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Routing plays a fundamental role in network applications, but it is especially challenging in Delay Tolerant
Networks (DTNs). These are a kind of mobile ad hoc networks made of e.g. (possibly, unmanned) vehicles
and humans where, despite a lack of continuous connectivity, data must be transmitted while the network
conditions change due to the nodes’ mobility. In these contexts, routing is NP-hard and is usually solved
by heuristic “store and forward” replication-based approaches, where multiple copies of the same message
are moved and stored across nodes in the hope that at least one will reach its destination. Still, the existing
routing protocols produce relatively low delivery probabilities. Here, we genetically improve two routing
protocols widely adopted in DTNs, namely Epidemic and PRoPHET, in the attempt to optimize their delivery
probability. First, we dissect them into their fundamental components, i.e., functionalities such as checking if
a node can transfer data, or sending messages to all connections. Then, we apply Genetic Improvement (GI) to
manipulate these components as terminal nodes of evolving trees. We apply this methodology, in silico, to
six test cases of urban networks made of hundreds of nodes, and find that GI produces consistent gains in
delivery probability in four cases. We then verify if this improvement entails a worsening of other relevant
network metrics, such as latency and buffer time. Finally, we compare the logics of the best evolved protocols
with those of the baseline protocols, and we discuss the generalizability of the results across test cases.
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1 INTRODUCTION

A fundamental element in many modern applications is the use of networked systems: be it
environment monitoring, smart industries, smart cities, or distribution systems, networks of various
scales and complexity are employed today practically everywhere. One of the most important
aspects in networking is the concept of network protocol, i.e., a set of well-defined data format and
rules that allow nodes in a network to communicate with each other [Holzmann, Gerard J 1991].
Typically, a physical network relies on multiple protocols, which are arranged as a protocol stack
where protocols at lower layers provide basic functionalities which are progressively enriched by
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the higher layer protocols. Among those basic functionalities, routing is a crucial one, as it allows
data to flow across the network and reach their destination. While well-established efficient routing
protocols exist for IP networks, routing in mobile ad hoc networks (MANETSs) and other Internet
of Things (IoT) instances, such as networks of cars, unmanned vehicles, or collectives of vehicles
and humans, is still a very active area of research. One particularly challenging kind of MANETSs
is represented by the delay tolerant networks (DTNs), also known as disruption tolerant networks,
opportunistic networks or intermittently connected wireless networks. Originally designed in the
1970s for space communications, but applied since the early 2000s also to terrestrial applications
such as urban mobile networks, DTNs are (typically, heterogeneous) decentralized networks that
lack continuous connectivity due to their node sparsity, limited wireless radio access, and limited
energy resources.

In these contexts, routing is NP-hard [Balasubramanian, Aruna and Levine, Brian and Venkatara-
mani, Arun 2007] and as such it is usually solved by heuristic (best-effort) “store and forward”
replication-based approaches, where multiple copies of the same message are moved and stored
across nodes in the hope that at least one will eventually reach its destination. Still, the sparsity and
mobility of the nodes causes unpredictable meeting patterns and frequent disconnections [Alouf,
Sara and Neglia, Giovanni and Carreras, Jacopo and Miorandi, Daniele and Fialho, Alvaro 2010],
which result in relatively low data delivery probabilities (also called delivery rates, or delivery ra-
tios), even with well-established protocols such as Epidemic [Amin Vahdat and David Becker 2000],
PRoPHET [Lindgren, Anders and Doria, Avri and Schelén, Olov 2003], and their variants. As shown
in [Abolhasan, Mehran and Wysocki, Tadeusz and Dutkiewicz, Eryk 2004; Boukerche, Azzedine and
Turgut, Begumhan and Aydin, Nevin and Ahmad, Mohammad Z and B616ni, Ladislau and Turgut,
Damla 2011; Hong, Xiaoyan and Xu, Kaixin and Gerla, Mario 2002], the node density and their
mobility affect the delivery probability in most kinds of MANETs (not only DTNs), although the
problem is further exacerbated in DTNs: while in dense MANETSs composed of slow-moving nodes
(e.g. pedestrians) the delivery probability obtained by state-of-the-art routing protocols can be
higher than 90% [Johansson, Per and Larsson, Tony and Hedman, Nicklas and Mielczarek, Bartosz
and Degermark, Mikael 1999], in sparse MANETs made of fast-moving nodes (e.g. vehicles) the
delivery probability can be as low as 15-18%, [Clausen, Thomas 2004; Saudi, Nur Amirah Mohd
and Arshad, Mohamad Asrol and Buja, Alya Geogiana and Fadzil, Ahmad Firdaus Ahmad and
Saidi, Raihana Md 2019]. Furthermore, other factors such as the number of sources (i.e., the nodes
transmitting data) can also affect the delivery probability: the lower the number of sources, the
higher the delivery probability [Clausen, Thomas 2004; Perkins, Charles E and Royer, Elizabeth M
and Das, Samir R and Marina, Mahesh K 2001].

Traditionally, network protocols are modelled as a reactive system, i.e., a two-player game (agent
vs environment) where an agent (a node in the network) reacts, by performing a certain action,
to pre-defined conditions in the environment (the rest of the network): for instance, the agent
retries a message transmission if it does not receive an acknowledgment. As such, a protocol can
be described with an automaton, for which formal specifications can be logically expressed and
verified. For that, one usually needs to have complete knowledge about (and strict assumptions
on) the environment. This approach, rooted in the theory of Temporal Logic and infinite (Biichi)
automata [Buchi, J Richard and Landweber, Lawrence H 1990], has been the gold standard in
protocol design and verification for decades. However, there are limitations. First of all, this way
of designing protocols assumes in general the environment, and all its states, to be known: this
is usually not the case for DTNs, where the environment conditions can be unpredictable due to
the nodes’ mobility. Secondly, the numerical (time and space) complexity of these design methods
makes them impractical when the number of states of protocol and environment grows [Vardi,
Moshe Y 2018]. This is the case of DTNs, where the number of states of the environment can be
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very large, depending on the number of nodes and their state. For these reasons, finding a way to
design better routing protocols for DTN, or at least improving the performance of the existing
ones, is still an open research question.

Here, we consider the Genetic Improvement (GI) [Langdon, William B 2015] of two of the main
routing protocols used in DTNs, namely Epidemic and PRoOPHET. Our methodology consists in
the following: first, we dissect the two protocols into their fundamental components, i.e., basic
network functionalities such as checking if a node can start transferring data, or sending messages
to all connections; then, we apply Genetic Programming (GP) to rearrange these components into
evolving trees, in the attempt to maximize the data delivery probability. It is worth stressing that,
in principle, this methodology can be easily generalized to other protocols, also at different layers
of the protocol stack, and to different kinds of networks.

To evaluate the proposed methodology, we perform a broad in silico experimentation where we
improve Epidemic and PRoPHET on six test cases of urban networks made of three different kinds
of mobile nodes (pedestrians, cars, and trams). Overall, we find that GI consistently produces a gain
in data delivery probability. We then verify if this improvement in the delivery probability entails a
worsening of other relevant network metrics, and find some counterintuitive results obtained as
“byproducts” of GI: in fact, we find that the best evolved protocols not only increase the delivery
probability, but also reduce the overall network overhead (i.e., the number of retransmissions).
However, they trade these improvements for a higher latency. We also investigate the generaliz-
ability of the best evolved protocols across test cases, and find that apart from one specific map
(Manhattan), the evolved protocols are able to generalize to unseen test cases, producing results
that are still better than the baseline protocols. Finally, we compare the working logics of the best
evolved protocols with those of the baseline protocols, and identify some common aspects which
underlie their improved performance.

Novel aspects of this work. Compared to the existing works on GP applied to protocol evolution,
our work presents various elements of novelty which are worth highlighting. In particular, among
the literature we will briefly survey in the next Section, the closer works on the application of
GP to the evolution of protocols act either on the application layer, focusing in particular on
aggregation protocols (i.e., protocols that calculate an aggregation function of distributed data,
such as their mean) [Weise, Thomas and Geihs, Kurt and Baer, Philipp A 2007; Weise, Thomas
and Tang, Ke 2011; Weise, Thomas and Zapf, Michael and Geihs, Kurt 2008], protocol adaptors,
i.e., interfaces between incompatible application protocols [Van Belle, Werner and Mens, Tom
and D’Hondt, Theo 2003], or application logics in Wireless Sensor Networks [Johnson, Derek M.
and Teredesai, Ankur M. and Saltarelli, Robert T. 2005; Valencia, Philip and Lindsay, Peter and
Jurdak, Raja 2010]; or, they use GP to optimize only a very specific equation used in existing
protocols, such as the formula used to variate the contention window size in IEEE802.11 DCF
[Lewis, Tim and Fanning, Neil and Clemo, Gary 2006], or the update rule of the routing table
[Roohitavaf, Mohammad and Zhu, Ling and Kulkarni, Sandeep and Biswas, Subir 2018] (the latter
work being based on rather simplified network simulations). Besides these works, three other
papers have addressed, although with various limitations, very related research questions, namely
[Alouf, Sara and Neglia, Giovanni and Carreras, Iacopo and Miorandi, Daniele and Fialho, Alvaro
2010; Yamamoto, Lidia and Tschudin, Christian 2005a,b]. Among these, the first two works apply
GP to perform the online distributed adaptation of an extremely simplified delivery protocol (which
allows only direct message exchanges, i.e., without routing): in this case GP automatically selects
different combinations of modules in order to adapt the resulting protocol to the network conditions.
This approach is quite different from the one we propose here, which instead is based on offline
genetic improvement of realistic routing protocols for DTNs. The last one, on the other hand, does
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focus on the same protocols we study in this paper, i.e., Epidemic and PRoPHET, however it uses a
GA to adjust the protocols’ parameters (such as the number of copies) in response to the network
dynamics, in order optimize the overall delivery probability. Again, this approach is quite different
from our proposal. Thus, to the best of our knowledge no prior work has used GP to genetically
improve the inner logic of existing routing protocols, yet alone those used in DTNS.

