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Abstract. We use a quantum Monte Carlo method to investigate various
classes of two-dimensional spin models with long-range interactions at low
temperatures. In particular, we study a dipolar XXZ model with U (1) symmetry
that appears as a hard-core boson limit of an extended Hubbard model describing
polarized dipolar atoms or molecules in an optical lattice. Tunneling, in such a
model, is short-range, whereas density–density couplings decay with distance
following a cubic power law. We also investigate an XXZ model with long-
range couplings of all three spin components—such a model describes a system
of ultracold ions in a lattice of microtraps. We describe an approximate phase
diagram for such systems at zero and at finite temperature, and compare their
properties. In particular, we compare the extent of crystalline, superfluid and
supersolid phases. Our predictions apply directly to current experiments with
mesoscopic numbers of polar molecules and trapped ions.
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1. Introduction

Quantum simulators (first proposed by Feynman [1]), which are devices built to evolve ac-
cording to a postulated quantum Hamiltonian and thus ‘compute’ its properties, are one of the
hot ideas which may provide a breakthrough in many-body physics. While one must be aware
of possible difficulties (see, e.g., [2]), impressive progress has been achieved in recent years
in different systems employing cold atoms and molecules, nuclear magnetic resonance, super-
conducting qubits and ions. The latter are extremely well controlled, and it has already been
demonstrated that, indeed, quantum spin systems may be simulated with cold-ion setups [3, 4].
Quantum spin systems on a lattice constitute one of the most relevant cases for quantum sim-
ulations as there are many instances where standard numerical techniques for computing their
dynamics or even their static behavior fail, especially for two-dimensional (2D) or 3D systems.

Chronologically, the first proposition to use trapped ions for simulating lattice spin models
came from Porras and Cirac [5], who derived the effective spin Hamiltonian for the system6,

H = J
∑
i, j

1

|i − j |3
[cos θ(Sz

i Sz
j) + sin θ(Sx

i Sx
j + Sy

i Sy
j )] − µ

∑
i

Sz
i , (1)

where µ is the chemical potential (which, in this case, acts as an external magnetic field), J > 0
is the interaction strength and Sα

i are the spin operators at site i . All the long-ranged interactions
fall off with a 1/r 3 dipolar decay, which for the ions is due to the fact that they are both
induced by the same mechanism, namely lattice vibrations mediated by the Coulomb force [7].
Hamiltonian (1) is a dipolar XXZ model where the ratio of hopping to dipolar repulsion can
be scaled by θ [8, 9]. Another route to simulate quantum magnetism of dipolar systems, using
the rotational structure of the ultracold polar molecules, has been proposed in [10, 11]. In this
case, the XY (or tunneling) term is restricted to nearest neighbors (NN), and only the ZZ (or
interaction) term is dipolar.

Precisely this long-range (LR) dipolar character makes this system interesting and
challenging. Dipolar interactions introduce new physics into conventional short-range (SR)
systems. For example, for soft-core bosons, the system with LR interactions and SR tunneling
can—apart from Mott-insulating, superfluid and crystal phases—host a Haldane-insulating
phase [12]. This is characterized by antiferromagnetic order between empty sites and sites with

6 Although, in a different context, similar spin models were derived earlier by Mintert and Wunderlich [6].
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double occupancy, with an arbitrarily long string of sites with unit occupancy in between7.
Another case when dipolar interactions play a crucial role is the appearance of the celebrated
supersolid. The extended Bose–Hubbard model (i.e. with NN interactions) with soft-core on-site
interactions shows stable supersolidity in one-dimensional (1D) [13] and square lattices [14],
where in the 1D case a continuous transition to the supersolid phase occurs, in contrast to
the first-order phase transition in 2D lattices. Long-ranged dipolar interactions, on the other
hand, allow for the appearance of supersolidity even in the hard-core limit [15, 16]. In this
limit, dipolar interactions give rise to a large number of metastable states [17, 18] (for a review
see [19]). By tuning the direction of the dipoles, incompressible regions like devil’s staircase
structures were predicted in [20]. Despite being interesting, LR interactions make computer
simulations of such systems quite difficult. On the other hand, since ions in optical lattices may
be extremely well controlled, they form an ideal medium for a quantum simulator.

