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Engineering Ising-XY spin models in a triangular lattice
via tunable artificial gauge fields
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Emulation of gauge fields for ultracold atoms

provides access to a class of exotic states arising
in strong magnetic fields. Here we report on
the experimental realisation of tunable staggered
gauge fields in a periodically driven triangular
lattice. For maximal staggered magnetic fluxes,
the doubly degenerate superfluid ground state
breaks both a discrete Z, (Ising) symmetry and a
continuous U(1) symmetry.
By measuring an Ising order parameter, we ob-
serve a thermally driven phase transition from an
ordered antiferromagnetic to an unordered para-
magnetic state and textbook-like magnetisation
curves. Both the experimental and theoretical
analysis of the coherence properties of the ultra-
cold gas demonstrate the strong influence of the
Zo symmetry onto the condensed phase.

Phase transitions in systems with combined continuous
and discrete symmetries are fundamentally different from
their purely continuous and discrete counterparts. The
interplay between different types of excitations in the var-
ious degrees of freedom can lead to a complex behaviour
and coupling of the associated order parameters [1-5]. A
paradigm example is the fully frustrated XY model on a
triangular lattice. It combines vector spin-type symme-
tries with discrete chiral degrees of freedom, which result
in the famous spin—chirality coupling at low temperatures
[6]. However, experimental studies in solid-state systems
are challenging in view of implementing and isolating an
XY model Hamiltonian [7-9].

Ultracold bosonic quantum gases in optical lattices, on
the other hand, constitute a highly versatile system with
an extraordinary degree of control [10, 11]. In particu-
lar, the recent experimental realisations of artificial gauge
potentials for bulk [12-15] and optical lattice systems [16—
19] allow for the investigation of new physical regimes, not
realisable in condensed matter systems.

Here, we demonstrate the realisation of a system with
combined U(1) and Zs symmetries using ultracold atoms
submitted to artificial gauge fields. Our experimental
setup consists of an ultracold gas of 8’Rb atoms held in

a two-dimensional triangular lattice [20] (see Fig. 1la). At
each lattice site j with particle number Nj;, the weakly
interacting superﬂuid gas can be described by the local
order parameter ( \/> e As a central aspect,
the local phases ¢; are mapped onto classical XY spins
s; = (cos p;,sing;), where the tunneling matrix elements
between neighbouring lattice sites correspond to the spin-
spin coupling parameters. Such classical spins possess a
continuous degree of freedom. In presence of a long-range
order, analogous to the onset of Bose-Einstein condensa-
tion (BEC), the order parameter assumes an arbitrary,
but fixed phase, thus breaking the continuous U(1) sym-
metry [21].

Beyond that, we experimentally engineer strong stag-
gered gauge fields, which generate an additional discrete
Zy symmetry in our system. The resulting magnetic flux
induces cyclotron-like mass currents around each plaque-
tte. The two possible chiralities of these currents circu-
lating around a single plaquette correspond to a discrete
Ising-like order parameter. Furthermore, the tunability of
the artificial gauge fields enables us to bias the Zy order
parameter, in analogy to a longitudinal external magnetic
field in the Ising-spin model.

The result is a flexible model system which allows us to
study the temperature-dependent behaviour and interplay
of the discrete and continuous order parameters.

In the work presented here, the complex tunneling ma-
trix elements, necessary to generate staggered fluxes, are
created by accelerating the lattice potential along a closed
orbit. A suitable periodic forcing [18, 22] results in the
following effective Bose-Hubbard Hamiltonian:

Heg = — > |Jijle"ala; + - an (1)

(i,9)

where the spatial degrees of freedom perpendicular to the
lattice have been omitted for clarity (see Supplementary
Material). Here, a;r. (a;) is the creation (annihilation)
operator of a boson at lattice site j, nj:a;rvaj is the
respective number operator, and U is an on-site repul-
sion. In the kinetic term, the summation over the near-
est neighbours is directional as 6;; = —0;;. The hopping
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FIG 1. Illustration of the triangular optical lattice, the
artificial gauge fluxes, the phase distribution, and the
mass currents. a, The triangular optical lattice is created
by the interference of three running-wave laser beams. In the
experiment, roughly 2000 triangular plaquettes are occupied.
b, Orientation of the arguments of the tunneling matrix el-
ement around a plaquette. ¢, A strong artificial, staggered
gauge field is applied to the lattice system. Crosses (dots)
correspond to inwards (outwards) pointing gauge fluxes. d,
An accumulated flux of +7 around neighbouring plaquettes
results in two, energetically degenerate, phase configurations.
These phase configurations lead to opposite chiralities in the
mass currents around the plaquettes. e, The current on each
plaquette defines the orientation of an Ising-type spin.

parameters along the directions 2 — 3 and 3 — 1 (see
Fig.1b) are equal and denoted as |.J'[e"?" in the follow-
ing. Experimentally, |.Jo1 |2 =|.J|el and |.J[e!?" can be
tuned independently of each other. The total phase ac-
cumulated on a closed path around one triangular pla-
quette reflects the gauge flux through the cell, defined as
O=Pp =(0+20")mod2r =— ®,. The global accelera-
tion of the lattice potential realised here induces fluxes
with opposite sign for upwards and downwards pointing
plaquettes, as depicted in Fig. lc.

The triangular lattice is fully frustrated for stag-
gered fluxes of maximum magnitude w. For this ex-

treme case the flux structure is not unique (since
—rmod 27 =nmod27r) and the two flux patterns
sketched in Fig. 1c are equivalent. This equivalence leads
to two energetically degenerate vector spin configurations,
as depicted in Fig. 1d. The staggered currents induced by
the gauge fluxes display the same degeneracy (see Fig. le).
Note that both the argument 6;; of the tunneling param-
eter and the relative orientation (¢; — ;) of the XY spins
influence the mass current (j;;) along one lattice bond:

() = ~ 225l (afa)) ®

2|J;; .
= —%v NiNjsin(0i; +¢; — i) (3)

The strong interplay between the chirality of the
cyclotron-like mass currents (Ising parameter) and the
XY spin long-range order induces the coupling between
the broken Zs and U(1) symmetries in our system.

The presence of staggered gauge fluxes has a direct sig-
nature in the momentum space. The single-particle dis-
persion relation of the lattice is indeed strongly deformed:

e(k)= —2|J|cos (k-a; —0)
—2[J'| cos (k-ap — 6) (4)
—2[J'| cos (k-ag — 0')

where the a; are the lattice directions (see Methods). For
® = 7, it exhibits two degenerate minima with opposite
ky values within the first Brillouin zone, while for fluxes of
® = 7 £ [ this degeneracy is lifted (see Fig. 2). For ultra-
cold bosonic gases, the changes in the momentum space
occupation can be easily observed with standard time-of-
flight (TOF) imaging techniques, where the in-situ quasi-
momentum distribution is converted into position infor-
mation. Figure 2a shows TOF images summed over many
experimental realisations for three amplitudes of the stag-
gered gauge fluxes. For & = 7, both momentum modes
are equally populated on average. For a strong bias flux
of B = 0.27, we externally drive the system into one of
the minima in the first Brillouin zone. The correspond-
ing dispersion relations, plotted in Fig.2b, illustrate the
deformations induced by the different values of the gauge
fluxes. Figure 2d-e demonstrates the experimental control
over the degeneracy between the two minima in the first
Brillouin zone. In analogy to the effect of a longitudinal
magnetic field in the Ising model, the ability of tuning the
flux strength ® thus enables us to bias the system towards
one of the two minima.

