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to multipartite entanglement of interacting fermions

Ricardo Costa de Almeida and Philipp Hauke
INO-CNR BEC Center and Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy;

Kirchhoff Institute for Physics, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany;
and Institute for Theoretical Physics, Ruprecht Karl University of Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany

(Received 3 June 2020; revised 26 January 2021; accepted 1 June 2021; published 24 August 2021)

Multipartite entanglement, such as witnessed through the quantum Fisher information (QFI), is a crucial
resource for quantum technologies, but its experimental certification is highly challenging. Here, we propose
an experimentally friendly protocol to measure the QFI. It relies on recording the short-time dynamics of simple
observables after a quench from a thermal state, works for spins, bosons, and fermions, and can be implemented
in standard cold-atom experiments and other platforms with temporal control over the system Hamiltonian. To
showcase the protocol, we simulate it for the one-dimensional Fermi-Hubbard model. Further, we establish a
family of bounds connecting the QFI to multipartite mode entanglement for fermionic systems, which enable
the detection of multipartite entanglement at sizable temperatures. Our work paves a way to experimentally
accessing entanglement for quantum enhanced metrology.
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I. INTRODUCTION

A central question for quantum many-body physics is to
understand the structure of entanglement and how it trans-
lates into observable features. Besides its potential to explain
certain salient many-body phenomena [1–6], it may take a
decisive role as a resource in upcoming quantum technologies.
Hence, as these technologies mature, scalable protocols for
detecting entanglement become increasingly necessary [7,8].
This demand is already a reality for quantum metrology [9]
where the quantum Fisher information (QFI) [10], a witness
for multipartite entanglement, determines the metrological
quantum enhancement [11–14]. Although lower bounds of the
QFI have been obtained in recent groundbreaking experiments
[15–18], general and efficient procedures to directly extract its
precise value in many-body systems are lacking.

To tackle this challenge, we develop an experimentally
accessible technique for measuring the QFI for states in ther-
mal equilibrium. In contrast to a previous proposal relying
on frequency-dependent dynamic susceptibilities [19], our
protocol only requires measuring the short-time dynamics of
mean expectation values after a quench. This straightforward
procedure is highly error resilient and is ideally suited, e.g.,
for standard experiments on ultracold atoms [20–24] but can
also be applied in other platforms. This measurement protocol
for the QFI is our first main result.

Moreover, previous studies about the QFI and entangle-
ment bounds have focused on systems describable as spins
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[11–13]. Nonetheless, interacting fermions are of central im-
portance to condensed matter physics and experiments with
ultracold atoms have enabled the precise engineering of
fermionic many-body systems [25–31].

Motivated by this, we derive bounds that relate multipartite
fermionic mode entanglement to the QFI, by generalizing the
concept of k producibility to fermionic systems. This frame-
work for fermionic multipartite entanglement is our second
main result. It complements the existing literature that is fo-
cused on spin models, can be applied to any system described
with the second quantization formalism, and proves that mode
entanglement provides quantum enhancement of metrological
devices.

We illustrate these bounds as well as our quench-based
measurement protocol for the QFI at a paradigmatic example,
the Fermi-Hubbard model in one dimension (1D). As shown
in Fig. 1 and discussed further below, we certify the presence
of multipartite mode entanglement for a broad region of the
parameter space.

The article is organized as follows: First, we review some
basic notions regarding the QFI. We proceed to derive our
quench protocol. Afterwards, we rigorously define multipar-
tite mode entanglement for fermions and determine the correct
fermionic entanglement bounds for the QFI. Subsequently,
we discuss the results shown in Fig. 1 in detail and provide
a guideline to experiments aiming at certifying entanglement
in the Fermi-Hubbard model. We conclude the article with a
brief outlook.

II. BACKGROUND ON THE QFI

The quantum Fisher information, FQ[ρ, O], is a central
concept in quantum metrology. It quantifies the metrologi-
cal sensitivity obtained from a given quantum state ρ in a
phase estimation setup, in which a unitary generated by an
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(a)
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FIG. 1. Certification of multipartite mode entanglement. (a) A
many-body quantum system is abruptly perturbed by an operator
O. Subsequently, the evolution of the same observable 〈O(t )〉 is
measured, from which the quantum Fisher information, FQ[ρ, O],
is extracted. (b) FQ[ρ, O], computed by simulating the protocol for
the Fermi-Hubbard model in 1D. Using the entanglement bounds of
Eq. (1) (contour lines), many-body entanglement is certified up to
large temperatures. Data for L = 8 and open boundary conditions.

operator O rotates ρ by an angle θ , ρ(θ ) = e−iθOρeiθO [32].
The aim in this scenario is to precisely estimate the parameter
θ , whose variance after m measurements is bounded through
the Crameér-Rao bound, Var θ � 1/(mFQ[ρ, O]) [10].

