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Abstract. We consider a finite difference approximation of mean curvature flow for axisymmetric
surfaces of genus zero. A careful treatment of the degeneracy at the axis of rotation for the one
dimensional partial differential equation for a parameterization of the generating curve allows us to
prove error bounds with respect to discrete L2– and H1–norms for a fully discrete approximation.
The theoretical results are confirmed with the help of numerical convergence experiments. We also
present numerical simulations for some genus-0 surfaces, including for a non-embedded self-shrinker
for mean curvature flow.
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1. Introduction. Consider a family of surfaces (S(t))t∈[0,T ] ⊂ R
3 evolving by

mean curvature flow, i.e.

(1.1) VS = km on S(t).

Here, VS denotes the normal velocity of S(t) in the direction of the normal ~νS(t), and
km is the mean curvature of S(t), i.e. the sum of its principal curvatures. As the
L2–gradient flow for the area functional, (1.1) is one of the most important geometric
evolution equations with applications in materials science and image processing. We
refer the reader to [12, 17] for an introduction and important results of mean curvature
flow.

In this paper we are concerned with the numerical approximation of solutions of
(1.1) using a parametric approach. If ~X : M × [0, T ) → R

3 is a family of embed-

dings such that S(t) = ~X(M, t), then (1.1) is satisfied if ~Xt ◦ ~X−1 = km~νS(t) on
S(t). Making use of the fact that the mean curvature vector km~νS(t) can be written

as ∆S(t)
~id, where ∆S(t) denotes the Laplace–Beltrami operator on S(t), Dziuk [10]

suggested a finite element method in order to approximate solutions of (1.1). While
this approach has been widely used in the following years, the numerical analysis of
the method remained open. Only recently, Kovács, Li and Lubich [16] obtained error

estimates for a parametric approach that uses not only the position ~X, but also the
mean curvature and the normal as variables. Both approaches are based on evolu-
tion equations in which the velocity vector points purely in normal direction, which
may lead to degenerate meshes at the discrete level. A way to tackle this issue is
to introduce a suitable additional tangential motion in such a way, that mesh points
are better distributed on the approximate surface. Corresponding schemes have been
suggested by Barrett, Garcke and Nürnberg [4], as well as by Elliott and Fritz [13],
using DeTurck’s trick. For the approach from [13], error bounds for a finite differ-
ence scheme in the case of surfaces of torus type have recently been obtained in [18].
For more details on the numerical approximation of geometric evolution equations we
refer to the review articles [8, 6].
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In what follows, we are interested in the case that the evolving surfaces are ax-
isymmetric with respect to the x2-axis, i.e. we assume that there exists a mapping
~x(·, t) : [0, 1] → R≥0 × R such that

S(t) =
{

(~x(ρ, t) · ~e1 cos θ, ~x(ρ, t) · ~e2, ~x(ρ, t) · ~e1 sin θ)T : ρ ∈ [0, 1], θ ∈ [0, 2π]
}

.

As shown in [5, 2], the law (1.1) translates into the following evolution equation for
the curves (Γ(t))t∈[0,T ] parameterised by ~x(·, t):

(1.2) ~xt · ~ν = κ − ~ν · ~e1
~x · ~e1

,

where ~ν is a unit normal to Γ(t) and κ = ~κ ·~ν denotes curvature, with ~κ = 1
|~xρ|

(
~xρ

|~xρ|
)ρ

the curvature vector. We note that without the last term on the right hand side of
(1.2), the problem collapses to curve shortening flow,

(1.3) ~xt · ~ν = κ,

which is the analogue of (1.1) for curves. Since the relations (1.2) and (1.3) only
prescribe the normal velocity, there is a certain freedom in choosing the tangential
part of the velocity vector. Setting the tangential velocity to zero for (1.3) leads to the

formulation ~xt =
1

|~xρ|
(

~xρ

|~xρ|
)ρ, and optimal error bounds for a semidiscrete continuous-

in-time finite element approximation of it have been obtained by Dziuk [11]. On the

other hand, an application of DeTurck’s trick gives rise to the formulation ~xt =
~xρρ

|~xρ|2

for classical curve shortening flow. An error analysis for a corresponding semidiscrete
finite element scheme has been first presented in [7], and this was later extended in

[13] to the family of problems α~xt + (1 − α)(~xt · ~ν)~ν =
~xρρ

|~xρ|2
, α ∈ (0, 1]. Inspired by

the ideas in [7], the present authors in [2] applied DeTurck’s trick to the flow (1.2) to
obtain the system

(1.4) ~xt =
~xρρ

|~xρ|2
− ~ν · ~e1

~x · ~e1
~ν,

cf. [2, (1.7)]. Note that (1.4) is strictly parabolic and that a solution of (1.4) satisfies
(1.2). The difference to curve shortening flow consists in the presence of the term
~ν·~e1
~x·~e1

, which is the principal curvature related to the parallels of S(t). It is possible to
rewrite (1.4) in the following divergence form

(1.5) ~x · ~e1 |~xρ|2~xt =
(

(~x · ~e1)~xρ

)

ρ
− |~xρ|2~e1,

giving rise to a natural variational formulation. On the basis of this weak formu-
lation, a semi-implicit scheme using piecewise linear finite elements in space and a
backward Euler method in time was suggested by the authors in [2]. In particular, in
[2, Theorem 2.2] optimal error bounds both in H1 and L2 are obtained in the case
of genus-1 surfaces. While the numerical method still performs well also for genus-0
surfaces, it is however not possible to apply the employed analysis to genus-0 surfaces.
The reason for the additional difficulties in the genus-0 case comes from the different
properties of the curves Γ(t): for genus-1 surfaces, Γ(t) is a closed curve satisfying
~x · ~e1 > 0 on [0, 1] so that this term is bounded strictly from below on compact time
intervals, thus simplifying the analysis. In contrast, a description of a genus-0 surface
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in our setting requires Γ(t) to be open with its endpoints lying on the x2-axis, which
means that ~x · ~e1 = 0 at the endpoints of the interval [0, 1]. Furthermore, in order
to guarantee smoothness of the surface S(t), the curve Γ(t) has to meet the x2-axis
at a right angle. In order to formulate the resulting initial-boundary problem, it is

convenient to rewrite (1.4). To do so, we choose ~ν = ~τ⊥ with the unit tangent ~τ =
~xρ

|~xρ|

and ·⊥ denoting clockwise rotation by π
2 . Observing that

(~ν · ~e1)~ν =
1

|~xρ|2
(~x⊥

ρ · ~e1) ~x⊥
ρ =

1

|~xρ|2
(~xρ · ~e2) ~x⊥

ρ ,

we are led to the following system

~xt =
~xρρ

|~xρ|2
− 1

|~xρ|2
~xρ · ~e2
~x · ~e1

~x⊥
ρ in (0, 1)× (0, T ],(1.6a)

~x · ~e1 = 0, ~xρ · ~e2 = 0 on {0, 1} × [0, T ].(1.6b)

Since ~x(ρ, t) · ~e1 → 0, as ρ → ρ0 ∈ {0, 1}, the last term in (1.6a) needs to be treated
with care. Using the boundary conditions (1.6b), it is shown in (A.3) in Appendix A,
with the help of L’Hospital’s rule, that

lim
ρց0

[

− 1

|~xρ(ρ, t)|2
~xρ(ρ, t) · ~e2
~x(ρ, t) · ~e1

~x⊥
ρ (ρ, t)

]

=
~xρρ(0, t) · ~e2
|~xρ(0, t)|2

~e2,

so that the expression acts like a second order operator close to the boundary without
affecting the parabolicity of the problem. Nevertheless, the different behaviour of
~ν·~e1
~x·~e1

in the interior and close to the boundary is a major problem for the analysis of a
numerical scheme. Rather than using the variational form (1.5) that worked well for
genus-1 surfaces, we shall introduce a scheme which directly discretises (1.6a) with
the help of finite differences. Our main result are optimal error bounds measuring the
error in discrete versions of the usual integral norms.

The paper is organised as follows. In Section 2, we formulate our assumptions
on the solution of (1.6) and derive a number of properties that will be used in the
error analysis. In the second part, we introduce our numerical scheme and provide
an estimate for the consistency error. Section 3 is devoted to the proof of our main
error estimates, which include an O(h2 +∆t) bound for a discrete H1–norm. Finally,
in Section 4 we present the results of several numerical simulations.

We end this section with a few comments about notation. Throughout, C denotes
a generic positive constant independent of the mesh parameter h and the time step
size ∆t. At times ε will play the role of a (small) positive parameter, with Cε > 0
depending on ε, but independent of h and ∆t.

2. Finite difference discretization.

Assumption 2.1. Let ~x : [0, 1] × [0, T ] → R≥0 × R be a solution of (1.6) such

that ∂i
t∂

j
ρ~x exist and are continuous on [0, 1]× [0, T ] for all i, j ∈ N0 with 2i+ j ≤ 4.

Furthermore, we assume that ~xρ(ρ, t) 6= 0 for all (ρ, t) ∈ [0, 1]× [0, T ], as well as

(2.1) ~x · ~e1 > 0 in (0, 1)× [0, T ].

It is beyond the scope of this paper to prove the existence of a solution to (1.6) with
the above regularity. We note, however, that the well-posedness of the corresponding
problem, in the case that the curves Γ(t) can be written as a graph, was recently
studied in [14].
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Let us collect a few properties of the solution which will be used in the error
analysis. To begin, there exist constants 0 < c0 ≤ C0 such that

(2.2) c0 ≤ |~xρ| ≤ C0 in [0, 1]× [0, T ].

