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Abstract. Dynamic fault trees (dft) are widely adopted in industry
to assess the dependability of safety-critical equipment. Since many sys-
tems are too large to be studied numerically, dfts dependability is often
analysed using Monte Carlo simulation. A bottleneck here is that many
simulation samples are required in the case of rare events, e.g. in highly
reliable systems where components fail seldomly. Rare event simulation
(res) provides techniques to reduce the number of samples in the case of
rare events. We present a res technique based on importance splitting,
to study failures in highly reliable dfts. Whereas res usually requires
meta-information from an expert, our method is fully automatic: By
cleverly exploiting the fault tree structure we extract the so-called im-
portance function. We handle dfts with Markovian and non-Markovian
failure and repair distributions—for which no numerical methods exist—
and show the efficiency of our approach on several case studies.

1 Introduction

Reliability engineering is an important field that provides methods and tools
to assess and mitigate the risks related to complex systems. Fault tree analy-
sis (fta) is a prominent technique here. Its application encompasses a large
number of industrial domains that range from automotive and aerospace system
engineering, to energy and telecommunication systems and protocols.
Fault trees. A fault tree (ft) describes how component failures occur and
propagate through the system, eventually leading to system failures. Technically,
an ft is a directed acyclic graph whose leaves model component failures, and
whose other nodes (called gates) model failure propagation. Using fault trees
one can compute dependability metrics to quantify how a system fares w.r.t.
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certain performance indicators. Two common metrics are system reliability—the
probability that there are no system failures during a given mission time—and
system availability—the average percentage of time that a system is operational.

In this paper we consider repairable dynamic fault trees. Dynamic fault trees
(dfts [17, 43]) are a common and widely applied variant of fts, catering for
common dependability patterns such as spare management and causal depen-
dencies. Repairs [6] are not only crucial in fault-tolerant and resilient systems,
they are also an important cost driver. Hence, repairable fault trees allow one to
compare different repair strategies with respect to various dependability metrics.
Fault tree analysis. The reliability/availability of a fault tree can be computed
via numerical methods, such as probabilistic model checking. This involves ex-
haustive explorations of state-based models such as interactive Markov chains
[40]. Since the number of states (i.e. system configurations) is exponential in the
number of tree elements, analysing large trees remains a challenge today [26, 1].
Moreover, numerical methods are usually restricted to exponential failure rates
and combinations thereof, like Erlang and acyclic phase type distributions [40].

Alternatively, fault trees can be analysed using (standard) Monte Carlo sim-
ulation (smc [22, 40, 38], aka statistical model checking). Here, a large number
of simulated system runs (samples) is produced. Reliability and availability are
then statistically estimated from the resulting sample set. Such sampling does
not involve storing the full state space so, although the result provided can only
be correct with a certain probability, smc is much more memory efficient than
numerical techniques. Furthermore, smc is not restricted to exponential proba-
bility distributions. However, a known bottleneck of smc are rare events: when
the event of interest has a low probability (which is typically the case in highly
reliable systems), millions of samples may be required to observe it. Producing
these samples can take a unacceptably long simulation time.
Rare event simulation. To alleviate this problem, the field of rare event sim-
ulation (res) provides techniques that reduce the number of samples [35]. The
two leading techniques are importance sampling and importance splitting.

Importance sampling tweaks the probabilities in a model, then computes the
metric of interest for the changed system, and finally adjusts the analysis results
to the original model [23, 33]. Unfortunately it has specific requirements on the
stochastic model: in particular, it is generally limited to Markov models.

Importance splitting, deployed in this paper, does not have this limitation.
Importance splitting relies on rare events that arise as a sequence of less rare
intermediate events [28, 2]. We exploit this fact by generating more (partial)
samples on paths where such intermediate events are observed. As a simple
example, consider a biased coin whose probability of heads is p = 1/80. Suppose
we flip it eight times in a row, and say we are interested in observing at least
three heads. If heads comes up at the first flip (H) then we are on a promising
path. We can then clone (split) the current path H, generating e.g. 7 copies of it,
each clone evolving independently from the second flip onwards. Say one clone
observes three heads—the copied H plus two more. Then, this observation of
the rare event (three heads) is counted as 1/7 rather than as 1 observation, to
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account for the splitting where the clone was spawned. Now, if a clone observes
a new head (HH), this is even more promising than H, so the splitting can be
repeated. If we make 5 copies of the HH clone, then observing three heads in any
of these copies counts as 1

35 = 1
7 ·

1
5 . Alternatively, observing tails as second flip

(HT ) is less promising than heads. One could then decide not to split such path.
This example highlights a key ingredient of importance splitting: the impor-

tance function, that indicates for each state how promising it is w.r.t. the event
of interest. This function, together with other parameters such as thresholds [19],
are used to choose e.g. the number of clones spawned when visiting a state. An
importance function for our example could be the number of heads seen thus far.
Another one could be such number, multiplied by the number of coin flips yet to
come. The goal is to give higher importance to states from which observing the
rare event is more likely. The efficiency of an importance splitting implementa-
tion increases as the importance function better reflects such property.

