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Abstract

We study the quantum corrections to an inflationary model, which has the attractive feature of

being classically scale-invariant. In this model, quadratic gravity plays along a scalar field in such

a way that inflation begins near the unstable point of the effective potential and it ends at a stable

fixed point, where the scale symmetry is broken and a fundamental mass scale naturally emerges.

We compute the one loop corrections to the classical action on the curved background of the model

and we report their effects on the classical dynamics with both analytical and numerical methods.
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I. INTRODUCTION

The recent Planck survey [1] provided a wealth of observational data that allowed to put

severe constraints on the space of inflationary models. Among these, the Starobinsky model

[2] results to be one of the most consistent with observations. This model is attractive

because inflation is driven by a scale-invariant term R2, in line with the fact that scalar and

tensor perturbations are nearly scale-invariant. When inflation ends, the quadratic term

becomes subdominant with respect to M2R, and so we are left with a Universe which has a

(Planck) mass scale M , in agreement with what we observe today [3].

In this paper we investigate quantum corrections to a quadratic derivative model of in-

flation, which is presented in [4, 5], in order to see whether its viability is preserved. This

classical model is particularly attractive because it describes a scale-invariant inflationary

phase, which ends in a scale-dependent fixed point of the action, as first explored by [6].

This is particularly convenient for the same reasons that are given above for the Starobinsky

model, although, here, the scale-dependence is achieved dynamically via spontaneous sym-

metry breaking. An analysis of the inflationary phase for the case of the Higgs field in place

of a scalar field has been investigated in [7]; in particular, a renormalization group driven

quartic coupling has been considered. Other relevant contributions can be found in [8–13]

and references therein, focusing on various aspects of the quantum corrections to inflation,

like quantum anomalies, the influence of gauge fields, dark matter or f(R). Scale-invariant

gravity in f(R) was investigated also in the context of classical black holes [14, 15].

Quantum corrections are known to break the conformal symmetry [16, 17] and, in par-

ticular, scale symmetry, since a regulation scheme necessarily introduces mass scales in the

action. A detailed study showing the effect of gauge degrees of freedom in forming a sym-

metry breaking scalar condensate has been recently presented in [18]. To make the model

described in [4] more robust, we need to check that the one-loop contributions are suppressed

with respect to the classical action and so the breaking of scale symmetry is mild, at least

on-shell, during inflation. We should note that conflicting claims about a conformal anomaly

exist, since scale-invariant regulators have been used in recent articles, e.g. the new approach

presented in [19], and the field-dependent mass scale in [20] or [21]. Calculations are carried

out on curved spacetime, in which gravity is kept classical (including the R2 term) and all

other fields are quantized: this theory has proven to be very effective in predicting physical

2



phenomena such as the Hawking radiation and the formation of large-scale structures in

the Universe [17, 22]. However, as we will see, the presence of tachyonic instabilities in the

conditions required for inflation may actually restrict the validity of the method.

We end this introduction with few considerations on the origin of the additional scalar

field in the action (1). We think that it can be motivated more strongly from low energy

particle physics, rather than inflation, because the Standard Model Lagrangian is exactly

scale invariant were it not for the Higgs mass, an old remark probably due to W. Bardeen [23].

This suggested to him the idea that the Higgs mass could emerge via broken scale invariance

due to the vacuum expectation value of one or more scalar fields, in such a way that the

smallness of the Higgs mass would be technically natural. The preferred scalar field is not

necessarily the Higgs itself. Another hint comes from the nearly scale invariant spectrum

of primordial fluctuations. However, the most natural framework where the appearance of

a low energy scalar field is actually predicted is string theory, with its dilaton field. The

low energy effective action of string theory actually contains all the terms (plus many more)

of the action (1), in what it is called the string metric by string theorists, and the Jordan

frame metric by cosmologists. The Brans-Dicke theory can also be considered as another

instance of the dilaton field, but with a different coupling to the metric. The dilaton field is

always part of the string low energy action and as a consequence there is, strictly speaking, no

equivalence principle and thus no way to single out a preferred metric. This is one motivation

to include the scalar field as the conformal part of a new metric, known to everybody as

the Einstein frame metric. The stringy stuff accompanying the dilaton is omitted in this

paper, on the grounds that inflation generically ends so fast that all interactions, except the

gravity-scalar sector, are frozen because the corresponding rates are much more slower than

the expansion rate (the Gamow argument).

