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Encouraging adaptation is an essential aspect of the policy response to climate change
1
. Adaptation 

seeks to reduce the harmful consequences and harness any beneficial opportunities arising from the 

changing climate. However, given that human activities are the main cause of environmental 

transformations worldwide
2
, it follows that adaptation itself also has the potential to generate further 

pressures, creating new threats for both local and global ecosystems. From this perspective, policies 

designed to encourage adaptation may conflict with regulation aimed at preserving or enhancing 

environmental quality. This aspect of adaptation has received relatively little consideration in either 

policy design or academic debate. To highlight this issue, this paper analyzes the trade-offs between 

two fundamental ecosystem services which will be impacted by climate change: provisioning services 

derived from agriculture and regulating services in the form of freshwater quality. Results indicate 

that climate adaptation in the farming sector will generate fundamental changes in river water quality. 

In some areas, policies which encourage adaptation are expected to be in conflict with existing 

regulations aimed at improving freshwater ecosystems. These findings illustrate the importance of 

anticipating the wider impacts of human adaptation to climate change when designing environmental 

policies. 

 

On a global scale, agriculture is the economic sector which is likely to bear the greatest financial 

impact as a result of climate change
3
. Farmers are expected to adapt by switching activities to those 

which are most profitable given the new conditions they will face. Since agriculture is one of the 

major drivers of freshwater quality
2,4

, these changes in farmland use have the potential to substantially 

alter water ecosystems. For example, agricultural inputs are responsible for nutrient overload and 

eutrophication in water bodies worldwide
2,5,6

 and are a major focus of policy action (e.g. US Clear 

Water Act
7
, EU Water Framework Directive

8
). Understanding the impact of agricultural adaptation to 
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climate change on water quality is, therefore, essential for delivering harmonised and efficient policies 

(although, from a theoretical standpoint, if all the external effects of agriculture on the environment 

were correctly priced, i.e. internalized, the market would automatically deliver socially optimal 

outcomes). 

 

An important feature of the relationship between farming and water quality is its strong spatial 

heterogeneity. Agricultural activities, adaptation options and environmental quality vary significantly 

over relatively small areas. Therefore, a meaningful analysis requires data reflecting this fine-scale 

variation, which would be irremediably overlooked if large-scale, aggregated data were employed
9,10

. 

Our empirical investigation focuses on Great Britain (GB), where detailed and long established 

information sources allowed us to assemble a unique dataset, spanning more than 40 years at a 

resolution of 2km grid squares (400 ha). This constitutes about half a million spatially referenced, 

time-specific, land-use records (see methods and supplementary materials, SM, sections S1.2 and 

S2.2). Almost 80% of GB's land use is devoted to a very heterogeneous farming system, ranging from 

the intensive arable cropping of the English lowlands to the extensive grazing farms of the upland 

northern and western regions including much of Scotland and Wales. While water quality in GB 

freshwater bodies is subject to several EU Directives
8,11

, a large share of its rivers and lakes are still 

characterized by high nutrient concentrations which fail to comply with existing regulations. 

 

Our analysis is based on an integrated framework linking a spatially-explicit econometric model of 

agricultural production to a statistical model of river water quality. Integrating economic models of 

land use change with environmental models predicting consequent impacts on multiple ecosystem 

services has been a focus of considerable recent research
10,12,13,14,15

. By integrating novel land use and 

water quality models, our analysis examines how adaptation to climate change in agriculture is 

expected to affect aquatic ecosystems. By examining how spatial heterogeneity in climate has 

influenced agricultural production decisions and farm income (farm gross margin, FGM
12,16

)
 
to date, 

we project how farmers will adapt to future climate. To estimate resulting water quality impacts, we 

rely on spatially explicit statistical models linking land use to observed concentrations of nitrate (NO3) 

and phosphate (as phosphorous, P) in rivers. 

 

Our agricultural production model builds upon a strand of research in agricultural economics
16,17

. We 

develop a structural econometric model with a flexible specification of the effects of climate on 

agricultural land use and production (SM, S1.3). Temperature and precipitation are represented via 

linear regression splines coupled with a fixed effect estimator to both control for un-observed missing 

variables and isolate the impact of climate. Even within the relatively small area of GB, variation in 

climatic and environmental conditions is sufficient to yield substantial differences in agricultural 
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productivity and, hence, land use. These differences are captured by the model along with variation 

due to other drivers such as changes in policies and prices. 

