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Abstract

High throughput DNA sequencing technology provides base level and statistically rich information 

about the genomic content of a sample. In the context of cancer research and of precision 

oncology, thousands of genomes from paired tumor and matched normal samples are being 

profiled and processed to determine somatic copy number changes and single nucleotide 

variations. Higher order informative analyses, as allele specific copy number assessments or 

subclonality quantification, require reliable estimates of tumor DNA ploidy and tumor cellularity. 

CLONETv2 provides a complete set of functions to process matched normal and tumor pairs using 

patient specific genotype data, is independent of low-level tools (e.g., aligner, segmentation, 

mutation caller) and offers high-level functions to compute allele specific copy number from 

segmented data and to identify subclonal population in the input sample. CLONETv2 is applicable 

to whole genome, whole exome and targeted sequencing data generated from both tissue and 

liquid biopsy samples.
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INTRODUCTION

Massive sequencing efforts, as by The Cancer Genome Atlas (TCGA) and the International 

Cancer Genome Consortium (ICGC), have generated a comprehensive collection of 

sequenced genomes of cancer patients, opening a new era for genomics. Advanced analyses 

of genomic sequencing data require accurate estimation of DNA cellularity (purity, 1 – DNA 

admixture) and tumor ploidy to allow for proper comparative computations. DNA admixture 

refers to the amount of non-cancer cells in a tumor sample, while ploidy represents the 

average number of chromosomes set in a cell. Human healthy cells are diploid, whereas 

tumor cells often demonstrate a dramatically variable number of ploidy also dependent on 

the tumor type (Chunduri and Storchova, 2019; Danielsen et al., 2016). The impact on tumor 

evolution and prognosis of ploidy changes is yet not clear, but recent pan-cancer studies 

have shed some light. In a primary tumor pan-cancer cohort from the TCGA project, cell 
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proliferation and immune evasion, two hallmarks of cancer, resulted deregulated in high 

aneuploidy samples (Davoli et al., 2017; Taylor et al., 2018). In a pan-cancer cohort of 9,692 

patients with advanced disease, aneuploidy also associated with poor survival (Bielski et al., 

2018).

A recent review (Aran et al., 2015) highlighted the importance of purity estimation in 

analyzing sequencing data. For instance, phylogenetic reconstruction of tumor evolution 

from multi-sample DNA sequencing data from a single patient strictly relies on the 

quantification of the variant allelic fraction (VAF) of single nucleotide variants (SNV) 

(Gundem et al., 2015) that is affected by both DNA admixture (normal cell dilute SNV 

VAFs ) and by ploidy (polyploidy increases the total number of alleles) of each tumor 

sample. The same issues also affect the determination of the absolute number of copies of a 

genomic segment in a tumor sample (Carter et al., 2012). Many computational methods 

identify somatic copy number aberrations from the relative DNA amount between a tumor 

and its matched normal sample, but fair estimation of the integer number of copies of each 

allele requires purity and ploidy adjustments (Bao et al., 2014).

These considerations call for the development of computational tools to quantify tumor 

purity and ploidy. In the pre-sequencing era, several tools were developed for high-density 

single-nucleotide polymorphisms (SNP) array data (e.g., (Carter et al., 2012; Van Loo et al., 

2010)), where typically the tumor over control signal ratio (hereafter LogR) and the 

abundance of allele specific signal (B allele frequency, BAF) distributions are jointly 

analyzed to infer DNA admixture and ploidy. However, array based tools are limited by the 

number of the assayed genomic bases (mainly in the range 0,5–2M of sites) and by the 

signal dynamic range. Next generation sequencing platforms overcome these limitations 

while preserving the same data feature to exploit (Aran et al., 2015); allelic fraction (AF) of 

inherited heterozygous SNP loci (hereafter called informative SNPs) and sequencing 

coverage resemble the BAF and the LogR data of SNP arrays, respectively. The statistically 

richer data offered by sequencing enables more complex analysis such as allele specific copy 

number and clonality estimates.

In general, available methods to estimate ploidy and DNA admixture adopt a global 

approach and distribution of AFs and LogR values are conjunctly used to infer DNA 

admixture and ploidy. Intuitively, the AF of informative SNPs is distributed around 0.5 in a 

100% admixed tumor sample (up to reference mapping bias (Degner et al., 2009)) and lower 

AFs imply lower DNA admixture. LogR data is used as a covariate, as the AF also depends 

on the number of available alleles. If no tumor cell subpopulations are present (i.e., the copy 

number profile of a tumor sample is homogeneous, i.e., the ratio of subclonal deletions/

amplifications is low), global inference approaches well capture the DNA admixture content. 

However, in the presence of complex genomic events, such as chromothripsis (Stephens et 

al., 2011) or chromoplexy (Baca et al., 2013), or upon multiple treatments that diversify the 

tumor cell population, global approaches are suboptimal.

CLONET (Prandi et al., 2014) (CLONality Estimate in Tumor) is a stand-alone tool 

specifically designed with a local approach to clonality estimation to handle heterogeneous 

tumor samples. Briefly, consider a tumor sample T with a hemizygous deletion HeD and the 
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set of informative SNPs S lying in the HeD. The AF value of SNPs in S is the convolution of 

the AF of the different cell populations composing T. If HeD is subclonal, the tumor sample 

comprises three main cell populations: i. non-tumor cells contributing to DNA admixture, 

with expected AFs of SNPs in S around 0.5; ii. tumor cells not harboring the deletion thus 

the AFs of SNPs in S cannot be distinguished from non-tumor cells; iii. tumor cells with 

HeD, where the AFs could either be equal to 1 (the deleted allele harbor the alternative base) 

or equal to 0 (the deleted allele harbor the reference allele). Based on the observation that 

apparent DNA admixture is higher in subclonal deletions with respect to clonal deletions, 

CLONET estimates DNA admixture at each hemizygous deletion and then identifies the 

most clonal deletions to finally nominate sample DNA admixture. This results in a more 

accurate DNA admixture estimation that would otherwise be overestimated in tumors with a 

significant fraction of subclonal deletions.

