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Abstract—We present a computational multiscale model for the
efficient simulationof vascularized tissues, composedof an elastic
three-dimensional matrix and a vascular network. The effect of
blood vessel pressure on the elastic tissue is surrogated via hyper-
singular forcing terms in the elasticity equations,whichdependon
the fluid pressure. In turn, the blood flow in vessels is treated as a
one-dimensional network. Intravascular pressure and velocity
are simulated using a high-order finite volume scheme, while
the elasticity equations for the tissue are solved using a finite
element method. This work addresses the feasibility and the
potential of the proposed coupled multiscale model. In
particular, we assess whether the multiscale model is able to
reproduce the tissue response at the effective scale (of the order
of millimeters) while modeling the vasculature at the micro-
scale. We validate the multiscale method against a full scale
(three-dimensional) model, where the fluid/tissue interface is
fully discretized and treated as a Neumann boundary for the
elasticity equation. Next, we present simulation results obtained
with the proposed approach in a realistic scenario, demon-
strating that the method can robustly and efficiently handle the
one-way coupling between complex fluid microstructures and
the elastic matrix.

Keywords—Vascularized tissues, Immersed methods, Finite

element methods, Finite volume methods.

INTRODUCTION

The mechanics of vascularized tissues involves
processes happening on a wide range of spatial scales,
as well as the intrinsic coupling of solid and fluid
phases. Developing efficient and high fidelity compu-

tational models to understand these processes is ex-
tremely important in order to characterize biomarkers
for tissue diseases and to support non-invasive diag-
nosis based on medical imaging.

This work is motivated by modern medical imaging
protocols based on Magnetic Resonance Elastography
(MRE), a quantitative imaging technique sensitive to
the mechanical properties of living tissues. By com-
bining mechanical excitations at moderate frequencies
with phase-contrast MRI, MRE allows to acquire the
internal displacement field within a tissue sample. This
information, combined with a mechanical model, al-
lows to retrieve, non invasively and in vivo, informa-
tion about the elastic parameters of the tissue.

Due to the limited resolution—typically order of
millimeters—MRE allows to reconstruct properties at
the effective tissue scale. The models currently used in
MRE therefore mostly describe tissues as linear (visco-
)elastic materials, for applications in the context of the
diagnosis and monitoring of diseases such as cancer
and fibrosis, that are characterized by different tissue
stiffnesses.11,24,27,31

However, in several clinical applications, the intrinsic
properties of vascularized tissues and the role of the
interstitial fluid cannot be neglected. The pioneer experi-
mental protocol recently proposed in,14 aimed at estimat-
ing the contribution of fluid components in the brain
MRE, demonstrated the importance of taking into
account the fluid phase. From a computational point of
view, fully resolved biphasic models, i.e., accounting for
the coupling between the tissue and the fluid vasculature at
themicroscale, arepracticallyunfeasible.With thepurpose
of enhancing the quality and the outreach of MRE anal-
ysis, this paper addresses the issues of developing a com-
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putational multiscale model that can account for an arbi-
trary complexity of the (microscale) fluid vasculature and,
at the same time, be efficiently upscaled for the application
in the context of (coarse) MRE data. To this aim, we ex-
tend the immersed multiscale framework recently pro-
posed in,9,10 based on describing the tissue as an elastic
material, taking into account the presence of the fluid
network as a singular forcing term. In particular, we ad-
dress the coupling between the three-dimensional elastic
matrix and a finite volume one-dimensional blood flow
model that can efficiently handle complex vasculature
networks. The elasticity problem is solved using a finite
element method on hexahedral meshes, implemented in
the open source library deal.II.2,3 The blood flow within
the 1D network is computed using a high order finite
volume method (see, e.g. 17), which has already been used
in several contexts (see, e.g., 18,19).

The main goal of this work is to demonstrate the
potential of the multiscale approach for the in silico sim-
ulation of vascular tissues. We show numerical results in
two different examples. Firstly, we compare themultiscale
method against a fully resolved 3D simulation for the case
of a bifurcation immersed in a tissue sample. Next, we
employ the immersed method to simulate—at the micro-
scale—a vascular network of about 1900 vessels immersed
in a tissue voxel of the order of few millimeters. In partic-
ular,weanalyze themechanical responseof the tissueat the
effective scale, i.e., the one typically observed in the context
of medical imaging.