Structure of the paper. The remaining of this paper is organized as follows. In the next Section,
we present the related work. Then, in Section 3 we introduce the method, in particular the GP
configuration and the simulation setup. In Section 4, we describe the details of the experimentation,
while the numerical results are discussed in Section 5. Finally, in Section 6 we draw the conclusions
and hint at possible extensions of this work.

2 RELATED WORK

In the following we briefly summarize the related works on Genetic Improvement and the applica-
tions of Evolutionary Learning to networked systems.

2.1 Genetic Improvement

While the application of GP for bug fixing, sometimes referred to as automatic repair of programs,
dates back to the early 2000s [Le Goues, Claire and Dewey-Vogt, Michael and Forrest, Stephanie
and Weimer, Westley 2012; Orlov, Michael and Sipper, Moshe 2011; Weimer, Westley and Forrest,
Stephanie and Le Goues, Claire and Nguyen, ThanhVu 2010], the term “Genetic Improvement”
was originally coined by Langdon and collaborators in some seminal works from 2014 [Langdon,
William B 2014; Langdon, William B. and Harman, Mark 2014a,b; Langdon, William B. and Modat,
Marc and Petke, Justyna and Harman, Mark 2014; Petke, Justyna and Harman, Mark and Langdon,
William B. and Weimer, Westley 2014] and finally formalized in [Langdon, William B 2015]. The
broad definition of Gl is the application of optimization techniques, particularly evolutionary search
algorithms such as GP [Woodward, John R and Johnson, Colin G and Brownlee, Alexander EI 2016],
to improve existing software w.r.t. either functional requirements (and in particular bug fixing), or
non-functional requirements, such as speed or memory.

In the past few years, several works have shown the potential of GI. Some of these works have
focused on speed improvement, e.g. in the case of CUDA code [Langdon, William B. and Harman,
Mark 2014a; Langdon, William B. and Modat, Marc and Petke, Justyna and Harman, Mark 2014] and
CUDA-based sequencing tools such as BarraCUDA [Langdon, William B. and Lam, Brian Yee Hong
2017], complex C/C++ applications such as Bowtie2 [Langdon, William B. and Harman, Mark 2014b],
the OpenCV library [Langdon, William B. and White, David R. and Harman, Mark and Jia, Yue
and Petke, Justyna 2016], or the MiniSAT solver [Petke, Justyna and Harman, Mark and Langdon,
William B. and Weimer, Westley 2014]. A particular case of GI aimed at speed improvement is
discussed in [Lopez-Lopez, Victor R. and Trujillo, Leonardo and Legrand, Pierrick 2019], where the
authors applied GI to a C++ GP library and noted a speedup due to the deletion of some operators
(crossover, point mutation and others). Another area of GI research is the accuracy improvement of
low-level implementations of various mathematical functions, such as sqrt [Langdon, William B
2019], log; [Langdon, WB 2018; Langdon, William B. and Petke, Justyna 2019] and other functions
based on lookup tables [Krauss, Oliver and Langdon, William B 2020]. In other works, energy
consumption has been considered as primary goal of GI [Bokhari, Mahmoud and Wagner, Markus
2016; Bruce, Bobby R. and Petke, Justyna and Harman, Mark 2015].

As for bug fixing, successful applications of GI have been reported in [Le Goues, Claire and
Dewey-Vogt, Michael and Forrest, Stephanie and Weimer, Westley 2012], [Weimer, Westley and
Forrest, Stephanie and Le Goues, Claire and Nguyen, ThanhVu 2010], and [Schulte, Eric M. and
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Weimer, Westley and Forrest, Stephanie 2015]. This latter work is especially interesting since it
uses GI to repair a bug in a MIPS binary without accessing the source code. Beyond bug fixing,
automatic code generation has also shown promising results e.g. in the porting of existing C code
to CUDA [Langdon, William B 2014], or in the automatic generation of equivalent Java bytecode
starting from existing programs [Orlov, Michael and Sipper, Moshe 2011],

Finally, it is worth mentioning two recent surveys of the GI literature, [Petke, Justyna and
Haraldsson, Saemundur O. and Harman, Mark and Langdon, William B. and White, David R. and
Woodward, John R 2017] and [Langdon, William B. and Ochoa, Gabriela 2016]. The latter work, in
particular, mentions the application to programming languages different from C/C++ (which has
attracted so far most of the attention of the GI literature) as one of the key challenges for GI. We
find that our work is loosely related to this issue.

2.2 Evolutionary Learning applied to networked systems

In the past two decades, various Machine Learning and bio-inspired technique, especially Evo-
lutionary Algorithms (EAs), have been applied to network problems and particularly protocol
optimization. For instance, some researchers have proposed various solutions based on collec-
tive intelligence [Wolpert, David and Tumer, Kagan and Frank, Jeremy 1999] and Reinforcement
Learning (RL) [Peshkin, Leonid and Savova, Virginia 2002; Stampa, Giorgio and Arias, Marta and
Sanchez-Charles, David and Muntés-Mulero, Victor and Cabellos, Albert 2017; Tao, Nigel and
Baxter, Jonathan and Weaver, Lex 2001] to optimize routing protocols for Wireless Sensor Networks
[Alsheikh, Mohammad Abu and Lin, Shaowei and Niyato, Dusit and Tan, Hwee-Pink 2014; Forster,
Anna and Murphy, Amy L 2011; Kulkarni, Raghavendra V and Forster, Anna and Venayagamoorthy,
Ganesh Kumar 2010]. Albeit quite powerful, the main limitation of most of these approaches is
that they often require a large amount of data collected from the network, in order to train a model
of the protocol, to be used later at runtime for further optimization.

As for EAs, there is a very large body of research in the general area of networked systems, as
surveyed for instance in [Dressler, Falko and Akan, Ozgur B 2010; Nakano, Tadashi 2010]', with
several works focusing especially on protocol optimization (not only for routing). In this context, a
seminal paper is represented by the work from late 1990s by El-Fakih et al. [Khaled El-fakih and
Hirozumi Yamaguchi and Gregor Bochmann 1999], who formulated the protocol design problem in
the form of a 0-1 integer programming message exchange model, optimized by means of a Genetic
Algorithm in order to minimize the number of messages to be exchanged while meeting a given
specification of network services. As for GP, it has been successfully used to optimize protocol
adaptors [Van Belle, Werner and Mens, Tom and D’Hondt, Theo 2003], aggregation protocols
[Weise, Thomas and Geihs, Kurt and Baer, Philipp A 2007; Weise, Thomas and Tang, Ke 2011;
Weise, Thomas and Zapf, Michael and Geihs, Kurt 2008], or MAC access protocols [Lewis, Tim and
Fanning, Neil and Clemo, Gary 2006; Roohitavaf, Mohammad and Zhu, Ling and Kulkarni, Sandeep
and Biswas, Subir 2018]. The latter have been synthesized also by means of probabilistic Finite State
Machines (FSMs) whose transition probabilities are optimized by means of a Genetic Algorithm
[Hajiaghajani, Faezeh and Biswas, Subir 2015a,b; Sharples, Nicholas and Wakeman, Ian 2000].

While the methods above are meant for centralized offline protocol optimization, some works
have also considered distributed online protocol optimization, although these usually focus on
higher network layers (e.g. application) rather than routing. For instance, a bio-inspired distributed
learning approach was introduced in [Su, Yi and Van Der Schaar, Mihaela 2010], where each

! Another link between network engineering and evolutionary theory also exists: recent evidence has shown that the typical
hourglass-shaped protocol stacks are the result of an implicit evolutionary process that led to a minimal complexity, maximal
robustness architecture [Dovrolis, Constantine 2008; Siyari, Payam and Dilkina, Bistra and Dovrolis, Constantine 2017].
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node observes the other nodes’ behavior and forms internal conjectures on how they would react
to its actions, in order to choose the action that maximizes a local utility function: the authors
demonstrated, analytically and through numerical simulations, that this method reaches Nash
equilibria corresponding to optimal traffic fairness and throughput. Other works have investigated
distributed EAs [Iacca, Giovanni 2013] and distributed GP [Johnson, Derek M. and Teredesai, Ankur
M. and Saltarelli, Robert T. 2005; Valencia, Philip and Lindsay, Peter and Jurdak, Raja 2010] to
evolve the nodes’ parameters and functioning logics (at the application layer) of Wireless Sensor
Networks. Finally, two notable online methods are STEM-Net [Aloi, Gianluca and Bedogni, Luca
and Felice, Marco Di and Loscri, Valeria and Molinaro, Antonella and Natalizio, Enrico and Pace,
Pasquale and Ruggeri, Giuseppe and Trotta, Angelo and Zema, Nicola Roberto 2014] and Fraglets
[Tschudin, Christian 2003; Yamamoto, Lidia and Schreckling, Daniel and Meyer, Thomas 2007].
The first one is a wireless network where each node uses an EA “to reconfigure itself at multiple
layers of the protocol stack, depending on environmental conditions, on the required service and
on the interaction with other analogous device”. The latter is based on the concept of “autocatalytic
software” [Tschudin, Chr and Yamamoto, Lidia 2005], or chemical computing [Miorandi, Daniele
and Yamamoto, Lidia 2008]: essentially, protocols emerge automatically as collections of “fraglets”,
i.e., combinations of code segments and parameters which are evolved, respectively, by distributed
GP [Yamamoto, Lidia and Tschudin, Christian 2005a,b] and distributed EAs [Alouf, Sara and Neglia,
Giovanni and Carreras, Iacopo and Miorandi, Daniele and Fialho, Alvaro 2010], and spread over
the network through opportunistic (epidemic) propagation [Alouf, Sara and Carreras, Iacopo and
Miorandi, Daniele and Neglia, Giovanni 2007] regulated by interactions with the environment.
On top of this, another EA optimizes the combination of protocols, i.e., the protocol stack [Baude,
Francoise and Legrand, Virginie and Henrio, Ludovic and Naoumenko, Paul and Pfeffer, Heiko and
Bassbouss, Louay and Linner, David 2010; Imai, Pierre and Tschudin, Christian 2010; Miorandi,
Daniele and Yamamoto, Lidia and Dini, Paolo 2006].