Here, we present CLONETv2, an R package (Team, 2017) available at The Comprehensive 

R Archive Network (https://cran.r-project.org/), that includes significant improvements over 

the original CLONET implementation. This is the result of its application to several clinical 

cohorts, including tissue and plasma samples, and on a variety of sequencing platforms, as 

whole genome, whole exome, and targeted sequencing panels. In Carreira et al. (Carreira et 

al., 2014), CLONET was used to estimate DNA admixture from a custom sequencing panel 

of about 40kb designed to analyze circulating tumor DNA of plasma samples from 

metastatic patients and the algorithm was modified to improve sensitivity in samples with 

less than 10% of tumor cells. In Beltran et al. (Beltran et al., 2016), CLONET was extended 

to provide allele specific copy number data from whole exome sequencing experiments; for 

each genomic segment in each study cohort tumor, the study reports the number of copies of 

each allele using ploidy, DNA admixture, LogR and the AF of informative SNPs. In Faltas et 

al. (Faltas et al., 2016), clonality analysis capability of CLONET was improved to account 

for complex allele specific combinations and single nucleotide variants (SNVs). Since its 

initial conception and application to whole genome sequencing data (Baca et al., 2013; 

Prandi et al., 2014), CLONET improvements have been used in several studies (including 

(Beltran et al., 2015; Boysen et al., 2015; Cancer Genome Atlas Research, 2015; Mu et al., 

2017)). Here, we present a documented CLONETv2 version to uniformly highlight the 

approach features and propose it as an R package to make the tool available to a broader 

audience.

BASIC PROTOCOL 1

Compute beta table—All reads of a human DNA next-generation sequencing experiment 

that map within a genomic segment derive from either one of the parental chromosomes of 

origin. Reads can be split into two sets: a copy number neutral set that contains equal 

number of reads from the maternal and the paternal chromosomes, and an active reads set 

that includes sequences from only one parent. Generally speaking, given two random reads, 

it is impossible to determine whether or not they represent the same allele; however, if the 

two reads span an informative SNP then the allele of origin can be identified. For reads over 

informative SNPs, the number of reads (local coverage) supporting the reference or the 

alternative SNP represents the number of copies and the origin of the alleles present in the 

tumor sample. Each informative SNP can be characterized by its allelic fraction (AF) that 
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depends on the genomic context. For instance, let us consider the two informative SNPs 

within a mono-allelic deletion of the genomic segment A in Figure 1A. At position p1, only 

the alternative allele is present and the AF is 1, while at position pn the alternative allele is 

deleted and the AF is 0. Instead, in the wild type genomic segment B, the AF values of 

informative SNPs at positions pn+1 and pm are distributed around 0.5, as both alleles equally 

contribute to the local coverage. Now, the percentage of neutral reads (called beta) at p1 and 

pn is equal to 0, regardless of which allele is deleted, whereas at wild type genomic positions 

pn+1 and pm approximates 1, as no active reads are present. Overall, SNPs within 

somatically aberrant segments are easier to characterize using the beta values as opposed to 

the AFs, as the former is independent from the deleted allele. In a heterogeneous tumor 

sample, the distributions of AFs and betas result from the convolution of the distribution 

observed in basic wild type and mono-allelic deleted segments. As an example, Figure 1B 

depicts the distribution of the AF and the associated beta of the informative SNPs in 

genomic segments A and B in case of a normal cell, while Figure 1C and 1D show how 

distributions change in tumor cells with mono-allelic deletion of only genomic segment A, 

or of both A and B, respectively. Figure 1E considers tumor sample with one Normal cell 
(Figure 1B) and nine Tumor cells 1 (Figure 1C). The DNA admixture is 1/10 and the AF 

could assume values around 1/11 or 10/11, while beta is 2/11. Genomic segment B is not 

deleted and therefore the AF and the beta are as in Normal cell. Figure 1F mimics a more 

complex situation involving one Normal Cell (Figure 1B), three Tumor cells 1 (Figure 1C), 

and six Tumor cells 2 (Figure 1D). The AF and the beta of informative SNPs in genomic 

segment A are as in Figure 1E, but only the six Tumor cells 2 carry the mono-allelic deletion 

of genomic segment B. In this case, the AF distribution modes are centered in 4/14 and in 

10/14, depending on the depleted base, while beta is 8/14. The full characterization of beta is 

described in (Prandi et al., 2014), while in Beltran et al [PMID: 26855148] we defined 

CLONET master equations that describe allele specific copy number of maternal and 

paternal alleles, cnM and cnP, as a function of the percentage of neutral reads beta, the log2 

ratio values adjusted by ploidy LogRp, and the DNA admixture G

cnM =
2 − beta beta 2LogRp − G + 2G 1 − beta

1 − G beta

cnP = beta 2LogRp − G
1 − G

1

where maternal and paternal allele are arbitrarily assigned. Figure 2 sketches the 

transformation of the log2 ratio space implied by Equation 1. Figure 2A reports the 

histogram of the log2 ratio signal in a tumor sample; peaks in the distribution correspond to 

different copy number states while deviations from the position of the expected peaks 

(below) depend on ploidy and DNA admixture values. It is difficult to identify the peak that 

corresponds to wild type segments using only log2 ratio signal. When expanding the mono-

dimensional LogR space with beta (Figure 2B), segments that contribute to the same peak 

along the LogR dimension form different clusters in the beta vs LogR space. Of note, the 

beta vs LogR plot still reflects ploidy and DNA admixture while the cnM and cnP space (see 
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Equation 1) allows for straightforward interpretation of copy number and clonality status of 

each genomic segment.

The function compute_beta_table estimates the beta of a genomic segment as described 

in Carreira et al. (Carreira et al., 2014). The function compute_beta_table includes the 

following input:

• seg_tb: a table resulting from DNA segmentation. For each genomic segment, 

the table reports chromosome, start/end position, and the log2 ratio of the tumor 

over the normal coverage, as defined in the Circular Binary Segmentation 

algorithm (Olshen et al., 2004);

• pileup_normal, pileup_tumor: two tables reporting allelic fraction and 

coverage of SNPs in normal and matched tumor samples, respectively. For each 

SNP, each table reports genomic coordinates (chromosome and position), allelic 

fraction, and coverage;

• min_af_het_snps, max_af_het_snps: for each SNP in the pileup_normal 

table, set minimum and maximum allelic fraction to consider the SNP as 

informative;

• min_required_snps: minimum number of informative SNPs in a genomic 

segment from seg_tb to retain the segment;

• min_coverage: minimum mean coverage of informative SNPs to retain a 

segment.

As output, the function compute_beta_table extends the input table seg_tb. For each 

segment in seg_tb, the function compute_beta_table returns the following values:

• beta: estimated value for the input segment;

• nsnps: number of informative SNPs in the input segment;

• cov: mean coverage of informative SNPs in the input segment;

• n_beta: estimated value for the input segment considering the matched normal 

sample. This value is expected to be 1, except for germline CNV or sequencing 

related errors.

