10 x 5 x 64) features for each participant. To reduce the risk of overfitting, the 236 

dimensionality of the data for each condition was reduced to 70 features (to include 14 237 

features for each of the 5 frequency bands) using PCA separately for each task and 238 
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participant. This data was then passed to the classifier to obtain prediction accuracy. We 239 

were also able to examine the classification results of each frequency band independently.  240 

 241 

2.5.4 The Bandpower Approach 242 

For each condition separately, the EEG signals were bandpass-filtered in each of six 243 

frequency bands: theta (3-7Hz), alpha (7-13Hz), low beta (13-16Hz), beta (16-26Hz), 244 

gamma (26-40Hz), and “all” (3-40Hz). The channel-specific bandpower for every single 245 

trial was calculated for the band-passed data using the equation: 246 

10 ⋅ 𝑙𝑜𝑔10 (
1

𝑇
∑ 𝑥𝑡

2𝑇
𝑡 ), (1) 

where 𝑥𝑡 represents the task signal of a single trial at time-point t with the length T, over 247 

each participant and task. These single values were then the features, resulting in 64 248 

features in total (one for each channel) for each trial and each task. Likewise, we were also 249 

able to obtain classification accuracy for each frequency band. To obtain topographical 250 

plots, we averaged the trials for each channel.  251 

 252 

2.5.5 Common Spatial Patterns (CSP)  253 

The CSP algorithm uses spatial pattern projections to maximize the discriminability 254 

between classes. CSP is in general designed for a two-class problem. Here, the MNE5 255 

decoding package CSP was used and adapted for the current study’s multiclass-problem 256 

[24]. The covariance matrix of the epoched EEG signals from the classes were calculated 257 

and sorted by their eigenvalues, in order to find the projections with the highest variances 258 

between the classes. For the covariance matrix calculation, the Ledoit-Wolf shrinkage 259 

estimator was applied. The number of components (i.e. spatial projections) chosen was 260 

four, resulting in a feature reduction from 64 to four. These components were then plotted 261 

as topographies and visually compared to the “brain”-only derived independent 262 

components. The goal of implementing the CSP algorithm was to inspect the spatial 263 

projections (i.e. components) of cleaned EEG signals for artifacts, hence it was only 264 

applied to the “brain”-only derived independent components.  265 

 266 

2.6 Classifier Properties 267 

2.6.1 The Time-Frequency Approach 268 

We input the feature vectors into MATLABs fitcecoc6, which is a “multiclass error- 269 

correcting output codes (ECOC)'' model that inherently takes a multiclass problem and 270 

reduces it to a set of binary learners through the use of support vector machines (SVM). 271 

ECOC models have shown to improve accuracy with respect to other multiclass models 272 

[25].  In our classifier, we chose to take an all-versus-one approach instead of one-vs-one 273 

approach. In general, 70 features were used for the TFA approach and EMG, and 14 274 

features when examining individual frequency bands from the TFA approach. No 275 

hyperparameter optimization was performed, as this was not the aim of the current study. 276 

For an example of a VR-EEG optimized signal analysis pipeline, please see [3]. The 277 

classifier pipeline used an 80-20% train-test split, where the model variables were created 278 

in the training phase, and then never-before-seen testing data was used for the testing 279 

accuracy. We bootstrapped our model 100 times, using a new 80-20% split of the data each 280 

time.  281 

  282 

 
5 https://mne.tools/stable/index.html 

6 https://www.mathworks.com/help/stats/fitcecoc.html 
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2.6.2 The Bandpower Approach 283 

For this approach, the classification of the tasks was performed in Python7, using the 284 

scikit-learn package8. The resulting 64 features were fed into a linear classifier (multiclass 285 

linear discriminant analysis, LDA) that used a singular value decomposition solver, which 286 

is recommended for data with a large number of features. For the classification, a 10-times 287 

10-fold cross-validation (CV) approach was used. In CV, the dataset was split into 10 288 

pieces, using each piece once as test data and the other 9 pieces as training data (90-10% 289 

split), and repeating that procedure 10 times, which resulted in 100 classification accuracy 290 

values per participant and frequency band. Participants with less than 10 trials in a 291 

condition were excluded for both approaches (2 participants). 292 

3. Results 293 

3.1 Summary 294 

EEG data recorded during the execution of 5 different movements was demixed into 295 

an artifact portion as well as a brain signal component portion using ICA. We then 296 

compared how informative each dataset is with regard to predicting (post-hoc) the 297 

movement that had been executed during the respective trial. Two different methods were 298 

used for feature extraction (time-frequency and bandpower analysis). The data consisting 299 