In our previous paper [8], we considered both the mean-field phase diagram for the
system (1) as well as a 1D chain using different quasi-exact techniques, such as the density
matrix renormalization group, and exact diagonalization for small systems. Here, we would like
to concentrate on frustration effects on a 2D triangular lattice using a quantum Monte Carlo
(QMC) approach.

For the system consisting of spin-half particles (such as, e.g., originating from two internal
ion states in the Porras–Cirac [7] proposal), the spins can be mapped onto a system of hard-core
bosons, using the Holstein–Primakoff transformation Sz

i → ni − 1/2, S+
i → a†

i and S−

i → ai ,
where a†

i (ai) are the creation (annihilation) operators of hard-core bosons and ni is the number
operator at site i . These bosons obey the normal bosonic commutation relationships, [a, a†] = 1,
but are constrained to only single filling, a2

= (a†)2
= 0. This is the limit when the on-site

repulsion term U goes to infinity in the standard Bose–Hubbard model. In this representation,
a spin-up particle is represented by a filled site and a spin-down particle by an empty site. For
the sake of convenience, we will mostly use the language of hard-core bosons in this paper.

Before presenting the results for the 2D triangular lattice, let us briefly review the behavior
of the system for a 1D chain of bosons as obtained in [8].

2. Review of the results in one dimension

In order to form some intuition about possible physical effects due to the LR interaction and
tunneling, we now discuss briefly the ground-state phase diagram of the Hamiltonian in 1D.
For hard-core bosons, which is the topic of this paper, the 1D version of the Hamiltonian has
been thoroughly investigated in the past [8] (see also [21, 22] for the special cases θ = 0 and
θ = π/2). For reference, we reproduce in figure 1 the phase diagrams for the system with dipolar
interaction and NN tunneling, as well as the system with both the interaction and the tunneling
terms dipolar.

At zero tunneling, the ground states are periodic crystals where—to minimize the dipolar
interaction energy—occupied sites are as far apart as possible for a given filling factor [21].
For finite 1D systems and very small tunneling, such a situation persists as exemplified in [24].
For infinite chains in 1D, every fractional filling factor n = p/q is a stable ground state for a
portion of the µ parameter space. The extent in µ decreases with q, since at large distances
the dipolar repulsion is weak and thus cannot efficiently stabilize crystals with a large period.

7 This is in contrast to standard insulating phases, where the length of the string is fixed by the filling factor.
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Figure 1. Phase diagram of the 1D system with dipolar interactions and
(a) NN tunneling and (b) dipolar tunneling. The phases are labeled according
to density matrix renormalization results, while the actual data shown come from
the infinite time evolving block decimation method (with interactions truncated
at next-to-NN), both from [8]. Along the black line, there exists a devil’s staircase
of crystal states. At finite tunneling, for (a), these spread into conventional
insulating states, while for (b), they form quasi-supersolids. The light blue lines
near the center of the plots sketch the crystal lobes at 2/3-filling. Their cusp-
like structure is typical of 1D systems. In 2D, they are expected to be rounded
off, similar to Mott lobes of the Bose–Hubbard model [23]. For NN tunneling
(a), the superfluid (SF) phases can be mapped into one another, while for NN
dipolar tunneling (b), they are distinct on the ferromagnetic (FM, θ < 0) and the
antiferromagnetic side (AFM, θ > 0). Note also that in (b), frustration leads to
an asymmetry between θ < 0 and θ > 0.

This succession of crystal states is termed the devil’s staircase. This name derives from its
surprising mathematical properties, challenging naive intuitions about continuity and measure:
since all rational fillings are present, it is a continuous function; moreover, its derivative vanishes
almost everywhere (i.e. it is non-zero only on a set of measure zero)—and still it is not a
constant, but covers a finite range.