The interpretation of the function compute_beta_table output is not an easy task due to 

the identifiability problem, i.e. more than one combination of ploidy and DNA admixture fit 

the observed data (Li and Xie, 2014). However, upon definition of ploidy and DNA 

admixture, Equation 1 completely defines the absolute copy number of both alleles. We will 

exploit this capability in Support Protocol 2, where Equation 1 is used to plot expected beta 

and log2 ratio against estimated values. The optional parameter plot_stats of the 

compute_beta_table function plots useful summary statistics for sanity check of the 

output. In particular, when plot_stats is TRUE, the function returns:

• number of processed segments: the number of segments in the input seg_tb 

table;
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• number of segments with a valid beta estimate: the number input segments for 

which beta value is computed. This value is affected by the number of 

informative SNPs and their mean coverage;

• quantiles of input segment lengths: the quantiles of the distribution of the length 

of the input segments. The expected distribution depends on the segmentation 

algorithm used to produce seg_tb table. However, small values result in a low 

number of informative SNPs, while large segments may indicate under-

segmentation that in turn affects beta estimates;

• quantiles of informative SNPs input segment coverage: the quantiles of the 

distribution of the mean coverage of the input segments. Expected coverage 

depends on the sequencing experiment, but low value may indicate problems 

with the input sample;

• quantiles of number of informative SNPs per input segment: the quantiles of the 

distribution of the number of informative SNPs in the input segments. Expected 

number of informative SNPs per kb is about 0.33 (based on common SNPs); 

therefore this value combined with input segment lengths gives information 

about the quality of the pileup data.

Necessary Resources

Hardware—A 64-bit computer running Linux with at least 8 GB of RAM

Software—The library has been tested with R version 3.5.2 and R libraries parallel 3.5.2, 

ggplot2 3.1.0, sets 1.0–18, arules 1.6–3, ggrepel 0.8.0.

Step annotations

1. Prepare tumor and normal pileups as described in SUPPORT PROTOCOL 1 or 

with other computational tools. The output of this step comprises two files 

tumor.pileup and normal.pileup.

2. Prepare tumor segmented data in file tumor_segments.txt and with columns 

compatible with parameter seg_tb described above.

3. Run R from command line

$ R

4. Install CLONETv2 the first time

> install.packages(“CLONETv2”)

5. Load the library
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> library(CLONETv2)

6. Load input files

> seg_tb <- read.table(system.file(“sample.seg”, package = 

“CLONETv2”),header = T, as.is=T)

> pileup_tumor <- read.table(system.file(“sample_tumor_pileup.tsv”, package 

= “CLONETv2”),header = T, as.is=T)

> pileup_normal <- read.table(system.file(“sample_normal_pileup.tsv”, 

package = “CLONETv2”),header = T, as.is=T)

7. Compute beta for each input segment with default parameters

> bt <- compute_beta_table(seg_tb, pileup_tumor, pileup_normal)

8. Compute beta activating plot_stats parameter

> bt <- compute_beta_table(seg_tb, pileup_tumor, pileup_normal, plot_stats=T)

This results in the following output:

Computed beta table of sample “sample1”

 Number of processed segments: 65

 Number of segments with valid beta: 49 (75%)

 Quantiles of input segment lengths:

 0%  :     2860

 25% : 17504185

 50% : 38004799

 75% : 59311449

 100%:147311449

 Quantiles of input segment coverage:

 0%  : 47.0000

 25% :137.7893

 50% :168.3820

 75% :186.6769

 100%:695.6145

 Quantiles of number of informative SNPs per input segment:

 0%  :  0

 25% : 12

 50% : 99
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 75% :213

 100%:404

SUPPORT PROTOCOL 1

Prepare pileup data—This protocol describes the steps to prepare pileup data from a set 

of SNPs and matched tumor and normal bam files (Li et al., 2009). Tables pileup_normal 

and pileup_tumor report allelic fraction and coverage for a set of SNP positions. 

Candidate SNP positions can be downloaded directly from dbSNP ftp server (http://

ftp.ncbi.nlm.nih.gov/snp/). We suggest starting from the largest possible set of SNPs, as the 

larger the number of informative SNPs, the more reliable the CLONETv2 estimates. Pileups 

from bam files can be obtained with several tools with no effect on the function 

compute_beta_table. Here we describe how to prepare pileups using ASEQ (Romanel et 

al., 2015) a tool freely available at http://demichelislab.eu/tools/ASEQ.

Necessary Resources

Hardware—A 64-bit computer running Linux with at least 8 GB of RAM

Software—ASEQ, curl

Input files—BAM files tumor.bam and normal.bam including aligned reads from 

genomic sequencing experiments of matched tumor and normal DNA samples, respectively. 

VCF (Degner et al., 2009) file known_snp_positions.vcf reporting known SNPs 

positions. ASEQ requires that the input VCF only lists SNPs, i.e. columns ALT and REF 

must contain one of the values A, C, G, or T. ASEQ parameters includes

• mrq: minimum read quality. ASEQ does not consider as part of the pileup reads 

with read quality < mrq;

• mbq: minimum base quality. ASEQ does not consider as part of the pileup bases 

with quality < mbq;

• mdc: minimum depth of coverage. ASEQ output only reports positions with 

coverage ≥ mdc;

• threads: number of threads available for ASEQ computation.

Step annotations

1. Download and uncompress the last version of ASEQ

$ curl http://demichelislab.unitn.it/lib/exe/fetch.php?media=aseq-v1.1.11-

linux64.tar.gz > aseq-v1.1.11-linux64.tar.gz

$ tar xvf aseq-v1.1.11-linux64.tar.gz 

ASEQ code will be available in subfolder binaries/linux64/.

2. Download and uncompress ASEQ examples
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$ curl http://demichelislab.unitn.it/lib/exe/fetch.php?media=aseq-

examples.tar.gz > aseq-examples.tar.gz

$ tar xvf aseq-examples.tar.gz

ASEQ examples will available in subfolder examples/VCF_samples/.

3. Run ASEQ on example data 1.

$ ./binaries/linux64/ASEQ mode=PILEUP

vcf=examples/VCF_samples/sample1.vcf

bam=examples/BAM_samples/sample1.bam mbq=20 mrq=20 mdc=1

threads=1 out=.

ASEQ produces file sample1.PILEUP.ASEQ reporting allelic fraction and read coverage in 

bam file sample1.bam for each position in vcf file sample1.vcf. Parameters mbq=20 and 

mrq=20 tell ASEQ to ignore, respectively, bases and reads with quality less than 20. 

Parameter mdc=1 instructs ASEQ to ignore positions in bam file with no reads. The 

parameters and the format of the output file .PILEUP.ASEQ are compatible with pileup data 

required in Basic Protocol 1.