Recalling (1.6b), we infer that ~xρ(0, t) ·~e1 ≥ c0, ~xρ(1, t) ·~e1 ≤ −c0 which together with
(2.1) implies that there exist c1 > 0, δ > 0 with

~xρ · ~e1 ≥ 1
2c0 in [0, δ]× [0, T ],(2.3a)

~xρ · ~e1 ≤ − 1
2c0 in [1− δ, 1]× [0, T ],(2.3b)

~x · ~e1 ≥ c1 in [ 12δ, 1− 1
2δ]× [0, T ].(2.3c)

Let us formally describe how this observation can be translated into an estimate on
the solution. If we multiply (1.6a) by −~xρρ and integrate over [0, 1], we find upon
integration by parts and observing from (1.6b) that ~xt · ~xρ = 0 on {0, 1}× [0, T ], that

(2.4) 1
2

d

dt

∫ 1

0

|~xρ|2 dρ+

∫ 1

0

|~xρρ|2
|~xρ|2

dρ−
∫ 1

0

1

|~xρ|2
~xρ · ~e2
~x · ~e1

~x⊥
ρ · ~xρρ dρ = 0.

Since (1.6b) implies
~x⊥

ρ (0,t)

|~xρ(0,t)|
≈ −~e2 on [0, δ], we can rewrite the third term on [0, δ],

on noting (2.2) and (2.3a), as

−
∫ δ

0

1

|~xρ|2
~xρ · ~e2
~x · ~e1

~x⊥
ρ · ~xρρ dρ

(2.5)

≈
∫ δ

0

1

|~xρ|
~xρ · ~e2
~x · ~e1

~xρρ · ~e2 dρ = 1
2

∫ δ

0

1

|~xρ|
1

~x · ~e1
[

(~xρ · ~e2)2
]

ρ
dρ

= 1
2

[

1

|~xρ|
1

~x · ~e1
(~xρ · ~e2)2

]δ

0

+ 1
2

∫ δ

0

~xρ · ~e1
|~xρ|

(~xρ · ~e2)2
(~x · ~e1)2

dρ+ 1
2

∫ δ

0

~xρ · ~xρρ

|~xρ|3
(~xρ · ~e2)2
~x · ~e1

dρ

≥ 1
4

c0

C0

∫ δ

0

(~xρ · ~e2)2
(~x · ~e1)2

dρ+ 1
2

∫ δ

0

~xρ · ~xρρ

|~xρ|3
(~xρ · ~e2)2
~x · ~e1

dρ,

so that we obtain L2–control of
~xρ·~e2
~x·~e1

close to 0. A similar calculation applies close to
1, while the denominator ~x ·~e1 is bounded away from 0 on [δ, 1− δ] in view of (2.3c).
Our aim is to mimic this argument within the error analysis (cf. Lemma 3.4). To do
so, we will directly discretise (1.6a) using a finite difference scheme, and the discrete
analogue of the above estimate is then obtained by multiplying with a suitable second
order finite difference.

In order to define our finite difference scheme, let us introduce the set of grid
points Gh := {q0, q1, . . . , qJ}, where qj = jh and h = 1

J
, j = 0, . . . , J . For a grid

function ~v : Gh → R
2 we write ~vj := ~v(qj), j = 0, . . . , J . Furthermore we associate

with ~v the following finite difference operators:

δ−~vj :=
~vj − ~vj−1

h
, j = 1, . . . , J ;(2.6a)

δ+~vj := δ−~vj+1 =
~vj+1 − ~vj

h
, j = 0, . . . , J − 1;(2.6b)

δ1~vj :=
1
2 (δ

+~vj + δ−~vj) =
~vj+1 − ~vj−1

2h
, j = 1, . . . , J − 1.(2.6c)

δ2~vj :=
δ+~vj − δ−~vj

h
=

~vj+1 − 2~vj + ~vj−1

h2
, j = 1, . . . , J − 1.(2.6d)
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Two grid functions ~v and ~w satisfy the following summation by parts formula:

(2.7) h

J
∑

j=1

δ−~vj · δ− ~wj = −h

J−1
∑

j=1

~vj · δ2 ~wj + ~vJ · δ− ~wJ − ~v0 · δ+ ~w0.

In addition, we introduce the following discrete norms and seminorms

|~v|20,h := 1
2h|~v0|2 + h

J−1
∑

j=1

|~vj |2 + 1
2h|~vJ |2; |~v|21,h := h

J
∑

j=1

|δ−~vj |2;(2.8)

‖~v‖21,h := |~v|20,h + |~v|21,h; |~v|22,h := h

J−1
∑

j=1

|δ2~vj |2.

We also recall the following inverse inequality, as well as a discrete version of a well–
known Sobolev type inequality.

Lemma 2.2. Let ~v : Gh → R
2 be an arbitrary grid function. Then

max
1≤k≤J

|δ−~vk| ≤ h− 1
2 |~v|1,h,(2.9)

max
0≤k≤J

|~vk|2 ≤ |~v|20,h + 2|~v|0,h|~v|1,h,(2.10)

max
1≤k≤J

|δ−~vk|2 ≤ |~v|21,h + 2|~v|1,h|~v|2,h.(2.11)

In addition, if ~v0 · ~e1 = ~vJ · ~e1 = 0, then

(2.12) |~vj · ~e1| ≤ 2qj(1 − qj) max
1≤k≤J

|δ−~vk|, 0 ≤ j ≤ J.

Proof. The inverse inequality (2.9) follows immediately from the definition (2.8).
Let 0 ≤ k ≤ J . For 0 ≤ j ≤ k it follows from (2.6b), the elementary inequality

(a+ b)2 ≤ 2(a2 + b2), a, b ∈ R

and (2.8) that

|~vk|2 = |~vj |2 +
k−1
∑

ℓ=j

(|~vℓ+1|2 − |~vℓ|2) = |~vj |2 + h

k−1
∑

ℓ=j

(~vℓ+1 + ~vℓ) · δ+~vℓ(2.13)

≤ |~vj |2 +
√
2
(

h

k−1
∑

ℓ=j

(|~vℓ+1|2 + |~vℓ|2)
)

1
2 |~v|1,h ≤ |~vj |2 + 2|~v|0,h|~v|1,h.

Similarly, for k + 1 ≤ j ≤ J , we have

|~vk|2 = |~vj |2 −
j−1
∑

ℓ=k

(|~vℓ+1|2 − |~vℓ|2) ≤ |~vj |2 + 2|~v|0,h|~v|1,h.(2.14)

Combining (2.13) and (2.14) yields that max0≤k≤J |~vk|2 ≤ |~vj |2 + 2|~v|0,h|~v|1,h, for
0 ≤ j ≤ J . Multiplication by h

2 for j = 0, J , and by h for 1 ≤ j ≤ J − 1, followed by
summation over j = 0, . . . , J , yields (2.10). The inequality (2.11) is obtained in an
analogous manner, taking into account that δ+δ−~vj = δ2~vj .
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In order to prove (2.12), we observe that ~v0 · ~e1 = ~vJ · ~e1 = 0 implies

|~vj · ~e1| ≤ h

j
∑

k=1

|δ−~vk| ≤ jh max
1≤k≤J

|δ−~vk| and |~vj · ~e1| ≤ (J − j)h max
1≤k≤J

|δ−~vk|,

so that

|~vj · ~e1| ≤ min{qj , 1− qj} max
1≤k≤J

|δ−~vk| ≤ 2qj(1− qj) max
1≤k≤J

|δ−~vk|, 0 ≤ j ≤ J.

We consider the following fully discrete approximation, where in order to discretise
in time, we let tm = m∆t, m = 0, . . . ,M , with the uniform time step ∆t = T

M
> 0.

Let ~X0
j = ~x0(qj), j = 0, . . . , J . Then, for m = 0, . . . ,M − 1 find ~Xm : Gh → R

2 such
that for j = 1, . . . , J − 1

(2.15a)
~Xm+1
j − ~Xm

j

∆t
=

δ2 ~Xm+1
j

|δ1 ~Xm
j |2

− 1

|δ1 ~Xm
j |2

δ1 ~Xm+1
j · ~e2

~Xm
j · ~e1

(δ1 ~Xm
j )⊥

together with the boundary conditions

~Xm+1
0 · ~e1 = 0; δ+ ~Xm+1

0 · ~e2 = 1
4h|δ

+ ~Xm
0 |2

~Xm+1
0 − ~Xm

0

∆t
· ~e2,(2.15b)

~Xm+1
J · ~e1 = 0; δ− ~Xm+1

J · ~e2 = − 1
4h|δ

− ~Xm
J |2

~Xm+1
J − ~Xm

J

∆t
· ~e2.(2.15c)

The above scheme requires the solution of a linear system in each time step. We
will address the existence and uniqueness of this system in Section 3, within the error
analysis. Furthermore, we remark that (2.15b) and (2.15c) are obtained from inserting
(1.6a), (1.6b) into a Taylor expansion at ρ ∈ {0, 1}, yielding a consistency error that
is small enough to derive optimal error bounds. At the same time, the form of these
conditions turns out to be crucial in order to handle the degeneracy of the equation
close to the axis of rotation.

