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The putative scale-free nature of real-world networks
has generated a lot of interest in the past 20
years: if networks from many different fields share
a common structure, then perhaps this suggests
some underlying ‘network law’. Testing the degree
distribution of networks for power-law tails has been
a topic of considerable discussion. Ad hoc statistical
methodology has been used both to discredit power-
laws as well as to support them. This paper proposes
a statistical testing procedure that considers the
complex issues in testing degree distributions in
networks that result from observing a finite network,
having dependent degree sequences and suffering
from insufficient power. We focus on testing whether
the tail of the empirical degrees behaves like the
tail of a de Solla Price model, a two-parameter
power-law distribution. We modify the well-known
Kolmogorov–Smirnov test to achieve even sensitivity
along the tail, considering the dependence between
the empirical degrees under the null distribution,
while guaranteeing sufficient power of the test.
We apply the method to many empirical degree
distributions. Our results show that power-law
network degree distributions are not rare, classifying
almost 65% of the tested networks as having a power-
law tail with at least 80% power.

1. Introduction
Networks play an important role in many fields, from
epidemiology and ecology to engineering and sociology.
They are a powerful way to represent and study the
interaction structure of complex systems. An important
measure of the network topology is the distribution of
the number of connections per node: the connectivity
distribution [1], also known as the degree distribution.
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Many empirical networks have been reported to exhibit scale-free behaviour based on the
distribution of the connectivities of the network nodes [2,3]. Describing networks can be justified
in two distinct ways: either phenomenologically based on network data or from first principles.

Power-law networks have been proposed as a ‘universal’ model, as they possess a number
of important properties, such as the presence of hubs and large numbers of nodes with
few connections [4] as well as a typical small-world behaviour [5]. The latter allows fast
communication between nodes even for huge networks, given the small diameter characteristic of
small-world networks. The definition of a power-law network varies across the literature, but one
often cited definition is that its degree distribution P satisfies P(d) ∝ d−γ , where γ > 1 [6]. Some
versions make additional requirements, e.g. requiring that node degrees evolve via a preferential
attachment mechanism [7], and specify, mathematically more correctly, that the power-law only
should hold asymptotically in the upper tail of the degree distribution [2,8].

However, from a phenomenological point of view, observed networks are (almost) always
finite, hence a power-law network is indistinguishable from a network with a sufficiently distant
exponential cut-off of a power-law degree distribution. If our sole purpose is fitting an observed
degree sequence, then a large class of models will do an equally good job for the types of networks
we tend to encounter in practice. Nevertheless, ever since de Solla Price started to experiment
with potential generative network models in the 1960s, it has become clear that a small number
of substantively plausible and generative principles are capable of generating network structures
that correspond to empirical networks. Particularly, various forms of preferential attachment rules
have been shown to result in network structures whereby the degree sequences are generally
described by ratios of gamma functions [9], i.e. power-laws. This putative universality of the
power-law degree distributions sets it up as a natural paradigm for falsification [10], i.e. as
a natural null hypothesis. It is from this epistemological point of view that we approach the
question of power-law networks in this paper. On top of this, others have also argued that it
is practically important to know whether networks are power-law, as such networks are, for
example, more susceptible to epidemics and other viral events [11].

A long-standing issue in network science is how prevalent the power-law property is in
empirical networks. A spate of early analyses, often using fairly crude methodology, resulted
in a widespread acceptance of the belief that power-law degree distributions, viewed as a
proxy for a network being scale-free, are quite ubiquitous [12–15]. This coincided with intensive
theoretical efforts to explain the putative universality of power-law degree distributions. More
recently, more sophisticated statistical techniques have cast doubt on the extent of the scale-free
universality. Starting with the work of Khanin & Wit [16], biological networks were shown to
fit better with a truncated power-law model, i.e. a power-law regime followed by a sharp drop-
off, P(d) ∝ d−γ e−d/kc . The authors found that the number of connections in biological networks
significantly differs from the power-law distribution and that these networks are not scale-free.
Another critique was levied in a recent paper by Broido & Clauset [17], who use a likelihood ratio
test within a nested testing procedure, suggesting that the evidence for power-law distribution is
often weak. A drawback of these critiques is the emphasis on identifying ‘pure’ power-law tails
as this leads to two conflicting requirements: a cut-off far into the distribution tail to ensure, in
some sense, sufficient closeness to the asymptotic power-law, and the availability of a sufficiently
large number of data points for meaningful statistical testing. The same issue has recently been
highlighted by Voitalov et al. [8], who devise consistent estimation procedures for the exponent
γ taking into account the asymptotic nature of power-laws, but who reject the possibility of a
formal testing procedure.