BASIC PROTOCOL 2 (optional)

Compute ploidy—Segmentation algorithms partition input genomic space into segments 

with homogenous coverage. Given a pair of matched tumor and normal samples, the LogR 

value of a genomic segment is the log2 of the ratio between the tumor and the normal 

sample coverage within the segment. To account for different mean coverage in different 

sequencing experiments, LogR is normalized over the ratio between the mean tumor and the 

mean normal coverage; this applies both to whole genome and whole exome data. In the 

case of higher coverage in the tumor sample, without normalization the ratio between the 

mean tumor and the mean normal coverage is X, a wild type segment would have 

LogR=log2(X), while the expected value is 0 (i.e. same number of alleles between tumor 

and normal). The normalization would however introduce a bias whenever the difference in 

the mean coverage between the tumor and the normal sample is due to an abnormal number 

of alleles in the tumor - aneuploidy genome. In this case, the normalization leads to a shift in 

the LogR signal. Figure 3A shows an example of diploid genome sample with 127x and 69x 

mean tumor and mean normal coverage, respectively. The LogR signal is centered in 0 as 

expected (green line). Figure 3B highlights a more complex case: tumor and normal mean 

coverage are comparable (125x and 117x, respectively), but the position of the wild type 

segments (orange line) is shifted with respect to the expected value (green line). The shift is 

representative of the total number of alleles in the genome and ploidy can be estimated as

Ploidy =   2 × 2
−log2 LogR shi f t

2
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Proof (Equation 2) is reported in CLONET paper (Prandi et al., 2014). Sample in Figure 3A 

has LogR shift 0 and Ploidy 2, while sample in Figure 3B has LogR shift of −0.34 and 

Ploidy 2.53.

The function compute_ploidy builds on this definition and is implemented to identify wild 

type genomic segments and to estimate how far the LogRs deviate from 0. The key step in 

the search is to restrict the genomic segments space to those with beta equal to 1, i.e., have 

an equal number of maternal and paternal copies. In Figure 3B, this step excludes segments 

with LogR around 0, as their beta is significantly lower than 1 and represent segments with 

copy number 3 (see BASIC PROTOCOL 4). In this context, green line in Figure 3B is 

centered on wild type segments while turquoise vertical line identifies segments copy 

number four. The function compute_ploidy includes the following input parameters:

• beta_table: a table created using function described in BASIC PROTOCOL 1;

• max_homo_dels_fraction (default 0.05): homozygous deletions can provide 

a confounding factor in the determination of sample ploidy. The parameter sets a 

percentage of genomic segments that will not be used for ploidy computation as 

putative homozygous deletion. Overestimating this value does not affect ploidy 

computation;

• beta_limit_for_neutral_reads (default 0.90): in theory, neutral reads 

correspond to beta equal to 1, but experimental noise lowers this value. Only 

segments with beta above the parameter are used to compute ploidy;

• min_coverage (default 20): only genomic segments with average coverage at 

least min_coverage are used to compute DNA admixture;

• min_required_snps (default 10): only genomic segments covering at least 

min_required_snps informative SNPs are considered for DNA admixture 

computation.

The function returns the ploidy for the input sample.

Necessary Resources

Hardware—A 64-bit computer running Linux with at least 4 GB of RAM

Software—The library has been tested with R version 3.5.2 and R libraries parallel 3.5.2, 

ggplot2 3.1.0, sets 1.0–18, arules 1.6–3, ggrepel 0.8.0.

Step annotations

1. Run R from command line

$ R 

2. Compute beta table as described in BASIC PROTOCOL 1

3. Compute ploidy from beta table bt
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> pl <- compute_ploidy(bt)

BASIC PROTOCOL 3

Compute DNA admixture—DNA admixture is defined as the percentage of non-tumor 

cells in a tumor sample. DNA admixture is an important confounding factor in genomic 

analysis, as it dilutes somatic aberration signal across all genomic and molecular alterations. 

Relevant to genomic analyses, it dilutes somatic copy number aberration (SCNA) and single 

nucleotide variant (SNV) signal. In a 100% pure tumor sample, the expected coverage across 

a mono-allelic (i.e. hemizygous) deletion should be about half of coverage of wild type 

segments and therefore the LogR should be equal to −1 (as log2(½)). However, if the purity 

is 50%, then only half of the total number of cells harbor the hemizygous deletion and the 

expected LogR is around −0.415 (log2(¾)). Similarly, the value of beta of a genomic 

segment varies depending on the level of DNA admixture. In BASIC PROTOCOL 1, we saw 

that the beta of a hemizygous deletion in a 100% pure sample is 0, as no neutral reads are 

present. However, 50% of admixture would increase beta to ⅔, as for each tumor active read 

there are two neutral read from the admixed cells. The original CLONET manuscript (Prandi 

et al., 2014) describes the equations that define the expected LogR and beta corresponding to 

the spectrum of tumor admixture. The function compute_dna_admixture searches the 

(LogR, beta) space defined by the function compute_beta_table (BASIC PROTOCOL 1) 

for a value of DNA admixture that better explains the observed value in the beta_table. 

The function compute_dna_admixture also requires ploidy value as computed by the 

function compute_ploidy (BASIC PROTOCOL 2) to account for the shift in LogR values 

due to possible aneuploidy tumor genomes. The function compute_dna_admixture has 

the following input parameters:

• beta_table: a table created using function described in BASIC PROTOCOL 1;

• ploidy_table: a table created using function described in BASIC PROTOCOL 

2;

• min_coverage (default 20): only genomic segments with average coverage at 

least min_coverage are used to compute DNA admixture;

• min_required_snps (default 10): only genomic segments covering at least 

min_required_snps informative SNPs are considered for DNA admixture 

computation;

• error_tb: the number of informative SNPs and the coverage of the considered 

segment affect the accuracy of the estimation of beta of a genomic. Table 

error_tb reports for each combination of number of informative SNPs and 

coverage the expected error around beta estimate. CLONETv2 embeds a pre-

computed error_tb (details in (Prandi et al., 2014)) previously tested in several 

studies (Beltran et al., 2015; Beltran et al., 2016; Faltas et al., 2016). However, 

specific experimental settings, as ultra-deep targeted sequencing or low-pass 

whole genome sequencing, may require an ad-hoc table.
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The function returns the estimated DNA admixture for the input sample as well as minimum 

and maximum DNA admixture accounting for errors around beta estimates.

Necessary Resources

Hardware—A 64-bit computer running Linux with at least 4 GB of RAM

Software—The library has been tested with R version 3.5.2 and R libraries parallel 3.5.2, 

ggplot2 3.1.0, sets 1.0–18, arules 1.6–3, ggrepel 0.8.0.

