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Abstract

Let C ⊂ Pn+1 be a rational normal curve and let X ⊂ Pn be one of
its tangential projection. We describe the X-rank of a point P ∈ Pn in
terms of the schemes evincing the C-rank or the border C-rank of the
preimage of P .

Introduction

In many applications, like Biology and Statistics, it turns out to be useful to
develop techniques for reducing the dimension of high-dimensional data (like
Principal Component Analysis [PCA]) that can be encoded in a tensor. In
many cases these tensors turn out have many entries equal to zero (see eg. [9]
for an example of a chemical, biological system). One of the main problems
is to find a minimal decomposition of such a tensor in terms of other tensors
with the same structure but containing as few non-zero terms as possible. We
want to address these questions from an Algebraic Geometry point of view
(we suggest [8] for a good description about the relation between Biology,
Statistics and Algebraic Geometry on these kind of questions). We will direct
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our attention to the very special case of complex symmetric tensors of order
n+1 with at least one entry equal to zero and defined over a 2-dimensional
vector space. In other words, we study the case of homogeneous polynomials
p ∈ C[u, t]n+1 of degree n + 1 having at least one coefficient equal to zero.
Assume, for a moment, we have fixed an ordered basis {x0, . . . , xn+1} for
C[u, t]n+1. A binary form with the coefficient in the i-th position equal to
zero can be obtained by projecting a binary form to the hyperplane Hi ⊂
C[u, t]n+1 identified by the equation xi = 0. We will focus on projections
`O from a point O ∈ P(C[u, t]n+1) ' Pn+1 to P(Hi) ' Pn that corresponds
to tangential projections to the rational normal curve that is canonically
embedded in Pn+1. This will allow us to relate the minimal decomposition
of a binary form p of degree n + 1 as a sum of (n + 1)-th powers of linear
forms Ln+1

1 , . . . , Ln+1
r ∈ C[u, t]n+1, with the minimal decomposition of the

projected `O(p) ∈ P(Hi) (that is a binary form of the same degree n+1 but
with the i-th coefficient equal to zero) in terms of `O(L

n+1
1 ), . . . , `O(L

n+1
r ).

Explicitly, if r is the minimum number of addenda that are required to write
p ∈ C[u, t]n+1 as

p = Ln+1
1 + · · ·+ Ln+1

r

then we will prove in Theorem 1 and in Theorem 2 that there is a dense
subset of P(Hi) ' Pn where r is also the minimum number of addenda that
are required to write `O(p) as follows:

`O(p) = `O(L
n+1
1 ) + · · ·+ `O(L

n+1
r ).

We will also describe what is the relation between the minimal decomposition
of p and the minimal decomposition of an `O(p) from this dense subset.

The minimal decomposition of a generic binary form of degree n + 1 in
terms of (n + 1)-th powers of binary linear forms was first studied by J. J.
Sylvester then formalized with an algorithm in [6] (see also [4] for a more
recent proof).

What we want to study in this paper is obviously a very special case for
applications (in applications one often needs linear projections from a large
dimensional linear subspace) but we hope to give in this way some ideas for
further works on wider classes of analogous problems. In any case these kinds
of questions lead to a nice geometrical problem that is the computation of X-
ranks with respect to a degree n+1 cuspidal linearly normal curve X ⊂ Pn.

If Y ⊂ PN is any non-degenerate projective variety, the minimum integer
ρ for which there exists a reduced 0-dimensional subscheme S ⊂ Y of degree
ρ whose linear span 〈S〉 contains a point P ∈ PN is often called the Y -rank
rY (P ) of P with respect to Y and we say that S evinces P .
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The classical s-th secant variety σs(Y ) ⊂ PN is defined to be the Zariski
closure of the set of points of Y -rank less or equal than s.

This allows one to introduce the concept of Y -border rank brY (P ) of a
point P ∈ PN as a minimum integer s such that P ∈ σs(Y ).

Let us fix the following notation that we will use throughout the paper.