This paper is organized as follows. In Sec. II we give a brief introduction to the classical

model presented in [4], in order to highlight the principal results, which are to be compared

with the quantum ones. Then, in Sec. III we compute the one loop correction along with

renormalization group equations. We numerically study the dynamics and use a method

presented in [29], which allows to find approximate quantitative results. As long as we

need qualitative bounds, this approximation suffices. To go beyond this approximation, we

will use numerical methods. We finally discuss our findings and future work in V. Most

cumbersome formulae are contained in the appendix.
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II. THE CLASSICAL MODEL

We consider the model presented in [4] with action

S =

∫
d4x
√
−g
[
α

36
R2 +

ξφ2R

6
− 1

2
(∂φ)2 − λ

4
φ4

]
, (1)

where ξ > 0, λ > 0. This action is scale-invariant, i.e. invariant under the transformations

ḡµν(x) = gµν(`x) , φ̄(x) = `φ(`x) . (2)

It is also invariant under the internal Weyl symmetry

ḡµν(x) = L2gµν(x) , φ̄(x) = L−1φ(x) . (3)

From now on we choose, as background metric, a flat Robertson-Walker line element with

signature (−,+,+,+). The three parameters α, ξ, λ are dimensionless free parameters.

The effective classical potential

V (φ) = −ξφ
2R

6
+
λ

4
φ4 (4)

has two stationary points at φ = 0 and φ = ±2
√

ξ
λ
H1 for some constant H1. From the

equations of motion (which are of second order in φ and H), we find that the stationary

points are also fixed points of the dynamical system in the phase space (φ,H). In particular,

it turns out that the first is a saddle point and the second is a stable attractor. When the

point in phase space reaches the stable fixed point scale-symmetry spontaneously breaks,

in the sense that the scalar field settles at a non-vanishing value. If we further impose the

constraint α = ξ2/λ the quadratic curvature term exactly cancels the quartic potential at

the stable fixed point. Here, (1) reduces to the usual Einstein-Hilbert action with a mass

scale determined by the value of scalar field at the minimum of the potential. This mass

can naturally be identified with the Planck mass.

We can solve the linearized system of equations near the fixed points in terms of the

number of e-foldings N = log a. Close to the saddle point we find

H(N) = c1 + c2e
−3N , (5)

φ(N) = c3e
(− 3

2
+ 1

2

√
9+16ξ)N + c4e

(− 3
2
− 1

2

√
9+16ξ)N . (6)

4



Close to the stable attractor instead we have

H(N) = c1 + c2e
−3N + e−3/2N(c3S(N) + c4C(N)) , (7)

φ(N) =
ξ

λ

[
2c1 +

c2

2
e−3N +

ξ

2(1 + 2ξ)
e−3/2N((2Kc4 − 5c3)S(N)− (5c4 + 2Kc3)C(N))

]
,

(8)

where K = 1
2

√
7 + 64ξ and S(N) = sin(KN), C(N) = cos(KN).

With these approximations it becomes clear that, in the proximity of the saddle point, the

evolution of the Universe is quasi-de Sitter and one finds the following relation between the

number of e-foldings required by inflation (∆N) and the initial values for the dimensionless

ratio Hi

φi
:

∆N =
1

2
ln

[
(2ξ − 3)H2

i

λφ2
i

]
=⇒ Hi

φi
' exp(∆N − 9). (9)

The latter relation is obtained, in particular, if we assume “physical” values of the couplings

ξ = 1 and λ = 10−8 [41]. With these values, we ensure that, when the system settles at the

stable fixed point, ξ
3
φ2 = M2

p = (8πG)−1. The observational constraint ∆N ≥ 60, needed to

solve the flatness and horizon problems [30], is satisfied if inflation begins at a point in the

phase space close enough to the unstable fixed point. Moreover, numerical computations

show that, after inflation ends, the system settles in the stable fixed point in few e-foldings,

during which both H and φ undergo damped oscillations, able to give rise to reheating (see

[4] for details).

To obtain an approximate value for the inflationary spectral indices, we transform the

action into the more familiar Einstein frame. Let us consider the Lagrangian

L = χR− (∂φ)2

2
− αϕ2

36
− λ

4
φ4 = χR− (∂φ)2

2
− λ

2
φ4 + 3

ξχφ2

α
− 9

α
χ2 , (10)

where

χ =
α

18
ϕ+

ξ

6
φ2 . (11)

This is the same as Eq. (1), since the equation of motion for ϕ gives ϕ = R. We reparametrize

the fields with a conformal transformation ḡµν = 2
M2

∂L
∂R
gµν [42]. All other tensors transform

accordingly (as given in [32]). One then finds the Einstein frame action

S =

∫
d4x
√
|ḡ|

[
M2

2
R̄− (∂µψ)2

2
− (∂µφ)2

2
exp

(
−
√

2ψ√
3M

)
−W (φ, ϕ)

]
, (12)
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where the potential is given by

W (φ, ϕ) =
9λM4

4ξ2
+
λφ4

2
exp

(
−2
√

2ψ√
3M

)
− 3λM2φ2

2ξ
exp

(
−
√

2ψ√
3M

)
,

and where we redefined the “scalaron” field ψ ≡
√

6M ln Ω. Note that the mass parameter

M is completely arbitrary and, although it is not apparent, scale-invariance can be preserved

in the Einstein frame ifM→ L−1M under scale transformations. The Einstein frame action

(12) describes the dynamics of two scalar fields besides the Einstein term, this can be reduced

to single field inflation, as in [31] and [5].