Lemma 2.3 (Consistency). Suppose that ~x : [0, 1] × [0, T ] → R
2 satisfies As-

sumption 2.1. Let ~xm
j := ~x(qj , tm) for j = 0, . . . , J and m = 0, . . . ,M . Define the

consistency errors of the finite difference scheme (2.15) by
(2.16a)

~Rm+1
j :=

~xm+1
j − ~xm

j

∆t
−

δ2~xm+1
j

|δ1~xm
j |2 +

1

|δ1~xm
j |2

δ1~xm+1
j · ~e2

~xm
j · ~e1

(δ1~xm
j )⊥, 1 ≤ j ≤ J − 1,

as well as

Rm+1
0 := δ+~xm+1

0 · ~e2 − 1
4h|δ+~xm

0 |2 ~x
m+1
0 − ~xm

0

∆t
· ~e2,(2.16b)

Rm+1
J := δ−~xm+1

J · ~e2 + 1
4h|δ

−~xm
J |2 ~x

m+1
J − ~xm

J

∆t
· ~e2.(2.16c)

Then there exists a constant C > 0 such that, for m = 0, . . . ,M − 1,
(2.17)

|~Rm+1
j | ≤ C

(

h2+∆t
)

, j = 1, . . . , J − 1, and |Rm+1
0 |+ |Rm+1

J | ≤ Ch
(

h2+∆t
)

.
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Proof. Simple Taylor expansions yield the well-known results

∣

∣

∣

∣

∣

~xm+1
j − ~xm

j

∆t
− ~xt(qj , tm)

∣

∣

∣

∣

∣

≤ C∆t, 0 ≤ j ≤ J, 0 ≤ m ≤ M − 1,(2.18a)

|δ−~xm
j − ~xρ(qj , tm)| ≤ Ch, 1 ≤ j ≤ J, 0 ≤ m ≤ M,(2.18b)

|δ1~xm
j − ~xρ(qj , tm)|+ |δ2~xm

j − ~xρρ(qj , tm)| ≤ Ch2, 1 ≤ j ≤ J − 1, 0 ≤ m ≤ M,

(2.18c)

δ1~xm
j − ~xρ(qj , tm)− 1

6h
2~xρρρ(qj , tm) = O(h3), 1 ≤ j ≤ J − 1, 0 ≤ m ≤ M,

(2.18d)

where we have observed that ~x(qj , ·) ∈ C2([0, T ]) and ~x(·, tm) ∈ C4([0, 1]). Evaluating
(1.6a) at (ρ, t) = (qj , tm), j = 1, . . . , J − 1, m = 0, . . . ,M − 1, we find that

(2.19) ~xt(qj , tm) =
~xρρ(qj , tm)

|~xρ(qj , tm)|2 − 1

|~xρ(qj , tm)|2
~xρ(qj , tm) · ~e2

~xm
j · ~e1

~x⊥
ρ (qj , tm),

where the assumed regularity of ~x allows us to use (1.6a) also at time t = 0. If we
combine (2.16a) with (2.19), and note (2.18a) as well as (2.18c), we obtain

|~Rm+1
j | ≤

∣

∣

∣

∣

∣

~xm+1
j − ~xm

j

∆t
− ~xt(qj , tm)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

δ2~xm+1
j

|δ1~xm
j |2 − ~xρρ(qj , tm)

|~xρ(qj , tm)|2

∣

∣

∣

∣

∣

(2.20)

+
|~xρ(qj , tm) · ~e2|

~xm
j · ~e1

∣

∣

∣

∣

∣

(δ1~xm
j )⊥

|δ1~xm
j |2 −

~x⊥
ρ (qj , tm)

|~xρ(qj , tm)|2

∣

∣

∣

∣

∣

+
1

|δ1~xm
j |

|
(

δ1~xm+1
j − ~xρ(qj , tm)

)

· ~e2|
~xm
j · ~e1

≤ C
(

h2 +∆t
)

+ C
|
(

δ1~xm+1
j − ~xρ(qj , tm)

)

· ~e2|
~xm
j · ~e1

.

In addition, it follows from (2.18d), (A.1b), (A.9) and (A.8) that

|
(

δ1~xm+1
j − ~xρ(qj , tm)

)

· ~e2|
≤ |
(

δ1~xm+1
j − δ1~xm

j

)

· ~e2|+ |
(

δ1~xm − ~xρ(qj , tm)
)

· ~e2|
≤ ∆t sup

tm≤t≤tm+1

|δ1~xt(qj , t) · ~e2|+ Ch2 min
q∈{0,1}

|~xρρρ(qj , tm) · ~e2 − ~xρρρ(q, tm) · ~e2|+ Ch3

≤ K∆t sup
tm≤t≤tm+1

~x(qj , t) · ~e1 + Ch2 min
q∈{0,1}

|~xρρρ(qj , tm)− ~xρρρ(q, tm)|+ Ch3

≤ C∆tqj(1− qj) + Ch2 min
q∈{0,1}

|qj − q|+ Ch3 ≤ Cqj(1− qj)
(

∆t+ h2
)

.

If we insert this bound into (2.20) and note that ~xm
j · ~e1 ≥ c2qj(1 − qj), 0 ≤ j ≤ J ,

in view of (A.8), we obtain (2.17) for ~Rm+1
j , j = 1, . . . , J − 1. Let us next examine

Rm+1
0 . A Taylor expansion yields

δ+~xm+1
0 =

~xm+1
1 − ~xm+1

0

h
= ~xρ(0, tm+1)+

1
2h~xρρ(0, tm+1)+

1
6h

2~xρρρ(0, tm+1)+O(h3),
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which together with (1.6b), (A.1b), ~xρρ(0, ·) ∈ C1([0, T ]) and (A.1c) implies that

δ+~xm+1
0 · ~e2 = 1

2h~xρρ(0, tm+1) · ~e2 +O(h3) = 1
2h~xρρ(0, tm) · ~e2 +O

(

h(h2 +∆t)
)

= 1
4h(~xt(0, tm) · ~e2)|~xρ(0, tm)|2 +O

(

h(h2 +∆t)
)

= 1
4h

~xm+1
0 − ~xm

0

∆t
· ~e2|δ+~xm

0 |2 +O
(

h(h2 +∆t)
)

,

where we have used (2.18a) as well as

|δ+~xm
0 |2 − |~xρ(0, tm)|2 =

(

δ+~xm
0 − ~xρ(0, tm)

)

·
(

δ+~xm
0 + ~xρ(0, tm)

)

=
(

1
2h~xρρ(0, tm) +O(h2)

)

·
(

2~xρ(0, tm) +O(h)
)

= h~xρρ(0, tm) · ~xρ(0, tm) +O(h2) = O(h2),

recall (A.1a). The bound for Rm+1
J is obtained in a similar way.

Theorem 2.4. Suppose that ~x : [0, 1] × [0, T ] → R
2 satisfies Assumption 2.1.

Then there exist h0 > 0, γ > 0 such that the discrete solution ( ~Xm)m=1,...,M to (2.15)
exists, and the error

(2.21) ~Em
j := ~xm

j − ~Xm
j , j = 0, . . . , J ; m = 0, . . . ,M

satisfies:

max
1≤m≤M

[

‖ ~Em‖21,h + max
0≤j≤J

| ~Em
j |2
]

≤ C
(

h4 + (∆t)2
)

,(2.22)

∆t

M
∑

m=1



| ~Em|22,h +

∣

∣

∣

∣

∣

~Em − ~Em−1

∆t

∣

∣

∣

∣

∣

2

0,h



 ≤ C
(

h4 + (∆t)2
)

,(2.23)

provided that 0 < h ≤ h0 and ∆t ≤ γh.

3. Proof of Theorem 2.4. Assumption 2.1 assures the existence of positive
constants c0, C0, c1, δ such that (2.2) and (2.3) hold. Let h ≤ δ. We set J1 :=

⌊

δ
h

⌋

∈
Z≥1, so that qJ1

= J1h ∈ [ 12δ, δ]. We shall prove Theorem 2.4 with the help of an
induction argument. In particular, we will prove that there exist h0 > 0, 0 < γ ≤ 1
and µ > 0 such that if 0 < h ≤ h0 and ∆t ≤ γh, then for m ∈ {0, . . . ,M} the discrete

solution ~Xm exists and satisfies

(3.1) ‖ ~Em‖21,h ≤
(

h4 + (∆t)2
)

eµtm .

The assertion (3.1) clearly holds for m = 0, for arbitrary h0 ≤ δ, 0 < γ ≤ 1 and µ > 0.
On assuming that (3.1) holds for a fixed m ∈ {0, . . . ,M − 1}, we will now show that
it also holds for m+ 1.

To begin, let us choose 0 < h0 ≤ δ and 0 < γ ≤ 1 so small that

(h2
0 + γ2)eµT ≤ 1.

Then, since ∆t ≤ γh, (3.1) implies that

‖ ~Em‖21,h ≤ h2(h2 + γ2)eµtm ≤ h2, 0 < h ≤ h0.

In particular, we infer from Lemma 2.2 that

(3.2) max
0≤j≤J

| ~Em
j |+ max

1≤j≤J
|δ− ~Em

j |+ max
1≤j≤J−1

|δ1 ~Em
j | ≤ Ch

1
2 .
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This implies for 1 ≤ j ≤ J , on recalling (2.18b) and (2.2), that

|δ− ~Xm
j | ≤ |δ−~xm

j |+ |δ− ~Em
j | ≤ |~xρ(qj , tm)|+ Ch

1
2 ≤ C0 + Ch

1
2 ,

and similarly |δ− ~Xm
j | ≥ c0 −Ch

1
2 . Arguing in the same way for δ1 ~Xm

j , we infer that

(3.3) 1
2c0 ≤ |δ− ~Xm

j | ≤ 2C0, 1 ≤ j ≤ J ; 1
2c0 ≤ |δ1 ~Xm

j | ≤ 2C0, 1 ≤ j ≤ J − 1,

provided that 0 < h ≤ h0 and h0 > 0 is chosen smaller if necessary. A similar
argument together with (2.3a), (2.3b) shows that

(3.4) δ− ~Xm
j · ~e1 ≥ 1

4c0, 1 ≤ j ≤ J1; δ− ~Xm
j · ~e1 ≤ − 1

4c0, J − J1 ≤ j ≤ J.