Even though a number of studies have considered testing for power-law degree distributions
in empirical networks, the final verdict is still open. This current paper takes a complementary
view to Voitalov et al. [8]: we make stronger parametric assumptions about the asymptotic form of
the tail of the degree distribution, avoiding the impossibility arguments [8, Section V], in order to
get a lower-bound on the fraction of empirical networks that exhibit power-law behaviour. This
parametric assumption consists of assuming that the tail of the degrees comes from a de Solla
Price network process, a two-parameter preferential attachment model. This does not mean that
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a de Solla Price is a sensible model for real-world networks, but being a subset of the power-law
distributions, not being able to reject with sufficient power a de Solla Price model would mean
that we have positive evidence for a power-law tail.

In §2, we present the landscape of the main methodological issues encountered in testing
degree distributions in empirical networks. In §3, we present the proposed testing framework.
We present (i) a specific parametric asymptotic power-law model that will be used to test the
goodness-of-fit of the empirical degree distribution, (ii) a modification of the classic Kolmogorov–
Smirnov (KS) statistic to deal with dependent degree samples as well as heterogeneous variances
and (iii) a way to calculate the power of the test-statistic. In §4, we apply the testing framework to
4482 empirical networks. Our aim is to decide whether in a large body of networks the power-law
property holds or should be seen as too simplistic. In §5, we present our conclusions.

2. Issues in testing empirical degree distributions
In this section, we present an overview of the main issues encountered in testing whether
empirical degree distributions are power-law. In particular, (i) we will introduce the exact
asymptotic definition of a power-law degree distribution and relate this to the problem of
observing only finite networks; (ii) we explain how the dependency of a single empirical degree
sample affects the distribution of a KS test statistic and (iii) we show how asymptotic tests
must balance the delicate equilibrium between power of the test and the asymptotic power-law
property. The issues introduced in this section will be resolved in §3.

(a) What is a degree distribution?
A simple random graph on vertex set V = {1, . . . , N} is defined by its graph distribution H : E →
[0, 1], which associates with any graph G a probability H(G). For directed graphs with possible
self-loops E = {0, 1}N×N , whereas for directed graphs without self-loops or undirected graphs E
is a strict subset of {0, 1}N×N . For any vertex i in the graph G, we define its degree dG(i) as the
number of edges in G that involve vertex i. In the case of directed networks, one could focus
on the in-degree or out-degree instead, but this will not change the exposition below. Given a
particular degree definition, we define the marginal degree distribution P(·|i) : {0, . . . , N} → [0, 1] for
vertex i as the probability over all graphs G for which vertex i has a particular degree,

P(d|i) =
∑

dG(i)=d

H(G).

Two important points to note are that the measures P(·|i) and P(·|j) for i �= j are generally dependent
and not identical. Only if the measure H is exchangeable, then the marginal degrees are identically
distributed. Only in very special cases, such as for certain types of Erdős–Rènyi graphs, these
marginal degrees are both independent and identically distributed.

The average degree distribution P : {0, . . . , N} → [0, 1] is defined as the marginal degree
distribution of a randomly selected vertex,

P(d) = 1
N

N∑
i=1

P(d|i).

We will refer to this distribution simply as the degree distribution. In fact, it is this distribution that
one commonly considers in practice, for example, by plotting the histogram of degrees of all the
vertices in a particular graph.

For graphs with infinitely countable vertex sets, the same definition for the marginal degree
distribution can be given, whereas the (average) degree distribution is defined as a limit,

Pinf(d) = lim
N→∞

1
N

N∑
i=1

P(d|i).
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For the Barabási–Albert preferential attachment model, it can be shown that Pinf(d) =
4/((d + 1)(d + 2)(d + 3)) for the in-degree d ∈ N0 [7].

We define power-law degree distributions as those degree distributions for infinite graphs that
possess a particular asymptotic property in their tail. In particular, an infinite graph degree
distribution Pinf is considered power-law if there exists a γ > 1 such that

lim
d→∞

dγ Pinf(d) = c, (2.1)

where c > 0 is an arbitrary positive constant, e.g. for the Barabási–Albert preferential attachment
model limd→∞ d3Pinf(d) = 4. This definition of a power-law is more restrictive than the regular
variation definition in Voitalov et al. [8], but this is sufficient for our purposes.

(b) Finitely observed network
As any empirically sampled network is finite, in what sense can this finite network be related to
the power-law? Since a vertex in a simple graph without self-loops cannot have more connections
than the total number of vertices excluding itself, the degree distribution has a support that is
bounded above by N − 1. This means that it is impossible to detect scale free networks, whose
power-law regime ‘starts’ at O(N). Every finite network degree distribution could potentially behave like
a power-law on the unseen degrees. That is why, strictly speaking, talking about power-law degree
distributions for finite networks is meaningless.