 

Figure 1 reports the estimated impact of temperature and precipitation on two illustrative land use 

shares (arable and temporary grassland) and on beef cattle rates (heads/ha). As shown in the upper 

row, arable is the dominant land use in low precipitation areas, with pastures becoming more common 

only as rainfall rises. Beef cattle stocking rates rise rapidly with precipitation (and the concomitant 

increase in pasture size) until rainfall reaches about 500mm, after which cattle rates begin to slowly 

decline as they are replaced by more resilient livestock such as sheep. Considering the effect of 

temperature, in the second row, we observe a positive relationship with the share of arable land, 

related to the effect on yield which, however, becomes gradually less steep and finally negative for 

the highest temperatures, confirming previous research findings
3,12,16

. 

 

We analyze water quality via statistical models explaining observed river nitrate and phosphate 

concentrations as functions of the land use and the climate characterizing the land upstream from each 

water monitoring station, derived via the use of a Geographical Information System (GIS) (see 

methods). By including fixed effects, we estimate coefficients which are robust to potential un-

observed confounders. The parameters of the final models are reported in Table 1. 

 

The land share coefficients should be interpreted relative to the omitted land use category, which here 

is arable farming. Therefore, negative (positive) coefficients indicate that a land use produces less 

(more) pollution than arable. All parameters conform to our expectations and previous literature
4,5,6

. 

Considering nitrate, urban land yields levels of concentration which are not significantly different 

from those of arable, while other land uses generate lower leaching. In the extreme, an entirely arable 

catchment is predicted to generate average nitrate concentrations of just over 44mg NO3/l, which 

would be considerably above the threshold of 30mg NO3/l identified by EU regulations
8,11

. 

 

Similar consistency with previous research
18

 is confirmed within the model of phosphate. The 

estimates indicate that the main source of phosphorous in rivers is urban land, which has a coefficient 

almost three times higher than that of arable, again represented by the intercept. Nevertheless, the 

model suggests that a river catchment draining an entirely arable area would typically yield a 

concentration of about 0.39mg P/l, or above the threshold of 0.2mg P/l recommended by the WFD
8
, 

while a fully urbanized catchment is predicted to yield concentrations averaging around 1.29mg P/l. 

Again, less intensive land uses produce significantly lower concentrations. 

 

We integrate the agricultural land use and river quality models and verify their performance in 

predicting observed data via out-of-sample testing (SM S3). In order to project the impact of climate 
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change adaptation, we hold prices, policy and technological change constant at their baseline values. 

In addition, we also leave unchanged all non-agricultural land allocation and farm woodland, which is 

mainly driven by area-specific governmental and planning policies. Therefore, these scenarios are not 

projections of the future, but rather illustrate, ceteris paribus, the impact of climate change adaptation. 

In GB climate change is expected to generate a warmer and drier growing season, with average 

temperatures projected to increase by about 2
o
C, and total precipitation to decrease, on average, by 

about 60mm, by the 2040s
19

 (see also SM, Figure S3). 

 

Figure 2 summarizes our findings for the baseline year and climate change scenarios in 2020s and 

2040s. The first column of maps shows baseline conditions for agricultural production values (map A), 

concentrations of nitrate (D) and phosphate (G). Current agricultural production shows a clear South-

North divide, with the lowlands in the south being significantly more profitable than the colder and 

wetter regions in Scotland and Wales. Our results indicate that climate change will reduce this gap, 

primarily benefiting northern regions as higher temperatures will allow increases in more profitable 

arable and higher livestock intensity (maps B and C). However, such changes are also expected to 

amplify the pressure on the environment, increasing diffuse emissions into rivers. Overall, the area of 

land at risk of reporting high nitrate and high phosphate concentrations is projected to increase by 30% 

(1.4 million ha) and 20% (1.6 million ha) respectively, as a result of climate change adaptation (SM 

S4.3). These areas are illustrated in red in maps E, F, H and I. This indicates that adaptation will 

significantly increase the effort required to achieve water quality standards, particularly in the eastern 

uplands and midlands where temperature rises will permit significant increases in agricultural 

production. 

 

Map A in Figure 3 summarizes the spatially heterogeneous effects of climate change adaptation on 

agricultural incomes and water quality by the 2040s. Areas where adaptation to climate change will 

yield improvements in farming without significant environmental repercussions are shown in green 

(including most of the North-West but the highest upland regions). Other areas, which are not 

expected to yield reductions in water quality but are predicted to see falls in farm income are shown in 

orange (principally in the south of England). The map also reveals areas of trade-off, either regions 

where adaptation is expected to raise FGM at the expense of generating high nutrient concentrations 

(shown in red in areas such as the North-Eastern coast and across parts of the English midlands), or 

where losses in farm income will be accompanied by improvements in water quality (blue areas in the 

south). Remaining areas are not expected to experience substantial changes in either farm incomes or 

diffuse pollution. 