Step annotations

1. Run R from command line

$ R

2. Compute beta table as described in BASIC PROTOCOL 1

3. Compute ploidy table as described in BASIC PROTOCOL 2

4. Given beta table bt and ploidy pl

> adm <- compute_dna_admixture(bt, pl)

SUPPORT PROTOCOL 2

Visualize and interpret beta table, ploidy, and DNA admixture—BASIC 

PROTOCOL 1 describes how to derive the value of beta for a genomic segment. A tumor 

sample is then described as a set of (beta, LogR) values extending the usual LogR space and 

enabling the computation of ploidy and DNA admixture in BASIC PROTOCOLS 2 and 3, 

respectively. To help interpreting the results of the first three BASIC PROTOCOLS, 

CLONETv2 provides the function check_ploidy_and_admixture that plots beta vs 

LogR space for a given samples. Figures 4A and 4B shows the values of beta against the 

LogR of the same samples presented in Figures 3A and 3B, respectively. For each genomic 

segment, the plot reports the LogR as well as the beta computed by function 

compute_beta_table. To help the user, the function predicts expected (beta, LogR) given 

the input ploidy and DNA admixture level following the equations described in CLONET 

paper (Prandi et al., 2014). Predicted values are computed for different combination of allele 

specific copy number (see BASIC PROTOCOL 4) and represented as red circles. Comparing 

the expected (red circles) and the observed (gray dots) values helps the interpretation of the 

estimates. For instance, segments with LogR near 0 in Figure 3B cannot be wild type, as 

their betas are around 0.8, a value compatible with 3 DNA copies.

Necessary Resources

Hardware—A 64-bit computer running Linux with at least 4 GB of RAM
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Software—The library has been tested with R version 3.5.2 and R libraries parallel 3.5.2, 

ggplot2 3.1.0, sets 1.0–18, arules 1.6–3, ggrepel 0.8.0.

Step annotations

1. Run R from command line

$ R 

2. Follow BASIC PROTOCOLS 1 to 3 to compute beta table bt, ploidy table pl, and 

DNA admixture table adm, respectively.

3. Compute basic beta vs LogR plot

> check_plot <- check_ploidy_and_admixture(bt,pl,adm)

4. Check plot is a ggplot object (H., 2009) that can be customized by the user (e.g. 

font size, color, line width). Final plot is printed with command

> print(check_plot)

BASIC PROTOCOL 4

Compute allele specific copy number—Figure 3 suggests a relation between the 

values (beta, LogR) of a genomic segment and its allele specific copy number. Consider a 

100% pure tumor sample and a genomic segment with wild type LogR, i.e. the log2 ratio is 

equal to 0; then beta could be either equal to 1 (if one copy of both the maternal and the 

paternal allele are present) or equal to 0 (if the two alleles come from the same parent, case 

of copy neutral loss of heterozygosity (CN-LOH)). The approach is generalized in Beltran et 

al. (Beltran et al., 2016) by defining the exact equations that relates (LogR, beta) to allele 

specific copy number, given ploidy and DNA admixture. Figure 5A shows an example in 

which CLONETv2 identifies three classes of loss of heterozygosity: the well-characterized 

hemizygous deletions and the CN-LOH, and the less common Gain-LOH, where one allele 

is lost but the total copy number (LogR value) is compatible with a DNA gain. Mapping 

(LogR, beta) space to allele specific copy number space (Figure 5B) simplifies interpretation 

the genomic landscape of a sample. Of note, allele specific copy number signal in Figure 5B 

does not contain information about the ploidy and purity of the original sample, making it 

easy to compare samples with different ploidy and purity values. The example highlights the 

novelty and the power of allele specific copy number analysis. Function 

compute_allele_specific_scna_table transforms (LogR, beta) pairs into allele 

specific copy number pairs (cnA, cnB). The function requires estimates of purity and ploidy 

and has the following parameters:

• beta_table: a table created using function described in BASIC PROTOCOL 1;
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• ploidy_table: a table created using function described in BASIC PROTOCOL 

2;

• admixture_table: a table created using function described in BASIC 

PROTOCOL 3;

• error_tb: same error_tb used in function compute_dna_admixture of 

BASIC PROTOCOL 3;

• allelic_imbalance_th (default 0.5): function 

compute_allele_specific_scna_table also returns integer values cnA.int 

and cnB.int for cnA and cnB, respectively. Value cnA.int is the round of cnA if |

cnA.int - cnA| < allelic_imbalance_th, otherwise cnA.int is not defined. The 

same for cnB.

The function compute_allele_specific_scna_table extends input beta_table with 

allele specific copy number related columns:

• log2.corr: LogR value adjusted by ploidy and purity, i.e., the LogR value the 

segment would have in a diploid 100% pure tumor sample;

• cnA, cnB: number of copies of major (cnA) and minor (cnB) allele. The values 

do not contain information about ploidy and purity. Indeed, cnA + cnB equals 

2*2^log2.corr;

• cnA.int, cnB.int: integer number of copies of major and minor alleles, 

respectively.

Necessary Resources

Hardware—A 64-bit computer running Linux with at least 4 GB of RAM

Software—The library has been tested with R version 3.5.2 and R libraries parallel 3.5.2, 

ggplot2 3.1.0, sets 1.0–18, arules 1.6–3, ggrepel 0.8.0.

Step annotations

1. Run R from command line

$ R 

2. Follow BASIC PROTOCOLS 1 to 3

3. Given beta table bt, ploidy table pl, and DNA admixture table adm

> as_tb <- compute_allele_specific_scna_table(bt, pl, adm)
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BASIC PROTOCOL 5

Compute somatic copy numbers clonality—A somatic aberration is clonal if all the 

tumor cells present the aberration. Suppose a 100% pure tumor sample with mono-allelic 

deletions of genomic segments D1 and D2, with 100% and 50% clonality, respectively, i.e. 

all tumor cells harbor D1 deletion, but only 50% harbor D2 deletion. Expected LogR is 

log2(½)=−1 for D1 and log2(¾) for D2. Note that expected LogR for D2 is the same that 

would result considering a clonal deletion in a 50% pure sample (see BASIC PROTOCOL 

3). This is because, in genomic region D2, the reads sequenced from cells not harboring the 

deletion cannot be distinguished from those of non-tumor cells DNA admixture. The same 

consideration holds for the expected proportion of neutral reads beta. CLONET equations 