The measured quasimomentum distribution contains in
fact more information, reflecting both symmetries of the
system. A long-range order of the XY spins, which breaks
the U(1) symmetry, implies that the momentum distribu-
tion is singular.

The two possible chiralities of the mass currents cor-
respond to quasimomenta in complementary parts of the
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FIG 2. Effect of staggered gauge fluxes in momentum space. a, Experimentally observed occupations of the momentum
states within the lowest Bloch band in TOF images, averaged over about 200 single-shot realisations, and b calculated dispersion

relations for the given values of the gauge flux ®. The red hexagon indicates the first Brillouin zone.

c, The value of the

real-space Ising order parameter corresponds to the occupation of a triangular mask in quasimomentum space. Atoms in the +1
(—1) regions correspond to positive (negative) chirality. d, A zoom into the central region along k, of the TOF images shows
the relative occupation of the two Ising modes as a function of the gauge flux. The observation is in good agreement with the
position and the relative importance of the minima in the band structure as shown in e.

Brillouin zone (see Supplementary Material). Measuring
the differential occupation in the two momentum classes,
depicted as upwards and downwards pointing triangles in
Fig. 2c, gives access to the mean chirality of the system.
This analogue to the Ising magnetisation is analysed in
the following.

As a central result, a thermally induced phase tran-
sition between an antiferromagnetic and a paramagnetic
phase can be observed. Figure 3a shows a statistical anal-
ysis of consecutive, individual experimental realisations
for ® = 7 for three different temperatures. For individ-
ual measurements, the Ising-type magnetisation fluctu-
ates. At the lowest temperature achieved, its statistical
distribution clearly shows the spontaneous breaking of the
Zo symmetry into two individual modes. When the tem-
perature is increased, the spontaneous magnetisation de-
creases and finally vanishes when the system crosses the
phase boundary to an unordered paramagnetic state. The
simultaneous observation of both Ising states in a single
experimental realisation is very likely due to spatial phase
separation of different chiralities similar to the formation
of magnetic Weiss domains.

The bias flux S impacts onto the occupation of the two
Ising states. In Fig.3b-c, the measurement of the mag-
netisation as a function of the gauge flux in the three
temperature regimes is presented. For each value of the

gauge flux, the statistical distribution of the magnetisa-
tion is represented by normalised histograms in row b.
Row ¢ shows the maxima of a uni- or bimodal probabil-
ity distribution fitted to the raw data (see Supplementary
Material).

For a large bias flux £ the system is completely magne-
tised in one of the two Ising states as expected for an Ising
spin system subjected to a longitudinal magnetic field.
Below the critical temperature and in the vicinity of flux
® = 7, we can identify two branches of favored magnetisa-
tions which correspond to the occupation of the two Ising
states. This behaviour cannot be explained for a system
in thermal equilibrium. Indeed, already the presence of a
small external magnetic field suppresses the condensation
in the state with higher energy. However, this state cor-
responds to a local minimum and the system can become
metastable. The finite occupation probability of the ex-
cited Ising state stems from non-adiabatic dynamics. The
amplitude of the artificial gauge field is progressively in-
creased to its final value. During this preparation ramp
the dispersion relation becomes flat and thus the energy
barrier between the two states is increased from almost
zero to the final value (see Supplementary Material for
more details). Therefore, a finite probability exists for
the system to be trapped in the local minimum.

The experimentally observed metastability arises from
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FIG 3. Measurement of the statistical distribution of the chiral magnetisation. a, The statistical distribution of the
magnetisation (A — 7)/(A + 7) obtained from consecutive single experimental realisations at flux strength ® =7 (left) and the
corresponding histograms (right) are shown for three different temperatures. b, Histograms revealing the statistical distribution
of the sample magnetisation for different temperatures and gauge fluxes. For each of these histograms about 200 individual
measurements have been recorded. The colour code corresponds to the normalised amplitudes of the histograms. ¢, Maxima of
Gaussian probability distributions which are fitted to the raw data. For bimodal distributions, the point size represents their

relative weighting.

the repulsive interactions between the atoms, which pre-
vents fragmentation of the state. This is supported by the-
oretical calculations including these interactions. Namely,
the free energy of the system can be evaluated up to the
first-order correction in the interaction strength [23] (see
Supplementary Material). At low temperatures, the ef-
fective free energy develops two minima. Condensation in
one of the two minima is equivalent to the spontaneous
breaking of the Zs symmetry. The energy scale protecting
the metastable minimum is the mean-field energy, which
is large compared to the temperature. This conclusion is

also confirmed by a Bogoliubov-de Gennes theory, includ-
ing the second-order correction with respect to interac-
tions (i.e. the quantum fluctuations) (see Methods). For
this reason, we can observe the metastable states.

At higher temperatures the entropic contribution to
the free energy merges the two minima into one. There-
fore, no metastable state is expected above the Zo criti-
cal point. The measured occupation of metastable states
with a magnetisation opposite to the bias field is therefore
a non-equilibrium signature of the phase transition.

The equilibrium state of the studied three-dimensional
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FIG 4. Magnetisation curves obtained via a classical
Monte Carlo simulation. At the lowest temperature ('), a
non-zero spontaneous magnetisation is well reproduced, which
disappears as the temperature is increased (T' < T"). Tising
denotes the critical temperature for the Zs symmetry breaking.
The apparent scattering reflects the fluctuations of a series of
MC simulations.

system can be investigated via a classical Monte Carlo
(MC) approach. Here, all relevant experimental parame-
ters, including the overall confinement, have been taken
into account in the simulation (see Supplementary Mate-
rial). Figure4 shows the magnetisation curves for three
different temperatures, generated by extracting the chi-
rality from the momentum distribution. For flux & = m,
the thermally driven phase transition from an ordered
state showing spontaneous magnetisation to an unordered
state is reproduced, and overall similar to the experimen-
tal data. No finite occupation of the metastable minimum
can be observed, since the MC simulation generates the
ground state of the system.