Next, since ~xρ(0, tm) · ~e2 = 0, recall (1.6b), we have from (3.2) and (2.15b) that

h |δ− ~Xm
1 | ≤ h |δ−~xm

1 |+ h |δ− ~Em
1 | ≤ h δ−~xm

1 · ~e1 + h |δ−~xm
1 · ~e2|+ Ch

3
2

≤ h δ− ~Xm
1 · ~e1 + Ch

3
2 = ~Xm

1 · ~e1 + Ch
3
2 ≤ (1 + Ch

1
2 )~xm

1 · ~e1 + Ch
3
2 ,

where in the last step we have observed that

~Xm
1 · ~e1 − ~xm

1 · ~e1 = −hδ− ~Em
1 · ~e1 ≤ Ch

3
2 ≤ Ch

1
2 ~xm

1 · ~e1,

on noting ~xm
1 · ~e1 ≥ 1

2c0h. Arguing in the same way at the right boundary, we obtain

(3.5) 3
4h |δ

− ~Xm
1 | ≤ ~Xm

1 · ~e1 ≤ 4
3~x

m
1 · ~e1; 3

4h|δ
− ~Xm

J | ≤ ~Xm
J−1 · ~e1 ≤ 4

3~x
m
J−1 · ~e1,

for a possibly smaller h0 > 0. Next, (3.2), (2.3c) and the fact that J1h ≥ 1
2δ imply

that

(3.6) ~Xm
j · ~e1 ≥ c1 − Ch

1
2 ≥ 1

2c1, J1 ≤ j ≤ J − J1,

after choosing h0 again smaller if required. In addition, there exists c3 > 0 such that

(3.7) ~Xm
j · ~e1 ≥ c3qj(1− qj), 0 ≤ j ≤ J.

To see this, note that ~Xm
0 · ~e1 = 0 and (3.4) imply that

(3.8a) ~Xm
j · ~e1 ≥ 1

4c0jh ≥ 1
4c0qj(1− qj), 0 ≤ j ≤ J1,

and similarly

(3.8b) ~Xm
j · ~e1 ≥ 1

4c0qj(1− qj), J − J1 ≤ j ≤ J.

Combining these estimates with (3.6) proves the bound (3.7). If we combine (3.7)
with (2.12) and (3.3), we obtain

(3.9)
~Xm
j±1 · ~e1
~Xm
j · e1

≤ 4C0

c3

qj±1(1− qj±1)

qj(1− qj)
≤ 8C0

c3
. 1 ≤ j ≤ J − 1.

Finally, (2.2) and (3.3) imply that
∣

∣

∣

∣

∣

1

|δ−~xm
j |2 − 1

|δ− ~Xm
j |2

∣

∣

∣

∣

∣

≤ C|δ− ~Em
j |, 1 ≤ j ≤ J,(3.10a)

∣

∣

∣

∣

∣

1

|δ1~xm
j |2 − 1

|δ1 ~Xm
j |2

∣

∣

∣

∣

∣

≤ C|δ1 ~Em
j |, 1 ≤ j ≤ J − 1.(3.10b)
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Lemma 3.1 (Existence and uniqueness). Let ~Xm : Gh → R
2 be as above. Then

(2.15) has a unique solution ~Xm+1 : Gh → R
2, provided that h0 is small enough.

Proof. The relations (2.15) form a linear system with 2(J + 1) unknowns for the

2(J + 1) values of ~Xm+1 at the nodes qj , j = 0, . . . , J . It is therefore sufficient to
show that the corresponding homogeneous system

1

∆t
~Xj −

1

|δ1 ~Xm
j |2

δ2 ~Xj = − 1

|δ1 ~Xm
j |2

δ1 ~Xj · ~e2
~Xm
j · ~e1

(δ1 ~Xm
j )⊥, j = 1, . . . , J − 1;(3.11a)

~X0 · ~e1 = 0; δ+ ~X0 · ~e2 = 1
4

h

∆t
( ~X0 · ~e2) |δ+ ~Xm

0 |2;(3.11b)

~XJ · ~e1 = 0; δ− ~XJ · ~e2 = − 1
4

h

∆t
( ~XJ · ~e2) |δ− ~Xm

J |2(3.11c)

only has the trivial solution ~X = ~0. If we multiply (3.11a) with −hδ2 ~Xj and sum
from j = 1, . . . , J − 1 we obtain with the help of (2.7) that

1

∆t
| ~X|21,h +

1

∆t

(

~X0 · δ+ ~X0 − ~XJ · δ− ~XJ

)

+ h

J−1
∑

j=1

1

|δ1 ~Xm
j |2

|δ2 ~Xj |2

= h

J−1
∑

j=1

1

|δ1 ~Xm
j |2

δ1 ~Xj · ~e2
~Xm
j · ~e1

(δ1 ~Xm
j )⊥ · δ2 ~Xj .

In view of (3.11b) and (3.5) we have

1

∆t
~X0 · δ+ ~X0 =

1

∆t
( ~X0 · ~e2)(δ+ ~X0 · ~e2) =

4

h

(δ+ ~X0 · ~e2)2

|δ+ ~Xm
0 |2

≥ 9
4h

(δ− ~X1 · ~e2)2

( ~Xm
1 · ~e1)2

.

Using a similar argument at the right end point, as well as (3.3), we deduce

1

∆t
| ~X |21,h +

1

4C2
0

| ~X|22,h + 9
4h
((δ− ~X1 · ~e2)2

( ~Xm
1 · ~e1)2

+
(δ+ ~XJ−1 · ~e2)2

( ~Xm
J−1 · ~e1)2

)

(3.12)

≤ h

J−1
∑

j=1

δ1 ~Xj · ~e2
~Xm
j · ~e1

((δ1 ~Xm
j )⊥

|δ1 ~Xm
j |2

−
(δ1~xm

j )⊥

|δ1~xm
j |2

)

· δ2 ~Xj

+ h

J−1
∑

j=1

1

|δ1~xm
j |2

δ1 ~Xj · ~e2
~Xm
j · ~e1

(δ1~xm
j )⊥ · δ2 ~Xj

=: h

J−1
∑

j=1

~S1
j · δ2 ~Xj + h

J−1
∑

j=1

~S2
j · δ2 ~Xj .

Using (3.10b) and (3.2) we infer that

|~S1
j | ≤ C

|δ1 ~Xj · ~e2|
~Xm
j · ~e1

|δ1 ~Em
j | |δ2 ~Xj | ≤ Ch

1
2
|δ1 ~Xj · ~e2|
~Xm
j · ~e1

|δ2 ~Xj |

and hence

h

J−1
∑

j=1

~S1
j · δ2 ~Xj ≤

1

8C2
0

| ~X |22,h + Ch2
J−1
∑

j=1

(δ1 ~Xj · ~e2)2

( ~Xm
j · ~e1)2

.
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The term ~S2
j corresponds exactly to −~T

m,3
j in (3.13) below, if we replace ~Em+1 by

~X. We may therefore deduce from Lemma 3.4 that

h

J−1
∑

j=1

~S2
j · δ2 ~Xj ≤ −c4h

J−1
∑

j=1

(δ1 ~Xj · ~e2)2

( ~Xm
j · ~e1)2

+ 5
3h

(

(δ− ~X1 · ~e2)2

( ~Xm
1 · ~e1)2

+
(δ+ ~XJ−1 · ~e2)2

( ~Xm
J−1 · ~e1)2

)

+
1

8C2
0

| ~X|22,h + C | ~X |21,h.

If we insert the above bounds into (3.12) and recall that ∆t ≤ γh ≤ h we infer that

( 1

h
− C

)

| ~X|21,h + (c4 − Ch)h

J−1
∑

j=1

(δ1 ~Xj · ~e2)2

( ~Xm
j · ~e1)2

≤ 0,

which implies that ~X ≡ ~X0 provided that 0 < h ≤ h0, where h0 is chosen smaller if
necessary. The boundary conditions (3.11b), on noting (3.3), then yield ~X ≡ 0.

We begin our error analysis by combining (2.21), (2.15a) and (2.16a), in order to
derive the following error relation:

~Em+1
j − ~Em

j

∆t
−

δ2 ~Em+1
j

|δ1 ~Xm
j |2

=
( 1

|δ1~xm
j |2 − 1

|δ1 ~Xm
j |2

)

δ2~xm+1
j(3.13)

+
δ1 ~Xm+1

j · ~e2
~Xm
j · ~e1

[

( 1

|δ1 ~Xm
j |2

− 1

|δ1~xm
j |2

)

(δ1 ~Xm
j )⊥ − 1

|δ1~xm
j |2 (δ1 ~Em

j )⊥

]

− 1

|δ1~xm
j |2

δ1 ~Em+1
j · ~e2

~Xm
j · ~e1

(δ1~xm
j )⊥

+
1

|δ1~xm
j |2

( 1

~Xm
j · ~e1

− 1

~xm
j · ~e1

)

(δ1~xm+1
j · ~e2)(δ1~xm

j )⊥ + ~Rm+1
j

=:

5
∑

i=1

~T
m,i
j , 1 ≤ j ≤ J − 1.

Furthermore, for the boundary points we have in view of (1.6b), (2.15b), (2.15c),
(2.16b) and (2.16c) that

( ~Em+1
0 − ~Em

0 ) · ~e1 = ( ~Em+1
J − ~Em

J ) · ~e1 = 0,(3.14a)

~Em+1
0 − ~Em

0

∆t
=

4

h

δ+ ~Em+1
0 · ~e2 −Rm+1

0

|δ+ ~Xm
0 |2

~e2 +
(

1− |δ+~xm
0 |2

|δ+ ~Xm
0 |2

)~xm+1
0 − ~xm

0

∆t
,(3.14b)

~Em+1
J − ~Em

J

∆t
= − 4

h

δ− ~Em+1
J · ~e2 −Rm+1

J

|δ− ~Xm
J |2

~e2 +
(

1− |δ−~xm
J |2

|δ− ~Xm
J |2

)~xm+1
J − ~xm

J

∆t
.(3.14c)

Our strategy for the proof of (3.1) with m replaced by m+1 is now as follows. In
a discrete analogue to the formal procedure in (2.4), we are going to multiply (3.13)

with a second order difference of the error ~Em+1. The ensuing analysis is technical,
and so we split it into three steps. In a first step, we control the terms generated on the
left hand side of (3.13), in order to obtain Lemma 3.2. Next we estimate four of the
five terms generated by the right hand side of (3.13), see Lemma 3.3. The remaining
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term, which is generated by ~Tm,3 and loosely corresponds to the last integral in (2.4),
requires a particularly careful analysis. We present the derived estimate in Lemma 3.4,
where in the proof we will mimic the formal calulations from (2.5).