However, if the finite network is, in a certain sense, a ‘random sample’ from an infinite
network, then under certain conditions it might be possible to relate the finite sample degree
distribution to the infinite population distribution. Sampling subnetworks is more complicated
than sampling ordinary populations, as specific choices have to be made: whether to sample
primarily vertices or edges and how to sequence the sampling. Most state-of-the-art network
sampling schemes, i.e. link tracing, star, snowball, induced and incident sampling, have
drawbacks that lead to certain biases in the estimation of the degree frequencies [18, ch. 5.6]. We
will show how certain generative sampling assumptions will allow us to sample finite networks
that asymptotically form a subclass of the power-law degree distribution networks.

(c) Dependent versus independent degree samples
Essentially all existing work on empirical degree distributions (e.g. [8,17,19–22]) treats the
observed degree sequence of an empirical network as an independent random sample. However,
depending on the underlying random graph distribution, observing a degree for a particular
node may well be positively or negatively correlated to the degree of another node. A sample
of degrees coming from a single realization of a network should, therefore, be considered as a
dependent sample. The impact of this dependence on test-statistics that involve the empirical
degree distribution has not been studied in any detail until now.

Smolyarenko [23] shows that tests based on the empirical degree distribution can have
markedly different behaviour from what would be expected under independence. In particular,
the scaled empirical cumulative distribution function for degree distributions in standard
synthetic networks does not converge to a Brownian bridge [24]—see appendix A for details.
We will show that under certain network distributions the variance of the empirical degree
distribution is lower than expected under independence, invalidating traditional KS tests.

(d) Power of goodness-of-fit test
As we want to test the null hypothesis that an empirical degree distribution comes from a power-
law network, it is important to be able to control the power of the goodness-of-fit test. Regardless
of the test choice, not rejecting ‘H0 : network is power-law’ is not necessarily proof of the validity of
H0 without additional control of the power of the test. Power of a test controls the probability
of rejecting H0 when it is false. Although one clearly desires a high level of power in order
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to correctly detect power-law networks, this does not come for free: it involves determining
the level and type of departure of power-law that is practically insignificant. We will make
recommendations on how to set sensible values for this allowable deviation.

Furthermore, since a power-law is a tail property, the test statistic will focus on the tail of
the degree distribution. This leads to two, possibly conflicting requirements, since the further
along in the tail of the degree distribution we check, (i) the more likely our parametric power-law
distribution is able to fit a power-law tail if it is present, but (ii) the less power the goodness-of-fit
has to detect it. We have to find a balance between, on the one hand, testing the tail and, on the
other hand, having sufficient tail observations to guarantee a certain power of the test.

3. Testing framework
In this section, we present an integrated testing framework that addresses the issues that were
described in §2. Our aim is to describe a comprehensive procedure that based on a non i.i.d.
degree sequence from a finite network is able to test the null hypothesis

H0 : The degree distribution Pinf is power-law,

where the finite network is assumed to be a particular type of sample of Pinf as described in
§3a. Then in §3b, we operationalize the concept of a power-law degree distribution by means of a
flexible, generative family of degree distributions. In §3c, we introduce a modified KS test statistic
that deals with all the difficulties we identified above and in §3d we show how we can control the
power of this test.

(a) Sampling finite networks
Empirical finite networks can occur in many different ways [25]. It could be that the vertex set is
fixed and the edges are drawn from some distribution. These networks are not of interest to us in
this manuscript. Clearly, such non-growing networks have no relationship with any underlying,
infinite network distribution that might or might not exhibit power-law behaviour. Instead, in
this manuscript, we assume that Pinf is the resulting degree distribution from a generative and
additive network sampling scheme that at each moment can be stopped to obtain a finite network.

For example, the Barabási–Albert preferential attachment model is a generative network
sampling scheme that at each step adds a vertex to the network that it connects to one of the other
vertices already in the network with a probability proportional their degrees. This procedure can
be stopped for any finite size N network, leading to a degree distribution PN(d). Whereas the finite
Barabási–Albert preferential attachment model converges to a network with a power-law degree
distribution, other iterative sampling schemes might not.

(b) A finite de Solla Price power-law
As the power-law property is a mere asymptotic characteristic of a network, the class of power-
law networks is vast. On purpose, we will restrict ourselves in this manuscript to a subfamily of
power-law networks. As our main assumption in §3a is that the finite network is in a generative
way associated with the infinite network measure, we will focus on a generative class of power-
law distributions, namely preferential attachment models. These models iteratively extend the
network, both in terms of vertices and edges, in such a way that networks of any particular size
can be achieved.

Krapivsky & Redner [9] describe a rich class of network models constructed by means of a
general generative preferential attachment procedure with arbitrary connection kernels. They
show that these kinds of models result in degree distributions that can be described by ratios
of gamma functions. Ratios of gamma functions are the discrete analogues of power-laws. Using
finite gamma ratios as a model for power-law degree distributions has the crucial advantage of
treating some of the ‘midsection’ of the degree distribution as signal rather than noise. Broido &
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Clauset [17], Khanin & Wit [16] and others have been unnecessarily restrictive trying to find pure
power-laws rather than to accept that some aspects of curving in log–log plots are informative,
starving typical power-law tests of data.