While the statistical distribution of the magnetisation
quantifies the Zs symmetry breaking, the sharpness of the
momentum peaks is a measure for the long-range phase
coherence connected to the U (1) symmetry. The peak full-
width-half-maximum (FWHM), extracted from the exper-
imental data presented in Fig.3b-c, is shown in Figure
Ha. As expected, for each flux value the peak width in-
creases with the temperature, monitoring the decreasing
long-range order. More remarkably the U(1) order param-
eter depends strongly on the gauge flux strength. For a
deeper understanding of this behaviour, the critical tem-
perature for BEC (7¢) has been theoretically evaluated in
the weak-coupling approximation of the free energy and is
plotted in Fig. 5b (see Supplementary Material). For mea-
surements realised at a fixed temperature, the coherence
length of the gas should decrease in the vicinity of ® =
where T, displays a pronounced cusp. The measured full-
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FIG 5. Experimental and theoretical evaluations, re-
lated to the U(1) order parameter. a, Measured FWHM
of the momentum peaks for the three different temperatures
Ty < Ty < Ts. The width of the momentum peaks is a mea-
sure for the loss of long-range coherence of the sample. b, Free
energy in units of J°T /um?® as a function of flux and temper-
ature. The condensation transition (red line) shows a cusp at
m-flux.
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width-half-maximum is limited by the finite time-of-flight,
but the short coherence lengths expected in the vicinity of
® = 7 are nicely reproduced. The observed increase of the
measured FWHM symmetric to ® = 7 is in good agree-
ment with the theory. Similar conclusions follow from the
exact thermodynamic analysis of the non-interacting gas
(see Supplementary Material).

In conclusion, we have realised a model system with
Ising-type Zs and global U(1) phase symmetry by apply-
ing strong gauge fields to bosonic atoms in a triangular
optical lattice. For classical two-dimensional XY systems
with coupled spin and chirality degrees of freedom, theory
predicts that the system first breaks the Zy chiral sym-
metry and then the U(1) symmetry as the temperature
is reduced [24]. However, the exact nature of these phase
transitions, which are strongly linked by combined excita-



tions, has long been debated [25, 26]. Only recently, pre-
cise Monte Carlo simulations could resolve the two tran-
sitions and identify their universality classes [27, 28]. The
analysis of the coherence properties of the 3D ultracold
gas demonstrates the strong influence of the Z, symme-
try breaking onto the BEC phase, revealed as a drastic
reduction of the coherence length. In future, it will be in-
teresting to investigate the coupling between these phase
transitions and its influence on their critical behaviour,
which is however experimentally challenging. In addition,
the occupation of metastable states with a magnetisation
opposite to the bias field is a non-equilibrium signature of
the Ising-like phase transition. This constitutes a funda-
mental, defining property of such phase transitions, which
is observed here in the field of ultracold atoms.

This work paves the way to further studies of artificial
magnetic properties of ultracold quantum gases in optical
lattices. Combinations of the two-dimensional control of
the complex tunneling parameters reported here with su-
perlattices [29] in different lattice geometries (triangular,
hexagonal, or kagome) promise to give deeper insights
into a variety of magnetic systems [5, 11].

We acknowledge support from the Deutsche
Forschungsgemeinschaft (GRK1355, SFB925) and
the Landesexzellenzinitiative Hamburg (supported by
the Joachim Herz Stiftung), ERC AdG QUAGATUA,
AATI-Hubbard, Spanish MICINN (FIS2008-00784),
Catalunya-Caixa, EU Projects AQUTE and NAME-
QUAM, the Spanish foundation Universidad.es, the
Austrian Science Fund (SFB F40 FOQUS), the DARPA
OLE program and the John von Neumann Institute for
Computing (NIC) for providing us with computing time
on the supercomputers of the Juelich Supercomputing
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METHODS

The triangular optical lattice. The two dimensional,
triangular optical lattice as depicted in Fig. 1d is created by three
running laser beams with actively stabilised phases that intersect
in the xzy-plane at an angle of 120°. The beams are derived from
a Ti:sapphire laser at wavelength Ay =830nm, creating a 2D
lattice potential V(r)=—Vp>_, cos(b;r) with a lattice spacing
of d=2\1/3=533nm. The reciprocal lattice directions are
b1 =b/2(1,4/3,0), ba=5(1,0,0) and bz =5/2(—1,v/3,0), where
b:271'\/§//\L, corresponding to the real-space lattice directions
a1 =d(0, 1, 0), ax =d/2(+/3, —1, 0) and ag =—d/2(V/3, 1, 0).

Experimental preparation. We create Bose-Einstein conden-
sates of (1.5—2.5) X 10% 87Rb atoms in a crossed optical dipole trap.
Within 100 ms, we subsequently ramp up the optical lattice to a final
lattice depth of (4.6 £0.1) Erec (Erec = h X 3.33kHz) which leads to
a bare single-particle tunneling parameter of JP2™® =4 x 1073 Eyec.
As the system is only weakly confined in z-direction with respect
to the lattice potential — the overall external harmonic confinement
is wot =27 X (31,53,40) Hz — the atoms form an array of approxi-

mately 2100 to 2600 elongated tubes with a mean occupancy in the
range of 70 to 95 atoms (175 to 235 in the center). The temperature
of the system is increased by holding the atoms longer in the lattice
before applying the artificial gauge fluxes.

Note that the system under study is three-dimensional. There-
fore we observe a BEC transition instead of a Kosterlitz Thouless
transition as expected for a pure two-dimensional system.

Lattice shaking. Staggered fluxes in the triangular lattice are
realised by a global periodic motion of the optical lattice around a
closed orbit x(t) = — Ay cos(Wt)é, — Ay [sin(Dt) + d sin(2at) /4] &y,
with @ = 27 x 2.8 kHz. The amplitude of the staggered flux can be
accessed by the control parameter §. In the reference frame of the
moving lattice, this results in a force

F(t) = —mx(t) = —F; cos(0t)é,; — Fy [sin(&t) 4 dsin(2t)] &, (5)

acting on the atoms. Experimentally, the trajectory is re-
alised by modulating two of the three lattice laser beams
with vy /3 =& Vg sin(@t) + vy [cos(@t) + & cos(20t) /2], where
Ve =0A./(V3d), vy =0Ay/d and Ay y = Fy,/(m&?). Hereby, the
shaking amplitudes v, and vy are linearly increased to their final
values in 50ms after the condensate is loaded into the initially
resting lattice. Time-averaging the projection of the force onto the
bonds of the elementary plaquette now leads to a renormalisation
of the tunneling matrix elements JP2'® — J°ff in the xy-plane [30].
The absolute values of the effective tunneling matrix elements are
on the order of |J°ff| ~ 0.4 jbare,

Symmetries of the system. With U/J°f = 1.2 — 1.4 and
large filling factors, the system remains in the weakly interact-
ing regime. Here, the local wavefunction has well defined phases
@; on each lattice site, which correspond to the XY vector spins
sj = (cosj,sing;). In the case where the arguments of the effec-
tive hopping are equal to m (i.e. §=0), the total kinetic energy of
the atomic ensemble along the lattice directions can be written as

E({ei}) = > |5 | cos(p; — i)

(4,9)

= > 15 si -85 (6)
(4,3)

Equation (6) is invariant under both a discrete Zo transformation
and a global U(1) rotation:

o _ J (cos(p;), —sin(p;)) Zs
S 78] {(cos(cpj +v),sin(p; + V)) U(1) (7

On the contrary, the chirality changes its sign under the discrete
transformation. The summation of this quantity over the lattice
plaquettes corresponds to the magnetisation of the system.