 

In considering a potential policy response to the problem of adaptation-induced deterioration of river 

water quality, an option within the British context is provided by recent government announcements 
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regarding an intention to significantly extend woodland coverage over the next decades
20,21

. Among 

the diverse set of benefits which can be generated by forests (including carbon storage, recreational 

provision, timber output, etc.), this initiative also views water quality enhancements as a key argument 

for woodland creation, given the very low nutrient leaching rates generated by this land use. Therefore, 

we examine the effect of locating the woodland in those areas where adaptation is expected to generate 

the largest falls in water quality. Map C in Figure 3 shows planting locations for 500,000ha of new 

forests (a level consistent with policy discussions)
20,21

 while central Map B reveals the environmental 

and economic impacts of such a policy (results for different planting acreages are given in SM Table 

S8). The effects are very significant, with almost all rivers in the targeted areas projected to remain in 

good condition despite the increase in agricultural production. This demonstrates how a systemic 

approach to interventions can anticipate the environmental impacts of climate change adaptation and 

deliver more than one policy-goal at the same time. 

 

As our discussion suggests, the potential effects of adaptation in the farming sector are not restricted to 

water quality. Adaptation may impact on water availability, wildlife, biodiversity, carbon 

sequestration, recreation, etc. On the other hand, climate change could also reduce the viability of 

agriculture in some areas, potentially diminishing certain pressures. Furthermore, the environmental 

impacts of adaptation are not limited to farming, but concern most activities which will be impacted 

by climate change, including energy demand and production
22

, fisheries
23

, forestry
24

 and health
25

. This 

of course does not imply that adaptation is inappropriate, rather it demonstrates that policies should 

take into account the wider implications of adaptation and seek to incorporate such synergies and 

trade-offs. This will require a degree of integration across policy fields which is still lacking in current 

decision making
26

. 

 

 

Methods 

 

Land use model. The large database used for estimating the agricultural land use model was 

assembled using a variety of spatially explicit information. Land use and livestock data were derived 

from the June Agricultural Census (source, EDINA, www.edina.ac.uk). Collected on a 2km grid 

square (400ha) basis, this covers the entirety of GB for ten unevenly spaced years from 1972 to 2004. 

This constitutes roughly 55,000 grid-square records per year, amounting to over 500,000 grid-square 

observations for the overall analysis. We consider four categories of land use, each associated with 

different levels of pollution: (a) temporary grassland, (b) permanent grassland, (c) rough grazing and 

(d) arable (definitions in SM 1.2). We include three livestock types: dairy cattle, beef cattle and sheep. 

Environmental drivers of agricultural land use include average temperature and accumulated rainfall, 
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environmental and topographic variables, policies etc. Yearly and regional fixed effects allow us to 

control for time- and spatially-varying omitted factors (see SM 1.2). 

 

We assume that farmers choose their land use activities (lh) by taking into account expected input (p) 

and output (w) prices, policy constraints, climate and land quality (all included in the vector z). The 

agricultural land within each 400ha cell is modelled as an individual farm characterized by a 

multiproduct profit (π) function, which is maximized according to the following objective function: 
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Using a normalized quadratic empirical specification for πL
 and applying Hotelling's lemma, we 

derive land use share equations and land use intensity equations in linear forms
12,16

 (SM S1.3). For 

instance, if pi indicates the price of cereals, the equation corresponding to cereal yield yi is: 

 

iiiii

i
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p
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∂

∂π
,   

 

where ki, ααααi, ββββi, γγγγi are the parameters of the cereal yield equation to be estimated. As our data contains 

corner solutions (not all farms cultivate all possible crops), adding Gaussian disturbances and 

implementing ordinary least squares or generalized least square estimation leads to inconsistent 

results. Therefore, we implement a quasi maximum likelihood, heteroskedastic, simultaneous 

equation, Tobit model
12,27

. Predictive performance is tested via a rigorous out-of-sample forecasting 

exercise (SM 1.3, 1.4, Table S1, Figure S1). 

 

Water quality model. Data on nitrate and phosphate concentration are extracted for over 5,000 

monitoring points collected as part of the General Quality Assessment (GQA) survey conducted 

annually by the Environment Agency to monitor the state of GB freshwater ecosystems
28

. We selected 

data averages for the years 2005 to 2007 to fall within the period of our land cover and land use 

intensity information (see below and SM 2.2). Since monitoring points can refer to stations located on 

the same river, or to rivers belonging to the same catchment, nutrient concentrations can be spatially 

dependent across stations. To implement standard statistical modelling on a sample of independent 

observations, we select a smaller sub-sample of 214 stations belonging to non-overlapping catchments 

representing the locations and the range of nitrate levels observed in the full sample (Figure S2 and 

Table S2). GQA data classify nutrient levels as belonging to one of six categories from very low 

concentrations of pollution (highest water quality) to very high levels (worst quality), as detailed in 