Notation 1. Let C ⊂ Pn+1 be a smooth rational normal curve of degree
n + 1. Fix A ∈ C. Let 2A denotes the degree 2 effective divisor of C with
A as its reduction. The tangent line TAC is the line 〈2A〉. Fix also a point
O ∈ TAC \ {A} to be the center of the projection `O : Pn+1 99K Pn that
sends C into a curve X := `O(C) ⊂ Pn. The curve X is a linearly normal
curve of Pn with degree n + 1, arithmetic genus 1 and the ordinary cusp
`O(A) ∈ X ⊂ Pn as its unique singular point.

The main results of this paper are Theorem 1 and Theorem 2 where we
give a description of both the X-rank and the X-border rank of a point
P ∈ Pn and we relate them with the C-rank and the C-border rank of its
preimage via `O.

Theorem 1. Fix integers n, ρ such that n ≥ 3 and 2 ≤ ρ ≤ b(n + 3)/2c.
Let C, {A,O} ⊂ Pn+1 and X ⊂ Pn be as in Notation 1. Fix M ∈ Pn+1 \{O}
such that rC(M) = ρ. Let E ⊂ C be a finite set that evinces the C-rank of
M . Set P := `O(M). Then the following hold:

(i) If 2ρ ≤ n, then rX(P ) = ρ and `O(E) is the unique subset of X
computing rX(P ).

(ii) If n+ 1 ≤ 2ρ ≤ n+ 2, then ρ− 1 ≤ rX(P ) ≤ ρ.

(iii) If n is odd and 2ρ = n + 3, then there is a non-empty open subset U
of Pn+1 such that rC(M) = ρ and rX(`O(M)) = ρ− 1 for all M ∈ U .

We remark that part (iii) of Theorem 1 is true for the image, X, of a
linear projection of any integral and non-degenerate curve Y ⊂ Pn+1 from
an arbitrary O ∈ Pn+1 \ Y .

In Theorem 2 we take as P a point `O(B) such that the border C-rank
of B is not computed by a reduced scheme, i.e. such that the C-rank of B
is strictly bigger than the border C-rank of B.

1 Preliminary Lemmas

We borrow from [5] the following result (we only need the case in which Y
is a rational normal curve of Pn+1 with 2t ≤ n+2; thus the case we use is a
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particular case of [5, Lemma 2.1.5]). See [5, Theorem 1.5.1] for part (iv) at
least for reduced schemes for arbitrary Veronese varieties.

Lemma 1. Let Y ⊂ PN be a smooth and non-degenerate subvariety of
dimension at most 2. Let β(Y ) be the maximal integer t such that dim〈Z〉 =
deg(Z)− 1 for every 0-dimensional subscheme Z ⊂ Y such that deg(Z) ≤ t.
Fix P ∈ PN and assume t ≤ β(Y ).

(i) P ∈ σt(Y ) if and only if there is a 0-dimensional scheme Z ⊂ Y
such that deg(Z) ≤ t and P ∈ 〈Z〉.

(ii) P ∈ σt(Y ) \ σt−1(Y ) if and only if t is the first integer such that
there is a 0-dimensional subscheme Z ⊂ Y with deg(Z) = t and P ∈ 〈Z〉.

(iii) If 2t ≤ β(Y ) and P ∈ σk(Y ) \ σt(Y ), then there is a unique 0-
dimensional scheme Z ⊂ Y such that deg(Z) ≤ t and P ∈ 〈Z〉. Moreover,
deg(Z) = t.

(iv) If Y ⊂ PN is a rational normal curve, then β(Y ) = N +1. In this
case for each P ∈ PN there is a unique 0-dimensional scheme Z evincing
brY (P ), i.e. a unique 0-dimensional scheme Z ⊂ Y such that deg(Z) ≤
brY (P ) and P ∈ 〈Z〉. Moreover, deg(Z) = brY (P ).