At finite tunneling, the crystals spread into lobes similar to the Mott lobes of the
Bose–Hubbard model. If the tunneling is only over NNs, these Mott lobes are not sensitive
to the sign of the tunneling and form standard insulating states with diagonal long-range
order (LRO) and off-diagonal SR order (figure 1(a)). For LR dipolar tunneling, the extent of
the lobes is asymmetric under sign change θ → −θ : frustration effects stabilize the crystal
states for θ < 0, while the ferromagnetic tunneling for θ > 0 destabilizes them (figure 1(b)).
Moreover, the crystal states acquire off-diagonal correlations which follow the algebraic decay
of the dipolar interactions [8]. This coexistence of diagonal and off-diagonal (quasi-)LRO
turns the crystal states into (quasi-)supersolids. The occurrence of such phases for hard-core
bosons in 1D is truly exceptional, since the systems where it appears consist typically of
soft-core bosons [13, 14] or 2D lattices [15]. Furthermore, this 1D quasi-supersolid defies
Luttinger-liquid theory, which typically describes 1D systems very well, even in the presence of
dipolar interactions [25–27]. Where Luttinger-liquid theory applies, diagonal and off-diagonal
correlations decay algebraically with exponents which are the inverse of one another. Therefore,
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if the diagonal correlations show LRO, the corresponding exponent is effectively 0, and the
exponent for the off-diagonal correlations is infinite, describing an exponential decay. In our
case, this exponent remains finite in the quasi-supersolid phase and the above relationship
clearly does not hold.

At even stronger tunneling strengths, the crystal melts and the system is in a superfluid
phase. The LR tunneling and interactions influence the correlation functions at large distances
and therefore also modify the character of this phase [8, 22].

These results show that in this system the dipolar interactions considerably modify the
quantum-mechanical phase diagram. In higher dimensions, we can expect the influence of LR
interactions to be even stronger, which makes extending these studies to a 2D lattice highly
relevant. For example, one can expect that—if quasi-supersolids appear already in 1D—the LR
tunneling has a profound effect on the stability of 2D supersolids, which appear in triangular
lattices at the transition between crystal and superfluid phases [13, 28–30]. Also, the frustration
effects already observed in the 1D system should be much more pronounced in the triangular
lattice, simply due to the increased number of interactions8.

Further, such an analysis is especially relevant at finite temperature. In fact, a recent work
scanned the phase diagram of Hamiltonian (1) along the line µ = 0 in a square lattice [9]. There,
the authors found that above the superfluid on the ferromagnetic side (i.e. θ < 0), the continuous
U (1) symmetry of the off-diagonal correlations remains broken even at finite temperatures.
Thus, the LR nature of the tunneling leads to a phase which defies the Mermin–Wagner
theorem [31]9.

For these reasons, we can expect intriguing effects of LR tunneling for the 2D triangular
lattice, to which we now turn our attention.

3. Dipolar hard-core bosons on the triangular lattice

To analyze the system of dipolar bosons on the 2D triangular lattice, we employ QMC
simulations at a finite but low temperature. Specifically, we study rhombic lattices with periodic
boundary conditions and N = L × L sites, with L = 6–12. We will, in particular, thoroughly
investigate the Wigner crystal at 2/3-filling. The triangular lattice is frustrated even with
only NN interactions. When any longer-ranged interactions are added, this only increases the
frustration, which also making QMC calculations more difficult. Also, in frustrated systems [32]
and systems with LR interactions [18], typically many metastable states appear, rendering
finding the ground state a somewhat difficult task. To avoid complications with the sign problem,
caused by negative probabilities in QMC codes, we will take only negative values of θ into
consideration. Note that this sign problem appears only for the long-ranged XY interactions,
while the ZZ (Ising-like) interactions are—despite frustration—sign-problem free.

In this study, we compare the Hamiltonian with both LR interactions and hoppings
(LR–LR), with long-ranged dipolar interactions but NN hopping (LR–SR; relevant for polar
molecules [33]), as well as with hopping and interactions truncated at NNs (SR–SR; this is the
NN XXZ model, relevant to magnetic materials with planar anisotropy in their couplings)10.