We focus on a particular two-parameter gamma ratio model, known as de Solla Price model
introduced in 1965 for modelling growing citation networks [26]. In the context of a growing
network, m is the number of new edges added to the network at each iteration of the growing
algorithm and d + w is proportional to the preferential attachment probability for the vertices
with d incoming links. Van der Hofstad [27] and Newman & Girvan [28] show that the infinite
degree distribution is given by

Psp
inf(d; w, m) = cm,w

Γ (d + w)
Γ (d + 2 + w + w/m)

,

where 0 < w < ∞, m ∈ N and the normalizing constant cm,w = (1 + (w/m))(Γ (1 + w + w/m))/Γ (w).
The model is a generalization of the Barabási–Albert model, which is the special case when m =
w = 1 and d ∈ N0 is the in-degree. Combinations of the parameters (w, m) allow for more flexibility
and the model is therefore better able to capture empirical distributions at lower degrees. As
d → ∞ the model shows a power-law behaviour proportional to d−γ , i.e.

Psp
inf(d; w, m) = cm,wd−γ (1 + O(1/d)),

where γ = 2 + w/m [27].
The finite de Solla Price degree distribution of size N is denoted as Psp

N (·; w, m). We will use
Fsp

N (d; w, m) = ∑d
i=0 Psp

N (i; w, m) as notation for the cumulative distribution function of the finite
de Solla Price model. Although the de Solla Price model is flexible and can fit a wide range of
empirical power-law degree distributions, the model is still not flexible enough for our purposes.
In order to address this issue, we define a model that behaves as de Solla Price on the degrees
above a specified cut-off c and is free to take any other shape for the degrees below, in particular

Psp
c,N(d; w, m) =

{
pk d = 0, . . . , c − 1

Psp
N (d; w, m) d = c, . . . , N − 1

with its associated cumulative degree distribution function Fsp
c,N(·; w, m). Barabási [19] suggested

that power-law networks often have such low degree deviations, which should be ignored. We
refer to this network model as the extended de Solla Price network model, which is generated by
arbitrarily rewiring of edges between low-degree vertices.

(c) A weighted Kolmogorov–Smirnov testing procedure
Given the de Solla Price subclass of power-law networks our aim is to test the more stringent null
hypothesis

H0 : The network is drawn from an extended de Solla Price network model,

based on a single finite empirical network sample. The idea is that the number of non-rejected
tests, each with sufficient power, will give us an idea of the lower bound on the ubiquity of
empirical power-law networks.

(i) Traditional Kolmogorov–Smirnov test statistic

Traditionally the KS test statistic is one of the common statistics used to test for the goodness-of-fit
of a particular presumed distribution of the data. It is defined as the largest distance between the
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Figure 1. An example of a de Solla Price cumulative degree distribution; dashed lines indicate the standard deviation of the
empirical degree distribution considering a network of size 30. (Online version in colour.)

empirical cdf and the hypothesized one,

DKS =
√

N sup
d≥0

∣∣∣F̂N(d) − Fsp
c,N(d; w, m)

∣∣∣ , (3.1)

where d stands for the degree, Fsp
c,N and F̂N are, respectively, the true (under H0) and the

empirically observed degree distributions, N is the overall number of observations, i.e. the
number of vertices in the empirical network. The empirical degree distribution is defined as
F̂N(d) = (1/N)

∑
v∈V 1{dv≤d} where dv is the observed degree of vertex v. Under the independent

sampling assumption, the DKS statistic converges in distribution to the Kolmogorov limit
distribution [29]. The convergence of DKS to the Kolmogorov limit distribution is based on the
assumption of continuous data and independent observations, both of which are violated in the
case of an empirical degree distribution from a single network. As shown by Smolyarenko [23],
the KS test statistic for empirical degree distributions in evolving networks does not converge to
the usual Kolmogorov limit distribution.

(ii) Variance of the empirical degree distribution

As pointed out by Anderson & Darling [30], the KS statistic does not achieve uniform sensitivity
over all quantiles. Under the independent sampling assumption, for a fixed degree d, we have
that

NF̂N(d) ∼ Bin(N, Fsp
c,N(d; w, m)), (3.2)

with variance NFsp
c,N(d; w, m)(1 − Fsp

c,N(d; w, m)). Although the independence is a rather unrealistic
assumption, it can give an insight into the variance behaviour in empirical cumulative degree

distributions. In particular, F̂N(d) achieves its highest variance at d = Fsp−1
c (0.5) and decreases to

zero in the tails—in particular, in the right tail in case of a degree distribution. The distances
|F̂N(d) − Fsp

c,N(d; w, m)| are not identically distributed over d and, more importantly, the decrease of
the variance leads to a decrease of the sensitivity in the tail of the degree distribution. In typical
network scenarios, this means that the KS statistic is mainly influenced by low degrees, whereas
one mainly wants to detect deviations for high degrees. For example, figure 1 shows an empirical
degree distribution, whose first degree d = 1 takes 66% of the overall probability and therefore is
the main contributor to the KS statistic.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 J

ul
y 

20
21

 



8

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20190742

...........................................................