Proof. Since Y is smooth and dim(Y ) ≤ 2, every 0-dimensional subscheme
A of Y is smoothable, i.e. it is a flat limit of a family of unions of deg(A)
distinct points ([7]). As remarked in the proof of [5, Lemma 2.1.5], the
assumption “dim〈Z〉 = deg(Z) − 1 for every 0-dimensional scheme Z ⊂ Y
such that deg(Z) ≤ t” is sufficient to use [4, Proposition 11], and get part
(i).

Part (ii) follows from part (i) applied to the integers t and t − 1. Take
P and t as in part (iii) and assume the existence of schemes Z,W ⊂ Y
such that deg(Z) ≤ t, deg(W ) ≤ t, P ∈ 〈Z〉 ∩ 〈W 〉 and Z 6= W . Part (ii)
gives deg(Z) = deg(W ) = t, P /∈ 〈Z ′〉 for any Z ′ ( Z and P /∈ 〈W ′〉 for
any W ′ ( W . Hence h1(IZ∪W (1)) > 0 ([3, Lemma 1]), contradicting the
inequalities deg(Z ∪W ) ≤ 2t ≤ β(Y ).

Part (iv) follows from (iii) and a theorem of Sylvester ([6], [4, §3], [10,
§4]).

Take Z as in parts (ii) and (iii) of Lemma 1. We say that Z evinces the
Y -border rank of P .

Lemma 2. Fix an integral and non-degenerate subvariety Y ⊂ Pn+x, n > 0,
x > 0, and a linear (x − 1)-dimensional subspace V ⊂ Pn+x such that
V ∩ Y = ∅. Set X := `V (Y ). Then

rX(`V (Q)) = min
P∈(〈V ∪{Q}〉\V )

rY (P ) for all Q ∈ Pn+x \ V. (1)
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There are P ∈ (〈V ∪ {Q}〉 \ V ) and a finite set S ⊂ X such that S evinces
rY (P ), ](S) = ](`V (S)) and `V (S) evinces rX(`V (Q)).

Proof. First of all let us prove the inequality “≥ ” in (1). Since V ∩ Y = ∅,
then obviously `V |Y is a finite morphism. Since `V |Y : Y → X is surjective,
for each finite set of points S ⊂ X we may fix another finite subset SV ⊂ Y
such that `V (SV ) = S and ](SV ) = ](S). Since SV ⊆ Y , then SV ∩ V = ∅.
Thus the set S ⊂ X turns out to be linearly independent if and only if
SV is linearly independent and 〈SV 〉 ∩ V = ∅. Now fix Q ∈ Pn+x \ V
and take S ⊂ X computing rX(`V (Q)). Thus ](S) = rX(`V (Q)) and S
is linearly independent by definition of a set that evinces the X-rank of a
point. Since S is linearly independent, the set SV is linearly independent and
〈SV 〉∩V = ∅. Now, if `V (Q) is an element of 〈S〉, then 〈SV 〉∩〈V ∪{Q}〉 6= ∅.
Since 〈SV 〉 ∩ V = ∅, there is a unique P ∈ (〈V ∪ {Q}〉 \ V ) such that
{P} = 〈SV 〉 ∩ 〈V ∪ {Q}〉. Since SV ⊂ Y , we have rY (P ) ≤ ](SV ) = ](S) =
rX(`V (Q)).

To get the reverse inequality we may just quote [2, Lemma 14] but since
it is quite easy to be proved, we show here a shorter proof. Fix any P ∈
(〈V ∪{Q}〉\V ) and any A ⊂ Y computing rY (P ). Since P ∈ (〈V ∪{Q}〉\V )
we have `V (P ) = `V (Q). Since `V (P ) ∈ 〈`V (A)〉, we have rX(`V (Q)) ≤
rY (P ).