As in the Jordan frame, there are two stationary points. Interestingly, they satisfy a

universal scaling between the Hubble functions calculated at the two fixed points given by

H̄unst

H̄st
=
√

2. The slow roll parameters are

ε = −dH̄/dt̄
H̄2

∼ M
2

2

(
∂W

∂ψ

1

W

)2

, (13)

η =
d2ψ/dt2

H̄dψ/dt
∼ ε− M

2

W

∂2W

∂ψ2
, (14)

and the number of e-foldings is

N̄ =

∫
H̄dt̄ ∼ − 1

M2

∫
dψW

(
∂W

∂ψ

)−1

. (15)

Since inflation occurs near the unstable fixed point we can expand the potential for φ
M � 1

and we find

ε ∼ 3

4N2
, η ∼ ε+

1

N
=⇒ ns = 1− 2η − 4ε ∼ 1− 2

N
+O

(
1

N2

)
, (16)

as in the Starobinsky model [3]. For more detailed results, see [5] and also, for a more

comprehensive class of models, [39].

In this brief summary we have described an inflationary model where scale invariance

is broken dynamically and classically. The spectral indices are very similar to the ones

predicted by the Starobinsky model but with a different scale invariance breaking mechanism.

We now turn to the quantum corrections that are expected to arise in the scalar field sector.

III. ONE LOOP EFFECTIVE ACTION

We now compute quantum corrections to the classical model and we choose the Jordan frame,

where calculations are simpler. This choice implicitly amounts to consider the “scalaron”
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degree of freedom as classical. Thus, calculations are carried out in the framework of semi-

classical gravity, which is introduced in [22] and [17] (see also the comprehensive DeWitt’s

book [24]).

The usual approach to divergences that appear in an effective action computed on curved

spacetime is to treat them with dimensional regularization, which is known to break scale

symmetry, as any other commonly-used regulator.

We consider the action

Γ[gµν , φ] = Γ[0][gµν , φ] + Γ[1][gµν , φ], (17)

where

Γ[0][gµν , φ] = Sm[gµν , φ] + Sg[gµν , φ] + δS[gµν , φ] (18)

is the tree level action (Sg + Sm) plus the counterterm action (δS). The term

Γ[1][gµν , φ] = − i
2
~Tr ln(−G(x, x′)) (19)

is the one loop correction, which depends on the biscalar propagator G(x, x′) in the back-

ground fields (gµν , φ) [43]. The propagator is expanded in Riemann normal coordinates and

(19) can be evaluated with standard techniques to give

Γ[1][gµν , φ] =

∫
dnx|g(x)|1/2 1

2(4π)n/2

(
M2

µ2

)(n−4)/2 +∞∑
j=0

aj(x, x)(M2)n/2−jΓ(j − n/2) (20)

in n spacetime dimensions. Here, µ is the external mass scale that appears due to dimensional

regularization and M2 is the mass associated to the quantum perturbation, determined

below. As stated in [17, 24], M2 should have the Feynman prescription M2 − iε as long as

it is positive, to make the integral representation of the semi-classical propagator expansion

converge. Equation (20) is valid when spacetime is slowly expanding, meaning that

(ȧ/a)2

M2
� 1 ,

ä/a

M2
� 1 , (21)

where a(t) is the scale factor in a flat Robertson-Walker metric.

The propagator associated to quantum fluctuations satisfies(
−�+ 3λφ2 − ξ

3
R

)
G(x, x′) =

δ(x− x′)√
−g

. (22)

and, since the scalar field is massless, we set

M2 = 3λφ2 − (2ξ + 1)

6
R , (23)
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so that the quantum fluctuation satisfy(
−�+M2 +

R

6

)
ϕ = 0 . (24)

The R
6

term in (23) is introduced because it allows to sum part of the Riemann expansion

of the propagator when given in terms of M2 + R
6

(R-summed propagator [17]). Actually,

the classical evolution implies that M2 changes from being negative to positive when going

from the unstable point to the stable one.

It is unclear to us how to proceed in this case. Going back in time, the scalar effective

mass M2 becomes negative when φ2 drops below a quantity of order R/λ ∼ H2/λ (with

ξ ∼ 1), which may happen to be close to the unstable fixed point, and the field disturbances

become tachyonic during few e-foldings of order 2N ∼ log(H2/λφ2
0), where φ0 is the initial

value of the field. So we have to keep this number well below that required for inflation

(N ≥ 50). Comparing with Eq. (9), this is barely satisfied in the growing field regime. As

a qualification, the term tachyonic has nothing to do here with superluminal propagation.

Rather, it refers to an instability, since tachyonic fields have unbounded energy from either

side. Indeed, it is exactly this tachyonic instability that makes the field to grow exponentially

till the minimum of the potential. In the crossover regionM2 ∼ 0, the disturbances are nearly

massless. Classically, a tachyonic field is not seriously problematic. Quantum mechanically

things are very different and indeed it has been argued that this provides a very efficient

preheating process [25, 26]. However, it is true that we have here a variable mass and the

effects of the R2 term, that make all the difference.