MATERIALS AND METHODS

Model Setting

In order to introduce the mathematical model, let us
consider a three-dimensional tissue sample

X ¼ Xtissue [ V;

containing an elastic matrix, denoted by an elastic

matrix Xtissue and a vasculature V, assumed to be a
connected set of thin vessels. We also denote with C the
common interface between the tissue and vasculature
subdomains.

Inwhat follows, we decompose the vascular network in
a set of non-intersecting vessel segments. We further as-
sume that each one of these vessel segments can be
approximated with a cylindrical domain, described via a
one-dimensional manifold, for which it is possible to
introduce a one-dimensional arc-length curve

cðsÞ : ½0;L� ! X � R3;

describing the vessel centerline, and a positive function

aðsÞ : ½0;L� ! R;

denoting the radius of the vessel cross-section for each
s 2 ½0;L�.

We will assume that the curvature of each vessel,
i.e., within a single segment, varies slowly w.r.t. to its
arc length, and that the elastic stiffness of the vessels is
comparable to that of the surrounding elastic matrix.
For a possible way to model separately the elastic be-
haviour of the vessels we refer to.1

Let us denote with A(s) the cross-section, i.e., the
disk of radius a(s) orthogonal to cðsÞ, and with

jAðsÞj ¼ pa2ðsÞ the cross-sectional area, for all s 2
½0;L� (see Fig. 1).

In order to formally derive the multiscale model, we
introduce at each s 2 ½0;L� also the Frenet frame ss ¼
c0ðsÞ (tangential vector in s), ns ¼ s0s=js0sj; bs ¼ ss � ns
(basis of the normal plane in s). The set

VaðcÞ ¼ fx 2 X s.t. distðx; cÞ<ag; ð1Þ

denotes the thin vessel domain.
Assuming that the domain VaðcÞ describes a non-

intersecting vessel segment, we introduce a local
coordinate transformation mapping

uðr; h; sÞ :¼ cðsÞ þ r cosðhÞns þ r sinðhÞbs; ð2Þ

which is one-to-one from a cylindrical domain in polar
coordinates ðr; h; sÞ 2 ð0; aðsÞ� � ½0; 2p� � ½0;L� onto
VaðcÞ.

We denote with c�1 : VaðcÞ7!½0;L� the function that
identifies, for each point x in VaðcÞ, the arc-length
coordinate s 2 ½0;L� such that cðsÞ has minimum dis-
tance from x, i.e.,

c�1ðuðr; h; sÞÞ :¼ s; 8r 2 ½0; aðsÞ�; 8h 2 ½0; 2p�: ð3Þ

In order to describe the hemodynamics in the vascu-
lature, we finally introduce the one-dimensional blood
pressure functions

pcðsÞ : ½0;L� ! X � R

and its extension

p3DðxÞ ¼ pc c�1ðxÞ
� �

; 8x 2 Va ;

defined in the three dimensional vessel.

Three-Dimensional Elastic Tissue Modeling

Let [0, T] be the considered time interval, and let us
assume to be given a function pðtÞ, t 2 ½0;T�, denoting
the excess pressure field inside the vasculature, defined
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as the difference between the fluid pressure at time t
and the initial pressure. The focus of the current work
is to infer effective elastic properties of vascularized
tissue samples in the framework of elastography
(MRE). In the regime of MRE measurements, we
therefore initially assume the dynamics of the tissue to
be described by a quasi-static linear elastic problem,
even though the framework we present may be ex-
tended easily to non-linear viscoelastic materials.
Further justification for the choice of linear models
comes from the fact that the cross-section area of the
vessels only varies of a few percent, resulting in a very
small perturbation of the overall displacement of the
elastic tissue, due to the relative size of the vessel radius
w.r.t. to the size of the tissue sample. We assume that

the displacement field u3Dt : Xtissue ! R3 at each time

t 2 ½0;T� obeys the partial differential equation

�r � rðu3Dt Þ ¼ 0; in Xtissue;

u3Dt ¼ 0; on CD ;

rðu3Dt Þ � n ¼ 0; on CN ;

rðu3Dt Þ � n ¼ �pðtÞ n on C :

ð4Þ

In (4),

rðuÞ :¼ 2leðuÞ þ kIr � u ð5Þ

stands for the Cauchy stress tensor, eðuÞ ¼ 1
2 ðruþ

ruTÞ denotes the symmetric part of the infinitesimal
strain tensor, l and k are the so called Lamé constants,
and I is the identity matrix. Moreover, CD (resp. CN) is

the subset of @Xtissue where displacement (resp. external
forces) are imposed as boundary conditions.