2 Theorems

We can now focus on tangential projections X ⊂ Pn of rational normal
curves C ⊂ Pn+1 for n ≥ 3. We give both a description of the schemes that
realize the X-border rank (Theorem 2) and the X-rank (Theorem 1) of a
point P ∈ Pn with respect to a curve X just described and the precise value
of the X-rank of such a point P (except in the critical range 2w ≥ n or
2ρ ≥ n, respectively). In Theorem 2 we give the X-rank of a point P ∈ Pn

that is the image via `O of a point B ∈ Pn+1 whose C-border rank is smaller
that its C-rank. In Theorem 1, the point P ∈ Pn is the image of a point
M ∈ Pn+1 whose C-border rank is equal to its C-rank. Moreover we will
explain the relation between the schemes that evince brX(P ) and rX(P ) and
the schemes that evince brC(B) and rC(B) where B ∈ Pn+1 is a point that
is sent into P ∈ Pn by the tangential projection.

Theorem 2. Let C ⊂ Pn+1, n ≥ 3, be a rational normal curve and let also
X := `O(C) ⊂ Pn and O ∈ TAC \ {A} for a fixed A ∈ C be as in Notation
1. Fix B ∈ σw(C) \ σ0

w(C) ⊂ Pn+1, w ≥ 2, and set P := `O(B). Let W ⊂ C
be the degree w subscheme which evinces brC(B) (part (iv) of Lemma 1).
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1. (1) Assume O ∈ 〈W 〉 (this case occurs if and only if A appears in W
with multiplicity ≥ 2). If w = 2, then rX(P ) = 1 and P = `O(A).
Assume w ≥ 3. If W 6= 2A ∪ S1 with S1 ⊂ C \ {A} and S1 reduced,
then rX(Q) = n + 3 − w. If W 6= 2A ∪ S1 with S1 ⊂ C \ {A} and S1

reduced, then either rX(P ) = w − 1 and `O(Wred) evinces rX(P ) or
rX(P ) = w − 2 and `O(W \ 2A) evinces rX(P ). All cases may occur
for some W,B.

2. Assume O /∈ 〈W 〉 and A ∈ Wred. If 2w ≤ n, then rX(P ) = n+ 2− w.

Assume 2w = n+ 1. Then:

(a) n+ 2− w ≤ rX(P ) ≤ n+ 3− w.

(b) Let ∆ be the set of all 0-dimensional schemes U ⊂ C such that U
is not reduced, deg(U) = w and A appears with multiplicity 1 in
U . The set ∆ is an irreducible variety of dimension w − 2. If W
is general in ∆ and B is general in 〈W 〉, then W evinces brC(B)
and rX(`O(B)) = n+ 2− w.

3. Assume O /∈ 〈W 〉 and A /∈ Wred. We have n + 1 − w ≤ rX(P ) ≤
n+ 3− w. If 2w ≤ n− 1, then rX(P ) = n+ 3− w.

If 2w = n+ 1, then n+ 1− w ≤ rX(P ) ≤ n+ 3− w.

Proof. Since bC(B) 6= rC(P ), we have 2w ≤ n+ 1 ([6, eq. (4)]).
Part (iv) of Lemma 1 gives the uniqueness of the scheme W ⊂ C.
Since we took B ∈ σw(C) \ σ0

w(C), then rC(B) = n + 3 − w (see [4,
Theorem 23], [6]). Thus rC(P ) ≤ n + 3 − w. Since deg(2A) + deg(W ) =
w+ 2 ≤ n+ 2, we have 〈2A〉 ∩ 〈W 〉 = 〈2A∩W 〉. Since O ∈ 〈2A〉 ∩ 〈W 〉 and
O 6= A, we get that 2A ⊆ W if and only if O ∈ 〈W 〉.

(a) Assume O ∈ 〈W 〉, i.e. 2A ⊆ W . If w = 2, then P = `O(A) and in
this case rX(P ) = 1 = w − 1 and rX(P ) is evinced by {`O(A)}.