Unless otherwise stated, it is understood in the following that our analysis applies only

outside the region of tachyonic instability in the field space, and consequently we will judge

the results from the consistency requirement that the one-loop expansion really can be

applied. The quantum treatment of the tachyonic regime is nevertheless very interesting

and deserves further work. It is known that these theories are not unitary unless due care

is taken of the interactions, and even quantization of the free tachyon field may result in a

violation of Einstein causality over macroscopic scales. That said, we may come now to the

heat kernel expansion.

The coefficients of the expansion in Eq. (20) up to second order are taken from [34] and
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are reported in the Appendix A. Up to second order we find

Γ[gµν , φ] =Γ[0][gµν , φ] +

∫
dnx

√
−g

64π2

{
−M4

[
log

(
M2

µ2

)
− 3

2
+

1

n− 4

]
+

−2a2(x, x)

[
log

(
M2

µ2

)
+

1

n− 4

]}
,

(25)

where the Euler-Mascheroni constant has been absorbed into µ2. Divergences are canceled

by counterterms in δS in the MS-scheme, giving

L[gµν , φ] =
α

36
R2 +

ξ

6
φ2R− (∂µφ)2

2
− λ

4
φ4 + ε1RαβR

αβ + ε2RαβµνR
αβµν+

+
1

64π2

{
−M4

[
log

(
M2

µ2

)
− 3

2

]
+
RµνR

µν −RαβµνR
αβµν

90

[
log

(
M2

µ2

)]}
.

(26)

We see that we should add two new couplings ε1, ε2 at tree-level to account for all divergences

and that the Lagrangian is well defined for positive M2, picking an imaginary part for

negative M2 if the one-loop result could be trusted.

In passing, we note that the sign of the imaginary part is determined if we remember

that M2 really is M2− i0, so we must approach the cut of the logarithm from below, which

would give the imaginary part of the effective action

=(Γ) =

∫
M4

64π
dµ−

∫
RµνR

µν −RαβµνR
αβµν

5760π
dµ , dµ =

√
−gdnx , (27)

and exp[−=(Γ)] indicates the quantum instability we mentioned before. The first term

cannot be trusted though. The curvature term possibly can, but should be supplemented

with the metric curvature fluctuations due to the R2 term (it is negative anyway in a FRW

background). General results for curvature perturbations in modified gravity can be found

in [27] and for a constant curvature background in [28]. We emphasize that the divergent

part must always be real, and that the imaginary part is finite. In this regard, one should

remember that Eq. (26) does not provide a faithful description when conditions (21) are not

met, which surely happens when M2 ∼ 0. This means that Eq. (20) is not valid when M2 is

vanishing, but we can expect its real part to have a smooth massless limit [17] which would

be valid in the crossover region.

The modified equations of motion thus are

αH2(2HH ′′ +H ′2 + 6HH ′) + 2ξH2φφ′ − φ′2

2
H2 +

φ4

4
(4ξH2 − λφ2) + Q1 = 0 , (28)

and

H2φ′′ + (HH ′ + 3H2)φ′ − 2ξφHH ′ − φ(4ξH2 − λφ2) + Q2 = 0 , (29)
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where Q1 and Q2 contain all the quantum corrections and are explicitly given in the Ap-

pendix B.

Since the effective action should be independent on the mass scale µ, we have µdΓ
dµ

=

0, from which retrieve the energy dependence of the renormalized couplings. These are

expressed in terms of the beta functions βqi ≡ µdqi
dµ

, where qi is a generic coupling constant.

We then find

βλ =
9λ2

8π2
, βξ =

3λ(2ξ + 1)

16π2
, βα = −(2ξ + 1)2

32π2
, (30)

βε1 =
1

2880π2
, βε2 = − 1

2880π2
.

As a check, the first beta function matches exactly the standard beta function of the quartic

interaction, and does not feel the curvature in this approximation. Taking the classical

reference value λ0 = 10−8 and solving Eq. (30) for the couplings (see Appendix C), we see

that the running of ξ(µ) and α(µ) is suppressed by λ0. Moreover, a factor 1
2880π2 appears in

the running of ε1(µ) and ε2(µ), which are then also suppressed for sufficiently small values

of µ. βε1,2 are the residues of the poles in the one loop effective action, as predicted by [16].

Moreover, we recover asymptotic freedom conditions, in the infrared for λ, ε1 and ξ, in the

ultraviolet for α and ε2: as energy grows (µ → +∞), the self coupling λ runs toward a

Landau pole, ξ flows to its conformal value ξ = −1/2 and the gravitational couplings α and

ε2 become weaker and weaker. Due to different runnings, the constraint α = ξ2/λ no longer

holds. The divergences for µ → 0 of α(µ), ε1(µ) and ε2(µ) reflect the infrared divergences

that typically appear in a massless theory.