(Carreira et al., 2014) build on this intuition and define a map from (LogR, beta) pairs to the 

clonality of somatic copy number aberrations. However, fluctuations in the level of coverage 

that introduce noise in the LogR signal, as well as limitations in the sensitivity of the 

inference of beta due to the number of available informative SNPs make it difficult to 

compare the clonality levels of aberrations across different tumor samples. To facilitate the 

clonality comparisons, the function compute_scna_clonality_table returns a 

minimum and maximum estimated clonality value and a discretized clonality status. The 

function considers DNA admixture level, distribution of LogR values, and errors around beta 

estimates and assigns to each genomic segment a minimum and a maximum observed 

clonality. Lower and upper bound for clonality are used to assign to define the segment 

clonality status, among clonal, uncertain.clonal, uncertain.subclonal, subclonal, and 

not.analysed. Clonal and subclonal statuses correspond to more reliable clonality calls, while 

uncertain prefix is used when clonality estimate can be affected by the noise of the input 

data. For instance, Figure 6 reports the example of a tumor sample with two clusters of 

hemizygous deletions: clonal in (−0.6, 0.45) and subclonal in (−0.25, 0.8). Segments in 

(−0.9, 0.53) correspond to a region with subclonal homozygous deletion, 20% of the tumor 

cells lack both alleles while the other 80% retain one allele. Uncertain clonality status calls 

refer to segments at (−0.45, 0.58) and at (−0.63, 0.51); compared to clonal segments, the 

former shows markedly different beta but borderline LogR (uncertain.subclonal), the latter 

only shows small deviation in beta (uncertain.clonal segment). Not.analysed segments 

include wild type segments and aberrant segments with (LogR, beta) values that do not fit 

CLONETv2 model. The function compute_scna_clonality_table takes a beta table 

and the associated estimates of purity and ploidy together with the following parameters:

• beta_table: a table created using function described in BASIC PROTOCOL 1;

• ploidy_table: a table created using function described in BASIC PROTOCOL 

2;

• admixture_table: a table created using function described in BASIC 

PROTOCOL 3;

• error_tb: same error_tb used in function compute_dna_admixture of 

BASIC PROTOCOL 3. Error around beta is propagated to clonality estimate and 

used in its discretization;
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• clonality_threshold (default=0.85): function 

compute_scna_clonality_table returns minimum and maximum clonality 

for input genomic segments. Clonality_threshold is used to discretize clonality as 

described in (Prandi et al., 2014);

• beta_threshold (default=0.9): input beta values below beta_theshold are 

marked as potentially aberrant and used for clonality estimates.

The function compute_scna_clonality_table extends input beta_table with 

clonality related columns:

• clonality: real value representing the estimated percentage of tumor cells with 

uniform copy number for a given genomic segment;

• clonality.min, clonality.max: real values representing minimum and 

maximum estimated clonality given the distribution of beta and LogR values;

• clonality.status: discretized clonality.

Necessary Resources

Hardware—A 64-bit computer running Linux with at least 4 GB of RAM

Software—The library has been tested with R version 3.5.2 and R libraries parallel 3.5.2, 

ggplot2 3.1.0, sets 1.0–18, arules 1.6–3, ggrepel 0.8.0.

Step annotations

1. Run R from command line

$ R 

2. Follow BASIC PROTOCOLS 1 to 3

3. Given beta table bt, ploidy table pl, and DNA admixture table adm

> clonality_tb <- compute_scna_clonality_table(bt, pl, adm)

BASIC PROTOCOL 6

Compute single nucleotide variants clonality—Each single nucleotide variant (SNV) 

is characterized by the variant allele fraction (VAF), i.e., the proportion of reads supporting 

the alternative allele; the VAF is intuitively representative of the amount of tumor DNA 

harboring the mutation (no alternative read is expected from the admixed normal cells). 

Therefore, low VAF values correspond to low clonality. In a 100% pure diploid sample, a 

clonal mono-allelic SNV within a wild type genomic segment is expected to show a VAF of 

0.5 (for simplicity we here ignore the reference mapping bias (Degner et al., 2009)) where, 

in the same setting, an SNV that is present in the 60% of the tumor cells is expected to show 

a VAF of 0.3. However, several technical and biological factors influence VAF value, 
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including DNA admixture, ploidy, and somatic copy number status. In (Faltas et al., 2016), 

we extended the original implementation to deal with SNVs in the context of allele specific 

copy number. SNV VAF ranges over a finite set of values dictated by the DNA copy number 

state; for instance, a clonal SNV in a copy number aberrant segment (CN = 3) in a 100% 

pure diploid sample may have VAF equal to ⅓, ⅔, or 1, depending on the number of alleles 

harboring the mutation. By utilizing the sample admixture estimate and the its lower and 

upper bound (function compute_dna_admixture), we first estimate the minimum and 

maximum clonality and next, as for SCNA, a discretize clonality value (clonal, 
uncertain.clonal, uncertain.subclonal, and subclonal) is assigned. Figure 7A shows an 

example of SNVs clonality (y axis) distributions per discretized class (x axis) regardless of 

the copy number of the genomic segments harboring the SNVs (Figure 7B). Given a tumor 

sample, the function compute_snv_clonality takes as input the following parameters:

• snv_read_count: a table reporting in each row the genomic coordinates of an 

SNV together with number of reference and alternative reads covering the 

mutated position;

• beta_table: a table created using function described in BASIC PROTOCOL 1;

• ploidy_table: a table created using function described in BASIC PROTOCOL 

2;

• admixture_table: a table created using function described in BASIC 

PROTOCOL 3;

• error_tb: same error_tb used in function compute_dna_admixture of 

BASIC PROTOCOL 3. Error around beta is propagated to assess clonality 

estimate boundary and in turn used for its discretization;

• error_rate (default=0.05): fraction of SNVs to exclude based on adjusted 

VAF distribution.

The function compute_snv_clonality extends input table snv_read_count with 

clonality related columns:

• cnA, cnB: allele specific copy number of the genomic segment containing the 

SNV;

• t_af_corr: tumor VAF adjusted for ploidy, admixture, and allele specific copy 

number;

• SNV.clonality: percentage of tumor cells harboring the SNV;

• SNV.clonality.status: discretized SNV.clonality.