Finally, it is worth mentioning recent works on the application of GA to DTNs which are
somehow related to this paper in a broader sense, namely [Bucur, Doina and Iacca, Giovanni and
Squillero, Giovanni and Tonda, Alberto 2015], where a GA is used to find specific DTN conditions
characterized by abnormally low delivery rates, and [Bucur, Doina and Iacca, Giovanni 2017; Bucur,
Doina and Iacca, Giovanni and Gaudesi, Marco and Squillero, Giovanni and Tonda, Alberto 2016],
where the parameters of groups of heterogeneous malicious nodes attacking the network are
optimized in the attempt to reduce the delivery probability. Indeed, security is a major concern
in this kind of networks: their inherent intermittent (and open) nature makes it difficult to apply
encryption and authentication techniques which are common in other kinds of networks [Farrell,
Stephen and Cahill, Vinny 2006; Kate, Aniket and Zaverucha, Gregory M and Hengartner, Urs
2007], although some possible countermeasures have been proposed.

3 METHODS

For the numerical experiments, we used The ONE (Opportunistic Network Environment) [Kerdnen,
Ari and Ott, Jorg and Kérkkéinen, Teemu 2009], which allows us to simulate a given urban environ-
ment composed of a map and a number of moving agents of different types, producing a network
traffic with user-defined characteristics. As for the GP algorithm, we used the implementation of
the strongly typed GP [Montana, David J 1995] provided by the Jenetics library [Wilhelmstétter,
Franz 2017]. At each generation, the GP algorithm generates a set of Java classes that implement
candidate instances of the routing protocol, differing only for the instructions contained in the
update() method defined in the abstract Java class ActiveRouter implemented in The ONE. We
also include in our scheme a validity check with repair mechanism, in order to ensure the validity
of the code generated by GP. The dynamically generated classes are then compiled at runtime and
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fed to the simulator, in order to extract the relevant information needed for the fitness evaluation.
In the following, we detail the GP configuration, the validity check and repair mechanism, and the
way the code generated by GP is evaluated in The ONE.

3.1 Genetic Programming configuration

The candidate GP individuals, represented as tree structures, are obtained by composing the
elements in the non-terminal and terminal sets specified in Table 1 and Table 2 respectively (see
Section 3.2). The non-terminals include basic Boolean operators as well as the inequality test, the
if and the sequence operators. Note that if is considered as a 2-argument operator (i.e., without
else) since if-else statements can be obtained as a concatenation of if and sequence. The
terminals, instead, are obtained by “dissecting” the update () method of the baseline protocols into
its main functional components, which are then rearranged by GP. This is an important aspect of
our proposal: rather than evolving from scratch the entire protocol’s logic, which would entail
an excessively large, hard-to-explore protocol space, we use available knowledge in the form of
protocol basic components, for which we then try to identify a better rearrangement by means of
GP. We believe that this form of Genetic Improvement is particularly interesting in that it couples
the advantages of using pre-existing code (in this case, in the form of Java functions), representing
necessary functional elements, with the power of the genetic search. In our case, we identify as
basic components six functions, including the superclass’ update () method, that implement basic
operations which are at the base of the two selected protocols considered in our experimentation.
The terminals also include the return keyword to exit from the update () method.

The implementation of the GP algorithm follows the logics of Jenetics [Wilhelmst6tter, Franz
2017] and the genetic operators available therein. At the first generation, the individuals are
randomly generated using the aforementioned non-terminals and terminals (note that the baseline
protocols are not used as seeds in the initial GP population), with given maximum tree depth and
maximum number of nodes (“grow” initialization method). Then, the evolutionary loop starts,
where at each cycle:

(1) The individuals in the current population are verified and, if needed, repaired (see Section 3.2),
before being evaluated into The ONE (see Section 3.3).

(2) The new population is obtained by applying tournament selection to the current population.
A predefined offspring fraction is set, which determines how many selected individuals (the
offspring) will be altered by crossover and mutation; the remaining individuals (the survivors)
are kept unaltered in the new population.

(3) The offspring are altered by applying single-node crossover: with a given crossover probability,
every individual among the offspring is selected to undergo crossover; the selected individuals
are randomly paired (for a total number of pairs equal to half the number of offspring), and
for every pair two new individuals are obtained by swapping two nodes (randomly chosen
from the two original individuals in the pair), with the corresponding subtrees. The two new
individuals replace the two original ones in the pair.

(4) The individuals obtained by crossover are then selected to undergo also mutation, with a given
individual mutation probability (otherwise individuals are not mutated). Each individual selected
to undergo mutation is altered by swap-mutation: with a given node mutation probability, every
node in the GP individual is selected and swapped with another randomly chosen node from
the same individual.

This loop (steps 1 to 4) goes on until one of two stop criteria is met: a) the maximum number of
generations is reached, or b) the maximum number of generations with steady fitness is reached.
The latter criterion refers to the maximum number of generations in which the best fitness in the
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population does not improve. No specific anti-bloat mechanism (apart from the limited depth and
number of nodes in the initial GP population) or history of previously evaluated solutions is used.
See Table 3 for the detailed parameters (default values in Jenetics) used in the GP algorithm.

Table 1. Non-terminals used, their corresponding Java code, argument types and return types.

Non-terminal Java code Argument types  Return type
or ( argl || arg2 ) condition, condition condition
not largl condition condition
notEqual ( argl != arg2 ) condition, condition condition

if if ( argl ){ arg2 }; condition, body body
sequence argl; arg2; body, body body

Table 2. Terminals used, their corresponding Java code and type. The terminal tryOtherMessages is used
only for improving the PRoPHET protocol. All the other terminals are used for both Epidemic and PRoPHET.
Note that the method tryAllMessagesToAllConnections() is called on the child class (this) in order to
override the method of the parent class ActiveRouter.

Terminal Java code Type
isTransferring isTransferring() condition
canStartTransfer canStartTransfer() condition
update super.update(); body
exchangeDeliverableMessages exchangeDeliverableMessages(); body
tryAllMessagesToAllConnections this.tryAllMessagesToAllConnections(); body
tryOtherMessages tryOtherMessages(); body
return return; body

Table 3. Parameter setting (Koza-style tableau) of the Genetic Programming algorithm.

Parameter Value

Objective Delivery probability

Non-terminal set See Table 1

Terminal set See Table 2

Population size 150

Initialization Grow, max depth 5, max nodes 50

Offspring fraction 0.6

Crossover Single-node crossover, prob. 0.1

Mutation Swap-mutation, individual prob. 0.1%/3, node prob. 0.1'/3
Selection Tournament selection, size 3

Steady fitness generations 50
Max number of generations 100
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3.2 Validity check and repair method

Not all the elements in the non-terminal and terminal sets defined in Tables 1-2 can be an argument
of every non-terminal: for example, a return instruction cannot be inside an if condition and an
or condition cannot be inside an if body, as shown in Figure 1 (top). To address this issue, we have
developed two methods: the first one checks the validity of each individual tree structure, the latter
tries to repair it, if needed. In order to check the validity of the trees and repair them, an additional
structure is built specifying, for each non-terminal, the number of arguments and their types. In
our case, we defined two possible types, namely body and condition.

The validity check starts from the root node and checks if it has the correct number and types of
arguments. For example, if the root node is an if node, it must have two arguments, respectively
of type condition and body, as shown in Table 1. If this check fails, the current tree is considered not
correct. Otherwise, the method recursively checks the arguments, until it reaches the terminals,
whose type must comply with those of the arguments of their corresponding parent node. If this
recursive check does not fail, the tree is correct.

The repair method is invoked whenever the validity check fails and, following a similar logic, it
visits recursively all the nodes in the tree (see Figure 1 for an example). More specifically: 1) in the
case of the non-terminals, if it finds that a node does not have the correct number of arguments,
or these are not of the correct type, the method tries to randomly replace that node with another
non-terminal that has that number of arguments of those types; 2) in the case of terminals, these
are replaced, if needed, to comply with the type of the arguments of their parent node. The method
also ensures that the tree contains at least one return terminal. If the tree cannot be repaired, the
tree is not evaluated in the simulator and it is assigned a delivery probability of zero.

Not Equal

or
if
Try All
return Is Transferring Messages ToAll return
Connections
Not Equal sequence
Invalid tree

Try All

Can Starc Is Transferring Messages To All return

Transfer N

Connections

L

if ( canStartTransfer() !=isTransferring() )
{
this.tryAllMessages ToAllConnections();

Try Al return;
Can Start [ Is Transferring [Messages To All [ return '

Transfer
Connections }

Correct tree Fig. 2. Example of translation from tree to Java code.
Fig. 1. Example of the repair mechanism on an invalid

tree in which the if condition contains a return in-
struction and the if body contains an or condition.
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3.3 Individual evaluation

Each individual (i.e., a candidate implementation of the update () method, and its corresponding
Java class that is dynamically generated and compiled) is evaluated by measuring the delivery
probability in The ONE simulations. This is calculated as the fraction of messages that reach their
destination over the total number of messages generated during the simulation. In particular, the
individual evaluation proceeds according to the following steps:

(1) Class name generation: A unique id is appended to the class name of each GP individual, in
order to avoid having GP classes with the same name (the dynamically generated classes are
placed in the same folder, and each class is loaded by The ONE at the beginning of a simulation).