A. Numerical solution

We choose the external mass scale as

µ2 = M2(φ, λ(µ), ξ(µ), R) , (31)

so it is time-dependent. This choice is very convenient since it makes all logarithms vanish,

but it also makes the renormalization group Eq. (30) time-dependent and so it has to be

solved along with the equations of motion. Moreover, it makes the whole system of equations

implicit, making quantitative predictions very difficult [44]. We choose, as initial conditions

near the unstable de Sitter phase, the classical initial values (H0, φ0) and the classical values

for the couplings. The new couplings ε1 and ε2 are taken to be zero at the reference scale.
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The numerical solution of the system shows that the dynamical evolution is very similar

to the classical one, as shown in fig. 1. In particular, fields in the second de Sitter phase vary

at most ∼ 1% with respect to the classical case and couplings stay around their reference

value. The mass scale changes little, staying in the range 0.4µ0 ≤ µ ≤ 1.5µ0 when the

adiabatic approximation is valid. In this range, we have that the derivatives of a generic

coupling qi in the number of e-foldings satisfy the constraint∣∣∣∣q′iqi
∣∣∣∣ . 0.05 . (32)

for each coupling qi.

We now consider the same energy scale (31) but we set it in the Lagrangian before taking

the variation of the action to derive the equations of motion. This is the pseudo-optimal

energy scale choice introduced in [29], and it is an approximation since it gives dΓ
dµ
6= 0. We

find that the pseudo-optimal energy scale choice is a good approximation (as can be seen in

Fig.(1)) and that fields in the second de Sitter phase vary at most ∼ 5% with respect to the

classical case.

To test the validity of the approximation introduced by the pseudo-optimal energy scale

choice, the authors of [29] propose to verify that µdΓ
dµ
� 1, but actually we find that µdΓ

dµ
� 1

for most of the evolution, as can be seen in Fig.(1).

We verified numerically when the adiabatic condition (21) is met during the inflationary

phase: as can be seen from Fig.(1), if we take 0.05 as critical value for the adiabatic condition

Eq.(21), we see that it is violated when the mass scale goes to zero (N ∼ 2 in Fig.1), and

mildly once after (N ∼ 2.3). In this regime we can not make any prediction since the form of

the effective action itself depends on this approximation. Whenever computing observables

in the following, we ensure that they do not fall in these two lapses of time. Out of the

adiabatic regime particles are created by the changing spacetime: these particles will decay

in Standard Model particles in the oscillations around the stable fixed point. In principle

they have a backreaction on the geometry [17], but this is neglected here.

B. Fixed points

In the following we use the pseudo-optimal energy scale choice in order to compute some

quantitative results. We can also neglect the running of the couplings, as seen in the last
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paragraph. We find that the two fixed points are still present and are given by

(H0, 0) ,

(
H1,±

√
12
(
ξ
3
− 3

64π2λ(2ξ + 1)
)(

λ− 27
32π2λ2

) H1

)
. (33)

These analytic expressions match up to 3% with the ones computed numerically in the

full one-loop case. Moreover, they are a saddle (unstable) fixed point and a minimum,

respectively. Near the unstable point we have

H(N) = c1 + c2e
−B/AN , (34)

where

B = 3 + 48ε1 + 84ε2 +
9

128π2
(2ξ + 1)2 , (35)

A = 1 + 12(ε1 + ε2) +
3

128π2
(2ξ + 1)2 . (36)

The solution is close to the classical one due to the weak energy dependence of the couplings.

Anyway the stability of the fixed points is preserved for arbitrary real values of ξ as long as

ε1 and ε2 are non-negative. φ(N) is as in Eq.(6), but with

√
9 + 16ξ →

√
9 +

(
16ξ − 9

4π2
λ(2ξ + 1)

)
. (37)

Growing and decaying modes could be spoiled by sufficiently large values of λ. Oscillatory

modes appear when

ξ <
9

4π2λ− 9

16− 9
2π2λ

. (38)

This is never verified for ξ > 0 and λ � 1. In particular, taking ξ > 0, oscillatory modes

may appear when
−9 + 9

4π2λ

16− 9
2π2λ

> 0 , (39)

that is when λ ∈ (32π2, 36π2). For λ = 0.1, which is used in the numerical solution, we

obtain ξ ≤ −0.5 as a critical value, so this point has the same stability of the ”physical” one.

Concerning the stable fixed point, we linearized and diagonalized numerically the system of

differential equations, finding that only small deviations appear with respect to the classical

result.
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C. Inflation

We can compute the dependence of the number of e-foldings on the value of the fields in the

unstable fixed point, as in Eq. (9). We consider

ε1 =
−H ′

H
=
H2φ′′ + 3H2φ′ + λφ3 − 4ξφH2 − 3

128π2 (36λ2φ3 − 24λ(2ξ + 1)H2φ)

H2(φ′ − 2ξφ− 36
128π2λ(2ξ + 1))

, (40)

and, by imposing ε1 = 1 at Ne (end of inflation) and by using Eqs. (5), Eq.(6) for Ne −Ni,

we find

Ne −Ni ∼
1

2
ln

(
H2(−3− 108λ

128π2 (2ξ + 1) + 2ξ)

(λ− 108
128π2λ2)φ2

)
, (41)

so the number of e-foldings for inflation has the same dependence on H
φ

as in the classical

case and, in a sufficiently small neighborhood of the unstable point, the condition ∆N ≥ 60

can always be met. Thus, also with quantum corrections, inflation can last long enough to

satisfy the observational constraints.