8 In fact, we find that for positive hopping, θ > 0, our method of choice, QMC, fails due to the sign problem,
invoked by frustration. For details see section 3.1.
9 The theorem remains valid, of course, as it applies only to SR models.
10 For all LR terms, we truncate the interactions at distances where they first reach the boundary of the rhombic
lattice. For the smallest system with L = 6, this amounts to including interactions up to distances of the fifth NN.
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Figure 2. The graph on the left displays θ = 0 and T = 0.1, where the density
shows a single plateau for 2/3-filling. For SR interactions (solid blue line),
different curves for L = 6, 9, 12 coincide, and for LR interactions (solid red:
L = 6; dashed red: L = 9 and 12) the size dependence is small. The panels on the
right are at fixed L = 12 and θ = 0 for different temperatures T = 0.05, 0.15 and
0.25 (from dotted to dashed to solid). Both for SR (top right) and LR interactions
(bottom right), the 2/3-filling plateau shrinks as T increases.

Each of these systems will display different crystal, superfluid and supersolid regions.
Comparing these cases will give valuable insight into the influence of the LR terms.

All the calculations were performed using the worm algorithm of the open source ALPS
(Algorithms and Libraries for Physics Simulations) project [34]. This algorithm, first created
by Prokof’ev, works by sampling world lines in the path integral representation of the partition
function in the grand canonical ensemble [35].

3.1. Vanishing tunneling

The first calculation, which creates the motivation for the rest of the paper, is to look at the
case of vanishing tunneling and temperature for each system (LR–LR, LR–SR and SR–SR).
Here, similar to the 1D devil’s staircase, at vanishing temperature a series of insulating crystal
states is expected to cover the entire range of µ/J . Since we are interested in finite temperature
results, we set T = 0.1—which should still be low enough to reflect the characteristics of the
ground-state phase diagram—and look for plateaus in the density. We distinguish short- and
long-ranged ZZ interactions. From figure 2, left panel, we can see that the only plateau (besides
the completely filled system) that appears is at ρ = 2/3 (corresponding either to 2/3 boson
filling or in spin terms, a lattice with 2/3 of the spins oriented up and 1/3 oriented down) for
both short- and long-ranged interactions. Scaling the system size from L = 6 to 12 causes no
change for the short-ranged interactions, and a minimal change for the long-ranged interactions.
The key difference is in the size and position of the short-ranged and long-ranged plateaus. For
short-ranged interactions this plateau is larger and centered around µ/J ' 1.5, while the long-
ranged interactions have a smaller plateau centered around µ/J ' 1.85. The finite width of
these plateaus suggests that a 2/3-filling Wigner crystal persists also for some finite θ . The right
panels of figure 2 show how the plateau shrinks with increasing temperature, for SR interactions
(top right panel) as well as for LR interactions (bottom right panel). In the latter case, in fact,
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Figure 3. The columns show the ρ = 2/3 lobes, evidenced by particle density
(top row) and the superfluid fraction (bottom row) that arise on varying the
ratio, θ , and the chemical potential, µ/J (data for L = 6). The left column
corresponds to the SR–SR system, the middle one shows the LR–SR system and
the right column depicts the lobes for the LR–LR system. Long-ranged dipolar
interactions decrease the lobes in µ/J due to the appearance of devil’s staircase-
like features, and LR tunneling decreases the extent of the lobe in θ .

by T = 0.25 the plateau has completely disappeared. We can also note that at T = 0.05 there
are signs of some of the other plateaus, most noticeably the 3/4-filling plateau. The rest of the
paper will focus on the 2/3-filling crystal lobes and their properties.

3.2. Low-temperature phase diagram at finite tunneling

We now introduce a finite tunneling by choosing θ < 0 in our Hamiltonian, and study the
properties around the 2/3-filling crystal. We calculate the density and the superfluid fraction.
The superfluidity is measured using the winding numbers calculated from the movement of
the worms in the QMC code. In order to get this value the system must have periodic boundary
conditions so that the world lines can properly ‘wind’ around the system. The superfluid fraction
is

ρs =
〈W 2

〉

4β
, (2)

where W is the winding number fluctuation of the world lines and β is the inverse temperature.
Figure 3 shows the results for the boson density of an L = 6 triangular lattice at T = 0.1.