0 0.2 0.4 0.6 0.8 1.0

0

0.05

0.10

0.15

0.20

0.25

quantiles

va
ri

an
ce

A
B
C
D

Figure 2. Brownian Bridge’s empirical variance with A:(w = 1,m= 1), B:(w = 134,m= 23), C:(w = 267,m= 44), D:(w =
400,m= 51). Top line (red in online version) is the variance under independent degree sampling (see appendix A). Line A is
complete, but starts from the first rescaled degree Fsp(0; 1, 1)= 0.66. (Online version in colour.)

Our aim is to modify the KS statistic in such a way that it achieves even sensitivity across the
empirical degrees. Beyond the uneven variance addressed by the Darling–Anderson modification
[30] described above, there are three additional considerations that affect the behaviour of the
empirical degree distribution. In particular, we show how (i) the estimation of the parameters
(w, m) and (ii) the dependence among the empirical degrees lead to a reduction of variance,
whereas (iii) the randomness of the observed degrees inflates the variance as compared to the
independently sampled binomial case in (3.2) that we consider as our baseline.

(i) Variance reduction due to parameters estimation. In order to be able to calculate the KS statistic,
one needs to estimate the parameters of the de Solla Price model. We use maximum likelihood
to estimate its parameters. In particular, given a fixed value for c, we estimate the lower degree
probabilities by their empirical counterparts. As the empirical distribution function and the MLE
of the flexible de Solla Price coincide for low degrees, we have |F̂N(d) − Fsp

c,N(d; w, m)| = 0 for d < c.
In general, estimation of the parameters reduces the variance of the KS statistic [31].

(ii) Variance reduction due to dependent observed degrees. As described in §2, the empirical degree
distribution is a dependent sample of degrees. We will show that this affects the distribution of
KS statistic DKS. Chicheportiche & Bouchaud [32] show that the behaviour of the KS statistic,

can be studied by analysing the random function Y(u) = √
N(F̂(Fsp−1

c,N (u)) − u), u ∈ [0, 1] is the uth

theoretical quantile, since DKS = supu y(u). If F̂ was estimated by independent observations, then
(3.2) would imply that V(Y(u)) = u(1 − u). This is shown as the top line (red in online version) in
figure 2.

Although the correlations between the empirical degrees are only of order 1/N, the fact that
there are

(N
2
)

of them, has a dramatic impact on the overall variance of Y(u) and therefore on the
KS statistic DKS [23]. We simulated from the de Solla Price preferential attachment model, using
different values of w, the preferential attachment probability of the nodes with no incoming links,
and m, the number of new links that each new node makes with the remaining nodes at each
iteration of the growing process. Figure 2 shows that in all the scenarios the observed variance of
Y(u) and therefore DKS, was lower than expected under independence. The negative correlations
between the empirical degrees results in a significantly lower variance. This clearly casts doubt
on a large scale of methodologies and past results which were based on the independence
assumption (e.g. [6,17]).
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(iii) Variance inflation due to randomly observed degrees. The baseline case, as described in
(3.2), holds only for fixed degrees d under the independent sampling assumption. However, the
supremum taken in (3.1) will occur at an observed, i.e. random degree. As Goldman & Kaplan [33]
showed for continuous distributions, the empirical degree F̂N(d(i)) has beta distribution, i.e.
F̂N(d(i)) ∼ β(i, N + 1 − i), which holds approximately for high degrees due to the near-continuous
behaviour of F̂N in the degree tail for large networks. This results in a higher variance of the KS
statistic than the binomial one. Clearly, this is true under the independent sampling assumption.
For empirical degree distributions, it is challenging to quantify the overall variance inflation due
to the degree randomness since we also have to consider the possible variance deflation due to
the previous points.

(iii) A modified Kolmogorov–Smirnov test statistic

Here, we will describe a test statistic that resolves the uneven variance, the reduced variance and
the inflated variance that the KS statistic experiences for empirical degree distributions. As it is
impossible to calculate analytically the effect of the various complicating factors, we resort to
bootstrapping in order to define a uniformly sensitive, KS-like test statistic for testing the null
hypothesis of a de Solla Price power-law degree distribution. This is possible because the de Solla
Price is a generative network model, which can be sampled efficiently.

In particular, we consider an empirical network, for which we want to test whether it might
have appeared from a finite de Solla Price network, Fc,N(·; w, m). We will assume that the cut-off c
is given—its value involves power considerations, described in §3d.