Finally, we have numerically verified that the deviations from a null cosmological constant

(with the constraint α = ξ2

λ
) around the stable fixed point are small, since they are just 4%

the value of the cosmological constant in the unstable de Sitter one.

D. Spectral indices

Regarding the computation of the spectral indices, the easiest way is to rely on the same

method that has been used in the previous section. The problem, however, is that the

correspondence among Einstein and Jordan frame is not completely assessed at quantum

level. Nevertheless, it can be argued that the two descriptions should match on-shell in order

to have the correct S-matrix elements, see e.g. [35–37] (on the equivalence of the two frames

in the space of solutions see however [38]). With the pseudo-optimal energy scale choice the

Lagrangian in the Einstein frame is

S =

∫
d4x
√
|g|

[
M2

2
R̄− (∂µψ)2

2
− (∂µφ)2

2
exp

(
−
√

2ψ√
3M

)
− 9M4

4
(
α + 3

128π2 (2ξ + 1)2
)

−
(
λ− 3

32π2λ
2
)
φ4

2
exp

(
−2
√

2ψ√
3M

)
−

3
(
ξ − 3

32π2λ(2ξ + 1)
)
M2φ2

2
(
α + 3

128π2 (2ξ + 1)2
) exp

(
−
√

2ψ√
3M

)]
.

(42)
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Interestingly, we find that the ratio between the Hubble factors at the fixed points is

unchanged, i.e. is Hunst/Hst =
√

2. In this case, the conformal transformation is

ḡµν = 2
M2

∂L
∂R
gµν with

χ =
α + 3

128π2 (2ξ + 1)2

18
ϕ+

ξ − 9(2ξ+1)λ
64π2

6
φ2 . (43)

The number of e-foldings is just as in Eq. (16), and so are the slow-roll parameters as a

function of N. Hence, the scalar spectral index is still ns ∼ 1 − 2
N

+ O
(

1
N2

)
. These results

can be readily found since, with the choice of pseudo-optimal energy scale, the quantum

corrections can be seen as a redefinition of the coupling, and (16) are independent of the

couplings.

We should also quantitatively verify that the scalar spectral index matches the observa-

tions, despite the above approximation. It is possible to write the exact one-loop Lagrangian

in the Jordan frame such that it is linear in R, as it has been done with the choice of pseudo-

optimal energy scale. The problem is to write the Lagrangian with interactions between the

scalar fields χ and φ (the last step in equation Eq. (10)). This is because χ(ϕ) in the exact

one-loop Lagrangian is not invertible as it contains terms like y = x lnx, whose inverse is the

exponential of the Lambert function. Then, we only tried to find whether its contribution is

numerically suppressed with some approximation: we applied the conformal transformation

used with the choice of pseudo-optimal energy scale, namely

Ω2 =
2χ

M2
= exp

( √
2ψ√
3M

)
with χ =

α + 3
128π2 (2ξ + 1)2

18
ϕ+

ξ − 9(2ξ+1)λ
64π2

6
φ2 , (44)

to the full one-loop potential, and we put R = ϕ and RαβR
αβ − RαβµνR

αβµν = R2

12
, which

is true near the unstable fixed point. The transformed Lagrangian is a reparametrization of

the fields in which non-linearities in R are present, but they are suppressed on-shell, thanks

to the result found numerically, see Fig. (1). We find the zeroth order correction to the

potential for φ
M � 1

W (φ, ψ) ∼ − 9M4

4
(
α + 3

128π2 (2ξ + 1)2
) + f(ξ)λ2M3ψ . (45)

The first slow-roll parameter can be computed by taking the lowest order in φ
M � 1 of ∂W

∂ψ
.

We find

ε =
3

4N2
+O

(
1

C2
2

)
, (46)
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with

C2 =
α + 3

128π2 (2ξ + 1)2

18
. (47)

This is O(λ2) for α = ξ2

λ
. The second derivative of W , instead, has a lowest order term

proportional to φ2 so the correction will be of order O
(

1
N

)
. Thus, the second slow-roll

parameter receives the correction

η = − 1

N
+O

(
1

C2N

)
. (48)

This is O(λ) for α = ξ2

λ
. If we take a generic α and impose that the correction must

stay within the uncertainty predicted by the Planck mission, we find the approximate lower

bound for α

6× 103 . α , (49)

which is five orders of magnitude less than α = ξ2

λ
, giving thus some freedom in the choice

of this coupling.