Now assume w ≥ 3. We have rC(B) = n + 3 − w ([6]). Fix any Q ∈
〈{O,B}〉 \ {O,B}. Since {O,B} ⊂ 〈W 〉, we get Q ∈ 〈W 〉. Hence brC(Q) ≤
w. If brC(Q) 6= rC(Q), then rC(Q) = n + 3 − brC(Q) ≥ n + 3 − w. If this
is the case for all Q, then Lemma 2 gives rX(P ) = n + 3 − w. Fix any
finite set S′ ⊂ C \ {A} with ](S′) = w − 2 and set W ′ := 2A ∪ S′; take any
B′ ∈ 〈W ′〉 with B′ /∈ 〈W ′′〉 for any W ′′ ( W ; obviously rX(`O(B

′)) = w − 1
and `O(S

′ ∪ {A}) evinces rX(`O(B
′)).

Now assume brC(Q) = rC(Q). Take S3 ⊂ C evincing rC(Q). Since
deg(W ) + ](S3) ≤ n + 2, we have 〈W 〉 ∩ 〈S3〉 = 〈W ∩ S3〉. Since Q ∈ 〈W 〉
and S3 evinces rC(Q), we get S3 ⊆ W . We claim that 2A ∪ S3 = W ,
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i.e. W = 2A ∪ S1 with S1 ⊂ C \ {A}, S1 reduced and either S3 = S1 or
S3 = S1 ∪ {A}. Indeed, since Q ∈ 〈S3〉, O ∈ 〈2A〉 and B ∈ 〈{O,Q}〉, we
have B ∈ 〈S3 ∪ 2A〉. Since S3 ∪ 2A ⊆ W and B /∈ 〈W ′〉 for any W ′ ( W ,
we get 2A ∪ S3, as claimed. Hence either rC(Q) = w − 1 (case A ∈ S3) or
rC(Q) = w. Taking W 6= 2A ∪ S1 with S1 ⊂ C \ {A} and S1 reduced, we
get the existence of (B,W ) with O ∈ 〈W 〉 and rX(`O(B)) = n+ 3− w.

Now we check that if w ≥ 3 then both cases with rX(P ) 6= n + 3 − w
may occur for certain B and W . Take any W = 2A∪S2 with S2 ⊂ C \ {A},
S2 reduced and ](S2) = w − 2. Let B1 be a general point of 〈W 〉. Since
〈2A〉∩〈S2〉 = ∅, 〈S2〉 has codimension 2 in 〈W 〉 and B1 is general in 〈W 〉, we
get 〈{O,B1}〉 ∩ 〈S2〉 = ∅. Lemma 2 gives rX(P ) ≤ w − 1. Since we proved
that rX(`O(B1)) ≥ w−1, we get rX(`O(B1)) = w−1 and that `O({A}∪S2)
evinces rX(P ). Fix a general O′ ∈ 〈S2〉. Notice that W has only finitely
many subschemes. Hence the set T of all proper subspaces of 〈W 〉 spanned
by a subscheme of W is finite. Since O′ is general in 〈S2〉 and 〈2A〉∩〈S2〉 = ∅,
a general B2 ∈ 〈{O′, O}〉 is not contained in any Λ ∈ T . Hence W evinces
brC(B2). Since `O(O

′) = `O(B2), we have rX(`O(B2)) ≤ w − 2. We proved
that in this case we have rX(`O(B2)) = w−2 and `O(S2) evinces rX(`O(B2)).

(b) Here we assume O /∈ 〈W 〉 and A ∈ Wred. Part (a) gives that A
appears with multiplicity 1 in W .