of artifact components was consistently more predictive than the data consisting of brain- 300 

signal components. EMG data was collected to serve as a benchmark for the classification 301 

accuracy that can be achieved from direct measures of muscle activity. 302 

 303 

3.2 EMG Analysis 304 

As muscle activity greatly influences EEG during movement, EMG data was 305 

recorded as a benchmark for how informative pure muscle activity is for movement 306 

classification. Preprocessing of EMG data resulted in distinct patterns of activation for 307 

each of the movements that can be visualized by plotting the average rate of change of 308 

muscle activity during task execution. Two examples of how the movement sequence 309 

maps to a corresponding “EMG fingerprint” are shown in Figure 5 (see Appendix, Figure 310 

2A for complete participant data). 311 

 312 

Figure 5. Visualization of EMG activity during task execution (duration normalized) showing the average rate of change 313 
of EMG activity across all study participants, arbitrary units. (a) Biceps muscle activity during faucet rotation task. (b) 314 
Extensor digitorum muscle activity during back-and-forth painting task. Hand positions at different phases of the task 315 
illustrated below. 316 

 
7 https://www.python.org/ 

8 https://scikit-learn.org/stable/ 
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3.3. Artifact Characterization 317 

Relevant sources of artifacts with respect to BCI signal processing are eye blinks, eye 318 

movements and tonic or phasic muscle activity. Representative examples of artifact ICA 319 

component topographies are shown in Figure 6, as visualized using EEGLAB’s IClabel 320 

extension.  321 

Figure 6. (a) Example output from EEGLABs IClabel function, indicating the probability of each IC’s class. Here, ICA 322 
components 1, 4, 6, and 9 are classified as eye and muscle activity, whereas 2, 3, 5, 7, 8, 10, 11, and 12 are classified as brain 323 
activity. Profiles of outlined ICs 1, 2, and 4 are shown in detail. (b) Detailed view of IC 1, eye. (c) Detailed view of IC 2, 324 
brain. (d) Detailed view of IC 4, muscle. 325 

3.4 Classification Accuracy 326 

One major undertaking of this research was to determine the extent to which 327 

classification algorithms would use artifact activity to predict classes. To address this 328 

question, we separated EEG activity into ‘brain-only’ and ‘artifact-only’ using an objective 329 

ICA process: EEGlab’s IClabel algorithm. Furthermore, we had two baseline conditions to 330 

compare to: the EMG and ‘All ICs’. In an effort to make the process more robust to 331 

preprocessing bias, we also chose two separate approaches for our feature generation. Our 332 

returned classifier accuracy with both feature generation methods show a significant 333 

advantage for the ‘artifact-only’ condition versus the ‘brain-only’ condition. Furthermore, 334 

we found additional significant differences when using ‘All ICs’ and then again when 335 

using the EMG feature data. These group results can be seen in Figure 7, and participant 336 

level results can be found in the Appendix, Figure 3A. 337 
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 338 

Figure 7. Comparison of Classifier Conditions. Group averaged classification accuracy is displayed for each of the separate 339 
conditions in a 5-class all-vs-one classification. “Brain” and “Artifact” consisted of 10 ICs across 10 bins of time, in 5 340 
frequency bands, with dimensionality reduction to 70 features. “All ICs” was calculated by the same procedure, only with 341 
all ICs available. “EMG” used 7 channels on the side of movement, binned into 10 time bins each for features. Significance 342 
levels: * < 0.05, ** < 0.01, *** < 0.001 343 

In addition to the overall condition comparison, we performed a subanalysis 344 

focusing on the differing frequency bands. Here, we observe that overall accuracy values 345 

are lower for the brain-only condition in both approaches, and that the theta band returns 346 

the highest accuracy in the artifact-only condition, while the gamma band returns the 347 

highest accuracy in the brain-only condition, as seen in Figure 8.   348 

Figure 8. Frequency based analysis of EEG conditions. Results from the time frequency analysis approach (a) and 349 
bandpower (b) in each of 5 frequency bands. The artifact and brain conditions consisted of 10 ICs. The time frequency 350 
approach used 14 features for each frequency, the bandpower approach used 64 features. Significance levels: * < 0.05, ** < 351 
0.01, *** < 0.001 352 