Remark 1 In the quasi-static approximation of the
elasticity problem, the time dependency is only given
by the the variation over time of the boundary
condition (4)3.

Let us now introduce the functional spaces

V :¼ fv 2 ðH1ðXtissueÞÞd; such that vjCD
¼ 0g; ð6Þ

and let us denote, for a general Xa � Rd, with ð�; �ÞXa

the inner product in ðL2ðXaÞÞ2.
Multiplying (4) with v 2 V and integrating by parts

yields a standard variational formulation of problem

(4): Find the displacement u3Dt 2 V solution to:

2lðeðu3Dt Þ; eðvÞÞXtissue þ kðr � u3Dt ;r � vÞXtissue

¼
Z

C
�pðtÞn � vdC 8v 2 V :

ð7Þ

We aim to approximate the solution of the elasticity
problem (4) on the domain Xa by constructing a
variational formulation on the whole domain X. To
this aim, we extend the original problem with a ficti-
tious problem in V. As described in,9 we seek for the
solution of a problem of the following form:

let pc denote the one-dimensional excess pressure
field defined on V, and let be given the vessel centerline
c, and the radius function a (as defined in Section 2.1).
For the sake of simplicity, we remove the subscript
referring to time dependency in the following deriva-
tion.

At each t 2 ½0;T�, we then seek u 2 V such that

ð2leðuÞ; eðvÞÞX þ ðkr � u;r � vÞX
¼ <Fðc;pc;aÞ; v> 8v 2 V:

The singular source term Fðc;pc;aÞ is defined in such a
way to enforce, for each s 2 ½0;L�, the correct value of
the normal stresses across C \ AðsÞ depending on the
fluid pressure on the vessel boundary C. For the de-
tailed derivation of the forcing term, we refer to,9

which is briefly summarized below.
Let s denote the vector tangential to the vessel

centerline, and let us introduce the gradient operator in
the plane orthogonal to s as

rsu :¼ 1� s� sð Þru ð8Þ

and the planar divergences as

rs � u :¼ tr rsuð Þ ¼ r � u� s � ru sð Þ : ð9Þ

We consider a singular force of the form

Fðc;pc;aÞ ¼ FH
ðc;pc;aÞ þ Fs

ðc;pc;aÞ ð10Þ

composed of a hyper-singular term

FH
ðc;pc;aÞðxÞ

:¼
Z L

0

2lþ k
l

AðsÞpcðsÞrsdðx� cðsÞÞds; 8x 2 X

ð11Þ

and a singular source

τ s

ns bs

s = 0 s = L

2a(s)

γ

Va

FIGURE 1. Sketch of a three-dimensional thin vessel,
identified via its cross-sectional radius and its centerline.
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Fs
ðc;pc;aÞðxÞ

¼
Z L

0

2lþ k
l

ðAðsÞpcðsÞÞ0 dðx� cðsÞÞsds; 8x 2 X :

ð12Þ

The term defined in (12) has support on the centerline
and it is directed tangential to it. In particular, if vessel
radius and pressure vary slowly along c, the singular
term (12) can be neglected, and the immersed method
reduces to a hypersingular force equal to the tangential
derivative of a Dirac delta distribution.

The two source terms (11) and (12) have the effect of
imposing a solution which is close to the one that
would be obtained with a full domain discretization,
provided that the cross-sectional area of the vessels is
negligible w.r.t. to the diameter of the sample domain
X. As detailed in,9 this is achieved by computing the
singular source terms that would be required to solve
the problem exactly on a large domain with a single
embedded vessel. A similar strategy is possible in the
non-linear case, provided that one resorts to Lagrange
multipliers, as in.1

Notice that the forces introduced in (11)–(12) de-
pend only on one-dimensional information, such as
centerline, the excess pressure pcðsÞ, the radius, and the

cross-sectional area, and it allows therefore to repre-
sent the vessel uniquely through a one-dimensional
manifold.

Moreover, it is important to observe that the defi-
nition of the hypersingular line sources (i.e., the line
where the singular sources are applied) is independent
of the discretization used for the solution of the one-
dimensional flow. In fact, the coupling with the one-
dimensional flow solver depends only on the values of
the one-dimensional pressure and area, interpolated on
the hypersingular line (see Section 2.4).