First assume 2w ≤ n. Set W1 := W \ {A} and W2 := W1 ∪ 2A. Thus
deg(W2) = deg(W1) + 2 = w + 1. Fix any Q ∈ 〈{O,B}〉 \ {O,B}. Since
B ∈ 〈W 〉 and O /∈ 〈W 〉, then Q /∈ 〈W 〉. Since O ∈ 〈2A〉, then Q ∈ 〈W2〉.
Thus brC(Q) ≤ w + 1. Let Γ be the only scheme evincing brC(Q). Since
deg(W2) + deg(Γ) ≤ 2w + 2 ≤ n+ 2, we have 〈Γ〉 ∩ 〈W2〉 = 〈Γ ∩W2〉. Since
Q ∈ 〈Γ〉 ∩ 〈W2〉 and Q is not in the linear span of a proper subscheme of Γ,
we get Γ ⊆ W2. Since B ∈ 〈2A∪Γ〉, we also have W ⊆ Γ∪2A. Hence either
Γ = W2 or Γ = W or Γ = W1. Since Q /∈ 〈W 〉, we have Γ = W2. Thus
brC(Q) = w + 1 and brC(Q) is evinced by a non-reduced scheme. Hence
rC(Q) = n + 3 − brC(Q) = n + 2 − w ([4, Theorem 23]). Hence Lemma 2
gives rX(P ) = n+ 2− w.

Now assume 2w = n + 1. Assume rX(P ) ≤ n + 1 − w and take Q1 ∈
〈{O,B}〉 and E ⊂ C such that ](E) = rX(P ) = rC(Q1), E evinces rC(Q1)
and `O(E) evinces rX(P ). We have deg(W2)+ ](E) ≤ (w+1)+ (n+1−w).
Hence 〈W2〉∩〈E〉 = 〈W2∩E〉. As above we get E ⊂ W2. Since E is reduced,
we get E ⊆ (W2)red = Wred. Since W is not reduced, we get ](E) ≤ w − 1.
Since B ∈ 〈2A ∪ E〉 and deg(2A ∪ E) + deg(W ) ≤ n + 2, we also get
B ∈ 〈W ∩ (2A ∪E)〉, i.e. W ⊆ 2A ∪E. Since A appears with multiplicity 1
in W and E is reduced, we get that W is reduced, a contradiction.

We have U ∈ ∆ if and only if U = {A} ∪ U ′ with U ′ a degree w − 1
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subscheme of C \{A} and U ′ not reduced. Hence ∆ is an irreducible variety
of dimension w− 2. Set Λ := σw(C) \ σ0

w(C). Let Λ′ be the set of all B ∈ Λ
whose border rank is evinced by a 0-dimensional scheme containing A with
multiplicity 1. The uniqueness of the scheme computing the C-border rank
implies that Λ and Λ′ are non-empty irreducible constructible subsets with
dimension 2w−1 = n−1 and n−2, respectively. Set Θ := (∪W∈∆〈W 〉)∩Λ′.
Let J ⊂ Pn+1 denote the join of 〈2A〉 and Θ, i.e. the closure in Pn+1 of
the planes 〈2A ∪ {K}〉 with K ∈ Θ \ 〈2A〉. Fix a general W ∈ ∆ and a
general B ∈ 〈W 〉. Since B is general, W is linearly independent and W
has only finitely many subschemes, we have B /∈ 〈W ′〉 for every W ′ ( W .
Since 2w ≤ n + 1, we get bC(B) = w and that W evinces the border rank
of B (Lemma 1). Since W is not reduced, we have B ∈ σw(C) \ σ0

w(C). We
just proved that n + 2 − w ≤ rX(P ) ≤ n + 3 − w. By Lemma 2, to prove
that rX(P ) = n + 2 − w = w + 1, it is sufficient to prove the existence of
Q ∈ 〈{O,B}〉 \ {O} with rC(Q) ≤ w + 1. Since rC(Q) = w + 1 if and only
if brC(Q) = w + 1 ([6, eq. (4)]), it is sufficient to find Q ∈ 〈{O,B}〉 with
Q /∈ σw(C). Assume that this is not the case (for general W,B). Varying W
in ∆ and B in Λ′ we get that J ⊆ σw(C). Hence the hypersurface σw(C)
is a cone with vertex containing 〈2A〉. Since Aut(P1) acts transitively on
σ1(C), we get that σw(C) is a cone whose vertex contains σ1(C). Since
〈σ1(C)〉 = Pn, we get σw(C) = Pn+1.