Rare event simulation has been successfully applied in several domains [34,
45, 49, 4, 5, 46]. However, a key bottleneck is that it critically relies on expert
knowledge. In particular for importance splitting, finding a good importance
function is a well-known highly non-trivial task [35, 25].
Our contribution: rare event simulation for fault trees. This paper pre-
sents an importance splitting method to analyse rfts. In particular, we auto-
matically derive an importance function by exploiting the description of a system
as a fault tree. This is crucial, since the importance function is normally given
manually in an ad hoc fashion by a domain or res expert. We use a variety
of res algorithms based in our importance function, to estimate system unre-
liability and unavailability. Our approach can converge to precise estimations
in increasingly reliable systems. This method has four advantages over earlier
analysis methods for rfts—which we overview in the related work section 6—
namely: (1) we are able to estimate both the system reliability and availability;
(2) we can handle arbitrary failure and repair distributions; (3) we can handle
rare events; and (4) we can do it in a fully automatic fashion.

Technically, we build local importance functions for the (automata-semantics
of the) nodes of the tree. We then aggregate these local functions into an im-
portance function for the full tree. Aggregation uses structural induction in the
layered description of the tree. Using our importance function, we implement
importance splitting methods to run res analyses. We implemented our theory
in a full-stack tool chain. With it, we computed confidence intervals for the un-
reliability and unavailability of several case studies. Our case studies are rfts
whose failure and repair times are governed by arbitrary continuous probability
density functions (pdfs). Each case study was analysed for a fixed runtime bud-
get and in increasingly resilient configurations. In all cases our approach could
estimate the narrowest intervals for the most resilient configurations.
Paper outline. Background on fault trees and res is provided in Secs. 2 and 3.
We detail our theory to implement res for rfts in Sec. 4. Using a tool chain,
we performed an extensive experimental evaluation that we present in Sec. 5.
We overview related work in Sec. 6 and conclude our contributions in Sec. 7.
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2 Fault tree analysis

A fault tree ‘4’ is a directed acyclic graph that models how component failures
propagate and eventually cause the full system to fail. We consider repairable
fault trees (RFTs), where failures and repairs are governed by arbitrary proba-
bility distributions.

BE1 BEn

(a)AND

BE1 BEn

(b)OR

k/n

BE1 BEn

(c)VOTk

BE1 BE2

(d)PAND

S1 SmP

(e)SPARE

T BE1 BEn

(f)FDEP

BE1 BEn (g) RBOX

Fig. 1: Fault tree gates and the repair box

Basic elements. The leaves of the tree, called basic events or basic elements
(BEs), model the failure of components. A BE b is equipped with a failure distri-
bution Fb that governs the probability for b to fail before time t, and a repair dis-
tribution Rb governing its repair time. Some BEs are used as spare components:
these (SBEs) replace a primary component when it fails. SBEs are equipped also
with a dormancy distribution Db, since spares fail less often when dormant, i.e.
not in use. Only if an SBE becomes active, its failure distribution is given by Fb.
Gates. Non-leave nodes are called intermediate events and are labelled with
gates, describing how combinations of lower failures propagate to upper levels.
Fig. 1 shows their syntax. Their meaning is as follows: the AND, OR, and VOTk

gates fail if respectively all, one, or k of their m children fail (with 1 6 k 6 m).
The latter is called the voting or k out ofm gate. Note that VOT1 is equivalent to
an OR gate, and VOTm is equivalent to an AND. The priority-and gate (PAND)
is an AND gate that only fails if its children fail from left to right (or simultane-
ously). PANDs express failures that can only happen in a particular order, e.g.
a short circuit in a pump can only occur after a leakage. SPARE gates have one
primary child and one or more spare children: spares replace the primary when
it fails. The FDEP gate has an input trigger and several dependent events: all de-
pendent events become unavailable when the trigger fails. FDEPs can model for
instance networks elements that become unavailable if their connecting bus fails.
Repair boxes. An RBOX determines which basic element is repaired next ac-
cording to a given policy. Thus all its inputs are BEs or SBEs. Unlike gates, an
RBOX has no output since it does not propagate failures.