Since the hypersingular source term is not in V�, we
resort to a regularized strategy10 which allows one to
replace the Dirac delta distribution of the source terms
in (11) and (12) with a smooth approximation with
compact support of radius e. The analysis in10 suggests
that the support of the approximated Dirac distribu-
tion should be chosen proportional to the grid size h, in
order to obtain the best results in terms of convergence
rates and computational costs.

In particular, we use a tensor product C1 approxi-
mation of the Dirac delta distribution, defined through
the generating function

wðsÞ :¼ v½�1;1�ðsÞ
1

2
ð1þ cosðpsÞÞ; ð13Þ

where v½�1;1� is one inside the interval ½�1; 1�, and zero
elsewhere.

A possible one-parameter approximation of the
Dirac delta distribution is then given by

deðxÞ :¼ 1

e3
Y3

i¼1

w
1

e
xi

� �
; ð14Þ

and we have that

lim
e!0

deðxÞ ¼ dðxÞ: ð15Þ

In the simulations, we set e ¼ h. The right hand side of
the elasticity problem may then be computed (taking
the hyper singuar term as an example) by

<FH
ðc;pc;aÞ; vi> ’

X

xq

X

sq

2lþ k
l

AðsqÞpcðsqÞrsd
eðxq � cðsqÞÞviðxqÞwxqwsq :

ð16Þ

We notice here that the approximation of (16) only
requires the definition of integration points on the
vessels and on the computational grids, and the iden-
tification of all cells of the grid that fall within e dis-
tance from the vessels. The deal.II library uses efficient
r-tree algorithms to construct nearest-neighbour
informations on quadrature points and ease the com-
putation of (16).

One-Dimensional Blood Flow Model

The main advantage of 1D hemodynamic models is
that they provide suitable approaches to investigate
pressure and flow waveform in complex arterial and
venous networks, while keeping the overall computa-
tional cost reasonably low. In the last decades, these
approaches have been widely used for several appli-
cations (see, e.g., 5,12,13,20,25). Moreover, they have
been deeply validated both versus in vitro (see, e.g., 16)
and in vivo experiments (see, e.g., 6,19,26).

In order to introduce the model equation, we con-
sider a network of interconnected impermeable vessels,
denoting with s the one-dimensional coordinate along
the segments. The blood flow is then described in terms
of the vessel cross-sectional area A(s, t), the mass flow
rate q(s, t) and the average blood pressure over the
cross section p(s, t), according to mass conservation
and momentum balance laws:

@A@tþ @q@s ¼ 0;

@q@tþ @@s
q2

A

� �
þ Aq@p@s ¼ �8pgqqA :

8
<

:
ð17Þ

In (17), g stands for the dynamic viscosity of blood and
q denotes the blood density. These constants are set

equal to g ¼ 0:032P and q ¼ 1:04 g=cm3.
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System (17) is closed introducing a constitutive law
(so-called tube law) that accounts for the fluid-struc-
ture interaction between blood and vessel wall, relating
the strain and strain rate of the vessel wall to the
internal pressure.

We adopted a tube law of the form5:

p ¼ pR0h0
A

Eeeþ Ec�r ln e
e�e0
�r þ 1

� �h i
; ð18Þ

where R0, A0, and h0 are the vessel radius, the cross-
sectional area and the wall thickness at reference state,
respectively. Following,5 the vessel wall thickness is
computed as

h0 ¼ R0 aebR0þcedR0
� �

; ð19Þ

with a ¼ 0:2802, b ¼ �5:053 cm�1, c ¼ 0:1324 and

d ¼ �0:1114 cm�1. The parameter Ee ¼ 1:8�
106 dyn=cm2 stands for the effective Young modulus

of elastin, while Ec ¼ 150� 106 dyn=cm2 is the effec-
tive Young modulus of collagen. Moreover, e0 ¼ 0:35
is the deformation state for which 50% of collagen fi-
bers have been activated, �r ¼ 0:05 is the standard
deviation of the fiber activation state distribution and

e ¼
ffiffiffiffi
A
A0

q
� 1 is the current deformation state.

Boundary conditions at the vessels’ ends can be of
different nature. One can prescribe a certain variable,
for example a pressure or flow rate waveform pre-
scribed at the inlet of the network. Also, vessels can be
coupled to other vessels via appropriate junction con-
ditions. In this work, 1D vessels are coupled at junc-
tions enforcing mass conservation and total pressure
continuity, as well as using generalized Riemann
invariants.21 In addition, at terminal sites, vessels can
be coupled to lumped parameter models representing
the peripheral circulation (see, e.g., 8).