(c) Here we assume A /∈ Wred. The proof of part (b) works verbatim,
taking W2 := W ∪ 2A, i.e. now W2 has degree w + 2.

Proof of Theorem 1. Let us first check that O /∈ 〈E〉.
Assume O ∈ 〈E〉. Thus O ∈ 〈2A〉 ∩ 〈E〉. Since deg(2A) + deg(E) = 2 + ρ ≤
n+2, we get O ∈ 〈2A〉 ∩ 〈E〉 = 〈2A∩E〉, where 2A∩E denote the scheme-
theoretic intersection. Since E is reduced, we get 2A ∩ E ⊆ {A}. Since
O 6= A, we get a contradiction. Hence O /∈ 〈E〉.

Since P ∈ `O(E) and ](E) = rC(M), we have rX(P ) ≤ ρ.
(a) Here we assume 2ρ ≤ n. Take S ⊂ X computing rX(`O(M)). In

this case it is sufficient to prove that S = `O(E). Since `O|C is injective,
there is a unique S′ ⊂ C such that `O(S

′) = S. Since P = `O(M) ∈ 〈S〉,
we have M ∈ 〈{O} ∪ S′〉 ⊂ 〈2A ∪ S′〉. Thus M ∈ 〈2A ∪ S′〉 ∩ 〈E〉. Since
deg(2A ∪ S′) + deg(E) ≤ 2 + 2ρ ≤ n+ 2, the scheme 2A ∪ S′ ∪E is linearly
independent. Thus 〈2A∪S′〉∩ 〈E〉 is the linear span of the scheme-theoretic
intersection (2A∪S′)∩E. Since E is reduced and M /∈ 〈E′〉 for any E′ $ E,
we get that either S′ = E or S′ ∪ {A} = E. If A /∈ E, then we get S′ = E,
as wanted.
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Assume A ∈ E, if S′ = E, then we are done. Assume that S′ 6= E, i.e.
S′ = E \{A}. Since `O(M) ∈ 〈`O(S′)〉, we have {O,M}∩〈S′〉 6= ∅. In the ρ-
dimensional linear space 〈2A∪S′〉, the linear subspaces 〈E〉 and 〈{O}∪S′〉 are
different hyperplanes, because O /∈ 〈E〉. Hence the line 〈{O,M}〉 ⊂ 〈2A∪S′〉
intersects E in a unique point. Call P ′ this point. Since M ∈ 〈E〉, we have
P ′ = M . Since `O(M) ∈ 〈`O(S′)〉, we have {O,M} ∩ 〈S′〉 6= ∅. Hence
P ′ ∈ 〈S′〉. Hence rC(M) ≤ ρ− 1, a contradiction.

(b) Here we assume n + 1 ≤ 2ρ ≤ n + 2. Assume rX(P ) ≤ ρ − 2
and take S′ ⊂ C such that ](S′) = rX(P ) and `O(S

′) evinces rX(P ). Since
deg(2A ∪ S′ ∪ E) ≤ n + 2, as in step (a) we get that 〈2A ∪ S′〉 ∩ 〈E〉 is
the linear span of the scheme-theoretic intersection (2A ∪ S′) ∩ E. Since
O ∈ 〈2A〉 and M ∈ 〈{O} ∪ S′〉 ∩ 〈E〉, while M /∈ 〈E′〉 for any E′ $ E, we
get a contradiction.

(c) Assume n odd and 2ρ = n + 3. A general P1 ∈ Pn+1 satisfies
rC(P1) = brC(P1) = (n+3)/2. A general P ′ ∈ Pn satisfies P ′ ∈ σ(n+1)/2(X)\
σ(n−1)(X) ([1, Remark 1.6]). A general P ′ ∈ Pn is of the form `O(P1) with
P1 general in Pn+1.
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