The induction step is then completed by combining the three lemmas.

Lemma 3.2. There exists C1 > 0 such that for all 0 < λ ≤ 1

1 + λ

2∆t

(

| ~Em+1|21,h − | ~Em|21,h
)

+
1

2∆t
| ~Em+1 − ~Em|21,h +

1

4C2
0

| ~Em+1|22,h

(3.15)

+ 1
4 c

2
0λ

∣

∣

∣

∣

∣

~Em+1 − ~Em

∆t

∣

∣

∣

∣

∣

2

0,h

+ (2− C1λ)h

[

(

δ− ~Em+1
1 · ~e2

)2

( ~Xm
1 · ~e1)2

+

(

δ+ ~Em+1
J−1 · ~e2

)2

( ~Xm
J−1 · ~e1)2

]

≤ Ch
(

h4 + (∆t)2
)

+ C| ~Em|21,h

+ h

5
∑

i=1

J−1
∑

j=1

~T
m,i
j ·

(

λ|δ1 ~Xm
j |2

~Em+1
j − ~Em

j

∆t
− δ2 ~Em+1

j

)

.

Proof. Fix 0 < λ ≤ 1. If we multiply (3.13) by h
(

λ|δ1 ~Xm
j |2

~Em+1

j −~Em
j

∆t
− δ2 ~Em+1

j

)

and sum over j = 1, . . . , J − 1, we obtain

− (1 + λ)
h

∆t

J−1
∑

j=1

(

~Em+1
j − ~Em

j

)

· δ2 ~Em+1
j + h

J−1
∑

j=1

|δ2 ~Em+1
j |2

|δ1 ~Xm
j |2

(3.16)

+ hλ

J−1
∑

j=1

|δ1 ~Xm
j |2

∣

∣

∣

∣

∣

~Em+1
j − ~Em

j

∆t

∣

∣

∣

∣

∣

2

= h

5
∑

i=1

J−1
∑

j=1

~T
m,i
j ·

(

λ|δ1 ~Xm
j |2

~Em+1
j − ~Em

j

∆t
− δ2 ~Em+1

j

)

.

Applying summation by parts, (2.7), to the first term in (3.16), and noting (2.8) and
2(a− b)a = a2 − b2 + (a− b)2, yields

− h

∆t

J−1
∑

j=1

(

~Em+1
j − ~Em

j

)

· δ2 ~Em+1
j(3.17)

=
h

∆t

J
∑

j=1

δ−
(

~Em+1
j − ~Em

j

)

· δ− ~Em+1
j

−
~Em+1
J − ~Em

J

∆t
· δ− ~Em+1

J +
~Em+1
0 − ~Em

0

∆t
· δ+ ~Em+1

0

=
1

2∆t

(

| ~Em+1|21,h − | ~Em|21,h
)

+
1

2∆t
| ~Em+1 − ~Em|21,h

−
~Em+1
J − ~Em

J

∆t
· δ− ~Em+1

J +
~Em+1
0 − ~Em

0

∆t
· δ+ ~Em+1

0 .

On noting (3.14b), (2.6b), Young’s inequality, (2.17), (3.3), (3.10a) and (3.5), we can
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estimate the last term on the right hand side of (3.17) as

~Em+1
0 − ~Em

0

∆t
· δ+ ~Em+1

0 =
4

h

(

δ+ ~Em+1
0 · ~e2

)2

|δ+ ~Xm
0 |2

− 4

h

δ+ ~Em+1
0 · ~e2

|δ+ ~Xm
0 |2

Rm+1
0

+
(

1− |δ+~xm
0 |2

|δ+ ~Xm
0 |2

)~xm+1
0 − ~xm

0

∆t
· ~e2(δ+ ~Em+1

0 · ~e2)

≥ 4− ε

h

(

δ+ ~Em+1
0 · ~e2

)2

|δ− ~Xm
1 |2

− Cεh
(

h4 + (∆t)2
)

− Cεh |δ+ ~Em
0 |2

≥ 9
16 (4− ε)h

(

δ+ ~Em+1
0 · ~e2

)2

( ~Xm
1 · ~e1)2

− Cεh
(

h4 + (∆t)2
)

− Cεh |δ+ ~Em
0 |2.

On choosing ε sufficiently small, and arguing similarly for
~Em+1

J
−~Em

J

∆t
· δ− ~Em+1

J , we
find that (3.17) implies

− (1 + λ)
h

∆t

J−1
∑

j=1

(

~Em+1
j − ~Em

j

)

· δ2 ~Em+1
j ≥ 1 + λ

2∆t

(

| ~Em+1|21,h − | ~Em|21,h
)

(3.18)

+
1

2∆t
| ~Em+1 − ~Em|21,h + 2h

[

(

δ+ ~Em+1
0 · ~e2

)2

( ~Xm
1 · ~e1)2

+

(

δ− ~Em+1
J · ~e2

)2

( ~Xm
J−1 · ~e1)2

]

− Ch
(

|δ− ~Em
1 |2 + |δ− ~Em

J |2
)

− Ch
(

h4 + (∆t)2
)

.

In addition, we deduce from (3.14b), (3.10a), (3.3) and the fact that thanks to (3.7)

we have h|δ+ ~Xm
0 |2 ≥ h−1 ( ~Xm

1 · ~e1)2 ≥ C ~Xm
1 · ~e1 that

∣

∣

∣

∣

∣

~Em+1
0 − ~Em

0

∆t

∣

∣

∣

∣

∣

≤ C
|δ− ~Em+1

1 · ~e2|
~Xm
1 · ~e1

+ C
1

h
|Rm+1

0 |+ C|δ− ~Em
1 |,

so that (2.17) yields

h

2

∣

∣

∣

∣

∣

~Em+1
0 − ~Em

0

∆t

∣

∣

∣

∣

∣

2

≤ Ch
(δ− ~Em+1

1 · ~e2)2

( ~Xm
1 · ~e1)2

+ Ch(h2 +∆t)2 + Ch|δ− ~Em
1 |2.(3.19)

Inserting (3.18) into (3.16) and using (2.8), (3.3), (2.6b), as well as (3.19) and a
corresponding estimate at the right boundary, we obtain the desired result (3.15).

Lemma 3.3. Let 0 < λ ≤ 1 and ∆t ≤ γh. Then

h

5
∑

i=1

J−1
∑

j=1

~T
m,i
j ·

(

λ|δ1 ~Xm
j |2

~Em+1
j − ~Em

j

∆t
− δ2 ~Em+1

j

)

+ h

J−1
∑

j=1

~T
m,3
j · δ2 ~Em+1

j(3.20)

≤ 1

8C2
0

| ~Em+1|22,h + C
(

| ~Em|21,h + | ~Em+1|21,h
)

+ C
γ

∆t
| ~Em+1 − ~Em|21,h

+ 1
8c

2
0λ

∣

∣

∣

∣

∣

~Em+1 − ~Em

∆t

∣

∣

∣

∣

∣

2

0,h

+ C
(

h4 + (∆t)2
)

+ C(λ + h)h

J−1
∑

j=1

(δ1 ~Em+1
j · ~e2)2

( ~Xm
j · ~e1)2

.
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Proof. We recall the definitions of the terms ~Tm,i in (3.13). Then we note from
(3.10b), (3.3), (3.7), (A.8) and (3.2) that

|~Tm,1
j |+ |~Tm,2

j | ≤ C
(

|δ2~xm+1
j |+

|δ1 ~Xm+1
j · ~e2|

~Xm
j · ~e1

)

|δ1 ~Em
j |

≤ C
(

1 +
|δ1~xm+1

j · ~e2|
~xm+1
j · ~e1

~xm+1
j · ~e1
~Xm
j · ~e1

+
|δ1 ~Em+1

j · ~e2|
~Xm
j · ~e1

)

|δ1 ~Em
j |

≤ C|δ1 ~Em
j |+ Ch

1
2

|δ1 ~Em+1
j · ~e2|

~Xm
j · ~e1

, 1 ≤ j ≤ J − 1,

so that (2.6c), (2.6b), (3.3) and (2.8) imply that

h

2
∑

i=1

J−1
∑

j=1

~T
m,i
j ·

(

λ |δ1 ~Xm
j |2

~Em+1
j − ~Em

j

∆t
− δ2 ~Em+1

j

)

(3.21)

≤ Ch

J−1
∑

j=1

(

|δ− ~Em
j |+ |δ− ~Em

j+1|+ h
1
2

|δ1 ~Em+1
j · ~e2|

~Xm
j · ~e1

)(

λ

∣

∣

∣

∣

∣

~Em+1
j − ~Em

j

∆t

∣

∣

∣

∣

∣

+ |δ2 ~Em+1
j |

)

≤ ελ

∣

∣

∣

∣

∣

~Em+1 − ~Em

∆t

∣

∣

∣

∣

∣

2

0,h

+ ε | ~Em+1|22,h + Cε | ~Em|21,h + Cεh
2
J−1
∑

j=1

(δ1 ~Em+1
j · ~e2)2

( ~Xm
j · ~e1)2

.

The term involving the product of ~Tm,3 with δ2 ~Em+1 is not estimated, while

h

J−1
∑

j=1

~T
m,3
j · λ |δ1 ~Xm

j |2
~Em+1
j − ~Em

j

∆t
(3.22)

≤ Cλ



h

J−1
∑

j=1

(δ1 ~Em+1
j · ~e2)2

( ~Xm
j · ~e1)2





1
2 ∣

∣

∣

∣

∣

~Em+1 − ~Em

∆t

∣

∣

∣

∣

∣

0,h

≤ ελ

∣

∣

∣

∣

∣

~Em+1 − ~Em

∆t

∣

∣

∣

∣

∣

2

0,h

+ Cελh

J−1
∑

j=1

(δ1 ~Em+1
j · ~e2)2

( ~Xm
j · ~e1)2

.