The general solution of system (17)–(18) requires an
efficient and robust numerical method, suitable to be
used on large and small vessels and in the case of this
work, on large vessel networks. We use a local time
stepping finite volume numerical scheme,22, which has
shown to possess the above mentioned features. This
scheme is based on the ADER (Arbitrary high-order
DERivative Riemann problem) methodology, which
allows for arbitrary accuracy in space and time (see,
e.g., 29,30).

Coupling

For computing the one-dimensional hemodynamics,
the blood vessel network is described by a finite set of
interconnected impermeable segments. For the high-
order finite volume method described in Section 2.3
each segment (vessel) is discretized as a single finite

volume. In what follows, we will denote as h1D;i the size

of the i-th vessel discretization in the 1D model, cor-
responding, in this case, to the vessel length. On the
other hand, the three-dimensional tissue model is dis-
cretized using a structured hexahedra finite element
mesh, whose element characteristic length will be de-
note with h3D.

In order to technically implement the coupling
between the one-dimensional hemodynamics and the
three-dimensional elasticity problem, we first intro-
duced an additional discretization of the vessel net-

work, the size of which will be denoted as h3D1D. We

consider the case h3D1D<h1D;i. Then, for each vessel, we

introduce additional internal points along the seg-

ments, with a spacing h3D1D,We refer to this set of points

as the discrete hypersingular points. For each vessel i,

we also introduce a function G3D
1D;i, defined on the one-

dimensional coordinate of the vessel, mapping each
discrete hypersingular point onto a point of the 3D
domain, a direction (i.e., the tangential vector to the
vessel i), and the values of cross-sectional area and
pressure obtained from the 1D model:

G3D
1D;i : s 7!ðciðsÞ; si; pcðsÞ;AðsÞÞ 2 V � R3 � R� R :

ð20Þ

In this work, for computing pressure and cross-sec-
tional areas, we considered a simple piecewise constant
approximation over each vessel. Depending on the
physical setting, i.e., on the variability of the results,
higher order interpolations can also be considered.

At each time step of the solution of the one-di-
mensional model, the corresponding values obtained
from (20) are then used in order to compute the
hypersingular forcing term (11).

This approach is also used when solving a full 3D
problem (4), in which the elastic tissue dynamics is
equipped with Neumann boundary conditions on the
surface of the vessel (considered as a full three-di-
mensional domain, see, e.g., Section 3.1). In this case,
the one-dimensional pressures and areas need to be
mapped onto the two-dimensional vessel surface and
evaluated in order at selected (Gauss) points when
computing the corresponding term in integral formu-
lation. In order to compute the 3D extension, the
values of the pressure p1D and areas A1D on the closest
point of the one-dimensional network is used.

RESULTS

Bifurcation

The goal of the first test is a comparison between the
numerical results obtained with the proposed coupled
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multiscale method and a high-fidelity solution,
obtained with a matching discretisation considering
the full scale problem, where both tissue and vessel are
discretized in three-dimensions. We observe that a
comparison against experimental measurements is less
relevant in this context, since it would require the
resolution of a cascade of complex inverse problems to
infer all the physical parameters that cannot be mea-
sured directly. Instead, the procedure we follow guar-
antees that we do not affect the overall accuracy when
replacing a high fidelity model—only feasible in
examples where the model parameters can be fully
determined—with the multi-scale approach, i.e., that
the error introduced by the multiscale formulation is of
the same order of numerical discretisation errors.

To this purpose, we consider first a simple bifurca-
tion problem. Namely, the setup consists of a cubic
tissue domain, of dimensions 2� 2� 2 mm, coupled
to a bifurcation, composed of three vessel segments
(see Fig. 2, left) with initial radius of 0.1 mm.

For this problem, the solution of the one-dimen-
sional model has been computed imposing a flow rate
at the entrance of the bottom vessel (see Fig. 3) and
using 3-elements Windkessel terminal models at the
end of the top vessels. The resulting pressures and
areas have then used to solve the coupled problem,
both considering a full three-dimensional description
and a reduced immersed method.

The full three-dimensional problem has been solved
using a finite element method on hexahedral elements,
using a uniform grid that resolves the interface between
the fluid and the tissue domains. For the immersed
3D–1D method, the one dimensional bifurcation has
been discretized using about 200 points along the each
vessel centerline, and the elasticity problem has been
solved using a hexahedral grid locally refined near the
vessel centerline (see Fig. 2, right).