Detection and data analysis. All the information about
the momentum distribution of the superfluid are retrieved
from absorption images taken after 32ms time-of-flight. The
chirality is defined by the spins at the corners of one elemen-
tary plaquette as x=sgn[s2 X s1 +83 X s2+s1 X s3], where
S; X S; =8i 455,y — Si,ySj,z- It can be converted to a mask in
quasimomentum space (see Fig.2c). By weighting each absorption
image with this mask we obtain the total magnetisation of the
system as shown in Fig. 3b.

Bogoliubov theory for the metastable condensate. In a
translational invariant system with a Bose-condensate in one of the
two local minima of the free dispersion relation e(k), one can add



quantum and thermal fluctuations within Bogoliubov theory. One
obtains the quasiparticle dispersion relation

— g2 2
9ipPip

(8)

5(q) — &(— g &(—q)1?
o) — @ ) \/[gmpm+ @+ <o)

for momenta q = k — kg relative to the condensate momentum kg,
where £(q) = e(ko + q) — e(ko) and with g,, and p,, denoting
the interaction parameter and the density in the tubes respectively.
A thermodynamic instability is indicated when w(q) assumes neg-
ative values for some q. For vanishing interaction g,pp,p = 0,
one has w(q) = £(q) and the system is thermodynamically unstable
as soon as the condensate is not prepared in the global minimum
of the dispersion relation. However, finite interactions g, p;p > 0
can stabilise a condensate in the upper local minimum of the disper-
sion with w(q) > 0. The very same mechanism leads to spontaneous
symmetry breaking for & = 7 by disfavoring a fractionalised conden-
sation. The existence of a metastable state is thus directly linked to
spontaneous symmetry breaking.
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Supplementary material

LATTICE SHAKING

As stated in [S1], staggered fluxes in triangular lattices
can be realised by a global periodic motion of the optical
lattice around a closed orbit. The trajectory used for the
experiments presented in this article is given by

x(t) = — A, cos(wt)ey
— A, [sin(@t) + §sin(20t) /4] ey,

where @=2n/T =2m x 2.791kHz with x(t)=x(t + T).
The important control parameter for the staggered flux
strength is . For 6 =0 all tunneling matrix elements are
real valued and only flux strengths which are zero or
can be achieved. The inertial force acting on the atoms
in the reference frame of the moving lattice is

F(t)= — F, cos(@t)e, — F, [sin(@t) + §sin(201)] ey,
(52)
where the connection to the trajectory (equ.S1) is given
by A, =F,/(m&?) and A, =F,/(m&?). Experimentally
the forcing of the atoms in the lattice is realised by fre-
quency modulating two of the three lattice laser beams
with

(S1)

Avy 3 = Fv, sin(wt)

+vy [cos(cbt) + 5(:05(2(1)15)/2] , (53)

where v, =F,/(vV3dm&) and v,=F,/(dm®). The
renormalised tunneling matrix elements due to the time
averaging over one cycle are

Jbare
T

T
I = /O dtexp (iW;;(t)/h), (S4)

' —'abs['JN] '
— abs[J35]

0.42

( Jbare )

0.41

[
B 0.40

| —arglans] 039 -
-0.2 0 0.2 -0.2 0 0.2
Control parameter 6 Control parameter 6

abs[ Jeff]

FIG S1. Tunability of the complex tunneling parame-
ters. a, The Peierls phases along the bonds and the resulting
flux strength through an elementary plaquette are plotted as
a function of the control parameter §. b, Magnitudes of the
three effective tunneling matrix elements in units of the bare
tunneling amplitude.

kx (2n/vag)

FIG S2. Minima in the first Brillouin zone in presence
of gauge fluxes. k-space separation between the ground- and
excited state quasi momenta in dependence of the anisotropy
parameter o and the staggered flux strength &.

with

t
Wi () = — / drF(7) a. (35)
— 00
The vectors a; describe a closed path around one elemen-
tary plaquette of the lattice. Taking advantage of the
symmetries in our system, the tunneling matrix elements
are written as J = Jo; and J' = J33 = Ji3 in the following.
Fig.Sla depicts the numerical solutions for the Peierls
phases and the resulting staggered flux according to the
equation (S4). In Fig. S1b the magnitude of the different
effective tunneling matrix elements are shown. Note that
the difference between the magnitude of the tunneling ma-
trix elements is on the order of a few percents. Therefore,
it only has a weak influence on the dispersion, as will be
detailed in the next section.

THE DISPERSION RELATION

The lowest band dispersion relation for the triangular
lattice in presence of complex tunneling matrix elements
is described by

e(k)= —2|J|cos (dky — 621)
—2[J'| cos (d [V3k, — ky] /2 — 032) (S6)
—2[J'| cos (d [V3ky + ky] /2 + 013).
The gauge invariant quantity of the system is the stag-
gered flux strength ®. On the contrary, the hopping ar-
guments 6;; depend on the chosen gauge. A change of

gauge corresponds to a translation of the band structure.
The specific choice of the gauge 031 =7+ 3, 032 =7 and



013 =7 yields the simplified expression for the dispersion
relation

e(k) =+2| J | cos (dk, — B)
+4]J| cos (dk,V/3/2) cos (dk, /2) .
The z-component of the quasi-momentum for the local

minimum is ¢min,e = 27 /(d\/3). For ® =7 the correspond-
ing y-component can be written as:

(S7)

for o > 2

S8
for a < 2 (S8)

0
Gmin,y = {ii arccos (%)

where = J/J' is the anisotropy parameter of the lattice.
The numerical results for the quasi-momentum separation
between ground-state minimum and metastable minimum
are shown in Fig.S2. Since in our case the anisotropy
parameter remains close to unity, the quasi-momentum
separation is only weakly depending on the flux.

SWITCHING THE GAUGE FLUXES

After the lattice potential has been ramped to its fi-
nal depth of 4.6 E,ec, the tunneling matrix elements are
all real and positive valued. In order to induce non-zero
gauge fluxes, the frequency modulation of the laser beams
is slowly turned on by increasing the frequency amplitudes
v, and v, linearly over a time Tr = 50ms. Depending
on the value of the control parameter J, staggered gauge
fluxes with different final amplitude can be realised.