First, we estimate the parameters of the model (w, m) from the data. A number of methods
are proposed in the literature for power-law estimation, such as the Hill estimator for the
tail coefficient of Wang & Resnick [34] and the maximum-likelihood approach on the network
evolution data of Gao & van der Vaart [35], whereas a comparison between different estimators is
provided in Clauset et al. [6]. In our framework, we estimate the unknown parameters (w, m) by
numerically maximizing the pseudolikelihood

L(d; w, m) =
N∏

i=1

Psp
c,N(di; w, m),

via an iterative algorithm [36]. Crowder [37] showed that these estimates are consistent. For fixed
discrete values of m, we maximize the likelihood according to w. We repeat the maximization
procedure for a reasonable range of m values. Finally, we select the (m, w) values with the
highest likelihood. This procedure is known as profile pseudolikelihood maximization. Further
generalizations might be possible by specifying a random m parameter [38] that can be sampled
among the most likely values.

Then we define the test statistic T as

T =
√

N max
v:dv≥c

⎡
⎣

∣∣∣F̂N(dv) − Fsp
c,N(dv ; ŵ, m̂)

∣∣∣√
ẑ(dv , ŵ, m̂)

, lim
a→d−

v

∣∣∣F̂N(a) − Fsp
c,N(a; ŵ, m̂)

∣∣∣√
ẑ(a, ŵ, m̂)

⎤
⎦ , (3.3)

where {dv} are the observed degrees on the vertex set V of size N and ẑ are the Monte Carlo
estimated variances of the empirical degree distribution at the observed degrees for simulated
de Solla Price networks with parameters (ŵ, m̂). The distribution of the test statistic T under the
null hypothesis is obtained via a parametric bootstrap [39]. The parametric bootstrap consists of
sampling degree distributions from the null hypothesis, i.e. a de Solla Price network generating
process. The unknown parameters (w, m) are substituted with the maximum-likelihood estimates,
meaning sampling from the most likely de Solla Price distribution according to the observed data.
We calculate the test statistics T on each of them and obtain T1, . . . , TB bootstrap realizations of
the test statistics distribution under H0. We reject the hypothesis that the data come from a de
Solla Price network if the test statistic Tobs calculated on the observed network is greater than the
95% empirical percentile of the bootstrap distribution.
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Figure 3. Under H0 degree distribution is the ‘continuous’ (red in online version) conditional de Solla Price power-law, whereas
under H1 the degree distribution is taken to be the ’discontinuous’ (blue in online version) function with hc = 0.1 and c = 100.
(Online version in colour.)

(d) Cut-off choice via power analysis
This section selects the cut-off point c, by considering how many observations are left in the tail
of the empirical degree distribution in order to guarantee the required power level. Although
power is loosely defined as P(reject H0 | H1 is true), for continuous alternatives one needs to
select a required minimum detectable effect size [40], which we define as the maximal distance h
between the true distribution and the null distribution Fsp

c,N(·; ŵ, m̂).
Power-law distributions decrease to zero slower than any other candidate distribution. Thus

we choose an alternative distribution that decreases faster in the tail. Among all the possible
degree distributions with at least h maximum distance, the one that minimizes the power is
the degree distribution that is exactly the same as the null Fsp

c,N(·; ŵ, m̂), but with a step of size
h placed in the end of the tail, as shown in figure 3. For values of h that are sufficiently small, the
distribution can be even closer to the power-law than the log-normal degree distribution. This
assures that, once we fix the power for this type of function, all the other degree distributions that
are h removed from the de Solla Price power-law will have greater power, i.e. will be detected
more easily.

In the practical analyses, in §4, we take a very stringent choice for the cutoff. In particular, we
decided to calibrate h = hc(1 − Fsp

N (c; w, m)) with hc ∈ [0.01, 0.1]. This means that we aim to be able
to detect degree distributions that have tail behaviour that decays faster on roughly the last 0.001
of the degree distribution. We choose a power of 80%, which means that if the true distribution
differs from a power-law by only h or more in the tail, then 80% of the time our method will detect
it and reject the null hypothesis.

The power calculations are done straightforwardly by simulating B = 200 degree samples from
the de Solla Price model, with maximum-likelihood estimated parameters. Then each sample is
censored in correspondence with the degree in which the step occurs, obtaining samples from
H1. The statistical test is applied to each of them and the power is finally computed as the rate of
rejected tests.

(e) Overview of testing procedure
This section provides an overview of all the elements that go into testing whether a given
empirical network comes from some de Solla Price power-law model. In five steps, the proposed
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Figure 4. The top line (green in online version) shows the overall number of 4482 degree distributions that are possible to test.
The middle line (black in online version) shows the number of admissible tests that have power greater than 80%with respect
of tail sensitivity hc . The bottom line (red in online version) illustrates the number of test for which the de Solla Price power-law
seems to be a sensible model. (Online version in colour.)

testing procedure takes into account the power, degree dependency, cutoff and an even sensitivity
over the tail of the test statistic.

(i) Step 1: calculate maximum-likelihood estimate on the original sample.