Moreover, the QFI witnesses multipartite entanglement.
Specifically, we show this below for fermionic states ρ char-
acterized by fermionic modes labeled by a set M. If ρ satisfies

FQ[ρ, O] > (dk2 + r2) , (1)

it must be, at least, (k + 1)-partite mode entangled where
d = �M/k� denotes the integer division of |M| by k and r =
|M| − dk is the remainder of the division. This result comple-
ments existing, analogous bounds for spin systems [11–13].
Intuitively, the higher correlations of an entangled many-body
state, relative to a classical state, lead to a greater sensitivity to
perturbations and thus to greater metrological gain, quantified
through FQ[ρ, O]. In particular, in a separable state FQ[ρ, O]
is bounded by |M|, the scaling observed in classical systems,
whereas any metrological enhancement beyond the classical
limit requires entanglement. This enables the use of FQ[ρ, O]
for entanglement certification.

The QFI of a pure state ρ = |ψ〉 〈ψ | is simply a variance,
FQ[ρ, O] = 4Var O = 4(〈ψ | O2 |ψ〉 − 〈ψ | O |ψ〉2), so it can
be calculated efficiently. However, the formula for an arbitrary
density matrix ρ = ∑

λ ρλ |λ〉 〈λ|,

FQ[ρ, O] = 2
∑
λ,λ′

ρλ − ρλ′

ρλ + ρλ′
(ρλ − ρλ′ )| 〈λ| O |λ′〉 |2 , (2)

requires diagonalizing the state, which is a challenging un-
dertaking for quantum many-body systems, both theoretically
and experimentally. In what follows, we show how to circum-
vent this difficulty by extracting the QFI for thermal states
from expectation values using a quench.

III. DERIVATION OF THE QUENCH PROTOCOL

In a previous work [19], a connection between the QFI and
linear response theory was found that enables one to compute
the QFI for systems in equilibrium at temperature T ,

FQ[ρ, O] = 4

π

∫ +∞

0
dω tanh

( ω

2T

)
χ ′′(ω, T ) . (3)

This formula requires knowledge of χ ′′(ω, T ) = �(χ (ω, T )),
the imaginary part of the Fourier transform of the response
function

χ (t − τ, T ) = θ (t − τ ) 〈[O(t ), O(τ )]〉 . (4)

This function characterizes the linear response of an ob-
servable 〈O(t )〉 to a time-dependent perturbation from H0

to H (t ) = H0 − f (t )O, where H0 is the Hamiltonian with
respect to which the system was at thermal equilibrium. For
deviations 
O(t ) from the equilibrium value, the Kubo for-
mula gives [33]


O(t ) = 〈O(t )〉 − 〈O〉 = (χ ∗ f )(t )

=
∫ +∞

−∞
dτ χ (t − τ, T ) f (τ ) . (5)

By transforming the integral from frequency to time do-
main, an equation analogous to Eq. (3) follows as

FQ[ρ, O] = 4T
∫ +∞

0
dt

χ (t, T )

sinh (πtT )
, (6)

which allows the QFI to be obtained directly from the Kubo
response function. The time domain expression has computa-
tional advantages compared to Eq. (3) and has been used for
computing the QFI [19,34].

Conceptually, these expressions represent a significant ad-
vance as they explicitly relate the QFI to correlations encoded
in the response functions. However, their application still
presents practical problems as measurements of unequal-time
correlation functions, such as 〈[O(t ), O]〉, are often challeng-
ing. Very recently, the protocol based on Eq. (3) has revealed
the scaling of the QFI using neutron scattering [35], but detec-
tion of the absolute level of multipartite entanglement in this
way has not been achieved yet.