HV
cab P S

Rcab

Fig. 2:Tiny rft

Top level event. A full-system failure occurs if the top event
(i.e. the root node) of the tree fails.
Example. The tree in Fig. 2 models a railway-signal system,
which fails if its high voltage and relay cabinets fail [21, 39].
Thus, the top event is an AND gate with children HVcab (a BE)
and Rcab. The latter is a SPARE gate with primary P and spare
S. All BEs are managed by one RBOX with repair priority HVcab > P > S.
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Notation. The nodes of a tree4 are given by nodes(4) = {0, 1, . . . , n− 1}. We
let v, w range over nodes(4). A function type4 : nodes(4)→ {BE,SBE,AND,OR,
VOTk,PAND,SPARE,FDEP,RBOX} yields the type of each node in the tree. A
function chil4 : nodes(4)→ nodes(4)∗ returns the ordered list of children of a
node. If clear from context, we omit the superscript 4 from function names.
Semantics. Following [32] we give semantics to rft as Input/Output Stochas-
tic Automata (iosa), so that we can handle arbitrary probability distributions.
Each state in the iosa represents a system configuration, indicating which com-
ponents are operational and which have failed. Transitions among states describe
how the configuration changes when failures or repairs occur.

More precisely, a state in the iosa is a tuple x = (x0, . . . ,xn−1) ∈ S ⊆ Nn,
where S is the state space and xv denotes the state of node v in 4. The possible
values for xv depend on the type of v. The output zv ∈ {0, 1} of node v indicates
whether it is operational (zv=0) or failed (zv=1) and is calculated as follows:

– BEs (white circles in Fig. 1) have a binary state: xv = 0 if BE v is operational
and xv = 1 if it is failed. The output of a BE is its state: zv = xv.

– SBEs (gray circles in Fig. 1e) have two additional states: xv = 2, 3 if a
dormant SBE v is resp. operational, failed. Here zv = xv mod 2.

– ANDs have a binary state. Since the AND gate v fails iff all children fail:
xv = minw∈chil(v) zw. An AND gate outputs its internal state: zv = xv.

– OR gates are analogous to AND gates, but fail iff any child fail, i.e. zv =
xv = maxw∈chil(v) zw for OR gate v.

– VOT gates also have a binary state: a VOTk gate fails iff 1 6 k 6 m children
fail, thus zv = xv = 1 if k 6

∑
w∈chil(v) zw, and zv = xv = 0 otherwise.

– PAND gates admit multiple states to represent the failure order of the chil-
dren. For PAND v with two children we let xv equal: 0 if both children are
operational; 1 if the left child failed, but the right one has not; 2 if the right
child failed, but the left one has not; 3 if both children have failed, the right
one first; 4 if both children have failed, otherwise. The output of PAND gate
v is zv = 1 if xv = 4 and zv = 0 otherwise. PAND gates with more children
are handled by exploiting PAND(w1, w2, w3) = PAND(PAND(w1, w2), w3).

– SPARE gate v leftmost input is its primary BE. All other (spare) inputs are
SBEs. SBEs can be shared among SPARE gates. When the primary of v fails,
it is replaced with an available SBE. An SBE is unavailable if it is failed, or if
it is replacing the primary BE of another SPARE. The output of v is zv = 1
if its primary is failed and no spare is available. Else zv = 0.

– An FDEP gate has no output. All inputs are BEs and the leftmost is the
trigger. We consider non-destructive FDEPs [7]: if the trigger fails, the output
of all other BE is set to 1, without affecting the internal state. Since this can
be modelled by a suitable combination of OR gates [32], we omit the details.

For example, the rft from Fig. 2 starts with all operational elements, so the
initial state is x0 = (0, 0, 2, 0, 0). If then P fails, xP and zP are set to 1 (failed)
and S becomes xS = 0 (active and operational spare), so the state changes to
x1 = (0, 1, 0, 0, 0). The traces of the iosa are given by x0x1 · · ·xn ∈ S∗, where
a change from xj to xj+1 corresponds to transitions triggered in the iosa.
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Nondeterminism. Dynamic fault trees may exhibit nondeterministic behaviour
as a consequence of underspecified failure behaviour [15, 27]. This can happen
e.g. when two SPAREs have a single shared SBE: if all elements are failed, and
the SBE is repaired first, the failure behaviour depends on which SPARE gets
the SBE. Monte Carlo simulation, however, requires fully stochastic models and
cannot cope with nondeterminism. To overcome this problem we deploy the the-
ory from [16, 32]. If a fault tree adheres to some mild syntactic conditions, then
its iosa semantics is weakly deterministic, meaning that all resolutions of the
nondeterministic choices lead to the same probability value. In particular, we
require that (1) each BE is connected to at most one SPARE gate, and (2) BEs
and SBEs connected to SPAREs are not connected to FDEPs. In addition to this,
some semantic decisions have been fixed, e.g. the semantics of PAND is fully
specified, and policies should be provided for RBOX and spare assignments.
Dependability metrics. An important use of fault trees is to compute relevant
dependability metrics. Let Xt denote the random variable that represents the
state of the top event at time t [14]. Two popular metrics are:

– system reliability: the probability of observing no top event failure before
some mission time T > 0, viz. RELT = Prob

(
∀t∈[0,T ] . Xt = 0

)
;

– system availability: the proportion of time that the system remains opera-
tional in the long-run, viz. AVA = limt→∞ Prob (Xt = 0).

System unreliability and unavailability are the reverse of these metrics. That is:
UNRELT = 1− RELT and UNAVA = 1−AVA.

3 Stochastic simulation for Fault Trees

Standard Monte Carlo simulation (SMC). Monte Carlo simulation takes
random samples from stochastic models to estimate a (dependability) metric of
interest. For instance, to estimate the unreliability of a tree 4 we sample N
independent traces from its iosa semantics. An unbiased statistical estimator
for p = UNRELT is the proportion of traces observing a top level event, that is,
p̂N = 1

N

∑N
j=1 X

j whereXj = 1 if the j-th trace exhibits a top level failure before
time T and Xj = 0 otherwise. The statistical error of p̂ is typically quantified
with two numbers δ and ε s.t. p̂ ∈ [p− ε, p+ ε] with probability δ. The interval
p̂± ε is called a confidence interval (ci) with coefficient δ and precision 2ε.

Such procedures scale linearly with the number of tree nodes and cater for a
wide range of pdfs, even non-Markovian distributions. However, they encounter
a bottleneck to estimate rare events: if p ≈ 0, very few traces observe Xj = 1.
Therefore, the variance of estimators like p̂ becomes huge, and cis become very
broad, easily degenerating to the trivial interval [0, 1]. Increasing the number
of traces alleviates this problem, but even standard ci settings—where ε is
relative to p—require sampling an unacceptable number of traces [35]. Rare
event simulation techniques solve this specific problem.
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Rare Event Simulation (RES). res techniques [35] increase the amount
of traces that observe the rare event, e.g. a top level event in an rft. Two
prominent classes of res techniques are importance sampling, which adjusts
the pdf of failures and repairs, and importance splitting (isplit [30]), which
samples more (partial) traces from states that are closer to the rare event. We
focus on isplit due to its flexibility with respect to the probability distributions.

isplit can be efficiently deployed as long as the rare event γ can be de-
scribed as a nested sequence of less-rare events γ = γM ( γM−1 ( · · · ( γ0.
This decomposition allows isplit to study the conditional probabilities pk =
Prob(γk+1 | γk) separately, to then compute p = Prob(γ) =

∏M-1
k=0 Prob(γk+1 | γk).

Moreover, isplit requires all conditional probabilities pk to be much greater
than p, so that estimating each pk can be done efficiently with smc.

The key idea behind isplit is to define the events γk via a so called impor-
tance function I : S → N that assigns an importance to each state s ∈ S . The
higher the importance of a state, the closer it is to the rare event γM . Event γk

collects all states with importance at least `k, for certain sequence of threshold
levels 0 = `0 < `1 < · · · < `M . Formally: γk = {s ∈ S | I (s) > `k}.

To exploit the importance function I in the simulation procedure, isplit
samples more (partial) traces from states with higher importance. Two well-
known methods are deployed and compared in this paper: Fixed Effort and
restart. Fixed Effort (fe [19]) samples a predefined amount of traces in
each region Sk = γk \ γk+1 = {s ∈ S | `k+1 > I(s) > `k}. Thus, starting at γ0
it first estimates the proportion of traces that reach γ1, i.e. p0 = Prob(γ1 | γ0) =
Prob(S0). Next, from the states that reached γ1 new traces are generated to
estimate p1 = Prob(S1), and so on until pM . Fixed Effort thus requires that
(i) each trace has a clearly defined “end,” so that estimations of each pk finish
with probability 1, and (ii) all rare events reside in the uppermost region.