Necessary Resources

Hardware—A 64-bit computer running Linux with at least 4 GB of RAM

Software—The library has been tested with R version 3.5.2 and R libraries parallel 3.5.2, 

ggplot2 3.1.0, sets 1.0–18, arules 1.6–3, ggrepel 0.8.0.
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Step annotations

1. Run R from command line

$ R

2. Follow BASIC PROTOCOLS 1 to 3

3. Read a SNV table snv_reads with columns rc_ref_tumor and 

rc_alt_tumor for reference and alternative read counts, respectively;

> read.table(system.file(“sample_snv_read_count.tsv”, package = 

“CLONETv2”),header = T, as.is=T, comment.char = ““, check.names = F, 

na.strings = “-”)

4. Given beta table bt, ploidy table pl, and DNA admixture table adm

> snv_clonality_tb <- compute_snv_clonality(“sample1”, snv_reads, bt, pl, 

adm)

GUIDELINES FOR UNDERSTANDING RESULTS

We present a complete R package to compute allele specific data from next generation 

sequencing experiments of paired tumor and matched normal DNA samples. CLONETv2 

works on preprocessed data (does not work on bam or fastq files), including segmented 

genomic profiles and pileups of relevant genomic positions. This makes CLONETv2 more 

flexible with respect to other tools as ABSOLUTE (Carter et al., 2012), that requires 

segmented data from HAPSEG (bundled with ABSOLUTE) or FACETS (Shen and Seshan, 

2016) that integrates LogR segmentation with allele specific analysis. The advantage is that 

CLONETv2 allows the user to choose the segmentation solution that best fits the study 

needs. As a didactic example, we ran CLONETv2 BASIC PROTOCOLS 1 to 3 on the 

sample from Figure 4A (that shows segments from CNVkit (Talevich et al., 2016)), on 

segmented data computed with EXCAVATOR2 (D’Aurizio et al., 2016) (Figure 8A) or with 

FACETS (Figure 8B). EXCAVATOR2 and CNVkit data in this space distribute similarly, 

although the former shows noisier signal, and ploidy and DNA admixture estimates perfectly 

match. On the contrary, on this specific example, FACETS estimates are different as 

expected given for instance a set of segments with LogR around −0.75 and beta equal to 1.

The central notion introduced with CLONETv2 is the proportion of neutral reads beta 

calculated in BASIC PROTOCOL 1. This value expands the one dimension LogR space 

returned by the segmentation algorithms to the two dimensions beta vs LogR space; an 

example of its utility is offered in Figure 3B where CLONETv2 resolves an ambiguous 

LogR profile from Figure 3B by utilizing beta values (see SUPPORT PROTOCOL 2). 

However, as more complex genomic profiles may require inspection of output estimates, we 

designed a function check_ploidy_and_admixture to help the user in the interpretation 
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of complex copy number data. Figure 9A shows beta vs LogR plot of a sample S that 

CLONETv2 defines as ploidy equals to 2.01 (diploid) and low DNA admixture. The unique 

feature of function check_ploidy_and_admixture is the ability to plot the expected 

position of a genomic segment in the beta vs LogR space, given ploidy and DNA admixture 

(red circles). In Figure 9A, green circles highlight the genomic segments that are not 

explained by estimated ploidy and DNA admixture and compatible with subclonality, as in 

Figure 6. However, an alternative interpretation is possible, where sample S is aneuploidy, 

and no wild type segments are present throughout the tumor genome; segments in (1,0) 

(Figure 9A) are rather CN-LOH (as depicted in Figure 9B, due to a shift in the LogR signal 

(see BASIC PROTOCOL 2)) and, therefore, wild type segments are expected at coordinates 

(−0.67, 1). Applying LogR shift equation (see BASIC PROTOCOL 2), ploidy results 3.14 

and in turn function compute_dna_admixture estimates a DNA admixture value of 0.42. 

Subclonal copy number segments (green circles, Figure 9A) are then classified as clonal (red 

circles with green border, Figure 9B). Given the observed data, both interpretations are 

plausible. The allele specific plots (Figures 9C–D for Figures 9A–B, respectively), 

transparent to ploidy and DNA admixture values, may provide additional information to 

contextualize the two scenarios. The first one (Figure 9C) represents a tumor where exactly 

half of the cells harbor exactly the same set of subclonal hemizygous deletions, subclonal 

CN-LOH, and subclonal gain (green circles). The second one (Figure 9D) suggests genomic 

events that included whole genome duplication (or duplication of several chromosomal 

arms) exemplified by numerous allele specific copy number (2, 2) and CN-LOH (2,0).

Importantly, CLONETv2 computations are agnostic to gene models to avoid across studies 

constrains. To facilitate gene level focuses analysis outputs of functions 

compute_allele_specific_scna_table and compute_scna_clonality_table can 

be lifted using any gene model that includes chromosome, start and end position 

information; tables reporting allele specific copy number and clonality values are compatible 

with BED format (Quinlan and Hall, 2010) and can be intersected with common gene 

models from, e.g., Ensemble (Zerbino et al., 2018).

COMMENTARY

Background Information

Tumor ploidy and normal DNA admixture fraction are critical parameters in cancer genomic 

analysis, as incorrect estimations may compromise any downstream analysis (see example in 

Figure 9). CLONETv2 provides a reliable and flexible environment to process matched 

tumor and normal samples together with function check_ploidy_and_admixture that 

helps user evaluating reliability of estimates. Of note, CLONETv2 is neither bound to a 

specific copy number caller nor specific gene models. Finally, CLONETv2 is distributed as 

an R package and downstream processing, including allele specific copy number and 

subclonality estimation, can be easily integrated into broader analysis pipelines.

Critical Parameters

CLONETv2 default parameters have been tested in a variety of studies spanning tissue and 

plasma samples in different tumor settings. However, data analysis from specific 
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experimental conditions or analysis prerequisites would benefit from tweaking CLONETv2 

parameters. Parameter min_coverage is common to many CLONETv2 functions; it is used 

to filter out the genomic segments with low mean coverage at informative SNPs; 

min_required_snps filters out segments with too few informative SNPs. Higher values of 

min_coverage and min_required_snps correspond to more reliable results but at the 

same time to fewer segments to be used to compute allele specific copy number and 

clonality. The optimal trade-off between reliability and extensiveness of the analysis is study 

dependent. For instance, an ultra-deep sequencing experiment (e.g., mean coverage > 5000x) 

would benefit from min_coverage higher than 20 (the default value), in fact it corresponds 

to the 0.4% of the expected coverage and is can hardly be distinguished from the 

background experimental noise. On the contrary, low pass whole genome sequencing 

experiments (coverage >4x) require a lower min_coverage by design.

A second critical parameter is error_table, a table reporting error around beta estimate 

for different combinations of coverage and number of informative SNPs. CLONETv2 has an 

error table in bundle, obtained simulating different inputs to function 

compute_beta_table with combinations of values for the coverage and the number of 

informative SNPs. If for a genomic segment, the number of informative SNPs and the mean 

coverage are not reported in the error_table, CLONETv2 uses the nearest available pair 

of values as previously described (Prandi et al., 2014).