We overcome such limitations by introducing a proto-
col that solely relies on measurements of expectation values
〈O(t )〉. To realize such a simplified protocol only requires a
weak, abrupt quench, as can be conveniently implemented,
e.g., in cold-atom experiments [21–24]. In this scenario, the
drive function is simply f (τ ) = q θ (τ ), so, from Eq. (5), the
dynamics are governed by


O(t )quench = q
∫ t

0
dτ χ (τ, T ) = q ξ (t, T ). (7)

Here, q denotes the quench amplitude and we introduced
ξ (t, T ) = 
O(t )quench/q . Using χ (t, T ) = dξ (t, T ) / dt in
Eq. (6), we arrive at

FQ[ρ, O] = 4πT 2

q

∫ +∞

0
dt


O(t )quench

sinh (πtT ) tanh (πtT )
(8)
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FIG. 2. Quench protocol for QFI extraction, exemplified for the
Fermi-Hubbard model at temperatures T/J = 0.2, 0.4, 0.8 (from
light to dark shades) for a quench with the staggered magnetiza-
tion [Eq. (16)]. (a) At time t = 0, the system is quenched with the
operator O and strength q. Measuring the deviations from the equi-
librium expectation value yields ξ (t, T ) = 
O(t )quench/q. (b) Using
Eq. (8), the QFI can be computed by integrating ξ (t, T ) multiplied
with the kernel function, κ (t, T ). (c) Cutting the integral off at time
tcutoff produces a lower bound FQ[ρ, O](tcutoff ) � FQ[ρ, O]. (d) Due
to the functional form of κ (t, T ), the convergence is exponen-
tially fast with a decay constant set by the temperature, FQ[ρ, O] −
FQ[ρ, O](tcutoff ) ∼ exp(−πT tcutoff ).

after performing an integration by parts and handling the
convergence issues that arise. See the Supplemental Material
[36] for details.

From Eq. (8), we can summarize our protocol by four
steps (see also Fig. 2): (i) Prepare a thermal state. (ii) Turn
on quench. (iii) Measure dynamics of expectation values. (iv)
Integrate results according to Eq. (8).

Thermal equilibrium and a quench in the linear regime are
the only assumptions used for deriving Eq. (8), so the protocol
applies to arbitrary quench operators and quantum many-body
systems, including fermionic, bosonic, and spin systems. Crit-
ically, only the expectation value of O(t ) is used and access to
higher moments is not necessary. Moreover, it has a series of
further advantageous properties. For example, it simplifies the
requirements for extracting the QFI in many situations, as no
time-time correlations are required, and the exponential de-
crease of κ (t, T ) = 4πT 2[sinh(πtT ) tanh(πtT )]−1 with time
implies only short measurement times are required. This fea-
ture provides resilience against dissipative effects such as
atom loss, see Supplemental Material [36]. At small tempera-
tures, where the required observation times become long, the
variance of O in the initial state yields a reliable upper bound
on the QFI. Our protocol can complement this by a lower
bound (see below).

Further, the requirement of quenching in the linear regime
can be tested by comparing responses with different q pa-
rameters, which also enables extrapolation to q = 0. In the
Supplemental Material [36], we discuss nonlinear effects us-
ing our exact numerics. For the considered model, values as
large as q = 0.1J produce only deviations of a few percent
and, critically, do not generate any false positives.

IV. ENTANGLEMENT BOUNDS FOR FERMIONIC
SYSTEMS

Based on the concept of k producibility, for spin systems
bounds on the QFI have been derived that only states with
multipartite entanglement can overcome [11–13]. However,
for fermionic systems, such bounds do not exist.

To remedy this situation, we first need to adapt the notion
of k producibility. To see why this is necessary, we recall the
condition for a state of N spins to be k producible,

|ψ〉spin
k-prod. = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψP−1〉 ⊗ |ψP〉 , (9)

where |ψ j〉 is a state of Nj � k spins and
∑

j Nj = N . Such a
decomposition is not meaningful in the fermionic case due to
the antisymmetric structure of the wave function. Fortunately,
this also suggests what is the correct criteria, which we now
introduce.