Next, we have

(3.23) |~Tm,4
j | ≤ C

| ~Em
j · ~e1|

(~xm
j · ~e1)( ~Xm

j · ~e1)
|δ1~xm+1

j · ~e2|, 1 ≤ j ≤ J − 1.

In addition, (A.8) and (A.9) yield

|δ1~xm+1
j · ~e2| =

|δ1~xm+1
j · ~e2|

~xm+1
j · ~e1

~xm+1
j · ~e1 ≤ Cqj(1− qj), 1 ≤ j ≤ J − 1,
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so that (3.23), (2.12), (A.8), (3.7) and (2.9) imply

|~Tm,4
j | ≤ C

q2j (1− qj)
2

c2c3q
2
j (1 − qj)2

max
1≤k≤J

|δ− ~Em
k | ≤ C max

1≤k≤J
|δ− ~Em

k |

≤ C
(

max
1≤k≤J

|δ− ~Em+1
k |+ max

1≤k≤J
|δ−( ~Em+1

k − ~Em
k )|
)

≤ C max
1≤k≤J

|δ− ~Em+1
k |+ Ch− 1

2 | ~Em+1 − ~Em|1,h, 1 ≤ j ≤ J − 1.

Hence we obtain with the help of (2.11) and the fact that ∆t ≤ γh

h

J−1
∑

j=1

~T
m,4
j ·

(

λ|δ1 ~Xm
j |2

~Em+1
j − ~Em

j

∆t
− δ2 ~Em+1

j

)

(3.24)

≤ C
(

max
1≤j≤J

|δ− ~Em+1
j |+ h− 1

2 | ~Em+1 − ~Em|1,h
)

(

λ

∣

∣

∣

∣

∣

~Em+1 − ~Em

∆t

∣

∣

∣

∣

∣

0,h

+ | ~Em+1|2,h
)

≤ ε| ~Em+1|22,h + ελ

∣

∣

∣

∣

∣

~Em+1 − ~Em

∆t

∣

∣

∣

∣

∣

2

0,h

+ Cε | ~Em+1|21,h + Cε

γ

∆t
| ~Em+1 − ~Em|21,h.

Finally, we infer from (2.17) that

h

J−1
∑

j=1

~T
m,5
j ·

(

λ|δ1 ~Xm
j |2

~Em+1
j − ~Em

j

∆t
− δ2 ~Em+1

j

)

(3.25)

≤ C
(

h2 +∆t
)

(

λ

∣

∣

∣

∣

∣

~Em+1 − ~Em

∆t

∣

∣

∣

∣

∣

0,h

+ | ~Em+1|2,h
)

≤ ε | ~Em+1|22,h + ελ

∣

∣

∣

∣

∣

~Em+1 − ~Em

∆t

∣

∣

∣

∣

∣

2

0,h

+ Cε

(

h4 + (∆t)2
)

.

If we add (3.21), (3.22), (3.24) and (3.25), and then choose ε sufficiently small, the
bound (3.20) follows.

In the next lemma we mimic the formal calulations in (2.5), thereby closing our
estimates.

Lemma 3.4. There exists a constant c4 > 0 such that

h

J−1
∑

j=1

~T
m,3
j · δ2 ~Em+1

j(3.26)

≥ c4h

J−1
∑

j=1

(δ1 ~Em+1
j · ~e2)2

( ~Xm
j · ~e1)2

− 5
3h

(

(δ− ~Em+1
1 · ~e2)2

( ~Xm
1 · ~e1)2

+
(δ+ ~Em+1

J−1 · ~e2)2

( ~Xm
J−1 · ~e1)2

)

− ε| ~Em+1|22,h − Cε | ~Em+1|21,h.

Proof. Let us start by writing
(3.27)
J−1
∑

j=1

~T
m,3
j ·δ2 ~Em+1

j =

J1
∑

j=1

~T
m,3
j ·δ2 ~Em+1

j +

J−J1−1
∑

j=J1+1

~T
m,3
j ·δ2 ~Em+1

j +
J−1
∑

j=J−J1

~T
m,3
j ·δ2 ~Em+1

j ,
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and we begin by estimating the first sum on the right hand side of (3.27). On recalling
(3.13), we can write
(3.28)

~T
m,3
j =

1

|δ1~xm
j |

δ1 ~Em+1
j · ~e2

~Xm
j · ~e1

~e2 −
1

|δ1~xm
j |

δ1 ~Em+1
j · ~e2

~Xm
j · ~e1

((δ1~xm
j )⊥

|δ1~xm
j | + ~e2

)

=: ~S1
j + ~S2

j .

Observing from (2.6) that

(

δ1 ~Em+1
j · ~e2

)

δ2 ~Em+1
j · ~e2 =

1

h
(δ1 ~Em+1

j · ~e2)(δ+ ~Em+1
j − δ− ~Em+1

j ) · ~e2

=
1

2h

(

(δ− ~Em+1
j+1 · ~e2)2 − (δ− ~Em+1

j · ~e2)2
)

,

we find that

h

J1
∑

j=1

~S1
j · δ2 ~Em+1

j = 1
2

J1
∑

j=1

1

|δ1~xm
j |

1

~Xm
j · ~e1

(

(δ− ~Em+1
j+1 · ~e2)2 − (δ− ~Em+1

j · ~e2)2
)

(3.29)

= 1
2

J1
∑

j=1

(δ− ~Em+1
j+1 · ~e2)2

|δ1~xm
j | ~Xm

j · ~e1
− 1

2

J1−1
∑

j=0

(δ− ~Em+1
j+1 · ~e2)2

|δ1~xm
j+1| ~Xm

j+1 · ~e1

= 1
2

J1−1
∑

j=1

( 1

|δ1~xm
j |

1

~Xm
j · ~e1

− 1

|δ1~xm
j+1|

1

~Xm
j+1 · ~e1

)

(δ− ~Em+1
j+1 · ~e2)2

− 1
2

(δ− ~Em+1
1 · ~e2)2

|δ1~xm
1 | ~Xm

1 · ~e1
+ 1

2

(δ− ~Em+1
J1+1 · ~e2)2

|δ1~xm
J1
| ~Xm

J1
· ~e1

.

In order to estimate the sum on the right hand side, we observe that |δ1~xm
j+1| ≤

1
2h

∫ qj+2

qj
|~xm

ρ | dρ ≤ C0, recall (2.2), and ~Xm
j · ~e1 ≤ ~Xm

j+1 · ~e1 ≤ C ~Xm
j · ~e1 for 1 ≤ j ≤

J1 − 1, recall (3.4) and (3.9). Hence we obtain with the help of (3.4) that

1

|δ1~xm
j |

1

~Xm
j · ~e1

− 1

|δ1~xm
j+1|

1

~Xm
j+1 · ~e1

= h
1

|δ1~xm
j+1|

δ− ~Xm
j+1 · ~e1

( ~Xm
j+1 · ~e1) ~Xm

j · ~e1
− 1

~Xm
j · ~e1

( 1

|δ1~xm
j+1|

− 1

|δ1~xm
j |
)

≥ h
1

C0

c0
4

( ~Xm
j+1 · ~e1)2

− Ch
1

~Xm
j+1 · ~e1

≥ h
c0

8C0

1

( ~Xm
j+1 · ~e1)2

− Ch, 1 ≤ j ≤ J1 − 1.

Furthermore, on noting |δ1~xm
1 | ≥ δ1~xm

1 · ~e1 = 1
2h~x

m
2 · ~e1 ≥ 1

2h~x
m
1 · ~e1 ≥ 3

8
1
h
~Xm
1 · ~e1,

recall (3.5), we have that

1
2

(δ− ~Em+1
1 · ~e2)2

|δ1~xm
1 | ~Xm

1 · ~e1
≤ 4

3h
(δ− ~Em+1

1 · ~e2)2

( ~Xm
1 · ~e1)2

.

Inserting the above two estimates into (3.29) yields, on recalling (2.8), that

h

J1
∑

j=1

~S1
j · δ2 ~Em+1

j ≥ h
c0

16C0

J1−1
∑

j=1

(δ− ~Em+1
j+1 · ~e2)2

( ~Xm
j+1 · ~e1)2

− 4
3h

(δ− ~Em+1
1 · ~e2)2

( ~Xm
1 · ~e1)2

(3.30)

− C| ~Em+1|21,h.
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Note that in view of (1.6b), (2.2) and (2.3a) we have
~xρ(0,t)
|~xρ(0,t)|

= ~e1, so that
~x⊥

ρ (0,t)

|~xρ(0,t)|
=

~e⊥1 = −~e2. Hence (2.18c) and the smoothness of ~x imply
∣

∣

∣

∣

∣

(δ1~xm
j )⊥

|δ1~xm
j | + ~e2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(δ1~xm
j )⊥

|δ1~xm
j | −

~x⊥
ρ (qj , tm)

|~xρ(qj , tm)|

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

~x⊥
ρ (qj , tm)

|~xρ(qj , tm)| −
~x⊥
ρ (0, tm)

|~xρ(0, tm)|

∣

∣

∣

∣

∣

≤ C(h+ qj) ≤ Cqj ,

for 1 ≤ j ≤ J1, which means that with the help of (3.8a) we obtain

h

J1
∑

j=1

~S2
j · δ2 ~Em+1

j ≥ −Ch

J1
∑

j=1

(

|δ− ~Em+1
j |+ |δ+ ~Em+1

j |) |δ2 ~Em+1
j |(3.31)

≥ −ε| ~Em+1|22,h − Cε| ~Em+1|21,h.

Combining (3.30) and (3.31) with (3.28) we obtain

h

J1
∑

j=1

~T
m,3
j · δ2 ~Em+1

j ≥ h
c0

16C0

J1
∑

j=2

(δ− ~Em+1
j · ~e2)2

( ~Xm
j · ~e1)2

− 4
3h

(δ− ~Em+1
1 · ~e2)2

( ~Xm
1 · ~e1)2

(3.32)

− ε| ~Em+1|22,h − Cε | ~Em+1|21,h.