✘

✔

✘

✘

✘
✘

✘

✘✘

✔

(a) fe5 for Prob(¬8 U 4)

✔

✗ ✘✗

✘

✗

✘

✗

(b) rstes for UNRELT

Fig. 3: Importance Splitting algorithms Fixed Effort & restart

Example. Fig. 3a shows Fixed Effort estimating the probability to visit states
labelled 4 before others labelled 8. States 4 have importance >13, and thresh-
olds `1, `2 = 4, 10 partition the state space in regions {Si}2

i=0 s.t. all 4 ∈ S2.
The effort is 5 simulations per region, for all regions: we call this algorithm fe5.
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In region S0, 2 simulations made it from the initial state to threshold `1, i.e. they
reached some state with importance 4 before visiting a state 8. In S1, starting
from these two states, 3 simulations reached `2. Finally, 2 out of 5 simulations
visited states 4 in S2. Thus, the estimated rare event probability of this run of
fe 5 is p̂ =

∏2
i=1 p̂i = 2

5
3
5

2
5 = 9.6× 10−2.

RESTART (rst [48, 47]) is another res algorithm, which starts one trace
in γ0 and monitors the importance of the states visited. If the trace up-crosses
threshold `1, the first state visited in S1 is saved and the trace is cloned, aka
split—see Fig. 3b. This mechanism rewards traces that get closer to the rare
event. Each clone then evolves independently, and if one up-crosses threshold `2
the splitting mechanism is repeated. Instead, if a state with importance below
`1 is visited, the trace is truncated ( 7 in Fig. 3b). This penalises traces that
move away from the rare event. To avoid truncating all traces, the one that
spawned the clones in region Sk can go below importance `k. To deploy an
unbiased estimator for p, restart measures how much split was required to
visit a rare state [47]. In particular, restart does not need the rare event
to be defined as γM [44], and it was devised for steady-state analysis [48] (e.g.
to estimate UNAVA) although it can also been used for transient studies as
depicted in Fig. 3b [45].

4 Importance Splitting for FTA

The effectiveness of isplit crucially relies on the choice of the importance
function I as well as the threshold levels `k [30]. Traditionally, these are given
by domain and/or res experts, requiring a lot of domain knowledge. This section
presents a technique to obtain I and the `k automatically for an rft.

4.1 Compositional importance functions for Fault Trees

By the core idea behind importance splitting, states that are more likely to lead
to the rare event should have a higher importance. To achieve this, the key lies
in defining an importance function I and thresholds `k that are sensitive to both
the state space S and the transition probabilities of the system. For us, S ⊆ Nn

are all possible states of a repairable fault tree (rft). Its top event fails when
certain nodes fail in certain order, and remain failed before certain repairs occur.
To exploit this for isplit, the structure of the tree must be embedded into I .

The strong dependence of the importance function I on the structure of the
tree is easy to see in the following example. Take the rft 4 from Fig. 2 and
let its current state x be s.t. P is failed and HVcab and S are operational. If the
next event is a repair of P, then the new state x′ (where all basic elements are
operational) is farther from a failure of the top event. Hence, a good importance
function should satisfy I (x) > I (x′). Oppositely, if the next event had been a
failure of S leading to state x′′, then one would want that I (x) < I (x′′). The
key observation is that these inequalities depend on the structure of 4 as well
as on the failures/repairs of basic elements.
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In view of the above, any attempt to define an importance function for an
arbitrary fault tree 4 must put its gate structure in the forefront. In Table 1
we introduce a compositional heuristic for this, which defines local importance
functions distinguished per node type. The importance function associated to
node v is Iv : Nn → N. We define the global importance function of the tree (I4
or simply I) as the local importance function of the top event node of 4.

Table 1: Compositional importance function for rfts

type(v) Iv(x)

BE, SBE zv

AND lcmv ·
∑

w∈chil(v)
Iw(x)
maxI

w

OR lcmv · max
w∈chil(v)

{
Iw(x)
maxI

w

}
VOTk lcmv · max

W⊆chil(v),|W |=k

{∑
w∈W

Iw(x)
maxI

w

}
SPARE lcmv ·max

(∑
w∈chil(v)

Iw(x)
maxI

w
, zv ·m

)
PAND lcmv ·max

(
Il(x)
maxI

l

+ ord Ir(x)
maxI

r
, zv · 2

)
where ord = 1 if xv ∈ {1, 4} and ord = −1 otherwise

with maxI
v = maxx∈S Iv(x) and lcmv = lcm

{
maxI

w

∣∣w ∈ chil(v)
}

Thus, Iv is defined in Table 1 via structural induction in the fault tree.
It is defined so that it assigns to a failed node v its highest importance value.
Functions with this property deploy the most efficient isplit implementations
[30], and some res algorithms (e.g. Fixed Effort) require this property [19].