IV. A NOTE ABOUT REHEATING

Reheating provides a mechanism to transfer energy from the scalar field to the Standard

Model fields, which become excited and populate the Universe with all the elementary

particles after the end of inflation. In our model, the backreaction of the Standard Model

fields is supposed to take over the dynamical evolution of the system after it has reached the

stable fixed point and then lead the Universe towards a radiation dominated era [4, 5]. In

the simplest scenario, reheating is based on the assumption that the scalar field can decay

into boson pairs χ. This process can be modelled by considering the Lagrangian

L = Linv −
1

2
m2
χχ

2 − g2χ2φ2 − (∂χ)2

2
, (50)

where Linv is the scale invariant part. Expanding around the vacuum expectation value φ0

we find the relevant terms describing the decay, which take the form

Ldecay ∼
m2
φ

2
φ2 + g2φ0φχ

2 , (51)

where m2
φ ' λφ2

0/2 as in [4]. The decay rate is given by

Γ =
g2φ2

0

8πm2
φ

=

√
2

λ

g2φ0

8π
, (52)
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FIG. 1: Top left: validity of the adiabatic approximation. The peak around N = 2 denotes that the

approximation fails. Top right: plot of dΓ
dµ in the pseudo-optimal energy scale choice as a function

of the number of e-foldings. Bottom left: evolution of H(N) from the unstable point to the stable

one. The blue line is the classical evolution, the green line is the one-loop corrected one, and the

red line is the one-loop corrected one implemented with the pseudo-optimal energy scale. In the

classical numerical solution, couplings are chosen as ξ = 15, λ = 0.1 and α = ξ2

λ and these are the

initial values to solve the renormalization group equations. Bottom right: evolution of φ(N), with

the same conventions as in the bottom left plot.

and, in order for the field to have sufficient time to decay, we need Γ & H0 (where H0 is the

stable point value for the Hubble parameter). This provides a lower bound for the coupling

g, which can be evaluated recalling that, at the stable fixed point, φ0 = 2H0

√
ξ/λ, see eq.

(4). Thus, with the values inferrred in the previous sections, we have

g &

√
2
√

2πλ√
ξ
∼ 10−4 , (53)

which is hardly affected by quantum corrections since it depends only on running couplings.

We also know that λ and ξ satisfy a relation at tree level (eq. 22 of [4]), which relate them
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to the estimated value of H at the end of inflation. This can be used to rewrite the lower

bound on g as

g & 3 ξ3/410−4 , (54)

that shows that it has quite a strong dependence on couplings. Concerning instead upper

bounds on g, we observe that the coupling must satisfy the perturbative conditions, dictated

by the validity of the one-loop expansion, hence we expect g to be much smaller than one

[45]. More information on the physically allowed range for g could be retrieved by studying

non-gaussianity, and we hope to report soon new results on this issue.

There are several alternative pictures to reheating, such as parametric resonance [40],

which has been discussed for this model in refs. [4, 5]. The effects of loop corrections in this

case are hard to assess without a careful analysis that goes beyond the scope of this paper

but is certainly worth considering in future work.

V. CONCLUSIONS

In this paper we have studied how quantum corrections modify a classical model of inflation

with spontaneous symmetry breaking of scale invariance to assess whether the viability of

the model is preserved.

In order to see the impact of quantum corrections we relied upon techniques of semi-

classical gravity. This theory can be used to compute one-loop corrections in the regime in

which the spacetime is slowly expanding, meaning that ȧ2(t)
a2(t)M2 � 1, ä(t)

a(t)M2 � 1, where M

is a mass scale of the system. This adiabatic approximation allows to find an expansion in

derivatives of the metric to the one-loop effective action. This is done up to second order

and leads to a Coleman-Weinberg-like correction, where also quadratic scalars, such as R2,

RαβµνR
αβµν , RαβR

αβ, appear. The external mass scale is chosen here as field-dependent:

the scaling anomaly appears via the reference value µ0 appearing in (C1). One finds also

a tachyonic instability close to the onset of inflation, which cannot be handled by the heat

kernel expansion, and must take into account the effect of curvature fluctuations. Some

work in this case has already been done [25, 26].

The equations of motion are computed for generic µ and outside the tachyonic regime,

including the oscillatory regime relevant to reheating. In order to solve and discuss the

dynamics of the system we set µ2 = M2 in those equations which are then numerically
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solved along with the renormalization group differential equations. The solution has been

compared to the approximated pseudo-optimal energy scale choice [29], in which M2 = µ2

has been set readily in the Lagrangian. This has been verified to be a good approximation:

its use allowed to simplify consistently the computation of the properties of the system and

of the observables.