(a) Fix the cut-off c (for different values of c).
(b) Given an observed degree sequence of size N, estimate F̂N(·) and Fsp

c,N(·; ŵ, m̂), where
ŵ and m̂ are the maximum-likelihood estimates of the de Solla Price model.

(ii) Step 2: test distribution and variance computation.

(a) Select number of bootstrap samples B = 200.
(b) Generate d1, . . . , dB ∼ Psp

N (·; ŵ, m̂) degree sequences with the de Solla Price
preferential attachment algorithm up to a network with N nodes.

(c) Estimate the empirical degree distribution F̂b
N(d) and the best fitting de Solla Price

model Fsp
c,N(d; ŵb, m̂b) for each of the bootstrap samples b = 1, . . . , B.

(d) Estimate the bootstrap variance ẑ(·; ŵ, m̂) of the difference |F̂N(d) − Fsp
c,N(d; ŵ, m̂)|.

(e) For each bootstrap replication, calculate the test statistic, T1, . . . , TB using
equation (3.3).

(iii) Step 3: test distribution under the alternative hypothesis with tail jump hc as shown in
figure 3:

(a) Fix the step size hc ∈ [0.01, 0.1].
(b) Truncate d1, . . . , dB according to hc, obtaining dH1

1 , . . . , dH1
B .

(c) Estimate F̂b
N(·) and Fsp

c,N(·; ŵb
H1

, m̂b
H1

) on the basis of dH1
b , with b = 1, . . . , B.

(d) Calculate the test statistics, T1
H1

, . . . , TB
H1

.

(iv) Step 4: calculate p-value and power

(a) Calculate the test statistic on the original data Tobs.
(b) Calculate the p-value as the rate of bootstrap statistics that exceed the original

statistic p-value=
∑B

b=1 1(Tb>T)
B , where 1(·) is the indicator function.

(c) Obtain T0.95 as the 95% quantile of the bootstrap distribution.
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Figure 5. Fraction of accepted tests, i.e. rate of detected power-law networks, for hc = [0.01, 0.015, 0.02, 0.03, 0.05, 0.1]. Note
that the rate is stable for hc > 0.01. This suggests that roughly two thirds of all considered real-world networks seem to exhibit
power-law tail behaviour. (Online version in colour.)

(d) Calculate the power as the rate of H1 statistics that are rejected by the test power=
(
∑B

b=1 1(Tb
H1

> T0.95))/B.
(e) Select the largest c for which the power is at least 80%.

4. Testing 4482 network for power-law degree distributions
We applied our testing framework to the datasets reported in Broido & Clauset [17], which
consists of a large corpus of nearly 1000 network datasets drawn from social, biological,
technological and informational sources. From these networks, the authors derived 4482 observed
degree sequences. The corpus of real-world networks includes both simple graphs and networks
with various combinations of directed, weighted, bipartite, multigraph, temporal and multiplex
networks.

Similar to the authors in the original paper we are interested in testing whether the networks
exhibit power-law degree distributions. For each degree distribution, we applied our testing
framework for several values of the tail sensitivity hc = [0.01, 0.015, 0.02, 0.03, 0.05, 0.1], fixing a
cut-off c at degree 10. For lower values of cutoff, the test tends to reject most of the networks as
de Solla Price, because of the other regimes present in the lower degrees that are irrelevant for
power-law tail behaviour.

By fixing c and hc, it may occur that various networks do not achieve the required power of
80%. Those networks are excluded. Figure 4 shows the absolute number of degree distributions
that are admissible to being tested, i.e. with power higher than 80%, as well as the absolute
number of accepted tests, i.e. tests for which the power-law null distribution could not be rejected.

Figure 5 shows the H0 acceptance rate over different hc values, as the rate of the non-rejected
power-laws over the total number of tested networks. The lower hc, the lower is the number of
admissible networks to be tested. Nevertheless, the rate of networks for which the de Solla Price
power-law cannot be rejected is almost constant for hc > 0.01. Using the common elbow rule [41],
a common practice among engineers, we select a very strong tail sensitivity hc = 0.015 for which
64% of the tested networks exhibit power-law behaviour. For each of the non-rejected networks,
we calculate the power-law exponent, γ̂ = 2 + ŵ/m̂, with estimated parameters shown in figure 6.
We find that for the more restrictive tests (hc = 0.015), all the exponents are between 2 and 3,
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Figure 6. Estimates of (w,m) for accepted tests at hc = 0.015.

whereas for the most liberal tests (hc = 0.1), 99.1% of all exponents are associated with what is
normally called scale-free power-laws. As this acceptance rate stays constant for increasing values
of hc and of the number of admissible networks and as the power-law exponent is between 2 and
3 for almost all accepted degree distributions, we speculate that approximately two-thirds of all
empirical, large-scale networks, which can reasonably be considered to have been drawn from
some underlying infinite network, are power-law networks.