A qualitative comparison of the displacement fields
obtained in the two cases is shown in Fig. 2, right). For
a more quantitative assessment, we monitor the aver-
age forces measured on the lateral faces. This choice is
motivated by the fact that the differences between fully
resolved (3D) and reduced (3D-1D) description shall
be evaluated—from the practical point of view—at a
coarse scale where the vessel cannot be fully resolved.
A comparison of these average forces is plotted in
Fig. 4, showing that the immersed method is able to
reproduce the results of the fully resolved simulation
very well, with a relative error of about 5% at the peak
pressure instant.

Vascular Tree

Next, we consider a randomly generated vascular
tree on a tissue sample mimicking a realistic setting
used in elastography. The elastic tissue domain consists
of a cubic tissue sample 3 mm� 3 mm� 3 mm (of the
order of voxel resolution of MRI scans), and elastic
characteristics similar to those found in the human li-
ver (l ¼ 2kPa, k ¼ 50 kPa). The vessel distribution
was constructed in silico, using the assumption that a
vascular tree should fulfil the perfusion task with the
minimum effort, while maintaining its anatomical
structure. In general, this results in two or more
competing mechanisms: on the one hand, one expects
that the total length of the vasculature shall be mini-
mized; on the other hand, other relevant physiological
quantities shall be minimized as well, e.g., the time
needed by oxygenated blood to reach perfusion points.
In this work we generated the vascular tree using a
publicly available code1 originally written to produce
synthetic neuronal structures.7 The approach uses a
simplified cost function, where the weight assigned to
each edge of the tree is the weighted average of two
factors: the piping cost, represented by the Euclidean
distance between the irroration point and the con-
necting node in the tree, and a total path length cost,
measuring the total path cost along the tree from the
root to the irroration point. The resulting vasculature
is shown in Fig. 5.

The one-dimensional hemodynamics was solved
imposing a flow rate on the bottom-left corner of the
tree (see Fig. 5, right) and using 3-elements Windkessel
terminal models on the nodes situated on the lateral
faces. Total inflow was computed based on domain
volume and normal cerebral perfusion values (50 mL/
min/100 g4). The inlet vessel radius was defined by
assuming a physiological wall shear stress.15 The radii
of the remaining vessels were assigned using Murray’s
law23 and assuming that for a given mother vessel all
daughters had the same radius. This automatically
determined an equal flow split among daughters.
Peripheral resistances for terminal network points were
computed from estimated pressure at the outlets for
the flow distribution resulting from the previous cali-
bration step. That resistance was distributed in a three-
element Windkessel, with 15% of total resistance as-
signed to the proximal resistance and the remaining
resistance assigned to the distal resistance. The com-
pliance of the three-element Windkessel was computed
using the characteristic RC constant used in.6 At the
outlet of the RCR Windkessel terminal elements, zero
terminal pressure was assumed. Further details on the
parametrization of the 1D model are provided as
supplementary material. The simulation has been run
for 10 seconds in order to reach a periodic state. For

1See https://github.com/pherbers/MST-Dendrites (setting the bal-

ancing factor to 0.5).
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the coupling with the three-dimensional matrix, only
the last period (time between 9 and 10 s) has been
considered.

The elasticity problem for the tissue has been dis-
cretized using a uniform hexahedral mesh with element
size of about 0.1 mm (32,800 elements in total). The
hypersingular forces have been introduced discretizing
the one-dimensional vascular network with a spacing
between singular points of 0.04 mm, resulting in about
8600 singular points. On these points, the cross-sec-
tional areas and the pressures obtained with the one-

FIGURE 2. Left: The three-dimensional domain considered for the bifurcation model. The corresponding one-dimensional
description is obtained considering vessel centerlines. Right: Comparison between the displacement obtained in the fully resolved
3D model (left part) and the result of the hypersingular model (right part). The right part of the figure shows also the one-
dimensional vessel.

FIGURE 3. The flow rate imposed for solving the one-
dimensional hemodynamics in the bifurcation setting.
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FIGURE 4. Comparison of the average forces measured on the lateral faces (0 and 1) (left) and on the front and back faces (2 and
3) (right), between the matching grid and the singular method.