Troubleshooting

CLONETv2 offers a robust framework for the genomic analysis of somatic copy number 

data together with the possibility to manually curate estimates (see SUPPORT PROTOCOL 

2). However, some specific cases could prevent CLONETv2 from completing the analysis.

Figure 10A shows the beta vs LogR plot of a tumor sample with an uncommon profile. 

Profile presents genomic segments with all betas close 1 (alleles equally represent parental 

chromosome of origin) and LogR range in the interval (−0.5, 0.5), corresponding to 

approximately a loss of half copy and the gain of one copy. Moreover, the cloud of beta 

values around 0.75 within the same LogR range does not fit any CLONETv2 model. This 

data is either the result of uneven sequence read coverage (Wang et al., 2017)) that affects 

both LogR signal and AF of informative SNPs, or the representation of a large number of 

subclonal populations with diverse ploidy and somatic copy number profiles. Altogether, the 

information from the segmented data and pileup of informative SNPs is not sufficient to 

disentangle such case, and such data should be not included in any downstream analysis.

A second problematic case is presented in Figure 10B. All segments show LogR around 0 

and beta close to 1, i.e., all genomic segments have wild type copy number. This beta vs 

LogR profile data is compatible with two very different situations: (i) a copy number quite 

tumor sample, i.e., no deletions or amplifications are detected; (ii) a near 100% DNA 

admixed tumor sample, i.e., almost all the cells in the sample are non-tumor. The first 

interpretation points to a potentially interesting case while the second highlights limitations 

either in the sample of origin or in the preparation. As for the case in Figure 10A, 
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CLONETv2 cannot distinguish between the two interpretations and the sample should not 

be considered.
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Significance Statement

CLONETv2 is an R package that allows for the estimation of DNA purity and ploidy of 

any tumor sample through the analysis of nucleotide level sequencing data. It includes 

allele specific copy number characterization as well as clonality estimation of both 

somatic copy number and single nucleotide variants. CLONETv2 is suited for both tissue 

and liquid biopsy sequencing data.
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Figure 1. Cartoon of the computation of beta and allelic fraction of informative SNPs.
(A) Example of the allelic fraction (AF) and beta (β) values as computed in five genomic 

positions (p1 to pm) corresponding to five informative SNPs. Positions p1 to pn are within a 

hemizygous deleted genomic segment A, while genomic positions pn+1 to pm lie within a 

wild type genomic segment B. (B-D) Examples of a normal cell and two different tumor 

cells. Tumor cells 1 and 2 differ in the status of genomic segment B. Histograms below the 

cell cartoons report the expected distribution of the AF of SNPs in genomic segments A and 

B together with the associated beta values. (E-F) Examples of two different tumor samples. 

Tumor sample 1 includes one normal cell and nine tumor cells with deleted genomic 

segment A and wild type genomic segment B. Tumor sample 2 differs from tumor sample 1 

in the presence of six tumor cells with a hemizygous deletion of genomic segment B. 

Expected distribution of the AF of informative SNPs together with estimated beta are 

depicted below each tumor sample cartoon.

Prandi and Demichelis Page 24

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Sketch of CLONETv2 copy number space transformations.
(A) Example of histogram and density plots of the distribution of LogR signal in a tumor 

sample. Expected positions of integer copy number in a diploid 100% pure tumor sample are 

listed below. (B) Expansion of the mono-dimensional LogR signal of panel (A) in the 2-

dimensional beta vs LogR space. Each dot represents a genomic segment and vertical dashed 

lines correspond to integer copy number as in panel (A). Color code clusters genomic 

segments with homogenous copy number. (C) Allele-specific copy number projection of the 

beta vs LogR data of panel (B). Each dot represents a genomic segment with maternal copy 

number allele cnM and paternal copy number allele cnP. Maternal and paternal alleles are 

assigned arbitrarily. The color code is consistent with panel (B).

Prandi and Demichelis Page 25

Curr Protoc Bioinformatics. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Examples of diploid and aneuploid sample.
Histogram of the LogR of a diploid tumor sample (A) and an aneuploid tumor sample (B).
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Figure 4. Examples of beta vs LogR space.
Panels (A) and (B) extend the LogR histograms of Figure 1A and 1B, respectively, to the 

beta vs LogR space. Each gray dot represents a genomic segment. Large red circles 

represent expected (beta, LogR) values corresponding to the estimated ploidy and DNA 

admixture (reported above the corresponding plot). A circle corresponding to clonal 

homozygous deletions, if represented, would be in (−∞, 1).
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Figure 5. From beta vs LogR to allele specific copy number space.
(A) beta vs LogR of a tumor sample (as in Figure 2). (B) Allele specific plot obtained 

transforming data presented in Figure 3A. Each dot corresponds to a genomic segment for 

which the copy number values of the two alleles are reported (higher copy number values 

conventionally reported in the x-axis). Colored arrows and circles show how combinations 

of beta and LogR corresponds to different allele specific copy number values. Color codes: 

gray Wild Type, light blue hemizygous deletions, red gain, yellow CN-LOH, and orange 

Gain-LOH. In Gain-LOH, one allele is lost and the LogR indicates gain DNA.
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Figure 6. Example of tumor sample with subclonal copy number.
Plot beta vs LogR of a tumor sample with subclonal copy number segments. Each dot 

represents a genomic segment and color code indicates clonality status as indicated in the 

color legend.
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Figure 7. Example of clonality analysis of SNVs.
(A) Boxplot reporting the clonality value of the SNVs of a tumor sample. The clonality 

values (y-axis) distributions are shown including all variants of a tumor sample, stratified by 

the automatically assigned clonality status class (x-axis). (B) For each SNV in panel (A), 

allele specific copy number data of the genomic segment containing the mutations are 

reported.
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Figure 8. Example of beta vs LogR of segments obtained with different segmentation algorithms.
Plot beta vs LogR for tumor sample from Figure 2A based on the LogR values with 

EXCAVATOR2 (A) or FACETs (B).
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Figure 9. Example of conflicting ploidy estimates.
Beta vs LogR plot of the same tumor sample based on two estimates for ploidy and DNA 

admixture. Panels (A) and (B) show expected positions for different allele specific copy 

number varying ploidy and DNA admixture estimates. Green circles (A) highlight genomic 

segments for which estimates do not fit with observed values. Red circles with green borders 

(B) correspond to green circles in panel (A). Panels (C) and (D) show allele specific copy 

number plot given the estimates in (A) and (B), respectively. Circles color code is as for 

panel (A) and (B), respectively.
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Figure 10. Example of samples with no CLONETv2 DNA admixture estimates.
Examples of tumor samples in the beta vs LogR spaces showing poor segment clusters (A) 

or lack of somatic copy number aberrations (B).
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