In the following we explain our definition of Iv. If v is a failed BE or SBE,
then its importance is 1; else it is 0. This matches the output of the node, thus
Iv(x) = zv. Intuitively, this reflects how failures of basic elements are positively
correlated to top event failures. The importance of AND, OR, and VOTk gates
depends exclusively on their input. The importance of an AND is the sum of
the importance of their children scaled by a normalisation factor. This reflects
that AND gates fail when all their children fail, and each failure of a child brings
an AND closer to its own failure, hence increasing its importance. Instead, since
OR gates fail as soon as a single child fails, their importance is the maximum
importance among its children. The importance of a VOTk gate is the sum of
the k (out of m) children with highest importance value.

Omiting normalisation may yield an undesirable importance function. To
understand why, suppose a binary AND gate v with children l and r, and define
Inaive

v (x) = Il(x) + Ir(x). Suppose that Il takes it highest value in maxI
l = 2

while Ir in maxI
r = 6 and assume that states x and x′ are s.t. Il(x) = 1,
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Ir(x) = 0, Il(x′) = 0, Ir(x′) = 3. This means that in both states one child of v
is “good-as-new” and the other is “half-failed” and hence the system is equally
close to fail in both cases. Hence we expect Inaive

v (x) = Inaive
v (x′) when actually

Inaive
v (x) = 1 6= 3 = Inaive

v (x′). Instead, Iv operates with Il(x)
maxI

l

and Ir(x)
maxI

r
, which

can be interpreted as the “percentage of failure” of the children of v. To make
these numbers integers we scale them by lcmv, the least common multiple of their
max importance values. In our case lcmv = 6 and hence Iv(x) = Iv(x′) = 3.
Similar problems arise whit all gates, hence normalization is applied in general.

SPARE gates with m children (including its primary) behave similarly to
AND gates: every failed child brings the gate closer to failure, as reflected in the
left operand of the max in Table 1. However, SPAREs fail when their primaries
fail and no SBEs are available, e.g. possibly being used by another SPARE. This
means that the gate could fail in spite of some children being operational. To
account for this we exploit the gate output: multiplying zv by m we give the
gate its maximum value when it fails, even when this happens due to unavailable
but operational SBEs. For a PAND gate v we have to carefully look at the states.
If the left child l has failed, then the right child r contributes positively to the
failure of the PAND and hence the importance function of the node v. If instead
the right child has failed first, then the PAND gate will not fail and hence we let
it contribute negatively to the importance function of v. Thus, we multiply Ir(x)

maxI
r

(the normalized importance function of the right child) by −1 in the later case
(i.e. when state xv /∈ {1, 4}). Instead, the left child always contribute positively.
Finally, the max operation is two-fold: on the one hand, zv · 2 ensures that the
importance value remains at its maximun while failing (PANDs remain failed
even after the left child is repaired); on the other, it ensures that the smallest
value posible is 0 while operational (since importance values can not be negative.)

4.2 Automatic importance splitting for FTA

Our compositional importance function is based on the distribution of opera-
tional/failed basic elements in the fault tree, and their failure order. This follows
the core idea of importance splitting: the more failed BEs/SBEs (in the right
order), the closer a tree is to its top event failure.

However, isplit is about running more simulations from state with higher
probability to lead to rare states. This is only partially reflected by whether basic
element b is failed. Probabilities lie also in the distributions Fb, Rb, Db. These
distributions govern the transitions among states x ∈ S , and can be exploited
for importance splitting. We do so using the two-phased approach of [11, 12],
which in a first (static) phase computes an importance function, and in a second
(dynamic) phase selects the thresholds from the resulting importance values.

In our current work, the first phase runs breadth-first search in the iosa
module of each tree node. This computes node-local importance functions, that
are aggregated into a tree-global I using our compositional function in Table 1.

The second phase involves running “pilot simulations” on the importance-
labelled states of the tree. Running simulations exercises the fail/repair distri-
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butions of BEs/SBEs, imprinting this information in the thresholds `k. Several
algorithms can do such selection of thresholds. They operate sequentially, start-
ing from the initial state—a fully operational tree—which has importance i0 = 0.
For instance, Expected Success [10] runs N finite-life simulations. If K < N

2 sim-
ulations reach the next smallest importance i1 > i0, then the first threshold will
be `1 = i1. Next, N simulations start from states with importance i1, to deter-
mine whether the next importance i2 should be chosen as threshold `2, and so on.

Expected Success also computes the effort per splitting region Sk = {x ∈ S |
`k+1 > I(x) > `k}. For Fixed Effort, “effort” is the base number of simulations
to run in region Sk. For restart, it is the number of clones spawned when
threshold `k+1 is up-crossed. In general, if K out of N pilot simulations make it
from `k−1 to `k, then the k-th effort is

⌈
N
K

⌉
. This is chosen so that, during res

estimations, one simulation makes it from threshold `k−1 to `k on average.
Thus, using the method from [11, 12] based on our importance function I4,

we compute (automatically) the thresholds and their effort for tree 4. This is all
the meta-information required to apply importance splitting res [19, 18, 11].