BIOMEDICAL
ENGINEERING 
SOCIETY

Coupling of Vascular Models and Elastic Tissues 3249



dimensional simulation have been used to compute the
corresponding singular forces. In order to compute the
forces, the vessel pressure has been rescaled taking into

account an external pressure of 104 Pa. For the regu-
larization of the Dirac delta function (14), we used
� ¼ 0:1mm, coinciding with the grid size used for the
finite element approximation of the elasticity problem.

Figure 6 shows the results for the absolute value of
the average forces on opposite lateral faces (right),
together with the statistical information on the average
and standard deviation of the pressure over the whole
vasculature (left). In particular (see the notation
introduced in Fig. 2), the sum of the contributions on
faces 0 and 1 corresponds to the net force in the x-
direction, while the sums on faces 2 and 3 (resp. on
faces 4 and 5), correspond to the force along y (resp.
along z). We remark here that average values on the
vasculature network (left in Fig. 6) in general do not
provide enough information to infer properties on the
effective tissue scale. Even if Fig. 6 (right) shows a

similar behaviour in terms of general values of the
forces for the coupled multi-scale model, the relation-
ship between the total forces in each direction are
clearly different, and depend non-linearly and non-
trivially from the topology of the vessel network, as
well as from the solution of the one-dimensional net-
work model. Even if one is only interested on the effect
of the vasculature at a much larger scale w.r.t. to the
scale of individual vessels, the coupling between the
vasculature and the tissue cannot be neglected, as
shown in Fig. 6 (right).

For a qualitative visualization, Fig. 7 shows the
results for the internal displacement field at selected
time steps, together with the varying pressure within
the one-dimensional network.

One of the main practical advantages of the im-
mersed method is that it allows to decouple the dis-
cretization of the three-dimensional tissue from the
vasculature. In the case of a complex network of thin
vessels, as the one considered in this section, a full

FIGURE 5. Left: Randomly distributed vasculature, irrorating two thousands randomly distributed points in the sample. The root
point is situated in the lower left corner. The average radius of the vessels is about 0.012 mm. Right: Flow rate imposed at the
bottom-left corner for simulating the one-dimensional hemodynamics.
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FIGURE 6. Left. Average pressure and standard deviation within the fluid vasculature over time in the considered period. The
dashed lines indicated the time steps corresponding to the plots in Fig. 7. Right. Resulting absolute value of total forces on
opposite faces, using the same numbering as in Fig. 2.
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three-dimensional discretization in which each vessel
surface is discretized with, e.g., a triangular mesh, shall
be considered practically unfeasible, due to the ex-
tremely high number of degrees of freedom resulting
from the mesh. Nevertheless, in order to roughly
quantify the gain in computational cost introduced by
the immersed method, we sampled the one-dimen-

sional network with a spacing h3D1D comparable to the

radius of the vessels and generated an unstrucutred
tetrahedral mesh contraining these discrete hypersin-

gular points to be vertices of the mesh tetrahedra. The
mesh has been generated using TetGen.28 In particular,

we considered h3D1D equal to 0.01 and 0.005 mm, yield-

ing about half million vertices and 2.8 millions vertices,
respectively.

Hence, the immersed method, used with the struc-
tured mesh on piecewise linear elements (less than
33,000 vertices), allows therefore a cost reduction of at
least 90%. See also Fig. 8 and Table 1 for a more de-
tailed comparison. We observe once more that the

FIGURE 7. Contour plots of the 3D displacement field and plot of the 1D pressure on the vessels at different times. The
considered time steps are also indicated with dashed lines in Fig. 6.
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tetrahedral computational grids used for this compar-
ison should still be considered insufficient for a simu-
lation of a high fidelity full-scale model, since they
neglect the discretization of the surfaces of the actual
vessel network. Such computational grid would result
in a number of elements which is at the very least five
or six times larger w.r.t. the unstructured grid numbers
reported in Table 1.

DISCUSSION

We have proposed and validated in silico an efficient
multiscale model for the simulation of an elastic tissue
containing a thin vasculature. The fluid part is modeled
using an immersed method, i.e., it is taken into account

in the three-dimensional problem only through singu-
lar forces applied on a one-dimensional manifold. We
considered a one-way coupling, from the blood flow on
the tissue, neglecting the effect of the tissue response on
hemodynamics. This back-coupling, as well as the
extension of the model to the case of viscous and
poroelastic tissues, taking into account vessel perme-
ability and fluid exchange between tissue and vascu-
lature, are currently objects of ongoing research.