For all types of interactions, we see that as θ increases in absolute value, the ρ =
2
3 plateau

shrinks, because for larger |θ | the ratio of hopping to dipolar interactions increases. This
introduces more kinetic energy and the crystal melts into a superfluid. It can be seen that for the
SR–SR system the boson density lobe extends to θ ' −0.36, while for the LR–SR interactions
it ends at h ' −0.3, and finally for LR–LR interactions the lobe is still smaller, only ranging
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up to h ' −0.2. The behavior is explained by the fact that the increased number of interactions
causes a quicker melting of the lobe.

A second major observation is the shift in the position of the lobes. While the short-
ranged lobe exists approximately for 0.3 < µ/J < 2.7, the long-ranged lobes lie generally in
the interval 1.0 < µ/J < 2.8. For a system like this at T = 0, one expects the ρ =

2
3 lobe to

exist on the range 0 < µ/J < 3 with a mirrored image of the ρ =
1
3 lobe at −3 < µ/J < 0. The

existence of the two identical lobes is explained by particle–hole symmetry [28–30]. The lobes
are separated with a kind of mixed solid in between (with the coexistence of 1/3- and 2/3-filling
regions). The existence of this region may be caused by several phenomena. It could be either
an effect of the finite temperature as in [36] or due to the existence of many metastable states
caused by a devil’s staircase-like behavior, similar to what was observed in [20].

Again referring to the T = 0 phase diagram, we expect that there is a region of supersolidity
that extends in between the lobes and goes all the way to their base at θ = µ = 0 [28]. In our
system this region should exist near the tip of the lobe but not extend all the way to the base due
to the finite temperature and the resulting mixed solid. Looking at figure 3, it is obvious indeed
that, if a supersolid region exists, it can only be near the tip of the lobe because the superfluidity
is zero a significant way up the lobe. Judging by the increased separation of the long-ranged
lobes, we can assume that the supersolid region for these systems should increase in size to fill
the region in between. To search for the supersolid phase, we now compare the superfluidity
with the static structure factor.

The structure factor is defined as the Fourier transform of the density–density correlations,

S(Q) =

〈∣∣∣∣∣
N∑

i=1

ni eiQri

∣∣∣∣∣
2〉 /

N 2. (3)

Here, we focus on the wave vector Q = (4π/3, 0), which corresponds to the
√

3 ×
√

3-order
parameter that is associated with 1/3- and 2/3-filling crystals on the triangular lattice. For the
case of the 2/3-filling lobe that we are interested in, it will show plateaus over the same range
of µ as the density, but additionally gives insight into the arrangement of the bosons on the
lattice. This makes it a useful quantity in searching for supersolid regions. In fact, a supersolid
exists when both the structure factor and the superfluid fraction have non-zero values. The
physical mechanism behind the supersolid phenomenon is based on the appearance of extra
holes (particles). The underlying crystal structure has

√
3 ×

√
3 order on a triangular sublattice

of the physical lattice. The extra holes (particles) are free to move around in the rest of the
lattice as superfluid objects. In this way, the system retains a crystal structure, while it acquires
at the same time the LR coherence of a superfluid. Due to the hole (particle) doping, it forms in
sections away from commensurate filling, in this case in between the 1/3- and 2/3-filling lobes.

Taking ‘slices’ out of the crystal lobes we now check where there is a supersolid region
and where the system directly transitions from crystal to superfluid. Also we study the nature of
these transitions to see if they are of first or second order.

The most logical region to look for supersolids is directly in between the 1/3- and 2/3-
filling lobes, at µ/J = 0. Figure 4 shows the behavior of the SR–SR, the LR–SR and the LR–LR
system at this cut for several system sizes. The structure factor and superfluidity reveal, for all
the systems, three different regions. In each case, the system starts at θ = 0 in a solid phase
where the superfluid fraction is zero but the structure factor is finite. It transitions smoothly
into a supersolid region where both superfluidity and structure factor are non-zero. Finally, the
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Figure 4. Cuts at µ/J = 0 for SR–SR (top left), LR–SR (bottom left) and
LR–LR (right) for a L = 6, 9 and 12 lattice (the lines become thicker and darker
with increasing system size). For all cases, the structure factor (solid blue) is
finite at small θ and the superfluid fraction (dashed black) at large θ . At the
system sizes studied, there appears a supersolid region at intermediate θ where
both the structure factor and the superfluid fraction are finite. In the LR–LR
system there is a reversal of finite size effects. In this case the superfluid fraction
for larger systems becomes higher instead of lower.