Importance function

Metrics     

 

Property query (metric)

IOSA semantic model

RFT model
(extended
Galileo)

RFT ⇾ IOSA
converter FIG

Fig. 4: Tool chain

Implementation. Fig. 4 outlines a tool chain implemented to deploy the the-
ory described above. The input model is an rft, described in the Galileo textual
format [42, 41] extended with repairs and arbitrary pdfs. This rft file is given
as input to a Java converter that produces three outputs: the iosa semantics
of the tree, the property queries for its reliability or availability, and our compo-
sitional importance function in terms of variables of the iosa semantic model.
This information is dumped into a single text file and fed to FIG: a statistical
model checker specialised in importance splitting res. FIG interprets this impor-
tance function, deploying it into its internal model representation, which results
in a global function for the whole tree. FIG can then use isplit algorithms such
as restart and Fixed Effort, via the automatic methods described above. The
result are confidence intervals that estimate the reliability or availability of the
rft. In this way, we implemented automatic importance splitting for fta. In
[9] we provide more details about our tool chain and its capabilities.

5 Experimental evaluation

5.1 General setup

Using our tool chain, we computed the unreliability and unavailability of 26
highly-resilient repairable non-Markovian dfts. These trees come from seven
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literature case studies, enriched with RBOX elements and non-Markovian pdfs.
We estimated their UNREL103 or UNAVA in increasingly resilient configurations.

To estimate these values we used various simulation algorithms: Standard
Monte Carlo (smc); Fixed Effort [19] for different number of runs performed
in each Sk region (fen for n = 8, 12, 16, 24, 32); restart [47] with thresholds
selected via a Sequential Monte Carlo algorithm [12] for different global splitting
values (rstn for n = 2, 3, 5, 8, 11); and restart with thresholds selected
via Expected Success [10], which computes splitting values independently for
each threshold (rstes). fen, rstn, and rstes, used the automatic isplit
framework based in our importance function, as described in Sec. 4.2.

An instance y is a combination of an algorithm algo, an rft, and a depend-
ability metric. An rft is identified by a case study (CS) and a parameter (p),
where larger parameters of the rft CSp indicate smaller dependability values
pCSp . Running algo for a fixed simulation time, instance y estimates the value
py = pCSp . The resulting ci (p̂y) has a certain width ‖p̂y‖ ∈ [0, 1] (we fix the
confidence coefficient δ = 0.95). The performance of algo can be measured by
that width: the smaller ‖p̂y‖, the more efficient the algorithm that achieved it.

The simulation time fixed for an rft may not suffice to observe rare events,
e.g. for smc. In such cases the FIG tool reports a “null estimate” p̂y = [0, 0].
Moreover, the simulation of random events depends on the rng—and its seed—
used by FIG, so different runs may yield different results p̂y. Therefore, for each
y we repeated n = 10 times the computation of p̂y, to assess the performance of
algo in y by: (i ) how many times it yielded not-null estimates, indicated with a
bold number at the base of the bar corresponding to y (e.g. 8 10 in Fig. 5b);
(ii ) what was the average width ‖p̂y‖, using not-null estimates only, indicated by
the height of the bar; and (iii ) what was the standard deviation of those widths,
indicated by whiskers on top of the bar. We performed n = 10 repetitions to
ensure statistical significance: a 95% ci for a plotted bar is narrower than the
whiskers and, in the hardest configuration of every CS, the whiskers of smc bars
never overlap with those of the best res algorithm.
Case studies. Our seven parametric case studies are: the synthetic models
DSPAREn and VOTm, with n ∈ {3, 4, 5} SBEs the first, m ∈ {2, 3, 4} shared
BEs the second, and one RBOX each; FTPPs [17], where we study one triad
with s ∈ {4, 5, 6} shared SBEs, using one RBOX for the processors and another
for the network elements; HECSo [43], with 2 memory interfaces, 4 RBOX (one
per subsystem), o ∈ {1, . . . , 5} shared spare processors, and 2o parallel buses;
and RWCu∈{4,...,7} [22, 21, 39], which combines subsystems RCv with one RBOX
and v ∈ {3, . . . , 6} SPAREs, and HVCw with another RBOX and w ∈ {2, . . . , 4}
shared SBEs. In total these are 26 rfts with pdfs that include exponential,
Erlang, uniform, Rayleigh, Weibull, normal, and log-normal distributions. In an
extended version of this work [9] we provide all details of our case studies.
Hardware. Experiments ran in two types of nodes in a SLURM cluster running
Linux x64 (Ubuntu, kernel 3.13.0-168): korenvliet nodes have CPUs Intel® Xeon®