In order to estimate the third sum on the right hand side of (3.27), we start from

~T
m,3
j = − 1

|δ1~xm
j |

δ1 ~Em+1
j · ~e2

~Xm
j · ~e1

~e2 −
1

|δ1~xm
j |

δ1 ~Em+1
j · ~e2

~Xm
j · ~e1

((δ1~xm
j )⊥

|δ1~xm
j | − ~e2

)

,

and use similar arguments as above to obtain

h

J−1
∑

j=J−J1

~T
m,3
j · δ2 ~Em+1

j ≥ h
c0

16C0

J−1
∑

j=J−J1+1

(δ− ~Em+1
j · ~e2)2

( ~Xm
j · ~e1)2

− 4
3h

(δ− ~Em+1
J · ~e2)2

( ~Xm
J−1 · ~e1)2

(3.33)

− ε| ~Em+1|22,h − Cε | ~Em+1|21,h.

Moreover, it follows from (2.2), (3.3) and (3.6), that

h

J−J1−1
∑

j=J1+1

~T
m,3
j · δ2 ~Em+1

j − h
c0

16C0

J−J1
∑

j=J1+1

(δ− ~Em+1
j · ~e2)2

( ~Xm
j · ~e1)2

(3.34)

≥ −Ch

J−1
∑

j=1

(

|δ− ~Em+1
j |+ |δ− ~Em+1

j+1 |
)

|δ2 ~Em+1
j | − Ch

J−1
∑

j=1

|δ− ~Em+1
j |2

≥ −ε | ~Em+1|22,h − Cε| ~Em+1|21,h.

If we combine (3.32), (3.33) and (3.34) we obtain

h

J−1
∑

j=1

~T
m,3
j · δ2 ~Em+1

j ≥ h
c0

16C0

J−1
∑

j=2

(δ− ~Em+1
j · ~e2)2

( ~Xm
j · ~e1)2

(3.35)

− 4
3h

(

(δ− ~Em+1
1 · ~e2)2

( ~Xm
1 · ~e1)2

+
(δ+ ~Em+1

J−1 · ~e2)2

( ~Xm
J−1 · ~e1)2

)

− ε| ~Em+1|22,h − Cε | ~Em+1|21,h.
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Observing that in view of (2.6b) and (3.9)

|δ+ ~Em+1
j · ~e2|

~Xm
j · ~e1

≤ 8C0

c3

|δ− ~Em+1
j+1 · ~e2|

~Xm
j+1 · ~e1

, 1 ≤ j ≤ J − 2,

we have

h

J−1
∑

j=1

(δ1 ~Em+1
j · ~e2)2

( ~Xm
j · ~e1)2

≤ h

2

J−1
∑

j=1

(δ+ ~Em+1
j · ~e2)2

( ~Xm
j · ~e1)2

+
h

2

J−1
∑

j=1

(δ− ~Em+1
j · ~e2)2

( ~Xm
j · ~e1)2

≤ h

2

(

(δ− ~Em+1
1 · ~e2)2

( ~Xm
1 · ~e1)2

+
(δ+ ~Em+1

J−1 · ~e2)2

( ~Xm
J−1 · ~e1)2

)

+ Ch

J−1
∑

j=2

(δ− ~Em+1
j · ~e2)2

( ~Xm
j · ~e1)2

.

If we insert this bound into (3.35), we deduce (3.26) provided that c4 is small enough.

Combining Lemmas 3.2, 3.3 and 3.4 we obtain after choosing ε, γ and λ sufficiently
small

1 + λ

2∆t

(

| ~Em+1|21,h − | ~Em|21,h
)

+
1

16C2
0

| ~Em+1|22,h + 1
8c

2
0λ

∣

∣

∣

∣

∣

~Em+1 − ~Em

∆t

∣

∣

∣

∣

∣

2

0,h

(3.36)

≤ C
(

| ~Em|21,h + | ~Em+1|21,h
)

+ C
(

h4 + (∆t)2
)

.

Furthermore, we have

1

2∆t

(

| ~Em+1|20,h − | ~Em|20,h
)

≤ 1
2

∣

∣

∣

∣

∣

~Em+1 − ~Em

∆t

∣

∣

∣

∣

∣

0,h

(

| ~Em+1|0,h + | ~Em|0,h
)

(3.37)

≤ 1
16c

2
0λ

∣

∣

∣

∣

∣

~Em+1 − ~Em

∆t

∣

∣

∣

∣

∣

2

0,h

+ C
(

| ~Em+1|20,h + | ~Em|20,h
)

.

On inserting (3.37) into (3.36), divided by (1+λ), we obtain that there exist constants
c6 > 0 and C2 > 0 such that

1

∆t

(

‖ ~Em+1‖21,h − ‖ ~Em‖21,h
)

+ c6



| ~Em+1|22,h +

∣

∣

∣

∣

∣

~Em+1 − ~Em

∆t

∣

∣

∣

∣

∣

2

0,h



(3.38)

≤ C2

(

‖ ~Em+1‖21,h + ‖ ~Em‖21,h
)

+ C2

(

h4 + (∆t)2
)

.

Combining (3.38) with the induction hypothesis (3.1) completes the proof of The-
orem 2.4. In fact, if we choose h0 so small that C2∆t ≤ 1

2 for ∆t ≤ γh0, then
0 < (1− C2 ∆t)−1 ≤ 1 + 2C2∆t, and so it follows from (3.38) and (3.1) that

‖ ~Em+1‖21,h ≤ (1− C2∆t)−1
[

(

1 + C2∆t
)

‖ ~Em‖21,h + C2∆t
(

h4 + (∆t)2
)

]

≤
(

1 + 2C2∆t
)2‖ ~Em‖21,h + C2

(

1 + 2C2∆t
)

∆t
(

h4 + (∆t)2
)

≤
(

1 + 2C2∆t
)2(

h4 + (∆t)2
)

eµtm + 2C2∆t
(

h4 + (∆t)2
)

≤
(

1 + 3C2∆t
)2(

h4 + (∆t)2
)

eµtm

≤
(

h4 + (∆t)2
)

e6C2∆teµtm =
(

h4 + (∆t)2
)

eµtm+1 ,
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Table 1

Errors for the convergence test for (4.1) over the time interval [0, 0.125] with ∆t = h.

J max
m=0,...,M

|~xm − ~Xm|0,h EOC max
m=0,...,M

|~xm − ~Xm|1,h EOC

32 3.5744e-02 — 1.1225e-01 —
64 2.0034e-02 0.84 6.2934e-02 0.83
128 1.0690e-02 0.91 3.3582e-02 0.91
256 5.5352e-03 0.95 1.7389e-02 0.95
512 2.8185e-03 0.97 8.8546e-03 0.97

Table 2

Errors for the convergence test for (4.1) over the time interval [0, 0.125] with ∆t = h2.

J max
m=0,...,M

|~xm − ~Xm|0,h EOC max
m=0,...,M

|~xm − ~Xm|1,h EOC

32 1.0024e-03 — 3.1480e-03 —
64 2.5201e-04 1.99 7.9165e-04 1.99
128 6.3093e-05 2.00 1.9821e-04 2.00
256 1.5779e-05 2.00 4.9571e-05 2.00
512 3.9451e-06 2.00 1.2394e-05 2.00

if we choose µ = 6C2. Since µ, as well as γ, were chosen independently of h and ∆t,
we have shown (3.1) by induction. Together with (2.10) this proves the inequality
(2.22). Finally, multiplying (3.38) by ∆t and summing for m = 0, . . . ,M − 1 yields
the bound (2.23).

4. Numerical results. It is easy to show that a shrinking sphere with radius
[1− 4 t]

1
2 is a solution to (1.1). In fact, the parameterization

(4.1) ~x(ρ, t) = [1− 4 t]
1
2

(

sin(π ρ)
cos(π ρ)

)

solves (1.6). On letting ~xm
j = ~x(qj , tm), j = 0, . . . , J , we compare (4.1) to the dis-

crete solutions ( ~Xm)m=0,...,M of (2.15) and perform two convergence experiments. In
particular, we choose either ∆t = h or ∆t = h2, for h = J−1 = 2−k, k = 5, . . . , 9.

The results in Tables 1 and 2 confirm the theoretical results proved in Theo-
rem 2.4. We stress that the quadratic convergence rate for the H1–seminorm in
Table 2 is better than the linear rate observed in [2, Table 4] for the finite element
scheme considered there. This suggests that the delicate treatment of the boundary
nodes in our finite difference scheme (2.15) is crucial to obtain the optimal convergence
rate in Theorem 2.4.

In Figure 1 we show a simulation for mean curvature flow of a sphere with an
inscribed torus. In particular, the initial surface selfintersects on the equator of the
sphere, and has genus 0. For the scheme (2.15) we choose J = 1024 and ∆t = 10−4.
Under mean curvature flow, the torus attempts to shrink to a circle. For the generating
curve, this means that the cusp or swallow tail tries to disappear. Of course, for
the approximated partial differential equation this represents a singularity, where
the curvatures of the curve, and of the corresponding axisymmetric surface, blow up.
However, the discrete scheme (2.15) is blind to the self-intersection and the associated
singularity. Hence the finite difference approximation simply integrates across the
singularity. The same behavior can be seen, for example, in [8, Figure 4.2] and [3,
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Fig. 1. Evolution for a torus inscribed within a sphere. Plots are at times t = 0, 0.1, 0.14, 0.2.

Figure 6]. Continuing the evolution in Figure 1 would show the curve approaching a
shrinking semicircle, that eventually vanishes at the origin.