The first advantage of the proposed approach is that
it only requires one-dimensional information (center-
lines, cross-sectional areas, mean pressures along the
vessels) in order to define the coupling terms. This al-
lows to solve the one-dimensional model problem
independently, mapping then the necessary quantities
onto the three-dimensional tissue domain. A further
advantage of the immersed method is that it does not
require the discretization of the vasculature within the
three-dimensional mesh. In particular, it is sufficient to
refine locally the mesh close to the vessel centerline.

To assess the performance of the proposed frame-
work we discussed two different benchmarks. In the
case of a simple bifurcation (Section 3.1) we compared
the multiscale description with the results of a fully
resolved three-dimensional problem. In particular, the
results showed that the immersed method is able to
reproduce the mechanical behavior of the effective
tissue (i.e., the average forces on the boundary of the
tissue sample) with an error below 5%. The goal of the
the second test (a vascular tree containing more than
1800 vessel segments, Section 3.2) is to show the
potential of the immersed method in the case of a
complex scenario, where the full three-dimensional
discretization of the problem might be practically
unfeasible. The numerical results demonstrate that the
method is able to consistently characterize the effective
behavior of the tissue sample, following the internal
fluid pressure, by up-scaling the effect of the vascular
network, and providing non-trivial force information
at the scale of the tissue sample. This information is
not available through the one-dimensional solution of
the vasculature network alone, and the coupling
between the vasculature and the tissue should not be
neglected.

It is worth to observe that the coupled formulation

introduces an additional numerical parameter, h3D1D,

related to the definition of the hypersingular points
discretizing the one-dimensional manifold which is, a
priori, decoupled from the three-dimensional finite
element mesh used for the tissue. The optimal choice of
the discretization characteristic size depends on the
model and on the physical radius of the vessels.
However, as observed in,9 the discretization sizes can
be chosen in such a way that the error introduced by

FIGURE 8. Visualization of the unstructured tetrahedral
mesh obtained choosing h3D

1D ¼ 0:01 mm and constraining
the discrete hypersingular points to be vertices of tetrahedra.
The red segments show the one-dimensional vasculature,
while the blue lines depicts the intersection of the volume
elements with the cutting planes.

TABLE 1. Comparison of some characteristics of a
structured mesh (used with the immersed method) and
unstructured meshes obtained constraining the discrete

hypersingular points to be vertices of tetrahedra.

Mesh # nodes

# ele-

ments

Shortest

edge (mm)

Structured (hexa) 34,800 32,800 0.1

Unstructured (tetra,

h3D
1D ¼ 0:01 mm)

488,000 2,860,000 1:1 � 10�3

Unstructured (tetra,

h3D
1D ¼ 0:005 mm)

1,120,000 6,594,800 1:7 � 10�4

The parameter h3D
1D . refers to the sampling of the one-dimensional

vessel when defining the location of the hypersingular sources (see

Section 2.4).
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the multiscale modeling is comparable with the error of
the numerical discretizations used in the three dimen-
sional model. Moreover, since the mesh size is decou-
pled from the fluid vasculature size, different
refinement strategies can be used to solve the elasticity
problem (including local refinement strategies), that
allow a further reduction of the computational and/or
an increase in accuracy. A detailed assessment of the
numerical parameters and of the influence of the spa-
tial discretization on the effective tissue description is
currently subject of ongoing research.
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Feijóo. A high-order local time stepping finite volume
solver for one-dimensional blood flow simulations: appli-
cation to the ADAN model. Int. J. Numer. Meth. Biomed.
Eng. 32(10):e02761, 2016.

18Müller, L. O., A. Caiazzo, and P. J. Blanco. Reduced-order
unscented Kalman filter with observations in the frequency
domain: Application to computational hemodynamics.
IEEE Trans. Biomed. Eng. 66(5):1268–1276, 2019.

19Müller, L. O. and E. F. Toro. A global multiscale model for
the human circulation with emphasis on the venous system.
Int. J. Numer. Meth. Biomed. Eng. 30(7):681–725, 2014.

20Müller, L.O., E.F. Toro, E.M. Haacke, and D. Utriainen.
Impact of CCSVI on cerebral haemodynamics: a mathe-
matical study using mri angiographic and flow data. Phle-
bology 31:305–324; 2015.

21Müller, L. O., Leugering, G. and Blanco, P. J. Consistent
treatment of viscoelastic effects at junctions in one-dimen-
sional blood flow models. J. Comp. Phys. 314:167–103,
2016.

22Müller, L.O., P. J. Blanco, S.M. Watanabe, and R.A.
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