structure factor smoothly drops away and leaves just a non-zero superfluid fraction, making
the final phase a superfluid. In each system, the size of the supersolid region is different. In
the SR–SR case, the supersolid region begins to appear at θ ' −0.15 for an L = 6 lattice.
As the size grows to L = 12, the region has shifted to θ ' −0.19 with the superfluid curves
becoming sharper. The increased system size also reduces the value of the structure factor a
little. From [29], we know that at even larger sizes (but T = 0) the supersolid will continue
to exist in this type of system. For the LR–SR system, the supersolid region appears at a
similar point and also shifts with a system-size increase. The structure factor, on the other
hand, has a significant decrease for larger system sizes. It is difficult to tell if at greater sizes the
existence of the supersolid will persist. The final graph shows the LR–LR system. In this system,
superfluidity appears even before µ/J reaches −0.1. In this system, the superfluid fraction is
much greater than in the previous two because of the long-ranged tunneling. This means that at
small system sizes the supersolid region is much more prominent relative to the crystal lobe. The
structure factor diminishes with system size almost exactly as in the LR–SR case except that the
transition is at a different value of θ , and near µ/J = 0 it drops to slightly lower values. Due to
this strong decrease, for any situation with LR interactions we cannot clearly state whether the
supersolid region survives at larger system sizes.

Next we take vertical cuts at a value of θ = −0.15, since this is a reasonable place for a
supersolid to exist for the LR–LR system ('80% of the tip of the lobe). We compare all the
systems at this cut, and study the behavior of the superfluid fraction and the structure factor,
plotted in figure 5. For SR–SR interactions, no supersolid region appears. On one side of the
lobe there is a sharp phase transition directly from the crystal to the superfluid phase, while on
the other side there is a slower change from one solid form to another (ρ = 1/3 → 2/3). The
finite-size scaling in the figure shows that as the size increases the transitions of the structure
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Figure 5. Cuts at θ = −0.15 for SR–SR (top left), LR–SR (bottom left), LR–LR
(right) for a L = 6, 9 and 12 lattice (the lines become thicker and darker with
increasing system size). Solid blue: structure factor. Dashed black: superfluid
fraction. At this value of θ , for SR tunneling, the superfluid fraction disappears
rapidly with increasing system size, while for LR tunneling it even increases.
At µ/J ≈ 1.75, possibly a supersolid may survive in large lattices. Again in the
LR–LR system there is a reversal of finite-size effects. The superfluid fraction
for larger systems becomes higher instead of lower.

factor become even sharper, although they stay continuous due to the finite temperature. The
values of the superfluid fraction decrease as the system sizes increase and essentially disappear
at L = 12. In the LR–SR system, a hint of the supersolid phase begins to appear on either side
of the lobe. It is a bit more evident on the side where µ/J is small (as is to be expected from
references such as [28]), but it also arises on the opposite side. This is contrary to a system
of only short-ranged interactions where this supersolid region appears only on one side of the
lobe and not both. At larger sizes, also in the LR–SR system the transitions become sharper
and the superfluidity gets smaller. The final and most interesting cut is taken out of the LR–LR
lobe. In this system, we see a smooth transition from crystal to supersolid at µ/J ' 2.4 and at
µ/J ' 1.4 for L = 6. For larger systems the transition at µ/J ' 2.4 occurs at the same spot but
becomes sharper, making the supersolid region disappear. At µ/J ' 1.4 the transition shifts to a
higher value of µ/J , making the 2/3-filling plateau smaller. It also becomes less smooth but the
supersolid region remains longer than for the SR–SR case. In the LR–LR system, the superfluid
fraction for larger systems has the opposite effect than for the previous cases, it becomes higher
instead of lower.