(2) Node evaluation: Each node composing the current individual tree is translated into the cor-
responding Java instructions (see Tables 1-2), generating the code that will be placed in the
update () method of the dynamically generated Java class. In Figure 2, we show an example of
translation from a GP tree to the corresponding Java code inserted into the update() of the
Java class implementing the routing protocol to be evaluated.

(3) Class generation: The generation of the Java class is done by using a template class, which
contains the structure of a routing protocol that extends the ActiveRouter class present in The
ONE simulator. The templates of the Epidemic and PRoPHET routing protocols are presented in
Appendix D, where it can be seen that each template contains the necessary imports, the class
definition, its constructors, public and private fields, the update () method and other additional
methods contained in the baseline protocol. It should be noted that apart from the update()
method, all the other parts of the class are not modified by GP. For each individual, the template
is modified by replacing the code of the baseline protocol inside the update () method with the
code generated at the previous step.

(4) Class compiling: The dynamically generated class is compiled by calling javac, and placed in
the correct classpath, in order to allow the simulator to execute it. If the class fails to compile,
the corresponding tree is assigned a delivery probability of zero.

(5) Settings file configuration: The ONE uses a settings file to store all the relevant parameters of the
simulation. An example of this file is given in Appendix E, where we highlight the parameters
that are relevant to our experimentation. The main parameters of interest (see Table 4) are:

Scenario.name: name of the simulation (i.e., the Java class name generated in the first step);

Group.router: name of the routing protocol (same as Scenario.name);

Group.nrofHosts: number of nodes (a.k.a. hosts) per group (pedestrians and cars only);

Report.nrofReports: number of reports created as output of the simulation;

Report.reportl: type of report created as output of the simulation;

Events1.hosts: range of message source/destination addresses;

MovementModel.worldSize: size of the map;

MapBasedMovement.nrofMapFiles: number of map files used in the simulation;

MapBasedMovement.mapFile[1-4]: maps used in the simulation;

Group[4-5-6].routeFile: routes followed by the first/second/third group of trams;

ProphetRouter.secondsInTimeUnit: specific setting for the PROPHET routing protocol.
Before each individual simulation, a specific settings file is created starting from the template
given in Appendix E, where the relevant settings are set accordingly to the specific test case.

(6) Simulation execution: The DTN simulation uses the automatically generated Java class, produc-
ing a report containing the delivery probability of the messages sent in the network.

(7) Result retrieval: The report file MessageStatsReport generated by The ONE is parsed in order
to extract the delivery probability, which is then used as fitness of the GP individual.
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In order to automate these steps, we have implemented a procedure that creates a script to
automatically compile the generated Java class starting from the code generated by GP, prepare
the settings file, and run The ONE simulation (in batch mode). This script is executed by using the
Java Process Builder. When the simulation is terminated, the procedure accesses the report file,
and extracts the delivery probability. If the report does not exist, e.g. because the generated class is
invalid or the simulation fails, the current individual is assigned a delivery probability of zero.

It should be noted that the bottleneck in the process described above is the simulation execution
(step 6): in our experiments, the wall-clock time of a single simulation ranged between 1 minute in
the simplest test case to 10 minutes in the most complex one. On the other hand, the steps 1 to 5
and 7 are executed overall in approximately 3 seconds per GP individual.

Table 4. The ONE settings used in the different test cases.

Scenario.name:
Group.router:

(Name of the Java class generated by Jenetics)
(Name of the Java class generated by Jenetics)

Common settings Group.nrofHosts: 40 or 100
Report.nrofReports: 1
Report.reportl: MessageStatsReport

Events1.hosts:

0,126 or 0,306

Default settings

MovementModel.worldSize:
MapBasedMovement.nrofMapFiles:
MapBasedMovement.mapFile[1-4]:
Group[4-5-6].routeFileGroups:

4500 X 3400 meters

4

Roads, Main Roads, Pedestrian Paths, Shops
Tram 3-4-10

Helsinki settings

MovementModel.worldSize:
MapBasedMovement.nrofMapFiles:
MapBasedMovement.mapFilel:
Group[4-5-6].routeFileGroups :

100000 X 100000 meters

1

Helsinki Medium - Roads

Helsinki Medium - Bus A. Bus B, Bus C

MovementModel.worldSize:

100000 X 100000 meters

MapBasedMovement.nrofMapFiles: 1
MapBasedMovement.mapFilel: Manhattan - roads
Group[4-5-6].routeFileGroups: Manhattan - Bus

Manbhattan settings

PROPHET settings  ProphetRouter.secondsInTimeUnit: 30

4 EXPERIMENTAL SETUP

We considered six different test cases, based on three different maps and two different numbers of
agents. The maps used are those available in The ONE, namely the city center of Helsinki (that
in The ONE is identified as the “default” map), the metropolitan area of Helsinki (a.k.a. Greater
Helsinki), and a Manhattan-like map, see Figure 3. In the following, we will refer to these three
maps as Default, Helsinki and Manhattan respectively.

4.1

The simulation time of each DTN simulation is 12 hours (with an update interval of 0.1 seconds),
starting after a warm-up period of 1000 seconds of simulation time needed to allow the node
mobility to reach steady state conditions. The simulated DTNs are open networks (i.e., without
authentication) made of three types of mobile nodes (referred to as hosts): pedestrians, cars and
trams. These heterogeneous networks represent realistic scenarios of hosts moving at different
velocity so that establishing a cabled network infrastructure is either obviously impossible (for
pedestrian and cars) or too costly to set up and maintain (for trams). In our experiments, hosts are

Simulation configuration
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further divided into 6 groups: two groups of pedestrians, one group of cars and three groups of

trams. The groups of pedestrians and cars are composed of 40 or 100 hosts each (depending on

the experiments), while in all the experiments the groups of trams are composed of 2 hosts each.

Thus, the simulations with 40 hosts per group have a total number of 40 X 2 + 40 +3 X 2 = 126

hosts. The simulations with 100 hosts per group have a total number of 100 X 2 + 100 + 3 X 2 = 306

hosts. During the simulations, a new message of size 500KB-1MB is generated every 25-35 seconds

(both the message size and the interval are uniformly sampled in these ranges), with source and

destination randomly chosen among all the hosts in the network.

Each group has different networking parameters and mobility behaviors, which are specified in
the settings file and have been set according to the default parameters of The ONE (see Appendix E).
Concerning the networking parameters, we considered two network interfaces, namely: low-speed
short-range Bluetooth (transmit speed: 250kBps, message buffer: 5MB, range: 10m), and a high-
speed connection (transmit: 10MBps, message buffer: 10MB, range: 1km). Bluetooth is available to
all groups, while the high-speed connection is available only to the first group of trams.

As for the mobility behavior, the hosts are randomly placed on the map at the beginning of the
simulation, and the destination of each host is chosen randomly between a set of available target
points. The hosts then move according to one of the following mobility models:

e Pedestrians and cars use the ShortestPathMapBasedMovement, in which each host moves to-
wards its destination following the shortest valid path on the map. Once the destination is reached,
the host waits for a given period of time before choosing (randomly) the next destination. Pedes-
trians move at 0.5-1.5 m/s, while cars move at 2.7-13.9 m/s. Both kinds of hosts have a waiting
time of 0-120 seconds.

e Trams use the MapRouteMovement, in which the hosts move between adjacent points on a
predefined set of routes of 10-100 points. Once a point is reached, each host waits for 10-30
seconds and then moves to the next randomly selected adjacent point, trying to avoid the point
where it came from. Trams move at 7-10 m/s.
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Fig. 3. City maps used in the experimentation.

4.2 Routing protocols

As discussed in Section 1, routing in DTNs is challenging (it is a NP-hard problem [Balasubramanian,
Aruna and Levine, Brian and Venkataramani, Arun 2007]) due to their highly dynamic conditions
caused by the sparsity and mobility of the nodes. In fact, while in other kinds of ad hoc networks
(denser and/or less mobile) nodes can build explicit routes and forward data via established paths
(this is the case, for instance, of routing protocols like Ad hoc On-demand Distance Vector (AODV)
[Perkins, Charles E and Royer, Elizabeth M 1999] or Dynamic Source Routing (DSR) [Johnson,
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David B and Maltz, David A 1996]) this is not possible in DTNs due to their lack of continuous
connectivity and the consequent absence of instantaneous (and stable) end-to-end paths. Rather
than building explicit routes, routing in these cases must take a “store and forward” approach,
leveraging the nodes’ mobility itself to allow nodes to exchange and carry messages as they move,
hoping that this epidemic-like propagation will eventually allow messages to reach their intended
destination. In the simplest form (called forwarding-based) of this kind of routing, only one copy of
each message exists at a time in the network: however, this usually does not provide sufficiently
high delivery rates. On the other hand, replication-based epidemic protocols allow multiple copies
of each message to exist in the network at the same time. While this introduces some obvious
overhead and hinders scalability, it is the only way to ensure a satisfactory (yet, sub-optimal)
delivery probability. This second class of protocols is the focus of our work. In particular, we
consider two of the main replication-based protocols, namely Epidemic and PRoPHET, whose
functioning can be summarized as below:

o The Epidemic routing protocol [Amin Vahdat and David Becker 2000] is a flooding-based protocol
in which each node transmits its messages to every other node met that does not have a copy of
them. The only limitation is the maximum number of hops for each message, or alternatively its
time-to-live (TTL), i.e. the predefined maximum lifetime of a message over the network.

e The PRoPHET (Probabilistic Routing Protocol using the History of Encounters and Transitivity)
protocol [Lindgren, Anders and Doria, Avri and Schelén, Olov 2003] is a variant of the Epidemic
routing protocol. This protocol defines a delivery predictability between any two nodes based on
the history of contacts between them. A high delivery predictability means a high probability of
future contacts between the two nodes. Instead of copying all messages, a message is copied only
if the destination node’s delivery predictability is higher than the transmitting node’s delivery
predictability. With respect to Epidemic, this mechanism allows PROPHET to obtain comparable
delivery probability yet with a lower overhead.