3.5 Interpretation of Classifier Results 353 

3.5.1 Motivation 354 

Beyond performing a simple comparison of artifact versus brain-derived activity 355 

with respect to classification accuracy, we also sought to understand which features were 356 
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utilized by the classification algorithm in order to maximize class separability between 357 

classes. To do this, we interpreted the weight vectors produced within the TFA approach 358 

and re-projected them into sensor space. Additionally, in the bandpower approach, we 359 

averaged over each channel’s activity for all trials (in a given frequency band) to create 360 

topographies for each of the three conditions (all data, artifact, brain).  361 

 362 

3.5.2 Visualization of TFA approach 363 

We interpreted the binary weight vectors returned from the all-vs-one classification 364 

algorithm by re-representing them in the sensor space using methods found in [26]. To 365 

begin, we first multiplied the weights with the coefficients saved in the PCA step of our 366 

pipeline, projecting back to a 500 dimension space (10 IC x 5 frequency band x 10 time 367 

bins), as seen for a single participant and single task in Figure 9.  368 

  369 

Figure 9. Reprojection of the time-frequency domain of 10 brain components as weighted by the classification model. The 370 
y-axis contains the ICs, whereas the x-axis is split into 10 time bins for each of the 5 chosen frequency bands, separated by 371 
vertical black lines. Maximum activations can be seen as red, minimum activations as blue. 372 

This reprojection shows us the time-frequency domain of each of the 10 brain 373 

components as weighted by the classification model. If we then take the values from one 374 

of these frequency bands, and multiply them by the ICA matrix, we can visualize the 375 

topography, as seen for the alpha band in Figure 10 (top) below.  376 

 377 

With this in mind, we then multiplied this by the covariance matrix of the epoched 378 

task data, allowing us to visualize the sensor space for that single task. These task-based 379 

topographies can be thought of as an “ideal” topography over time that maximizes the 380 

ability to separate the task (i.e. the “painting” task, where the participant moves the arm 381 

back-and-forth, here, the left arm) from the others with respect to classification accuracy 382 

weight vectors, as seen in Figure 10 (bottom). 383 
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  384 

Figure 10. Classifier visualization of the TFA approach. (Top) These topographies represent the total ICA matrix 385 
multiplied with the first time bin of the TFA for the high beta frequency band. (Bottom) These topographies represent the 386 
further multiplication by the single task’s (here: “painting”) averaged covariance matrix. These topographies can be 387 
thought of as the “ideal” topography over time that maximizes the ability to separate the task from others with respect to 388 
the classification weight vectors. This patient used the left hand. 389 

3.5.3 Visualization of Bandpower approach 390 

The bandpower approach provided us with the opportunity to average across all 391 

trials for a given channel in a given frequency band, and then plot these results as a 392 

topography for each task. Doing so revealed to us activity localized in the frontal channels 393 

in the artifact condition, and over the motor cortex in the brain condition. However, the 394 

topographies also showed us that in the condition containing all available data, activity 395 

(in this case the high beta frequency) very closely mimics that of the artifact condition, as 396 

seen in Figure 11.  397 

Figure 11. Group averaged bandpower per condition over high beta frequency. Rows represent tasks (Painting, Faucet, 398 
Glass, Head Slow, Head Fast). (a) Using all available data. (b) Artifact-only condition. (c) Brain-only condition. 399 
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3.6 Common Spatial Patterns (CSP) for Feature Selection 400 

In an effort to further scrutinize the activity remaining within the brain-labeled ICs, 401 

we used CSP, a common state-of-the-art methodology that finds spatial patterns which 402 

maximize the variance between classes. Our rationale was that since artifacts have in 403 

general led to the greatest classification accuracy, if they remained somehow present in 404 

the data, this algorithm might be susceptible to utilizing the artifact-contaminated data in 405 

its components. In Figure 12, the subfigures on the left (x1) represent an instance of 406 

“cleaned” brain-activity from a patient, while on the right (x2), we see remaining artifacts 407 

despite the same pipeline from another patient. In detail, subfigures a1 and a2 show 408 

continuous EEG signal before (blue) and after (red) applying ICA for artifact removal. The 409 

top 10 brain-labeled ICs are found in subfigures b1 and b2, and top 4 spatial projections 410 

of the CSP algorithm are visualized in c1 and c2. It appears that artifact-contaminated 411 

channels could be successfully cleaned with the ICA approach, as the top 10 brain-ICs 412 

from both patients show topographies typical of brain activity. Critically, however, after 413 

the CSP step, we see from the projections that artifact removal was not entirely successful 414 

for the patient’s data as visualized in c2. In particular, the first CSP component, which is 415 

the projection with the highest variance, has a topography typically seen from eye 416 

movement artifact.  417 

  418 

Figure 12. EEG signals before (raw EEG, blue) and after (clean EEG, red) artifact removal with ICA from patient 1 (a1) and 419 
patient 2 (a2). The top-10 brain ICs are shown in (b1) and (b2), and the top-4 spatial pattern projections after applying the 420 
CSP algorithm shown in (c1) and (c2). The topographies show successful removal of artifacts in patient 1, while artifacts 421 
are present in the topographies of patient 2. 422 