A perhaps fairer comparison is to look at a cut through a region where we are sure the
supersolid exists for all three systems. Therefore, in figure 6 we look at two more cuts that
are now taken closer to the tips of the SR–SR and LR–SR lobes. As with the LR–LR system
(the last panel of figure 5), these lie at around 80% of the tip of the lobe. In the SR–SR lobe,
the cut is taken at θ = −0.28. Here we see a similar behavior for the structure factor as we
did in the θ = −0.15 cut of the lobe, but this time the superfluid fraction plays a much more
important role. On the one hand, µ/J ' 2.4, both the superfluid fraction as well as the structure
factor have sharp transitions that become even sharper at larger sizes. In fact, at T = 0 these
transitions have been shown to be of first order, and the system goes directly from crystal to
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Figure 6. SR–SR (left) at θ = −0.28 and LR–SR (right) at θ = −0.23. Solid
blue: structure factor. Dashed black: superfluid fraction. Lines become thicker
and darker as the system size goes up. In the SR–SR system, a supersolid at small
µ/J persists at large systems, while at µ/J ≈ 2.4 the transition from crystal to
superfluid becomes a direct first-order transition. For the LR–SR system, the
curves change slowly at both sides of the crystal lobe, leading to persisting
supersolids.

superfluid. Due to the finite temperature, they are continuous in our case. On the other hand,
where µ/J ' 0.8, there appears a second-order phase transition into a supersolid region that
spans all the way to µ/J = 0. Finally, we take a cut at θ = −0.23 of the LR–SR lobe. The
behavior of this system seems to be quite different. The first thing to note is that the transitions
on either side of the lobe are of second order. The other, and more important, observation is that
now it appears that this system has supersolid behavior on both sides of the lobe: in addition to
the expected supersolid at smaller µ/J , a region at µ/J above the crystal lobe appears where
both the structure factor and the superfluid fraction are finite. If we recall figure 5, right panel,
the LR–LR system showed that at θ = −0.15 as L increases the supersolid region disappears
from the upper side of the lobe. In the case of the LR–SR system for θ = −0.23 the increase in
the system size does not get rid of this supersolid phase.

3.3. Finite-temperature results

As a final calculation, we take a look at the important role that the temperature plays in both the
melting of the crystal and the supersolid region. In this section, we will use the same cuts as in
the previous section (θ = −0.28 for SR–SR, θ = −0.23 for LR–SR and θ = −0.15 for LR–LR)
so that each system will posses all the possible phases: crystal, superfluid and supersolid.
Each cut is investigated for 0.05 < T < 0.3 at a system size of L = 6. First, we analyze the
structure factor to study how the ρ = 2/3 crystal melts with an increase in temperature (the
second row of figure 7). For the SR–SR interactions, even at a temperature of 0.3 there still
exists a bump in the structure factor which indicates that the crystal has not yet completely
melted, while for both the long-ranged lobes the crystal melts by T ' 0.3. Interestingly, the
SR–SR crystal and the LR–LR crystal are approximately the same size at T = 0.05, but by
T = 0.3, one has melted while the other still exists. That means that the system with short-
ranged interactions holds its crystal structure better at higher temperatures than does our system
with all long-ranged interactions. Looking at the LR–SR lobe, we see that its crystal at this cut
starts off smaller, yet it melts at about the same temperature as the one for LR–LR interactions.
It seems that the dipolar repulsion helps stabilize the crystal structure over a larger temperature
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Figure 7. Each row shows a different object: the top row represents the stiffness
and the middle row the structure factor, while the bottom row represents a
product of the first two rows. Columns corresponds to different systems: left
column is for SR–SR at θ = −0.28, middle column yields LR–SR at θ = −0.23,
right column is for LR–LR at θ = −0.15. For all three systems, the three
distinct quantum phases—crystal, supersolid and superfluid—survive over some
temperature range before they melt.

range, while the long-ranged hopping destroys the crystal more quickly because of the extra
kinetic energy.