In all the experimental test cases, we used the original implementation of Epidemic and PRoOPHET
available in The ONE, see Listings 1 and 2 reported in Appendix D.

4.3 Computing environment

The experiments have been performed on the High Performance Computing (HPC) facility available
at our host institution. We used the JDK v1.8.0_201 64bit, with Jenetics v5.2.0 and The ONE v1.6.0,
with thread parallelization at the level of GP individuals (i.e., each thread handles the code generation
of a single GP individual and its related simulation in The ONE)?2. The total HPC runtime of our
experiments changed based on the size of the map and the number of hosts, ranging from ~3-5
hours (Default map, 40 hosts per group) to ~9-11 hours (Helsinki map or Manhattan map, 40
hosts per group), ~13-14 hours (Default map, 100 hosts per group), and ~1 day (Helsinki map or
Manhattan map, 100 hosts per group). Each simulation has been executed with 12 cores.

5 EXPERIMENTAL RESULTS

In order to test the proposed method for genetically improving routing protocols, we considered the

three urban maps discussed above, with two numbers of hosts per group (40 or 100), thus for a total

of six test cases. In each test case, we used as baseline Epidemic and PRoPHET. For reference, we

show in Figures 4-5 the functioning logic (in the form of GP tree) corresponding to the update()

method of the two baseline protocols. We conducted our experimental campaign as follows:

o First, we compared the delivery probability obtained by each of the two baseline protocols
against the corresponding genetically improved protocols obtained by GP, in each test case. We

2Qur code is publicly available at https://github.com/michiL96/evolution_routing_protocol.
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considered all the combinations of (protocol, map, number of hosts per group) in: {Epidemic,
PRoPHET} X {Default, Helsinki, Manhattan} X {40 hosts, 100 hosts}. For each test case, we executed
the baseline protocol for 10 simulations (with different seeds). Similarly, we executed 10 runs
(with different seeds) of the GP algorithm on each test case. We then compared the delivery
probability of baseline vs best evolved protocols, and performed a statistical analysis based on the
Wilcoxon rank-sum test. To further validate our results, we compared our improved PROPHET
protocols against three PROPHET variants recently proposed in the literature (see Section 5.1).
e Then, we performed a trade-off analysis aimed at understanding if optimizing for the delivery
probability produces a degradation of other relevant network metrics (see Section 5.2).

In addition to this, we assessed the generalizability of the evolved protocols between one test case
and another, in order to understand if the improved protocols are optimized for a specific test case
or rather they can be used in different test cases (see Appendix A). Furthermore, we analyzed the
functioning logics of the evolved test cases and identified some common patterns exploited by
evolution to improve the existing protocols, and compared these logics with the ones underlying
the baseline protocols (see Appendix B).

sequence sequence
o

Exchange
[ or ] [ return [ if Deliverable] [ or ] [ return ] [ if ] [-rb;yes?:;:sr ]
Messages
—— ——

: not Not Equal return not return
Transferring

Exchange
Can Start null Can Start Deliverable null
Transfer ™~
essages

Transfer
Fig. 4. Tree of the baseline Epidemic routing protocol Fig. 5. Tree of the baseline PROPHET routing protocol
(note that this tree is not produced by GP). (note that this tree is not produced by GP).

@
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Deliverable
Messages

[ Exchange

5.1 Evolved vs baseline protocols: comparison on the data delivery probability

In Table 6, we report the comparative results (median across 10 simulations) of the delivery
probability obtained by the baseline Epidemic protocol vs that obtained by the best evolved protocol
on each test case. We consider as best evolved protocol the one showing the highest delivery
probability across 10 runs of GP, and the lowest number of nodes in case of equal delivery probability.
For each pairwise comparison, we report also the p-value of the Wilcoxon rank-sum test (N =
10, @ = 0.05). From the table, it can can observed that GP is able to obtain statistically significant
improvements of delivery probability (p-value < «) in the Default and Helsinki cases. On the other
hand, in the Manhattan test cases the Null Hypothesis on the statistical equivalence between the
delivery probability of the baseline protocol and that of the best evolved one cannot be rejected (p-
value > a). For the sake of completeness, the delivery probability distribution across 10 simulations
of the baseline Epidemic protocol and the best evolved ones are shown, in the form of violin plots,
in Figure 6. Finally, the analysis of the fitness trends shown in Figure 7 (mean + std. dev. of the best
delivery probability found at each generation across 10 runs of GP) reveals that in 5 out of 6 test
cases the initial GP population shows an average delivery probability lower than the corresponding
baseline (median across 10 simulations, shown as a dashed blue line). In the remaining test case, i.e,
the Default map with 100 hosts per group, the initial GP population is even better than the baseline.
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In all cases, the average delivery probability quickly increases during the evolutionary process, to
stabilize after 20-40 generations on average. It can also be noted that the GP algorithm is quite
robust, since the std. dev. across runs (indicated by the shaded area) decreases over time, reaching
an almost-zero value towards the end of the available budget.

The same analysis has been performed comparing the PRoOPHET routing protocol, as baseline,
and the best evolved protocol for each test case, see Table 6. The corresponding violin plots and
fitness trends are shown in Figure 8 and 9 respectively. The results reveal that also in this case GP
is able to obtain statistically significant improvements of delivery probability (p-value < ) in all
cases except the two Manhattan test cases. As for the fitness trends, it can be noted that in the two
Default test cases the average delivery probability of the initial GP population is approximately
equal to that of the baseline, while in the remaining cases it is quite lower.

Table 5. Delivery probability (median across 10 sim- Table 6. Delivery probability (median across 10 sim-
ulations) and p-value of the Wilcoxon rank-sum test ulations) and p-value of the Wilcoxon rank-sum test
(N =10, @ = 0.05) of the Epidemic routing protocol vs (N = 10, & = 0.05) of the PROPHET routing protocol vs
the corresponding best evolved protocol. The evolved the corresponding best evolved protocol. The evolved
protocols perform statistically better in the Default protocols perform statistically better in the Default

and Helsinki test cases. and Helsinki test cases.
Test case Epidemic GP Test case PRoPHET GP
Deliv. prob. p-value Deliv. prob. p-value
Default (40 hosts) 0.2542 0.005 0.3342 Default (40 hosts) 0.2673 0.005 0.3281
Default (100 hosts) 0.2041 0.005 0.3764 Default (100 hosts) 0.2307 0.005 0.3829
Helsinki (40 hosts) 0.1910 0.005  0.2467 Helsinki (40 hosts) 0.2047 0.005  0.2447
Helsinki (100 hosts) 0.1798 0.005 0.2887 Helsinki (100 hosts) 0.2078 0.005 0.2887
Manhattan (40 hosts) 0.1685 0.574  0.1654 Manhattan (40 hosts) 0.1719 0.333  0.1647
Manhattan (100 hosts) 0.1774 0.139  0.1664 Manhattan (100 hosts) 0.2092 0.646  0.2109

Comparison vs other PROPHET variants. To further validate our results, we compared the best
evolved protocols in the case of PROPHET against three recent PROPHET variants, namely:

e PRoPHETH+, proposed in [Huang, Ting-Kai and Lee, Chia-Keng and Chen, Ling-Jyh 2010]. It
extends PROPHET by adding a deliverability measure, used to forward messages based on buffer
size and availability, energy consumption, bandwidth, popularity and predictability.

e PRoPHETV2, proposed in [Lindgren, Anders and Doria, Avri and Davies, Elwyn and Grasic,
Samo 2011]. It introduces a dependency (for the delivery predictability) based on the predictability
of the encounters of any two nodes. This way, the risk of increasing the delivery predictability of
a node due to repeated connections in a short interval of time is reduced.

e Evict PRoPHET, proposed in [Sati, Salem and Ahmad, Khaleel 2020]. In this variant, an efficient
eviction policy is introduced to decide which message should be removed from the buffer. The
policy makes use of an utility function that accounts for time-to-live (elapsed and remaining),
hop count, time spent into the buffer, and re-transmissions.

The comparative analysis, reported in Table 7 (median across 10 simulations), shows that the
best evolved protocols statistically outperform (p-value < «) the delivery probability obtained by
Evict PROPHET and PRoPHET+ in all the Default and Helsinki test cases, while the three protocols
result equivalent in the Manhattan cases. Compared to PRoOPHETv2, the best evolved protocol
results statistically superior in the Default and Manhattan test cases with 100 hosts, and equivalent
in the others. Overall, this comparison confirms the effectiveness of the proposed technique at
finding efficient protocols which are at least comparable to, or even better than, the state-of-the-art
protocol implementations.
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Table 7. Delivery probability (median across 10 simulations) and p-value of the Wilcoxon rank-sum test
(N =10, @ = 0.05) of the PROPHET variants vs the corresponding best evolved protocol. The evolved protocols
perform statistically better than Evict PROPHET and PRoPHET+ in the Default and Helsinki test cases, and
better than PROPHETV2 in the Default and Manhattan test cases with 100 hosts.