  423 
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4. Discussion 424 

4.1 Implications 425 

As EEG-based BCIs are becoming increasingly relevant in research, clinical, and 426 

consumer applications, it also becomes increasingly important to understand the origin 427 

of the signal features which underlie the utilized output, especially in scenarios where the 428 

BCI is designed to identify a physiological brain state. As the results of this study show, 429 

state-of-the-art automated EEG cleaning pipelines using ICA are an effective method to 430 

remove EEG artifacts from data recorded from patients with stroke wearing a VR headset 431 

and performing naturalistic movements in a neurorehabilitation setting. Across two 432 

different feature extraction methods, classifier visualization shows that topographies 433 

consistent with brain-activity are recovered from the cleaned data as the most informative 434 

features. 435 

 436 

On the other hand, when the EEG data is not cleaned, the most informative features 437 

show artifact topographies in both feature extraction methods. This pattern can also be 438 

seen in the classification accuracy when comparing the brain-signal vs. the artifact portion 439 

of the EEG data, as artifact components are consistently more informative and are 440 

therefore selected by a classifier if available. Furthermore, even after the cleaning process, 441 

it is possible to “recover” remaining artifact information in some subjects when using 442 

methods that further reduce dimensionality based on class separability, such as CSP. An 443 

example of this can be seen in Figure 12, where from the previously cleaned data, one CSP 444 

extracts brain-signals and one CSP extracts artifacts. 445 

 446 

This finding has significant therapeutic relevance for BCI-based neurorehabilitation 447 

where the goal is to use brain activity to induce neural plasticity at the circuit level [17]. 448 

The results of this study highlights the risk of inadvertently using artifact signal 449 

components to inform the therapy, which would likely not only lead to a reduced 450 

therapeutic effect, but would also be difficult to detect, as the BCI appears to function 451 

adequately. Moreover, sophisticated machine learning approaches to improve the BCI’s 452 

classification performance such as CSP can actually be counterproductive from the point 453 

of view of a BCI-based motor neurorehabilitation paradigm. 454 

 455 

4.2 Limitations 456 

We consider a limitation of this study to be the generalizability of this main result 457 

beyond the scenario of decoding EEG-signals during naturalistic movements. In our 458 

study, the different neurophysiological states of interest are correlated with different 459 

motor trajectories. This of course makes artifacts especially informative and therefore 460 

problematic, but this is precisely the problem in BCI-based motor neurorehabilitation 461 

paradigms. Though our study also relies on the separability of EEG data into an “artifact” 462 

part and a “brain signal” part using ICA, a complete separation is not possible with real 463 

data. Additionally, whereas we have balanced the number of ICA components, it is still 464 

possible that this overlap is asymmetric, with more cross contamination coming from one 465 

class than the other. Nevertheless, ICA is a standard approach for EEG cleaning and we 466 

consider this the most relevant method in practice. 467 

 468 

4.3 Conclusion 469 

This study highlights the need to consider the influence of movement-related 470 

artifacts when designing BCI-based neurorehabilitation paradigms to detect 471 

neurophysiological brain states. Standard EEG cleaning methods with ICA can be used to 472 

aggressively remove noise-related components, if a sufficient number of EEG channels are 473 

available. When using machine-learning approaches to analyze the data, we suggest 474 

visualizing the spectra and topographies of the most informative features used by the 475 
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classifiers as a matter of best practice. Finally, when decoding physiological brain states 476 

for therapeutic applications, feature extraction should be informed by physiology, rather 477 

than automatically optimized to maximize classification accuracy.  478 

  479 
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Appendix 507 

 Figure 1A: EasyCap 64 channel layout, with additional electrodes are over the motor cortex. 508 

  509 
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 510 

Figure 2A: Complete EMG traces. Rate of change of muscle activation during the task recorded from 7 different EMG 511 
channels, by task, averaged across participants, task duration normalized. Each column represents a task: painting, faucet, 512 
head (slow), lamp, complex, head (fast). Each row represents a bipolar EMG channel, recorded from the following muscles: 513 
Biceps, Deltoid, Extensor Digitorum, Flexor Digitorum Profundus, Sternocleidomastoid (left, right). 514 

  515 
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Figure 3A: Participant-level Classification Accuracy. Displayed from Time-Frequency Analysis (a) and Bandpower 516 
Analysis (b), also compared with EMG. Multi-class classification between 5 equally likely movements, chance level 517 
indicated with dotted line   518 
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