Since the ramping time scale is slow compared to the
orbital motion of frequency @ =2nr x 2.791 kHz, the sys-
tem has well defined tunneling matrix elements during the
switching procedure. The time resolved evolution of the
phases and amplitudes of the effective hopping elements
during the ramping of v, and v, are shown in Fig. S3. It is
important to note that the fluxes are rapidly switched to
their final amplitude. This corresponds to a quench into
the final state and explains the non-adiabatic behaviour
described in the main text. As observed experimentally,
slow ramps reduce the excitations in the system but since
the absolute tunneling values become small during the
ramp (see Fig.S3b and c), the process cannot be fully
adiabatic in experimentally accessible time scales.

The initial temperature of the system has been varied
by holding the atomic sample in the lattice prior to intro-
ducing the staggered gauge fluxes by shaking. The chosen
durations were 0 ms, 80 ms and 160 ms respectively for the
three investigated regimes.

TUBE PARAMETERS

In order to understand the physical properties of the
complete system in all three dimensions, it is important

a
T T T T
2.0r .
_6= 0
15F —6&=0.1 .
= —6=02
o 10 —s&=03
0.5F .
0 -

0 1 1 1 1

0 0.2 0.4 0.6 0.8 1.0
t(Tg)

FIG S3. Switching of the gauge fluxes. a, Amplitudes of
the gauge flux strength and b, c of the tunneling matrix ele-
ments along the bonds 1 — 2 and 2 — 3 (3 — 1) respectively
are plotted for different values of the control parameter § as a
function of the time during the linear ramping of v, and v.
The time is expressed in units of the ramp time Tr. The in-
set in ¢ is a zoom into the region of small absolute tunneling
matrix elements J3z,13.

to derive some basic parameters for the array of elongated
tubes in z-direction that are formed by the presence of the
optical lattice in the xy-plane. The basic ansatz for the
wavefunction of the system is

P(r) = Z ciwi(z,y)Gi(2), (59)

where w;(z,y) is the single particle Wannier function of
the 2D lattice, (;(2) is an interaction broadened function
along the tubes and N; = |c;|? is the number of atoms in
the tube of lattice site i. Neglecting the kinetic energy of
the system, this leads to a Gross-Pitaevskii equation for
the functions (;(z). The squared modulus of the function



is given by
p—m (W2R?, + wyR?, + w?z?) /2
gN; ’
where the w;, . denote the overall external harmonic
confinement and R;.,R;, are the z,y components of
the lattice vector of site i. §=g [ dzdylw;(x,y)|* is the
renormalised interaction parameter with the bare three
dimensional interaction parameter g=4mh?as/m. For
8"TRb: ap—o= + (100.4 & 0.1)ag [S2]. A numerical cal-
culation of the 2D-Wannier functions yields the result
G/g=17.2 x um~2 for 4.6 Ecc. The length of the tubes

(2z7F) is determined by the Thomas-Fermi boundaries in
z-direction

Gi(2)? (S10)

2u—m (w2R?  +w2R? ) /2
ZTF = \/ ( : 3 Y 7y) (Sll)
mw?
and the number of particles in a single tube
is N, =2mw?23./(39). By making the contin-

uum  approximation Y, N; » Ags [dadyN(z,y) with
R; .+, R; , — x,y, the chemical potential can be calculated
analytically:

(15§AUC -
16mv2 *

where Ayc = \/ﬂ d? is the area of the unit cell and
Nrot the total particle number of the system. The energy
scale associated with each tube 7 can be calculated as
U;=g [ dz|¢i(2)|* =33/ (52zTF). Relevant system parame-
ters for total particle numbers of 1.5 x 10° and 2.5 x 10°
are depicted in Tab. S1.

(S12)

2/5
3/2
y Wz T / NTOt) ,

TIME-OF-FLIGHT MEASUREMENTS

After rapidly switching off all trapping potentials and
letting the atoms fall in free space for 32ms we take
an absorption image of the cloud with a magnification
of approximately 3. With this standard time-of-flight
method, the quasi-momentum distribution of the atoms
in the lattice can be revealed. In Fig.S4, samples of av-
eraged time-of-flight images are shown in dependence of
flux strength and temperature in the lattice. As stated
before, the physics of the shaken system is described by
a time-averaged effective Hamiltonian with renormalised
tunneling matrix elements. The quasi-momentum distri-
bution describing the effective model is static, while the
only effect of the fast periodic acceleration is an overall
oscillating envelope on top of this quasi-momentum dis-
tribution. The density distribution in the far-field regime
after time-of-flight is given by

N
S e P ik(Ri~Ry) [
n(k) = ‘wo (k - )’ E e <aiaj>7 (S13)
i
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Nrog 1.5 x 10° 2.5 x 10°
Nsites 2157 2629
Nrot /Nsites 70 95

Nanax 174 237
U/J=Y",(Ui Ni)/(Nrot 0.4 J*"¢) 1.4 1.2

Itube = >, (2 2, 77 Ni)/Nrot
pip =Y, [N?/(22i,1F)] /Nrot

22.7pm  25.2 pm

46pm* 5.6pum?!

TAB S1. Calculated system parameters for different to-
tal particle numbers. Parameters are: the number of occu-
pied sites Nsites, mean tube occupancy Nrot/Nsites, maximum
tube occupancy Nmax, occupation weighted ratio U/J, occu-
pation weighted tube length ltuybe and occupation weighted
1D-Density pip.

where wq is the Fourier-transformed Wannier function
driven by the shaking. The expectation value in the sum
describes the coherence properties of the sample. In order
to keep the same Wannier envelope position, the switch-
off time is chosen to occur at the same time within one
period for all measurements. The center is positioned in
between the two degenerate minima (for ® = ) of the dis-
persion relation at ko = (+27/1/3d, 0). However, a small
displacement remains towards k, <0. For the given en-
velope size the displacement leads to a slightly favored
weighting of the negative magnetisation in the performed
measurements. This is the reason for the negative offset
of the data presented in Fig. 3.