PRoPHETv2 Evict PRoPHET PRoPHET+

Test case GP
Deliv. prob. p-value Deliv. prob. p-value Deliv. prob. p-value

Default (40 hosts) 0.3185 0.028 0.2710 0.005 0.2724 0.005 0.3281
Default (100 hosts) 0.3201 0.005 0.2328 0.005 0.2348 0.005 0.3829
Helsinki (40 hosts) 0.2320 0.153 0.2047 0.005 0.2016 0.005 0.2447
Helsinki (100 hosts) 0.2546 0.007 0.2112 0.005 0.2116 0.005 0.2887
Manhattan (40 hosts) 0.1822 0.059 0.1743 0.093 0.1709 0.284 0.1647
Manhattan (100 hosts) 0.2419 0.005 0.2071 0.507 0.2044 0.414  0.2109

5.2 Evolved vs baseline protocols: trade-off between data delivery probability and
other network metrics
After the positive assessment of the evolved protocols in terms of improved delivery probability,
we have analyzed if there is a trade-off between the delivery probability and other network metrics
of interest, in the attempt to understand if an improvement of the delivery probability entails a
worsening of other network aspects. In particular, we took into account four different metrics
provided in the MessageStatsReport log output file generated The ONE, defined below.
Overhead ratio. This metric is calculated according to the following formula:

Nrelayed — Ndelivered

Overhead ratio = if ngetiverea > 0

Ndelivered
where n,¢jqyeq indicates how many messages are transmitted over the network (including dupli-
cates), while ngejipereq indicates how many messages reach their destination.
Latency (avg). This metric is calculated according to the following formula:

Ndelivered
1

Latency (avg) = —— Z (Ti

—Ti
deli
Ndelivered =1 etioery

creation)

where T and T!

delivery creation

reaches its destination and the timestep at which that message was created, T;elmry > Tcireation.

indicate respectively the timestep at which each delivered message

Hop count (avg). This metric is calculated according to the following formula:

1 Ndelivered .
Hop count (avg) = ———— Z (HCY)
Ndelivered =
where HC' is the hop count of the i-th message, i.e., how many nodes each delivered message
passed through before reaching its destination.
Buffer time (avg). Every node in the network keeps a limited-size buffer to store the received
messages waiting to be forwarded to other nodes. The different routing protocols implemented in
The ONE have different ways to handle when a message is deleted from the buffer, implemented
in the deleteMessage() of the classes contained in the routing package. The EpidemicRouter
and ProphetRouter classes, inheriting the behavior of ActiveRouter, delete a message from the
buffer either when a copy of that message has already reached its destination, in which case the
deleted message is marked as removed (however, this condition never occurs in the Epidemic and
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PRoPHET nor in the evolved protocols, see Figures 11-12 in Appendix B) or when the node needs
to make room in its buffer for a new incoming message (deleting oldest messages first), in which
case the deleted message is marked as dropped. A message can also be deleted when it reaches its
time-to-live. The TTL is defined in the simulation settings file (in our experiments we set a TTL of
5 hours, out of a total simulation duration of 12). When the TTL is exceeded, the message is also
marked as dropped (see below for a detailed analysis of the message status). Regardless the deletion
reason, The ONE keeps track of the average waiting time of the messages deleted from the buffers:

Ndeleted
: _ i i
Buffer time (an) = (Tdeletion - Treceive)
Ndeleted =1
i l . . . . .
where T , .. and T, . indicate respectively the timestep at which a message was deleted from

one node’s buffer and the timestep at which it was received at that node, T; o> TE O
eletion receive

From an application point of view, it is desirable to increase the delivery probability (how many
messages reach their destination) and decrease the latency (how long they take to do so). On
the other hand, for a better network resource management, i.e., to optimize the amount of data
transmitted over the network and the amount of memory in use in each node, it would be desirable
to reduce the overhead and, possibly, the buffer time. This is especially crucial in DTNs, and
MANETs: in general, where the nodes can be battery-powered (and sending a message is the most
energy-consuming event) and memory-limited, see e.g. [lacca, Giovanni 2013] for a discussion of
these two aspects in the context of Wireless Sensor Networks. Therefore, it is important to assess if
improving the delivery probability produces a worsening of these other metrics.

We report the results of the aforementioned metrics in Tables 8 and 9, respectively for the
Epidemic and PRoPHET protocols. A graphical representation of these values, also w.r.t. the
corresponding data delivery probability, is reported in Figure 10 in the form of a matrix of 2D
scatter plots. Our analysis reveals some interesting, and in some cases counterintuitive, findings. On
the one hand, there are two positive “byproducts” of the evolution: 1) the overhead of the evolved
protocols is dramatically lower than that of the baseline protocols (in some cases, even 3 orders of
magnitude smaller), which is different from what we would have expected to observe (i.e., a larger
overhead corresponding to an increased delivery probability: the more duplicates, the higher the
chance to reach a destination); 2) apart from the Manhattan test cases, the hop count of the evolved
protocols is in most cases very close to 1, compared to values between 2 and 8 observed with the
baseline protocols. On the other hand, it can be noted that the evolved protocols are characterized
by a higher latency w.r.t. the baseline protocols (in the worst case, i.e., the Default test case with
both Epidemic and PRoPHET, it is twice as big), as well as a higher buffer time that in the worst
case (again, the Default test cases with both baseline protocols) is even 20 times bigger.

Overall, these results suggest that the evolved protocols are very efficient in terms of delivery
probability as well as hop count and overhead, but there exists a trade-off between these three
metrics and latency and buffer time. This trade-off is particularly evident in Figure 10, see e.g. the
(Buffer time (avg)) vs (Overhead ratio) and the (Buffer time (avg)) vs (Hop count (avg)) subplots,
where a Pareto front can be clearly identified: in both cases, the evolved protocols appear on
one corner of the Pareto front (characterized by low overheads and hop counts but high buffer
times), while the baseline protocols seem to be designed to have a low buffer time but a high
overhead and hop count. Concerning the correlation between the delivery probability, i.e., the goal
of the optimization performed by GP, and the other metrics, a somehow less “sharp” (but, still
evident) Pareto front can be identified in the (Overhead ratio) vs (Delivery probability) and (Hop
count (avg)) vs (Delivery probability) subplots. The (Latency) vs (Delivery probability) and the
(Buffer time (avg)) vs (Delivery probability) reveal instead two well-defined clusters separating
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the results of the evolved protocols from those of the baseline protocols. Finally, considering the
other combinations of metrics, it appears that the latency and hop count correlate negatively and
positively, respectively, with the overhead. Furthermore, the hop count and buffer time correlate
negatively and positively, respectively, with the latency. As for this last aspect, while the negative
correlation between hop count and latency might be counterintuitive, it should be considered that
latency does not depend only on the number of hops, but also on the time spent by each message
in the local buffer of each node it goes through.

All in all, this analysis indicates that a specific characteristic of the evolved protocols is that they
tend to generate less duplicates than their baseline counterparts, thus avoiding filling the buffers
too frequently. This makes it possible to keep messages longer in the buffers (higher buffer times),
and eventually transmit them before they are deleted. Furthermore, apart for the Manhattan cases,
the messages reach their destination with an average hop count close to 1, i.e., they are delivered as
soon as they are within reach of the source node. This, in turn, contributes to having less duplicates,
thus a lower overhead, as shown by the positive correlation between hop count and overhead. The
resulting effect of this behavior is then an increase of the delivery probability.

Table 8. Network metrics of the evolved protocols vs the Epidemic routing protocol (median across 10 simula-
tions). The evolved protocols show lower overhead and hop count but higher latency and buffer time.

Overhead ratio  Latency (avg) Hop count (avg) Buffer time (avg)

Test case
Epidemic GP Epidemic GP Epidemic GP Epidemic GP

Default (40 hosts) 85 0.4 4473 6676 4.4 1.1 1364 13836
Default (100 hosts) 621 1 3681 7343 7.4 1.1 553 14354
Helsinki (40 hosts) 66 0.1 5189 6908 4.0 1.0 1847 15341
Helsinki (100 hosts) 466 0.7 4881 7706 7.6 1.0 770 15851
Manbhattan (40 hosts) 42 42 6569 6427 3.3 3.2 3051 2998
Manbhattan (100 hosts) 251 0.3 6152 8076 6.2 1.0 1342 17231

Table 9. Network metrics of the evolved protocols vs the PROPHET routing protocol (median across 10 simu-
lations). The evolved protocols show lower overhead and hop count but higher latency and buffer time.

Overhead ratio Latency (avg)  Hop count (avg) Buffer time (avg)

Test case
PRoPHET GP PRoPHET GP PRoPHET GP PRoPHET GP

Default (40 hosts) 67 0.2 4751 6781 3.4 1.0 1486 14731
Default (100 hosts) 415 1.0 3891 7254 5.0 1.1 629 14426
Helsinki (40 hosts) 48 0.1 5472 6996 2.7 1.0 2054 15154
Helsinki (100 hosts) 290 0.7 5137 7708 4.2 1.1 888 15891
Manhattan (40 hosts) 32 42 6927 6585 2.5 3.4 3373 3006
Manbhattan (100 hosts) 153 152 6710 6809 3.8 3.8 1503 1493

6 CONCLUSIONS

Main findings. We applied Genetic Programming to genetically improve two replication-based
routing protocols widely adopted in intermittently connected networks, namely Epidemic and
PRoPHET. In four out of six test cases, GP was able to find protocol implementations that produced
significantly better delivery probabilities w.r.t. the two baseline protocols. In the two Manhattan-like
test cases, on the other hand, no significant improvement was obtained. A similar difference in
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Fig. 10. Trade-off between the delivery probability and the different metrics reported for the different test
cases in Table 8 and Table 9.

performance was also observed when comparing our improved PRoPHET protocols against three
variants of PROPHET proposed in the recent literature. We also observed that the evolved protocols
are in general characterized by a reduced overhead yet larger latencies w.r.t. the baseline protocols.
Furthermore, we found that apart from the Manhattan cases the evolved protocols could generalize
across test cases (results reported in Appendix A). Finally, it is worth noticing that the genetically
improved protocols are not expensive to implement (as they use the same components of the
baseline protocols) and they can cope with the typical hardware/computational constraints of the
devices for which the existing protocols are usually intended.