Although we have obtained positive evidence that power-law networks are not rare among
larger recorded networks that have sufficient observations in the tail, for the most stringent testing
scenario with hc = 0.015 we tested only 500 out of the 4482 networks, whereas for the most liberal
value hc = 0.1 we could test slightly less than half of all networks. If the tail is not big enough,
parameters estimation and testing could be misleading, generating inconclusive results about the
nature of the underlying degree distribution.

5. Conclusion
Are power-law degree distributions rare or everywhere [42]? It is perhaps surprising that after 20
years of network science, this issue still has not been resolved and has suddenly flared up again in
the scientific debate. As the question has important philosophical and conceptual consequences,
it is perhaps more surprising that it has taken 20 years before careful technical reviews, such as
by Voitalov et al. [8], have considered this question methodologically. With this current paper, we
hope to have contributed to this recent methodological progress.

In this paper, we have developed a tail testing procedure, taking into account a host of issues
related to testing degree distributions of a single empirical network. We have presented the
behaviour of the KS statistic for the discrete degree distributions, making corrections in order to
achieve an even sensitivity on the observed degrees. We have presented an alternative power-law
degree distribution that can be tuned to specify the size of the deviation from the power-law,
and then use it to calculate the power for the test. The degree dependency and other issues
have been solved by bootstrapping the test distribution via de Solla Price growing network
process. The aim of this work is to propose a rigorous approach to test with sufficient power
whether sequences of dependent node degrees can be distinguished from a specific power-law
distribution in the tail. What we mean by ‘rigorous’ is that given the definition of the modified
KS test-statistic, our testing procedure is exact, i.e. with exact coverage and power, up to the
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precision of the bootstrap sampling. Although a power-law is a property that has sometimes been
explicitly associated with the in-degree distributions [2], our testing framework can be applied to
any arbitrary degree sequence, whether in-degree, out-degree or full degree distribution, both for
directed and undirected simple networks.

Our aim was to re-evaluate the conclusion from Broido & Clauset [17] by applying our testing
framework to the same 4482 empirical degree distributions tested there. However, in contrast
to their claim that power-law distributions are rare, we classified approximately 64% of the
networks for which we have sufficient power, as power-law—and most of those as scale-free.
Our conclusion is that power-law networks are not rare at all. Furthermore, we note that in this
framework we just tested for power-law networks using the de Solla Price model, which is a
small subclass of power-law degree networks. This suggests that an even larger number of real-
world networks could be classified as power-law had we used a larger power-law class as the
null. Clearly, power-law networks seem empirically ubiquitous.
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Appendix A. Brownian bridge
For completeness, we reproduce here the standard derivation of the Brownian bridge variance for
independent samples [43]. Let X be a random vector of n independent and identically distributed
variables with marginal cdf F, with realization x1, . . . , xn. For a given number x in the support of
F, we define Y(x) the random vector in which Yi(x) =1{Xi<x} is a Bernoulli variable. Then

E [Yi(x)] = F(x)

and

E
[
Yi(x)Yj(x

′)
] =

{
F(min(x, x′)) , i = j

F(x)F(x′) i �= j

The centred sample mean of Y(x) is

Ȳ(x) = 1
n

n∑
i=1

Yi(x) − F(x).

Denoting u = F(x) and v = F(x′), the covariance function of Ȳ is

Cov(Ȳ(u), Ȳ(v)) = 1
n

(min(u, v) − uv),

and the sample mean can be rewritten as

Ȳ(u) = 1
n

n∑
i=1

Yi(F
−1(u)) − u.

We define the process y(u) as the limit of
√

nȲ(u) when n → ∞. According to the Central Limit
Theorem, it is Gaussian and its covariance function is given by

I(u, v) = min(u, v) − uv,

and thus variance

I(u, u) = u − u2 = u(1 − u).
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Figure 7. We present some qqplots of pvalues versus the quantiles of a uniform distribution, simulations performed using
different parameter settings. (a) w = 1, m= 1, (b) w = 0.50, m= 5, (c) w = 0.45, m= 4, (d) w = 0.48, m= 6. (Online
version in colour.)

Appendix B. Simulation study: testing the test
A common practice when dealing with novel statistical methodologies is to run a simulation
study. The aim is to check the validity of the procedure in a controlled environment. In the case
of a testing procedure, this means checking the Type I Error or equivalently the uniformity of
p-values. If the procedure is correct, we expect that the p-values have Uniform distribution under
the null hypothesis. The simulation study is articulated as follows: for an arbitrarily fixed (w, m),
we simulate B = 200 realizations of de Solla Price degree distributions, on each of them we apply
the testing procedure retrieving a p-value. We verify through Q-Q plot their uniformity. Finally,
we repeat the simulation study for different values of (w, m). Figure 7 reports some of these cases,
showing that the p-values fit the Uniform distribution quite well, confirming the reliability of our
results on the real datasets.
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