GAUGE-INDEPENDENT CHIRALITY MASKS

In order to determine the magnetisation of the system
from the time-of-flight images, we introduce the chirality
of the system

X:sgn[52 X 81 + S3 X 89 + 871 XSS}, (S14)

where the scalar cross product of our two dimensional
vector spins is defined as

s; X 8; = €'7s;8; ($15)

= Si,aSjy — Si,ySj,x-

The spins s1, 82, 83 are arranged clockwise around a trian-
gular plaquette. For staggered mass currents this results
in the same value of x for the two types of triangular
plaquettes (upwards- and downwards pointing triangles
in z-direction). The chirality can be converted into the
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FIG S4. Quasi-momentum distributions.

a, Dispersion relation (k) for selected values of the flux strength ®. b, The

corresponding averaged time-of-flight images for the three different initial temperatures 77, 7> and T3 show the characteristic
population of the minima in the dispersion relation. The dashed lines in the first row of images are a guide to the eye.
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FIG S5. Gauge dependency of the chirality masks. The
chirality masks Yy obtained from the sign of equation (S18)
are plotted for different gauges: a #=0.97, 6’ =0.957 and b
0 =1.1m, ' =1.057. The first Brillouin zone is indicated by a
red hexagon.

reciprocal space, resulting in a mask for the TOF images

3
Z sin(k - ai)] .

i=1
Weighting the TOF images of n(k) with this mask
gives access to the mean chirality or, in the Ising
picture, the staggered magnetisation of the system
M = [ x(k)n(k)d?k. In principle this quantity is not ex-
act since it is gauge dependent. An observable which char-

X(k) = sgn l (S16)

acterises the Zy order parameter in a gauge independent
way is given by the total staggered flux Jrot, that is

sltes

> Z Jiay)
i
Sl
Here, n (k) is the density in momentum space and (jia;)
denotes the expectation value of the mass current from
lattice site j to the nearest neighbour in the direction a;.
With the different # and ¢’, the specific gauge that was
chosen is described by the weighting function
X (k,0,0) = sin(k-a; —0)
+sin (k-ag — 6)
+sin(k-az —6').

jTot
(S17)
X (k,0,0).

(S18)

It can be used to define a set of gauge-independent chiral-
ity masks xq (k,0,0") =sgn[X (k,6,0)]. The resulting
masks for the specific gauge of 6§ =0.97, ¢’ =0.957 and
0 =1.1m, ¢ =1.057, that correspond to flux strengths of
® =0.87 and ® =1.27, respectively, are shown in Fig. S5.
For simplicity, we use the mask defined by equation (S16),
where #=60'"=m, and xg =X, since the difference of the
magnetisation data generated with gauge independent
masks turns out to be negligibly small.
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FIG S6. Analysis of the statistical distribution of the
magnetisation. Illustration of the bimodal fluctuation of the
magnetisation due to the breaking of the Zs symmetry for the
case of low temperatures and flux ® =7 as seen in Fig. 3a. The
solid lines on the right represent the fitted uni- (kas =1) and
bimodal (kar =2) Gaussian probability distributions.

STATISTICAL DATA ANALYSIS

As described in the main text, the spontaneous breaking
of the Zs symmetry manifests itself in characteristic shot-
to-shot fluctuations of the measured total magnetisation
of the system. Therefore, a statistical analysis of the data
is essential in order to extract reliable information about
properties of the raw data distribution plotted in Fig. S7a.

For this purpose, we fit a one-dimensional Gaussian
probability distribution with kj; =1, 2 modes to the mag-
netisation data for each flux value. With such a soft clus-
tering method, the actual number and properties of modes
in the 1D-distributions can be determined by comparing
the Schwarz-Bayes criterion (SBC) for the respective fits
[S3]. Fig.S6 illustrates a uni- and bimodal Gaussian dis-
tribution for the case of flux ® = for the measurement
with lowest temperature, where SBC; > SBC, favors the
bimodal model. In order to assure reliable results, each
fit is replicated ten times with random starting parame-
ters, selecting the most likely output. Furthermore, the
obtained parameters are averaged ten times so that de-
viations due to the randomness of the initial fitting pa-
rameters can be ruled out. In Fig.S7b the differences
of the SBC for uni- and bimodal fits are plotted. For
cases where SBC; < SBC, (SBC; > SBCs) a unimodal
(bimodal) model is favored. Note that multimodal dis-
tributions with kj; > 3 are not considered here since they
have proven to be always less favorable as compared to
the cases kpr =1 and kj;y =2.

Spontaneous symmetry breaking for fluxes close to 7 is
clearly indicated for the temperatures 77 and 75 by favor-
ing bimodal probability distributions. On the contrary,
no symmetry breaking can be observed for the tempera-
ture T3 as the unimodal fit is always favored (in spite of
the outlier for ® =0.9 7, where the SBC are nearly equal
and the two resulting Gaussian modes strongly differ in
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width and amplitude, thus hinting at a remaining dis-
crepancy in the evaluation of the respective fits). This
is a decisive evidence of the phase transition from an or-
dered, ferromagnetic to an unordered, paramagnetic state.
The resulting Gaussian density distributions (Fig. S7c) are
in good agreement with the statistical representation of
the data in Fig.3b. In Fig.3c (and again in the inset of
Fig. S7c) the maxima of the obtained Gaussian distribu-
tions are plotted. In the case of bimodal distributions, the
point size represents the ratio of amplitudes of the respec-
tive Gaussian, emphasising the smaller population of the
metastable minimum for the measurement at 77.

Another indication for the disappearance of sponta-
neous symmetry breaking for larger temperatures is the
behaviour of the variance of the magnetisation measure-
ments as shown in Fig. S8. Here, a notable rise of fluctua-
tions for fluxes close to 7 is evident for 77, and, although
less distinct, for 75, while the fluctuations remain con-
stantly small for Tj.

FREE ENERGY

In this section we discuss the thermodynamic behaviour
of the frustrated lattice system. We use a weak-coupling
approximation of the free energy, which contains the non-
interacting contribution and the first-order term, as dis-
cussed in Ref. [S4].

Symmetric case

We consider the three-dimensional lattice dispersion in
the fully frustrated case, for ® = 7 and |J|=|J'|:

e(k) =+2|J| cos (dky)
+2|J| cos (d[V/3k, — ky)/2)
+2|J| cos (d[V/3k, + ky)/2) + kZ/(2m).

(519)

In order to map the system on a weakly interacting 3D
Bose system, we expand the dispersion around the two
minima K » /s to second order, and write the curvature as
an effective mass

2

4+ b2 (S20)

L, g,
2mg,  2my  2m,

5(51) =

where §&; = k — kg i, and 1 =A,B with A and B denoting
the two distinct minima in the dispersion. The in-plane
masses are m, =m, =m; = 2h*/(3d?|J|), while the mass
along the tube is simply the bare mass, m,=m. The
effective 3D density is related to the 1D density in the
tubes by n,, =n,,2/(v/3d?). In analogy to the isotropic



a T1

13

T, T

LA L L L O B L L B B T T

o
N

Magnetisation
o

LI I L B B B T ] T T T T T T T T

-0.2
b
81'\4 80 - 4 - -
“ 40 - L T o {1t 1
Jg 0 oSN Be o S— O 0 R oo T Yo S Wi S o
7 40 ° 9 °°
0.81 1.0 1.19 0.81 1.0 1.19
¢ ' m0.4 ' " "mo.7 ' "
0.2 4 i
c
Rel
= 1 L — "
2 0 0 0
v Or b L i L 4
) o 02 f— 02
2 | 02 o } )
= of & —-- o L1 [ of o000
-0.2+ o [0 ¢ 4 o 0¢
. 0.2], - 02 it 02 .
) 081 10 119 3 081 10 119 | 081 1.0 1.19]
0.8 1.0 1.19 0.81 1.0 1.19 0.81 1.0 1.19
¢ (M) ¢ (M) ¢ (r)

FIG S7. Raw data, information criteria and fit results of the statistical distributions. a, Single shot measurements of
the magnetisation as a function of the flux strength for the three different initial temperatures. b, Differences of Schwarz-Bayes
criteria for a uni- and bimodal Gaussian probability distribution are plotted for each given flux value. As indicated by empty
circles, for some cases the bimodal fit fails to converge and a unimodal fit has to be assumed as the best model. ¢, Resulting
probability fits showing good agreement with the histograms from Fig. 3b. The extracted maxima of the probability distribution

(see Fig. 3c) are shown in the insets.
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FIG S8. Variances. Fluctuation of the magnetisation for
the three temperatures demonstrating the symmetry breaking
for fluxes close to ® =x. Each data point corresponds to the
variance of the 1D-magnetisation data for the respective flux
value. The solid lines are Gaussian fits to the data.