Limitations. This work represents a first attempt to establish a more general methodology to evolve
protocols, and stacks thereof. As such, the present methodology has some clear limitations that
it would be worth to overcome: for instance, it would be useful to implement a mechanism to
automatically extract the fundamental components of the existing protocols (currently this is
done manually), or to evolve also other parts of the routing protocol (i.e., not only the update()
method). Another improvement might be the introduction of an anti-bloat mechanism as well as
a history of the evaluated solutions based on syntactic or semantic similarity, in order to avoid
fitness re-evaluation and improve diversity during the search.

Future works. A straightforward extension of this work would be to test the proposed methodology
to other DTN protocols, such as RAPID [Balasubramanian, Aruna and Levine, Brian and Venkatara-
mani, Arun 2007], MaxProp [Burgess, John and Gallagher, Brian and Jensen, David D and Levine,
Brian Neil and others 2006], or Spray & Wait [Spyropoulos, Thrasyvoulos and Psounis, Konstantinos
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and Raghavendra, Cauligi S 2005]. It would be possible to extend it also to routing protocols used
in other kinds of MANET: (i.e., non-DTN), such as table-driven protocols, e.g. Optimized Link State
Routing Protocol (OLSR) [Clausen, Thomas and Jacquet, Philippe and Adjih, Cédric and Laouiti,
Anis and Minet, Pascale and Muhlethaler, Paul and Qayyum, Amir and Viennot, Laurent 2003] and
Destination Sequence Distance Vector (DSDV) [Perkins, Charles E and Bhagwat, Pravin 1994], or
on-demand (reactive) protocols, e.g. Ad hoc On-demand Distance Vector (AODV) [Perkins, Charles
E and Royer, Elizabeth M 1999] and Dynamic Source Routing (DSR) [Johnson, David B and Maltz,
David A 1996]. However, since these protocols are in general more complex than Epidemic and
PRoPHET, the search space projected by their components is potentially much larger. Thus, more
computational resources and/or specific search operators might be needed in order to find improved
protocols. Going beyond routing, it would be possible to apply the proposed methodology to other
network layers, for instance to improve existing MAC or congestion protocols. As we have discussed
in Section 2, albeit some previous research has applied GP to other network layers, the existing
works either evolve from scratch a protocol, starting from its specifications, or optimize specific
elements of the protocols, such as e.g. the formulas used to vary the congestion window, rather
than performing an actual Genetic Improvement in terms of software code. Another possibility
would be to use not only existing high-level components (obtained, as we have seen, from the
decomposition of the existing protocols), but also components that are evolved ex novo. While
the search space would be tremendously larger, the additional degrees of freedom offered might
provide important opportunities to improve the existing protocols. An intriguing possibility would
also be to implement forms of transfer learning across different networks, and online adaptation in
response to network changes. A further point of attention is the trade-off between different network
metrics: rather than improving a protocol w.r.t. only one metric of interest, it would possible be to
apply multi-objective GP and look explicitly for the different trade-offs existing between two or
more metrics of interest, so to eventually define a posteriori the right protocol to use. Finally, it
would be valuable to assess in hardware the performance of the evolved protocols.
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A  GENERALIZATION OF THE EVOLVED PROTOCOLS

We performed additional experiments aimed at assessing the generalizability of the evolved proto-
cols between different test cases, i.e., testing how a protocol evolved on a specific test case performs
on another one. Due to the large number of combinations of test cases, we limited this analysis to
six selected cases that we considered representative of the generalization capabilities of the evolved
protocols, i.e., covering at least one case for each protocol, map, and number of hosts per group.
Also in this case, each test case was simulated 10 times.

Table 10 shows the results of the test cases considered in this part of the experimentation. From
the table, it can be seen that the evolved protocols are able to generalize in the first four cases,
where the performance (Baseline) of the protocol evolved on the Target test case is statistically
equivalent (p-value > «) to the performance (Tested) of the protocol evolved on the Source test
case. In the remaining two cases, the Tested performance is statistically lower (p-value < «) than
the Baseline one, meaning that the protocol specifically evolved on the Target test case shows a
higher delivery probability than that of the protocol evolved on the Source test case. In particular,
it appears that the Manhattan cases are harder to generalize (both from and to), see the last two
rows in the table. This is likely due to the lower node density that characterizes the Manhattan
cases (on the effect of density on the delivery probability in Manhattan-like test cases, see e.g.
[Thong, Lee K 2004]), that is comparably lower than in the two other maps: observing Table 4 and
Figure 3 in the main text, it is worth highlighting the fact that the world size (i.e, the size of the
map) in the Manhattan case is much larger than in the Default map, while it is the same as in the
Helsinki map, although the latter presents way less roads and thus nodes therein have a much more
confined mobility. This is likely the same reason that makes it harder to improve the performance
of Epidemic and PRoPHET protocols on the Manhattan map.

Finally, it should be noted that apart from the Manhattan cases, in all the other cases the Tested
performances are still much higher than those of the baseline Epidemic and PROPHET protocols. In
fact, comparing the delivery probability shown in the Tested column in the first four rows in Table
10 with the corresponding results shown in the main text (Tables 5-6), it results: 0.2874 vs 0.1798,
0.3260 vs 0.2542, 0.2519 vs 0.2047, 0.3641 vs 0.2307. In the Manhattan cases, the comparison results
instead in 0.2075 vs 0.2041 and 0.1493 vs 0.1685, respectively for the last two rows of Table 10.

Table 10. Results of the generalizability experiments (median across 10 simulations). The Baseline column
indicates the delivery probability obtained by the best routing protocol evolved on the Target test case, while
the Tested column indicates the delivery probability obtained by the best routing protocol evolved on the
Source test case when this is applied to the Target test case. For each experiment, we report the p-value of the
Wilcoxon rank-sum test (N = 10, & = 0.05). The evolved protocols are able to generalize in the first four cases
(no statistical difference between Baseline and Tested), while they are not in the remaining ones.

Source test case Target test case Baseline Tested p-value

Epidemic, Default (40 hosts) Epidemic, Helsinki (100 hosts) 0.2887 0.2874 0.726
Epidemic, Helsinki (100 hosts)  Epidemic, Default (40 hosts) 0.3342 0.3260 0.093
PRoPHET, Default (100 hosts) PRoPHET, Helsinki (40 hosts) 0.2447 0.2519 0.878
PRoPHET, Helsinki (40 hosts) PRoPHET, Default (100 hosts) 0.3829 0.3641 0.022
Epidemic, Manhattan (40 hosts) Epidemic, Default (100 hosts) 0.3764 0.2075 0.005
Epidemic, Default (100 hosts) Epidemic, Manhattan (40 hosts) ~ 0.1654  0.1493  0.005
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B ANALYSIS OF THE EVOLVED PROTOCOLS

Comparing the logics (in the form of GP tree) of the baseline protocols, shown in Figures 4-5 in the
main text, with that of the best evolved protocols, shown in Figures in 13-24 in Appendix C, it can
be noted that the evolved protocols are quite different from the baselines. In particular, apart from
the case of Epidemic on the Default map with 40 hosts per group (Figure 13), the evolved protocols
appear more complex, in terms of number of nodes and depth, than their corresponding baseline.
The main difference in the routing logic consists in the condition in which the evolved protocols
can send messages. In the baseline protocols, isTransferring() is a condition that does not allow
the transmission of messages. Instead, in most of the evolved protocols, when isTransferring()
is true, the protocol still tries to transmit its messages (i.e., puts them in the sending buffer). A
second important difference is the number of attempts of transmissions that the evolved protocols
perform at each update. In fact, the baseline protocols perform at most two attempts per update,
while the evolved protocols perform up to 4 attempts.

To gain further insight into the comparison between the behavior of the baseline and the best
evolved protocols, we also analyzed the number of messages and their status during the simulations.
Also this information is provided as an output of The ONE simulations®. Figures 11-12 display the
mean = std. dev. (across 10 simulations of the baseline vs best evolved protocol, log scale), of the
number of messages marked as created, started, relayed, aborted, dropped, removed and delivered,
respectively for Epidemic and PRoPHET. It can be seen that the number of removed messages
is zero, by construction of the baseline protocols. As for the other values, while the number of
created messages is obviously the same in all simulations, the most interesting thing to note is that,
apart from the Manhattan simulations, the number of started/relayed/aborted/dropped messages is
consistently (up to two orders of magnitude) lower for the evolved protocols than for the baseline
ones, which is consistent with the dramatically reduced overhead and average hop count observed
in the Default and Helsinki test cases. Furthermore, the reduced number of dropped messages
associated with the higher buffer time observed before, seems to suggest that in practice the evolved
protocols do drop less messages, but these are kept much longer in the buffers.