In the recent article [2], the present authors numerically studied the Angenent
torus, see [1, 17], as an example of a self-shrinker for mean curvature flow. Here we
recall that the surface S(0) is called a self-shrinker, if the self-similar family of surfaces

S(t) = [1− t]
1
2S(0)

is a solution to (1.1). In what follows, we would like to use our approximation (2.15)
in order to investigate self-shrinkers of genus-0. It was shown in [15] that the only
bounded embedded genus-0 self-shrinker in R

3 is the sphere of radius 2. Note that the
unit sphere has an extinction time of T0 = 1

4 , recall (4.1). On the other hand, in [9]
the existence of infinitely many immersed self-shrinkers with rotational symmetry was
proved. Hence, inspired by [9, Figure 3], we would like compute such a self-similar
evolution for mean curvature flow. To this end, we use the open curve analogue of [2,
(5.7),(5.8)] in order to calculate a profile curve of a self-shrinker that has three self-
intersections. Using the obtained curve as initial data for the scheme (2.15) yields the
self-similar evolution displayed in Figure 2. Here we used the discretization parameters
J = 512 and ∆t = 10−4. Note that the numerical method appears to confirm the
unit extinction time. In fact, continuing the evolution until the methods breaks down
yields the behaviour of the approximate surface area

Am = 2πh

J
∑

j=1

~Xm
j · ~e1|δ− ~Xm

j |

as shown in Figure 3, with the expected linear decay and an approximate extinction
time of 1.

Finally, we include a numerical experiment to demonstrate that our scheme can
also deal with initial data that violate the 90◦ contact angle condition in (1.6b). To
this end, in Figure 4 we start a simulation for a surface that has two cone singularities:
an inward cone and an outward cone. The generating curve has a 45◦ contact angle at
the axis of rotation, which induces a discontinuous jump in time for the solution of the
partial differential equation. For the simulation we choose J = 512 and ∆t = 10−4 for
the scheme (2.15). It can be observed that the outward cone very quickly smoothens
to a rounded tip, while the inward cone also smoothens and rises at the same time.
Eventually the curve approaches a shrinking semicircle, that will shrink to a point.



ERROR ANALYSIS FOR AXISYMMETRIC MEAN CURVATURE FLOW 21

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3  3.5
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3  3.5
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3  3.5

Fig. 2. Self-similar evolution for a surface with three self-intersections. Plots are at times
t = 0, 0.1, . . . , 0.9, and again at times t = 0 and t = 0.9.
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Fig. 3. A plot of the approximate surface area Am, for the simulation in Figure 2, over time.

Appendix A. Properties of the solution.

Lemma A.1 (Behaviour at the boundary). Let ~x : [0, 1] × [0, T ] → R
2 satisfy

Assumption 2.1. Then we have

~xρρ · ~e1 = ~xρρ · ~xρ = 0 on {0, 1} × [0, T ],(A.1a)

~xρρρ · ~e2 = 0 on {0, 1} × [0, T ],(A.1b)

~xt = 2
~xρρ · ~e2
|~xρ|2

~e2 on {0, 1} × [0, T ].(A.1c)

Proof. We have from (1.6b) that

(A.2) ~x⊥
ρ (0, t) = (|~xρ(0, t)|~e1)⊥ = −|~xρ(0, t)|~e2,

and so we obtain with the help of L’Hospital’s rule that

lim
ρց0

1

|~xρ(ρ, t)|2
~xρ(ρ, t) · ~e2
~x(ρ, t) · ~e1

~x⊥
ρ (ρ, t) =

1

|~xρ(0, t)|2
~xρρ(0, t) · ~e2
~xρ(0, t) · ~e1

~x⊥
ρ (0, t)(A.3)

= −~xρρ(0, t) · ~e2
|~xρ(0, t)|2

~e2.

Thus (1.6a) implies that

(A.4) ~xt(0, t) =
~xρρ(0, t)

|~xρ(0, t)|2
+

~xρρ(0, t) · ~e2
|~xρ(0, t)|2

~e2.

Observing from (1.6b) that ~xt(0, t) ·~e1 = 0, we infer from (A.4) that ~xρρ(0, t) ·~e1 = 0,
which together with (1.6b) proves (A.1a) at ρ = 0. In particular, ~xρρ(0, t) = (~xρρ(0, t)·
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Fig. 4. Evolution for a surface with two cone singularities. Plots are at times t = 0, 0.01, 0.1, 0.4.

~e2)~e2. Combining this with (A.4) yields (A.1c) at ρ = 0. In order to prove (A.1b), we
differentiate (1.6a) with respect to ρ and obtain
(A.5)

~xtρ =
~xρρρ

|~xρ|2
− 2

~xρρ · ~xρ

|~xρ|4
~xρρ +

~xρ · ~e2
~x · ~e1

(

2
~xρρ · ~xρ

|~xρ|4
~x⊥
ρ − 1

|~xρ|2
~x⊥
ρρ

)

−
(~xρ · ~e2
~x · ~e1

)

ρ

1

|~xρ|2
~x⊥
ρ

in (0, 1)× (0, T ]. A further application of L’Hospital’s rule implies that

lim
ρց0

(~xρ · ~e2
~x · ~e1

)

ρ
(ρ, t) = lim

ρց0

(~xρρ(ρ, t) · ~e2)(~x(ρ, t) · ~e1)− (~xρ(ρ, t) · ~e2)(~xρ(ρ, t) · ~e1)
(~x(ρ, t) · ~e1)2

(A.6)

= lim
ρց0

(~xρρρ(ρ, t) · ~e2)(~x(ρ, t) · ~e1)− (~xρ(ρ, t) · ~e2)(~xρρ(ρ, t) · ~e1)
2(~x(ρ, t) · ~e1)(~xρ(ρ, t) · ~e1)

= 1
2

~xρρρ(0, t) · ~e2
~xρ(0, t) · ~e1

,

since ~xρρ(0, t) · ~e1 = 0. Combining (A.5) and (A.6), on noting (A.1a), (1.6b) and
(A.2), yields that

~xtρ(0, t) =
~xρρρ(0, t)

|~xρ(0, t)|2
+ 1

2

~xρρρ(0, t) · ~e2
|~xρ(0, t)|2

~e2.(A.7)

Since ~xtρ(0, t) · ~e2 = 0 in view of (1.6b), we deduce from (A.7) that also (A.1b)
holds at the left boundary point. The proof of (A.1) for the other boundary point is
analogous.

Lemma A.2. Let ~x : [0, 1]× [0, T ]→ R
2 satisfy Assumption 2.1. Then there exists

0 < c2 < c̃2 such that

c2ρ(1− ρ) ≤ ~x(ρ, t) · ~e1 ≤ c̃2ρ(1 − ρ) for all (ρ, t) ∈ [0, 1]× [0, T ].(A.8)

Moreover, there exists K > 0 such that for all 0 < h ≤ 1
2δ, with δ as in (2.3),

1

~x · ~e1

∣

∣

∣

∣

∂ℓ
t~x(·+ h, t)− ∂ℓ

t~x(· − h, t)

2h
· ~e2
∣

∣

∣

∣

≤ K in [h, 1− h]× [0, T ], ℓ = 0, 1.(A.9)

Proof. The result (A.8) is an immediate consequence of (2.3).
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Let t ∈ [0, T ] and h ≤ ρ ≤ 1
2δ. We infer from (1.6b) and (2.3a) that ~x(ρ, t) · ~e1 ≥

1
2c0ρ and hence

1

~x(ρ, t) · ~e1

∣

∣

∣

∣

~x(ρ+ h, t)− ~x(ρ− h, t)

2h
· ~e2
∣

∣

∣

∣

≤ 2

c0ρ

∣

∣

∣

∣

∣

1

2h

∫ ρ+h

ρ−h

(

~xρ(ζ, t) − ~xρ(0, t)
)

· ~e2 dζ

∣

∣

∣

∣

∣

≤ 2

c0
max
[0,δ]

|~xρρ(·, t) · ~e2|

≤ 2

c0
max

[0,δ]×[0,T ]
|~xρρ · ~e2|.

We can argue in the same way for 1− 1
2δ ≤ ρ ≤ 1− h, while for 1

2δ ≤ ρ ≤ 1− 1
2δ we

have that

1

~x(ρ, t) · ~e1

∣

∣

∣

∣

~x(ρ+ h, t)− ~x(ρ− h, t)

2h
· ~e2
∣

∣

∣

∣

≤ 1

c1

∣

∣

∣

∣

∣

1

2h

∫ ρ+h

ρ−h

~xρ(ζ, t) · ~e2 dζ

∣

∣

∣

∣

∣

≤ 1

c1
max

[ δ
2
,1− δ

2
]×[0,T ]

|~xρ · ~e2|,

so that (A.9) holds with K = max{ 2
c0

max[0,δ]×[0,T ] |~xρρ · ~e2|, 1
c1

max[ δ
2
,1− δ

2
]×[0,T ] |~xρ ·

~e2|} in the case ℓ = 0. The case ℓ = 1 can be treated in the same way, on noting that
~xtρ(q, t) · ~e2 = 0 for q ∈ {0, 1}.
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J. Bemelmans, M. Chipot, J. S. J. Paulin, and I. Shafrir, eds., vol. 326 of Pitman Res.
Notes Math. Ser., Longman Sci. Tech., Harlow, 1995, pp. 100–108.

[8] K. Deckelnick, G. Dziuk, and C. M. Elliott, Computation of geometric partial differential
equations and mean curvature flow, Acta Numer., 14 (2005), pp. 139–232.

[9] G. Drugan and S. J. Kleene, Immersed self-shrinkers, Trans. Amer. Math. Soc., 369 (2017),
pp. 7213–7250.

[10] G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math., 58 (1991), pp. 603–611.
[11] , Convergence of a semi-discrete scheme for the curve shortening flow, Math. Models

Methods Appl. Sci., 4 (1994), pp. 589–606.
[12] K. Ecker, Regularity Theory for Mean Curvature Flow, Birkhäuser, Boston, 2004.
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