3D case, we define the two thermal wavelengths

Am = h/\/20mkpT (S21)
)\J :h/\/ 27TkaBT (822)

and A= (A, A%)1/3. We now consider a thermal distribu-
tion of non-interacting bosons. In analogy to the regular
Bose gas we find for the density of excited states in the
minima A and B

Ne,i = %93/2(&) (523)
with the Bose function g,(z)= Y2, z!/I” and the cor-
responding fugacities z; = exp(pi/kpT). The chemi-
cal potentials p; control the densities n; in each mini-
mum. The free energy of the non-interacting system is
Ay = AO,A + AO,E» where

AO,i _ —knggg)/z(Zi) +n;kgTInz; ifz; <1
e

—25L g 15 (1) if 2, =1
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FIG S9. Free Energy in dependence of the density im-
balance. a, Free energy A/V = (Ao + A1)/V per volume for
the parameters of the experiment, given in the text, as a func-
tion of the density na of particles near minimum A of the
dispersion for the temperatures T} = 65 J%, T, =67 J°% and
T3 =69 JT We keep the total density n,, =na+ns fixed and
the energy A(na=n,,/2,T) is set to zero. b, Contour plot of
the free energy A/V (in units of J°/um?) for a wider tem-
perature range. The two new minima appear symmetrically
around na =n, /2, as the temperature is lowered.

In order to account for the interaction, we include the first-
order term in the effective 3D interaction strength g, ,
which is related to the 1D interaction g, in the tubes by
Gsp = 91 2d% //3. As discussed in Ref. [S4], the first order
correction to A/V is

AL _ g

Vo2
where ng. and ngp are the condensate densities in
minimum A and B, respectively. In Fig.S9, we plot
the free energy per volume A/V =(Ag+ A4;)/V, for
J=J=kp x0.26nK, and for a fixed total density
of n,, =17um=3, corresponding to a 1D density of
n,,=6um=t.  With a 1D interaction strength of
Gip = 23.4 J°%um, this results in an effective 3D interac-
tion strength of g, =6.4 JFum3. As the temperature T

[2(nA + nB)2 - ng,A - n(Q),B} (S24)
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is lowered, the free energy develops two minima symmet-
rically around n; =n,, /2, indicating the onset of sponta-
neous breaking of a Zo symmetry. Furthermore, we see
that within this approximation the free energy barrier is
of the order of g, no Ny, where ng and Ny denote the den-
sity and the number of condensed particles, respectively.
When the condensate fraction approaches 1, the energy
barrier per particle becomes g,,no =~ ¢,,n,, which is of
the order of kp x 28nK or 108 J°%. Since this energy is
large compared to the temperature estimates of the exper-
iment, it can protect the metastable states that are seen
following the quench. We also note that in this estimate
the breaking of the Zs and the U(1) symmetry occur at
the same temperature, because it is the condensate frac-
tion that is responsible for generating two minima in the
free energy.

Biased case

We now consider the case where the minima of the
dispersion relation are not degenerate, but have an en-
ergy difference of A = e(kog) — (ko) resulting from
a flux value different from ®=7w. An approximate re-
lation between tilt energy A and flux strength & is
A=10.5JTx (®/m—1). We choose the energy minima of
the dispersion such that e(koa)=|A| and (ko) = 0 for
A <0, and e(koa) =0 and e(kos) =A for A > 0. Using
the same approximation as in the previous section we find
the following expression for the free energy

AV = —% 95/2(28) + g5/2(25)]

+kpT [naIn(zs) + ns In(zs)] (525)
—|—% [Z(nA +ng)? — ng,A — naB].

If only the density n,, =na + ns is given, as it is the case
for the experiment, only one of the density fractions, ng a
or npg, can be non-zero. As is apparent from equation
(S25), the system can always lower its energy by condens-
ing all atoms into only one of the two minima.

We first hold the individual densities fixed to demon-
strate the behaviour of the free energy described in the
main text. In Fig. S10 we show the free energy A/V as a
function of na, with na + ng held fixed, for different flux
strengths ®. In Fig.S10a, a local minimum persists for a
finite tilt. Here the temperature is low enough, that the
system is condensed at finite tilt of the system away from
® = 7. In Fig. S10b we choose a higher temperature, re-
sulting in only one global minimum being present for any
tilt. We now only hold the total density ny+ns fixed so the
fugacities are given by 2 =7 and zy = zexp(—|A|/kpT),
for A > 0, and by z; =zexp(—|A|/kpT) and zy =1z for
A < 0. The density of excited states is related to the
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FIG S10. Free Energy behaviour in dependence of the
flux. Free energy A/V per volume as a function of the den-
sity ma for various flux strengths & and a temperature of
a, T=66J°T and b, T=70J°%. We keep the total density
Ngp =na+ne fixed. The energy A(na=n,y/2,A) is set to
zero. For the smaller temperature in a, a local minimum per-
sists for finite tilt energy, indicating the two degenerate minima
that exist for the symmetric case. For the higher temperature
in b only one minimum can be seen, indicating that the system
is supercritical.

fugacity z through
Nea + Nes = [93/2(Z) + 932 (Z e_lAl/kBT)} /A% (S26)

The free energy is then given by

kgT
AV = —% {95/2(2) + 95/2 (Z e_lAl/kBT)}

+kpT(nay +ns)Inz —n; A
+g[(na +ns)? —ng ; /2]

(S27)

where 1=B if A > 0, and i = A if A < 0. In Fig.S11
we show the free energy for the same parameters as in
the previous section, in dependence of the temperature T'
and the tilt energy A, while keeping only the total density
n,, fixed rather than the individual densities. Note that
here we span a much larger parameter range of the tilt
energy than is experimentally accessible (compare Fig.4
in the main text). For each temperature, A(A = 0,T) has
been set to zero. If the system is above the critical point,
the free energy increases as the tilt energy is varied away
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FIG S11. Free energy A/V as a function of temperature
and tilt energy. Here, only the total density n,, =na + ns
is held constant. Above the critical point, tilting the disper-
sion increases both the free energy (plotted here in units of
J°® /um?®), and the phase space density in the lower minimum,
leading to condensation. While the phase transition is depicted
by the red line, the white line marks the condition gno = A,
corresponding to the metastability of the upper minimum. Be-
low the critical point, the free energy decreases when the dis-
persion is tilted, indicating an instability.