Combining these observations with the trade-off analysis discussed in the main text (Section 5.2),
we can try to identify the reason for the improved delivery probability of the evolved protocols, at
least in the Default and Helsinki test cases. On the one hand, the higher number of transmission
attempts per update intuitively leads to a higher delivery probability: the more retransmissions
a node tries, the higher the chance the messages in its local buffer will be eventually delivered.
Furthermore, allowing the protocol to transmit also when isTransferring() is true makes it even
more likely to transmit messages to nodes that are one hop away from their destination, which is
consistent with the close to 1 average hop count measured with the evolved protocols. In practice,
since nodes attempt more frequent transmissions than the baseline protocols (and this happens
while the nodes are moving), messages are more likely to be delivered with just one hop. On the
other hand, contrarily to what we would have expected, this increased number of transmissions
per update does not reflect in a higher number of started/relayed messages (and thus an increased

3In particular, the simulator defines seven possible message status: created (i.e., when new message is created at its source
node), started (i.e., when a message transmission starts, either from the source or from an intermediate hop), relayed (i.e.,
when a message transmission to any receiving node, either the destination or an intermediate node, is completed; note that
this check is done on a receiving node), aborted (i.e., when a message transmission fails, i.e., not all the bytes are received
correctly; also this check is done on a receiving node), dropped (i.e., when a message, oldest first, is deleted from a node’s
buffer to make room for a new incoming message), removed (i.e., when a message is deleted from a node’s buffer since
it has already reached its destination; note however that this information is not available in the Epidemic and PRoOPHET
protocols), and delivered (i.e., the message is relayed and reaches its destination; the ratio delivered/created is the delivery
probability considered throughout this study).
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overhead), or even less so aborted ones, but rather in a lower number of messages that are kept in
the buffer for a longer time (as shown by the increased buffer time), before they get dropped due to
new incoming messages. This longer buffer time is the cause of the observed increased latency.
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Fig. 11. Number of created (Crt), started (Srt), relayed (Rel), aborted (Abt), dropped (Drp), removed (Rem)
and delivered (Del) messages with the Epidemic routing protocol (Baseline) and the best evolved protocols
(Evolution), mean =+ std. dev. (log scale) across 10 simulations.
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Fig. 12. Number of created (Crt), started (Srt), relayed (Rel), aborted (Abt), dropped (Drp), removed (Rem)
and delivered (Del) messages with the PRoPHET routing protocol (Baseline) and the best evolved protocols
(Evolution), mean =+ std. dev. (log scale) across 10 simulations.
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C BEST EVOLVED TREES

We report below the best performing trees evolved by Genetic Programming in all the test cases
considered in our experimentation, namely all the combinations of (protocol, map, number of hosts
per group) in: {Epidemic, PROPHET} X {Default, Helsinki, Manhattan} x {40 hosts, 100 hosts}.

Fig. 13. Best evolved tree in the test case: Epidemic, Default map and 40 hosts per group.
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Fig. 14. Best evolved tree in the test case: Epidemic, Default map and 100 hosts per group.
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D ROUTING PROTOCOL TEMPLATES

We report below the (simplified) class templates used for the Epidemic and PRoOPHET routing proto-
cols implemented in The ONE. We omit for brevity most comments and function implementations?.
The update() method, highlighted in green, is the fragment of code improved by means of Genetic

Programming, see Section 3 in the main text for details.

1 /%

2 * Copyright 2010 Aalto University, ComNet

3 * Released under GPLv3. See LICENSE.txt for details.
4 */

5 package routing;

6

7 import core.Settings;

8

9 /**

10 * Epidemic message router with drop-oldest buffer and only single transferring
11 * connections at a time.

12 */

13 public class EpidemicRouter extends ActiveRouter {

14 public EpidemicRouter(Settings s) {

15 super(s);

16 3}

17

18 protected EpidemicRouter (EpidemicRouter r) {

19 super(r);

20 }

21

22 @Override

23 public void update() {

24 super.update();

25 if (isTransferring() || !canStartTransfer()) {

26 return; // transferring, don't try other connections yet
27 }

28 // Try first the messages that can be delivered to final recipient
29 if (exchangeDeliverableMessages() != null) {

30 return; // started a transfer, don't try others (yet)
31 }

32 // then try any/all message to any/all connection

33 this.tryAllMessagesToAllConnections();

34 }

35

36 @Override

37 public EpidemicRouter replicate() {

38 return new EpidemicRouter (this);

39 }

40 }

Listing 1. EpidemicRouter class template

4The complete code implementation is available at https://github.com/akeranen/the-one/tree/master/src/routing.
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1 /*

2 * Copyright 2010 Aalto University, ComNet

3 * Released under GPLv3. See LICENSE.txt for details.
4 */

5 package routing;

7 import java.util.ArraylList;
8 // other imports

9 //

10

11 /*x*

12 * Implementation of PROPHET router as described in <I>Probabilistic routing

13 * in intermittently connected networks</I> by Anders Lindgren et al.

14 */

15 public class ProphetRouter extends ActiveRouter {

16 // public and private fields

17 /7

18

19 public ProphetRouter (Settings s) {

20 super(s);

21 /7. ..

22 }

23

24 protected ProphetRouter (ProphetRouter r) {

25 super(r);

26 /...

27 }

28

29 private void initPreds() { /* ... */ }

30

31 @Override

32 public void changedConnection(Connection con) { /* ... */ }

33

34 private void updateDeliveryPredFor (DTNHost host) { /* ... */ }

35

36 public double getPredFor(DTNHost host) { /x ... %/ }

37

38 private void updateTransitivePreds(DTNHost host) { /* ... %/ }

39

40 private void ageDeliveryPreds() { /* ... *x/ }

41

42 private Map<DTNHost, Double> getDeliveryPreds() { /* ... */ }

43

44 @Override

45 public void update() {

46 super.update () ;

47 if (!canStartTransfer() ||isTransferring()) {

48 return; // nothing to transfer or is currently transferring

49 }

50 // try messages that could be delivered to final recipient

51 if (exchangeDeliverableMessages() != null) {

52 return;

53 }

54 tryOtherMessages();

55 }

56

57 private Tuple<Message, Connection> tryOtherMessages() { /* ... *x/ }

58

59 private class TupleComparator implements Comparator <Tuple<Message, Connection>> { /%
*/}

60

61 @Override

62 public RoutingInfo getRoutingInfo() { /x ... */ }

63

64 @Override

65 public MessageRouter replicate() { /x ... %/ }

66 }

Listing 2. ProphetRouter class template
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E THE ONE CONFIGURATION FILE

We report below the configuration files used in The ONE simulations. We highlight in green the
settings that are modified (depending on the specific test case) during the evolutionary runs. We
omit the parameters related to The ONE GUI, which are not relevant for our experimentation.

1 Scenario.name = default_scenario

2 Scenario.simulateConnections = true
3 Scenario.updatelnterval = 0.1

4 Scenario.endTime = 43200

5

6 btInterface.type = SimpleBroadcastInterface
7 btInterface.transmitSpeed = 250k
8§ btInterface.transmitRange = 10

10 highspeedInterface.type = SimpleBroadcastInterface
11 highspeedInterface.transmitSpeed = 10M
12 highspeedInterface.transmitRange = 1000

14 Scenario.nrofHostGroups = 6

16 Group.movementModel = ShortestPathMapBasedMovement
17 Group.router = EpidemicRouter

18 Group.bufferSize = 5M

19 Group.waitTime = @, 120

20 Group.nrofInterfaces = 1

1 Group.interfacel = btInterface

2 Group.speed = 0.5, 1.5

3 Group.msgTtl = 300
4

Group.nrofHosts = 40
7 Groupl.groupID = p
29  Group2.groupID = c

30  Group2.okMaps = 1
31 Group2.speed = 2.7, 13.9

1
=

33 Group3.groupID

1
-+

35 Group4.groupID
36 Group4.bufferSize = 50M

37 Group4.movementModel = MapRouteMovement
38 Group4.routeFile = data/tram3.wkt

39  Group4.routeType = 1

40  Group4.waitTime = 10, 30

41 Group4.speed = 7, 10

42 Group4.nrofHosts = 2

13 Group4.nrofInterfaces = 2
14 Group4.interfacel = btInterface
45 Group4.interface2 = highspeedInterface

47 Group5.groupID = t

18 Groupbh.bufferSize = 50M

19 Group5.movementModel = MapRouteMovement
50 Group5.routeFile = data/tram4.wkt

51 Group5.routeType = 2

52 Group5.waitTime = 10, 30

53  Group5.speed = 7, 10

54 Group5.nrofHosts = 2

56  Group6.groupID = t

57 Group6.bufferSize = 50M

58 Group6.movementModel = MapRouteMovement
59 Group6.routeFile = data/traml1Q.wkt

60 Group6.routeType = 2

61 Group6.waitTime = 10, 30

62  Group6.speed = 7, 10

63  Group6.nrofHosts = 2

64
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65 Events.nrof = 1

66 Eventsl.class = MessageEventGenerator
67 Eventsl.interval = 25,35

68 Eventsl.size = 500k,1M

69 Eventsl.hosts = 0,126

70 Eventsl.prefix = M

72 MovementModel.rngSeed = 1
73 MovementModel .worldSize = 4500, 3400
74 MovementModel .warmup = 1000

76 MapBasedMovement.nrofMapFiles = 4

8 MapBasedMovement.mapFilel = data/roads.wkt

79  MapBasedMovement.mapFile2 = data/main_roads.wkt

80 MapBasedMovement.mapFile3 = data/pedestrian_paths.wkt
81  MapBasedMovement.mapFile4 = data/shops.wkt

83 Report.nrofReports = 2
84  Report.warmup = 0

85 Report.reportDir = reports/
86 Report.reportl = MessageStatsReport
87 Report.report2 = ContactTimesReport

89  ProphetRouter.secondsInTimeUnit = 30

91 Optimization.cellSizeMult = 5
92  Optimization.randomizeUpdateOrder = true

Listing 3. Default The ONE settings file
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