The main and comforting result is that there are only small deviations in the dynamics

from the classical evolution. It has been verified numerically whether the adiabatic expansion

holds throughout the evolution of the system: this has been proved to be true apart from

a small lapse of time in which M2 ∼ 0 and a mild violation afterwards, so no prediction

for the observables can be done in these regions of spacetime. We found that the nature of

the fixed points remains unchanged: the system evolves from an unstable point to a stable

one though the position of the fixed points change with respect to the classical case. The

number of e-foldings has the same dependence on the fields N ∼ ln
(

constH
2

φ2

)
with φ ∼ 0

and also the scalar spectral index remains unchanged. Quantitative deviations from the

classical case are numerically suppressed so there are not consistent changes and quantum

corrections do not modify the viability of the model.

Appendix A: Adiabatic coefficients

The adiabatic coefficients are computed according to the recursion relation

σ(x, x′);µa
k;µ(x, x′) + kak(x, x

′) = ∆−1/2(x, x′)(∆1/2(x, x′)ak−1(x, x′)) ;µ
;µ

+

(
3λ(φ2(x′)− φ2(x))− ξ

3
(R(x′)−R(x))− R(x′)

6

)
ak(x, x

′) ,

where σ is the geodesic interval 1
2
(x−x′)α(x−x′)α and ∆(x, x′) is the Van Vleck determinant.

These are explicitly computed in [34] by means of the heat kernel method, giving the same

expression of the effective action as (20). Up to second order they are

a0(x, x) = 0 , a1(x, x) = 0 , a2(x, x) =
3 + 5ξ

90
�R− 1

2
�φ+

RαβµνR
αβµν −RαβRαβ

180
.

The regularized effective action Eq. (20) is computed up to second order with these coeffi-

cients. Integrating by parts and truncating third and higher orders we get Eq.(26) (see [34]

for details).
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Appendix B: Correction to the equations of motion

We report here the explicit expressions of Q1 and Q2:

Q1 = ε1

[
1

2
RαβR

αβ + 2Rρ0γ0R
ργ −∇0∇0R−

1

2
�R +�R00

]
+ ε2

[
1

2
RασγδR

ασγδ+

+2R ρασ
0 R0ρασ + 4Rσ0γ0R

γσ − 4R0γR
γ
0 + 4�R00 − 2∇0∇0R]− 1

64π2
log

(
M2

µ2

)
×

×
[

(2ξ + 1)2

72
R2 +

9λ2φ4

2
+

(2ξ + 1)2

18
RR00 +

(2ξ + 1)2

6
HR,0 −

λ(2ξ + 1)

2
Rφ2+

−λ(2ξ + 1)R00φ
2 − λ(2ξ + 1)6Hφφ,0 +

RαβR
αβ −RαβµνR

αβµν

180
− Rρ

0R0ρ

45
− R αβγ

0 R0αβγ

45

]
+

− 27

4
λ2φ4 +

3

4
λ(2ξ + 1)Rφ2 − 1

48
(2ξ + 1)2R2 − (2ξ + 1)2

12
RR00 −

(2ξ + 1)2

4
HR,0+

+
3φ2λ(2ξ + 1)

2
R00 + 9(2ξ + 1)λHφφ,0 +

(2ξ + 1)2

6M2
HRM2

,0 −
3λ(2ξ + 1)H

M2
φ2M2

,0+

− 2ξ + 1

6
R00M

2 − (2ξ + 1)

2
HM2

,0 +
1

90

[
∇ρ∇δ

(
Rρδ log

(
M2

µ2

))
+

+2∇ρ∇0

(
Rρ0 log

(
M2

µ2

))
−�

(
R00 log

(
M2

µ2

))
+ 4∇α∇β

(
R0α0β log

(
M2

µ2

))
+

−(2ξ + 1)R00

6M2
(RαβR

αβ −RαβµνR
αβµν) +

(2ξ + 1)H

2M4
M2

,0

(
RαβR

αβ −RαβµνR
αβµν

)
+

−(2ξ + 1)H

2M2

(
RαβR

αβ −RαβµνR
αβµν

)
,0

]
= 0 ,

(B1)

Q2 =
1

64π2

[(
36λ2φ3 − 2λ(2ξ + 1)Rφ

)
+

(
log

(
M2

µ2

)
− 3

2

)
+ 6λφM2+

− 1

90
(RαβR

αβ −RαβµνR
αβµν)

6λφ

M2

]
.

(B2)
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Appendix C: Solution of the renormalization group equations

Eqs. (30) can be easily integrated, and we find

ε1,2(µ) = ε1/2,0 ±
ln(µ/µ0)

2880π2
, (C1)

λ(µ) =
λ0

1− 9
8π2 ln

(
µ
µ0

) ,
2ξ(µ) + 1 = (2ξ0 + 1)

(
1− 9

8π2
ln

(
µ

µ0

))−λ0/3
,

α(µ) = α0 −
π2(2ξ0 + 1)2

36(1− 2λ0/3)
+

π2(2ξ0 + 1)2

36(1− 2λ0/3)

(
1− 9

8π2
ln

(
µ

µ0

))−2λ0/3+1

,

where the solution for α(µ) and ξ(µ) is valid for µ � µ0e
8π2/9. This result is discussed in

the main text.
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