from A = 0. If the system is below the critical point, the
free energy decreases, indicating an instability towards a
Zo symmetry broken state. The critical temperature in-
creases when a non-zero tilt is chosen, as indicated by the
red line. When the dispersion is tilted, the phase space
density increases in the lower minimum, which results in a
higher condensation temperature. For the non-interacting
system the ratio of the critical temperatures for large tilt
and no tilt is Te Amsoo/Te,a=0 =22/3, Furthermore, the
condition |A| = gng is shown by a white line. As discussed,
this gives the order of magnitude of A for which the higher
minimum of the free energy vanishes. This estimate is ac-
curate for small temperatures, and gives an approximate
energy scale for higher temperatures. We see that it is a
large scale compared to the tilt energies studied in exper-
iment. Therefore, the higher minimum is typically sta-
ble, once the system is subcritical. In Fig.S12 we show
the density fraction (na — ng)/n,, as function of the flux
strength ® for different temperatures. For high tempera-
tures, a linear response to the tilt can be seen, while the
appearance of a discontinuity for subcritical temperatures
is indicative of a phase transition.

ESTIMATION OF THE CRITICAL
TEMPERATURE

One can obtain a reasonable estimate for the number
of Bose-condensed atoms at higher temperatures by ap-
proximating the system as non-interacting and neglecting
the trap in the xy-plane. In that case, the total number
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FIG S12. Density imbalance as a function of the flux.
The density imbalance (na —ns)/n,, between the two minima
in the dispersion is calculated for three different temperatures
as a function of the flux strength ®. For subcritical temper-
atures of the Zo transition, the density imbalance has a dis-
continuity at ® = w. For supercritical temperatures we see a
linear dependency.

of atoms is given by the Bose statistics for the dispersion
relation e(k) together with the discrete level structure of
the harmonic trap in z direction,

(kg by)thws (nz+1/2)—p

Ny = Z i (e =

ke,ky nz=0

- 1)71 . (S28)

The Bose—condensate is, for given chemical potential pu,
identified with the atom number Ny in the minimum of
the dispersion relation. To work at fixed particle number,
we adjust p until the density equals a desired value, for
which we use a realistic number (Not/Nsites = 90 in a
rhombic lattice of Nsjtes = 17 x 17). Further, we assume
the experimental value Aw, /JP® = 3, and we use the ef-
fective tunnelings for a given shaking modulation ¢ (see
Fig.S1). We normalise all quantities to the magnitude
of the resulting tunneling matrix elements J¢. The re-
sults for the number of excited atoms in the exact band
structure are shown in Fig. S13a. The condensate is much
stronger depleted at fluxes close to 7, indicating a stronger
loss of U(1) long-range order and a lower critical point for
Bose condensation. This results in the same cusp-like be-
haviour as obtained with the calculations in the weakly-
interacting system with a harmonic approximation to the
band structure (Fig.5b of the main text).

From the occupation at different k modes, one can also
compute the peak width of the momentum distribution,
similar to what is extracted from the experimental time-
of-flight images and plotted in Fig.5a of the main text.
The result is shown in Fig. S13b. It reproduces well the
qualitative behaviour of the experimental findings: the
momentum peak gets broader closer to 7 flux and at
higher temperatures, pointing at a decrease of the U(1)

16

a T T T T T 0.9
120t .
0.8
5‘100— 107
o
= 0.6
®
8. 0.5
S
& 0.4
0.3
0.2
0.8 0.9 1.0 1.1 1.2
¢ (n)
b T T T T T
8t AT= 60Jeff -
7L © & T=100Jeff
= ff
6l O T=130Jef |
S o o
s 5r o o 7
o} o}
= 4r o ¢ o i
2 0° L AR %
o 3r OOO ¢ 3 OOO 7
2_O “ A “ O |
1 Lasesefiaat AassR200000
1 1 1 1 1
0.8 0.9 1.0 1.1 1.2
¢ ()

FIG S13. Calculations for the exact band structure in
a non-interacting approximation. Data for Nrot/Nsites =
90 and Nsites =17 x 17. a, The density of excited atoms
Nexe = Nexc/NTot is strongly enhanced at a flux strength of
m, resulting in a cusp. b, The FWHM of the momentum dis-
tribution increases close to ® =7 and at higher temperatures,
pointing at a decrease of U(1) long-range order. The values
are normalised to the lowest result.

long-range order.

MONTE-CARLO SIMULATION

In order to study the equilibrium states of the three
dimensional ultracold ensemble, we simulate the system
using classical Monte-Carlo (Metropolis algorithm). We
start with a system of 42 x 75 tubes, where each tube
is discretised into 33 sites using a discretisation length of
a, = 1 pym. This introduces an additional effective tunnel-
ing term in z-direction J, = h?/(2ma?) = 10.7 J°F. Fur-
thermore, the on-site repulsive interaction constant has to
be rescaled to Usite = ¢, /az-

The system is initialised using one of the two-fold de-
generate classical ground states at zero flux with an initial
total number of atoms of 2 x 10°. To ensure that the total
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FIG S14. Monte-Carlo sample snapshot. Sample snap-
shot of thermal equilibrium ensemble for flux strength & =7
at T=37 J° (so T'> Tiaing ), where the zy-plane is cutting the
tubes at the center of the trap: triangular plaquettes with neg-
ative (positive) bosonic currents in red (blue). Higher (lower)
color intensity represents higher (lower) absolute values of the
bosonic current. In addition, regions with lower density are
covered in white haze. Inset: Sample from center with arrows
representing the phase at each lattice site.
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number of atoms remains constant, we set the chemical
potential to u 230 Jff.  We then perform single-site
updates, where sites are chosen randomly and changes
to the real and imaginary parts of the wavefunction are
generated by sampling from a normal distribution whose
width is adjusted to approach a step acceptance rate of
roughly one half. After a thermalisation process that, de-
pending on the temperature, consists in 10° — 10° Monte-
Carlo steps per site (MCS), we start taking 100 snapshots
of the systems. Between subsequent samples we perform
sufficiently many MCS for both samples being completely
uncorrelated: correlation is eradicated in under ten MCS,
whereas our sampling frequency is between 100 and 1000
MCS. For each sample we compute the chirality which is
given by the relative visibility of the integrals over both
interference peaks in quasimomentum space using a tri-
angular mask. We repeat this process for flux values
€ [0.817,1.197] and obtain the chirality as a function of
the flux. The results are shown in Fig. 4.
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