Consider a set of fermionic modes M, with associated
creation and annihilation operators c†

m and cm, labeled by
m ∈ M. A k partition of the system is defined as a partition
M = M1 ∪ M2 ∪ · · · ∪ MP subject to |Mj | � k. Now, we in-
troduce the following definition: a pure fermionic state |ψ〉 is
k producible if there is a k partition such that

|ψ〉k-prod. = C
1C

2 . . .C
P |〉, (10)

where the operator C
j is restricted to act on Mj . The C

j
can be written as linear combinations of products of creation
operators c†

m acting within Mj ,

C
j =

∑
η j

φ
j (η j )

∏
m∈Mj

(
c†

m

)η j (m)
. (11)

Here, without loss of generality, we fix some order for ap-
plying the creation operators. The summands are labeled by
numbers η j (m) ∈ {0, 1}, which one can envision as the pos-
sible occupations of the modes, with associated amplitudes
φ

j (η j ) ∈ C.
An explicit connection with the spin definition is possible

if we introduce |ψ j〉 = C
j |〉 and notice that Eq. (10) can be

written as |ψ〉 ∼ |ψ1〉 ∧ |ψ2〉 ∧ · · · ∧ |ψP〉, with the exterior
product ∧ acting as an antisymmetric analog of the tensor
product. The 1-producible decomposition with the exterior
product has been used before to study mode entanglement
in fermionic systems [37]. Nonetheless, for our purposes the
operator language as in Eq. (11) is more convenient. The
same formulation can be adapted to bosonic and spin systems,
where it reproduces the usual definition of k-producible states.
For 2-partite entanglement, our definition is equivalent to the
one through the Slater number [38,39].

The extension of these concepts to mixed states ρ is stan-
dard [11–13]: a mixed state ρk-sep. is k separable if it can be
written as a convex hull

ρk-sep. =
∑

λ

ρλ |λ〉k-prod. 〈λ|k-prod. (12)

of k-producible states |λ〉k-prod.. This formulation introduces
a hierarchy for mixed states that defines multipartite entan-
glement of fermionic modes: a state is (k + 1)-partite mode
entangled if it is not k separable.

Using this notion, we can now establish bounds on multi-
partite mode entanglement. To connect to the QFI, we focus
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on operators of the form

O =
∑
m∈M

w(m)c†
mcm (13)

with w(m) ∈ R weighting the occupation of different
modes. Given a k-producible state ρ = |ψ〉k-prod. 〈ψ |k-prod.,
one can define probability distributions pj (η j ) = |φ j (η j )|2
for the η j and associated random variables w j (η j ) =∑

m∈Mj
w(m)η j (m) such that FQ[ρ, O] = 4

∑
j Var w j . Em-

ploying Popoviciu’s inequality [40] to bound Var w j , it
follows that

FQ[ρ, O] � 4
∑

j

1

4

(
max

η j

w j (η j ) − min
η j

w j (η j )

)2

. (14)

Additional knowledge about the state |ψ〉k-prod. leads to re-
strictions on the allowed occupations η j and permits the
derivation of tighter bounds for Eq. (14). In particular, if
|ψ〉k-prod. has a fixed occupation number

FQ[ρ, O] � dk2 + r2

4

(
max

m
w(m) − min

m
w(m)

)2
, (15)

where we used the decomposition |M| = dk + r. See the Sup-
plemental Material [36] for a detailed discussion and tighter
bounds for the case where the occupation number is known.

Equation (15) and related bounds immediately extend to
k-separable mixed states due to the convexity of FQ[ρ, O]. As
a consequence, any state that overcomes this bound cannot
be k separable and must be, at least, (k + 1)-partite mode
entangled.

Different choices of the modes M lead to different bounds.
For the results presented here, we choose to work on the real-
space site mode basis, since then the entanglement bounds are
directly connected to the concept of locality. Nevertheless, our
methods is also applicable to other bases, e.g., modes of the
reciprocal space [41].

V. RESULTS FOR FERMI-HUBBARD CHAIN

We illustrate our main results on the 1D Fermi-Hubbard
model, a paradigmatic model for an interacting, fermionic
many-body system. Its Hamiltonian reads

H0 = −J
∑
x,σ

(
c†
σxcσx+1 + h.c.

) + U
∑

x

(
c†
↓xc↓xc†

↑xc↑x
)
.

The fermions live on lattice sites x = 1, 2, . . . L and have
two internal states, σ =↑,↓. J governs hopping between
neighboring sites and U controls on-site interactions. The
Hamiltonian H0 commutes with total occupation and mag-
netization, and we choose to work on the magnetization-free
subspace at half-filling.