SM 2.2. Given the structure of this data, we model concentrations for nutrient q (nitrate or phosphate) 
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at point j using interval regression techniques, which are generalizations of the censored Tobit 

model
27

, as follows: 

 

jqqjqjq eN +′== bx,
 

 

where xjq indicates the matrix of explanatory variables, ejq indicates an identically distributed residual 

term and bq is the vector of parameters to be estimated. As explanatory variables we consider land use 

(arable, improved grassland, rough grassland, forest and urban), livestock intensity and population 

upstream from each GQA monitoring point, derived by weighted flow accumulation techniques
29 

(see 

SM 2.2). We include regional fixed effects to account for spatial omitted variables. Different model 

specifications with corresponding goodness of fit measures are reported in SM, Table S3. 

  

Integrated framework: The land use model and the water quality model are estimated using the 

same spatial units and variable definitions. This ensures that a full integration of the two models is 

relatively straightforward. This integrated framework is verified via out-of-sample predictions (SM 3, 

Table S4 and Figure S3). 

 

Climate change scenarios. We consider medium emission
30

 climate change scenarios published by 

UKCIP
19

 as 25km grid square projections for the ‘2020s’ (defined as the average climate between 

years 2010-2039) and ‘2040s’ (2030-2059) periods. Consistent with UKCIP, we use as a baseline the 

climate averages for the years 1961-1990. (SM 4). Table S5 provides descriptive statistics of the 

climatic variables in the historical baseline and in each scenario, which are also represented via maps 

in Figure S4. Table S6 provides descriptive statistics of our land use projections, Table S7 reports 

projection of nutrients' concentrations. 
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Appendix: Tables and Figures 

 

Table 1: Water quality models 

 
Nitrate Phosphate 

Intercept 46.48∗∗∗ 
(2.57) 

0.389
∗∗∗

 

(0.056) 

shareurban −4.24 
(20.08) 

0.897
∗∗∗

 

(0.137) 

sharerough −40.23∗∗∗ 

(7.43) 
-0.485

∗
 

(0.246) 

sharegrass −37.94∗∗∗ 
(9.47) 

-0.311
∗∗

 

(0.132) 

sharewood −34.64∗∗∗ 
(9.31) 

-0.589
∗
 

(0.339) 

Dlivestock * sharegrass   10.38∗∗ 

(4.93) 

- 

Dpop * shareurban 0.18 
(0.53) 

- 

precipitation −0.62∗∗ 

(0.92) 

- 

σ     7.47∗∗∗ 
(0.39) 

   0.231
∗∗∗

 

(0.011) 

Log-Likelihood −286.26 -439.60 

Pseudo R
2
 (McFadden) 0.28 0.10 

Notes: Interval regression model estimated with Gaussian residuals on 214 

monitoring points located on independent river catchments. Coefficients need to 

be interpreted using the share of arable land as the baseline category. Dlivestock is 

the livestock density (number of cattle per hectare of grassland), Dpop is the 

population intensity (defined as the number of people per hectare). Significance 

levels: "*" = 0.10, "**" = 0.05, "***" = 0.01. 
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Figure 1: Estimated impact of total precipitation (mm) and average temperature (
o
C) during the growing season (April-September) on land use shares (% 

agricultural area) and beef cattle stocking rates (heads/ha)

 

Notes: Dashed lines indicate estimated relations, gray areas the 95% asymptotic confidence intervals. All other explanatory variables are fixed at the sample mean.
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Figure 2: Impact of climate change (UKCP09 medium emission, SRES A1 B scenario) for the 2020s, 

and 2040s on farm gross margin (£/ha) and river quality (NO3; P). 

 

 
Notes: The first column (maps A, D, G) presents estimated values for the baseline climate. The second 

(maps B, E, H) and third (maps C,F,I) columns present projected changes for the 2020s and 2040s (UKCIP 

medium emission scenarios). The 2020s and 2040s are defined respectively as the climate averages for the 

years 2010-2039 and 2030-2059 as by the UKCIP 
22

. 
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Figure 3: The impact of climate change adaptation and possible policy response 

 

 
 
Notes: Map A shows areas of significant increase (decrease) in profit defined as FGM change > (<) 80£/ha (see Figure 2), and water quality with decreases defined as cases 

where N or P concentrations are low or moderate in the baseline (i.e. lower than 30mg NO3/l and 0.2mg P/l respectively, see SM, section S2) and become high in the climate 

change and agricultural adaptation scenario (the converse applies for the definition of water quality improvement). Map B illustrates these various changes following the 

introduction of a policy response consisting of the planting of 500,000 hectares of new broadleaf forests in the locations indicated in Map C. The 2040s period is defined as 

the climate averages for the years 2030-2059 as given by UKCIP
19

. 