Maybe more importantly, we now study the melting of the supersolid for these same cuts.
Figure 7 shows the structure factor, superfluidity and supersolidity as a function of temperature
for each of the different systems. Since the supersolid is defined by having both a non-zero
structure factor and non-zero superfluid fraction, by combining the graphs we are able to see
where these regions exist and also how they melt with increased temperature (the bottom row of
figure 7 shows a product of the structure factor and the superfluid fraction, which remains finite
only where the two coexist). A common feature of all the graphs is the spikes on either side
of the plateaus. These are regions where a phase transition occurs but it does not necessarily
imply that a supersolid region exists. Most likely, these features appear due to the finite size of
the system and the resulting smooth transitions of the superfluid fraction and structure factor.
At larger sizes, the transitions would be much sharper at these points, the regions where a finite
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Figure 8. SR–SR at θ = −0.28, LR–SR at θ = −0.23 and LR–LR at θ = −0.15
(left to right). All cuts are taken at µ/J = 0. The structure factor (solid blue)
attains similar values for all three systems. The superfluid fraction (dashed black)
is largest in the LR–LR system and melts fastest in the LR–SR one.

structure factor and superfluid fraction coexist would shrink and the spikes would diminish.
From the previous section, we can assume that for the SR–SR system they would disappear
completely at the upper transition from the crystal lobe while for the other two systems there
would still exist a small supersolid region.

Returning to the main focus, the small-µ region, we see that in each case a supersolid region
appears that extends from the left side of the plateau all the way to µ/J = 0. In every system,
this supersolid region also exists for a finite range of temperatures. For SR–SR interactions, it
gradually decreases but still extends all the way out past T = 0.3. For the LR–SR interactions,
the supersolid region again slowly melts but now disappears at T ' 0.23, just below the spot
where the crystal melted. The supersolid region for the LR–LR system appears to have the
largest magnitude of the three systems, but then rapidly melts at T ' 0.3.

In order to compare these transitions more quantitatively, we take a cut along µ/J = 0 for
each system, shown in figure 8. All three systems show a relatively similar and steady value
for the structure factor. Hence, the values of the superfluid fraction are going to determine the
existence of the supersolid regions. The first plot shows the SR–SR system at the θ = −0.28
cut, and we can see that the superfluid fraction stays non-zero all the way out to T = 0.35. The
LR–SR system has a very similar behavior at the θ = −0.23 cut, but in this case the supersolid
is nearly completely melted by T = 0.35. The final plot is the LR–LR system at θ = −0.15,
which behaves slightly differently. The most important difference is that the starting value of the
superfluid fraction is higher than in the first two plots. This should therefore make the supersolid
region more pronounced. But even though the superfluid fraction has the highest value for this
system, it decays more quickly and reaches values similar to the SR–SR system at T ≈ 0.35.

4. Conclusion

In this paper, we have presented a QMC study of dipolar spin models that describe various
systems of ultracold atoms, molecules and ions. We have presented predictions concerning the
phase diagram of the considered systems at zero and finite temperatures, and described the
appearance and some properties of the superfluid, supersolid and crystalline phases. While the
results are not surprising and resemble earlier obtained results for similar systems in 1D and
2D, the main advantage of our study is that it is directly relevant to the current experiments:

• The results for the XXZ model with SR tunneling also apply to ultracold gases of polar
bosonic molecules in the limit of hard-core bosons. Note that the earlier works [15, 16]
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have concentrated on the appearance of the supersolid phase and devil’s staircase of
crystalline phases in the square lattice [15], and supersolid and emulsion phases in the
triangular lattice [16]. Here we focus on the hard-core-spin limit, and we compare it
and stress differences with other models, such as those with LR tunneling, i.e. LR XX
interactions.

• The results for the XXZ models with LR tunneling apply to systems of trapped ions in
triangular lattices of microtraps. These results are novel, since so far such models have
been studied only using various techniques in 1D and using the mean-field approach in
2D. While the first experimental demonstrations of such models were restricted to a few
ions (see, for instance, [3]), many experimental groups are working on an extension of such
ionic quantum simulators to systems of many ions in microtraps [37]. In fact, very recently,
the NIST group has engineered 2D Ising interactions in a trapped-ion quantum simulator
with hundreds of spins [38]. Although in this experiment the quantum regime has not yet
been achieved, it clearly opens the way toward quantum simulators of spin models with
LR interactions. We expect that in the near future the result of our present theoretical study
will become directly relevant for experiments.
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