To evaluate the QFI via Eq. (8), we consider quenches
using the staggered magnetization, O+, and density, O−,

O± =
∑

x

(−1)x
(
c†
↑xc↑x ∓ c†

↓xc↓x
)
. (16)

This choice is motivated by limit cases: at U → +∞ and
half-filling, the fermions form a Néel state with homogeneous
density and alternating internal state. Here, O+ differentiates

(a)

(b)

FIG. 3. Signature of robust entanglement in a Fermi–Hubbard
1D chain. (a) Spectrum of the model, exemplified for L = 4. At
U/J → 0, the system is a free theory with regular level spacings.
The bands for U/J → −∞ (U/J → ∞) are a direct signature of
the effective antiferromagnetic description. Higher bands correspond
to breaking of pairs (creation of doublon-holon excitations). This
picture falls apart for intermediate U as the the system moves out
of the perturbative regime and displays strongly correlated behav-
ior. (b) FQ[ρ, O] density for different system sizes with thresholds
for certifying entanglement(dotted lines). The breakdown of the ef-
fective theory coincides with an increase in the robustness of the
entanglement certified against thermal effects.

between the two degenerate ground states describing two pos-
sible alternating orders. For U → −∞, the fermions pair up
to form a charge-density wave with homogeneous magnetiza-
tion. Here, O− distinguishes two possibilities of alternating
large and low density. These limiting situations can be de-
scribed analytically by an effective antiferromagnetic theory
[31]. Based on intuition about which operators are expected to
show strong quantum fluctuations [19], we expect O± to give
a large QFI as one goes from the free theory at U/J → 0 to the
antiferromagnetic limit. In the Supplemental Material [36],
we numerically confirm that O± are optimal for the considered
scenario.

To simulate the quench protocol, we extract ξ (t, T ) from
exact diagonalization and use it to calculate FQ[ρ, O], taking
the larger one of FQ[ρ, O+] and FQ[ρ, O−]. The results are
summarized in Figs. 1 and 3. FQ[ρ, O] increases rapidly as
one moves away from the noninteracting point. In particular,
in the intermediate region, where neither the free nor the
antiferromagnetic theory describes the system, multipartite
entanglement is detected at temperatures as large as T/J =
0.4. The system-size dependence suggests the entanglement to
be especially robust in this strongly interacting region, making
it a prime candidate to search for experimental signatures of
multipartite entanglement.

Figure 4 illustrates how one can straightforwardly realize
the quenches with O− and O+ using optical superlattices.
Ultracold atoms are now reaching strongly correlated many-
body states of the Fermi-Hubbard model at temperatures as
low as T/J = 0.25 [43–45], well within the region where mul-
tipartite entanglement can be detected (see Fig. 1). Moreover,
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FIG. 4. Lattice quench in the Fermi-Hubbard model. A quench
with O± amounts to abruptly modifying the chemical potential in
a staggered fashion, which can be simply implemented through su-
perlattices, which are spin-dependent for O+, without the need for
quantum gas microscopes. The relevant observable 〈O±(t )〉 can be
measured through site-dependent imaging [42].

as shown in Figs. 2(c) and 2(d), at such temperatures the QFI
converges within few hopping events (Jt � 8), i.e., on time
scales faster than typical decoherence rates [45]. Thus, our
quench protocol enables the detection of multipartite entan-
glement within existing experimental setups.

VI. CONCLUSION

Though discussed in the context of ultracold fermionic
gases, the simplicity and generality of our protocol make it
readily applicable across different platforms. For instance, in
solid-state systems off–diagonal elements of the QFI matrix

can be extracted in quantum Hall samples (see Supplemen-
tal Material [36]). It is also straightforward to treat more
intricate models, for instance, by adding further modes that
describe higher bands, and to replace the simple quench we
have chosen by other time-dependent functions f (t ), which
just requires modifying the kernel function κ (t, T ) (see Sup-
plemental Material [36] ). Recent works have studied the
dynamical behavior of the quantum Fisher information after
a quantum quench [46,47]. Here, turning things on their head,
we have demonstrated the power of induced dynamics to
extract the quantum Fisher information. Beyond the setup de-
veloped here, there is the possibility of applying our protocol
to different thermodynamical ensembles [48] and even extend
it outside the realm of thermodynamical states [49].
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