E5-2630 v3 @ 2.40GHz, and 64GB of DDR4 RAM @ 1600MHz; caserta has
CPUs Intel® Xeon® E7-8890 v4 @ 2.20GHz, and 2TB of RAMDDR4 @ 1866MHz.
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5.2 Experimental results and discussion

Using smc and restart we computed UNAVA for VOT2,3,4, HECS1,...,5,
RC3,...,6, and RWC1,...,4. fe was not used since it requires regeneration theory
for steady-state analysis [19], which is not always feasible with non-Markovian
models. The mean widths of the cis achieved per instance are shown in Fig. 5.

For example for VOT2 (Fig. 5a), 10 independent computations with smc ran
in caserta for 5 min, and all converged to not-null cis ( 10 ). The mean width of
these cis was 1.40×10-4 and their standard deviation 7.96×10-6. For VOT3, all
smc computations yielded not-null cis (after 30 min) with an average precision
of 9.62×10-6 and standard deviation 1.52×10-6. For VOT4 all smc simulations
yielded null cis after 3 hours of simulation (0). Instead, rst2 converged to 10,
10, and 5 not-null cis resp. for VOT2,3,4, with mean widths (and standard devi-
ation): 1.24×10-4 (1.19×10-5), 5.09×10-6 (1.48×10-6), and 1.79×10-7 (3.19×10-8).
Thus for the VOT case study, rst2 was consistently more efficient than smc,
and the efficiency gap increased as UNAVA became rarer.

This trend repeats in all experiments: as expected, the rarer the metric, the
wider the cis computed in the time limit, until at some point it becomes very
hard to converge to not-null cis at all (specially for smc). For the least resilient
configuration of each case study, smc can be competitive or even more effi-
cient than some isplit variants. For instance for VOT1 and HECS1 in Figs. 5a
and 5b, all computations converged to not-null cis for all algorithms, but smc
exhibits less variable ci widths, viz. smaller whiskers. This is reasonable: truncat-
ing and splitting traces in restart adds (i ) simulation overhead that may not
pay off to estimate not-so-rare events, and on top of it (ii ) correlations of cloned
traces that share a common history, increasing the variability among indepen-
dent runs. On the other hand and as expected, smc looses this competitiveness
for all case studies as failures become rarer, here when UNAVA 6 1.0×10-5. This

Fig. 5: ci precision for system unavailability
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holds nicely for the biggest case studies: HECS5
†(a 42-nodes rft whose iosa

has 126-not-clock variables ≈ 2.89×1038 states, with 57 clocks of exponential,
uniform, and log-normal pdfs) and RWC4 (42 nodes, 181 variables ≈ 6.93×1073

states, 62 clocks of exponential, Erlang, Rayleigh, uniform, and normal pdfs).
Using smc, restart, and fe, we also estimated UNREL1000 for RWC2,3,4,

DSPARE3,4,5, FTPP4,5,6, HVC4,5,6,7, and HECS2,3,4,5. For HVC (only) we ran
20 experiments per tree, 10 in each cluster node. Fig. 6 shows the results.

Fig. 6: ci precision for system unreliability
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The overall trend shown for unreliability estimations is similar to the previous
unavailability cases. Here however it was possible to use Fixed Effort, since every
simulation has a clearly defined end at time T = 103. It is interesting thus to
compare the efficiency of restart vs. fe: we note for example that some
variants of fe performed considerably better than any other approach in the
most resilient configurations of FTPP and HECS. It is nevertheless difficult to
draw general conclusions from Figs. 6a to 6e, since some variants that performed
best in a case study—e.g. fe16 in HECS—did worse in others—e.g. FTPP, where
the best algorithms were fe8,12. Furthermore, fe8, which is always better than

†rst8 for HECS5 escapes this trend: analysing the execution logs it was found that
FIG crashed during the second computation.
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smc when UNREL1000 < 10−3, did not perform very well in HVC, where the
algorithms that achieved the narrowest and most not-null cis were rst5,11. Such
cases notwithstanding, fe is a solid competitor of restart in our benchmark.

Another relevant point of study is the optimal effort e for rste or fee, which
shows no clear trend in our experiments. Here, e is a “global effort” used by these
algorithms, equal for all Sk regions. e also alters the way in which the thresholds
selection algorithm Sequential Monte Carlo (seq [12]) selects the `k. The lack
of guidelines to select a value for e that works well across different systems was
raised in [8]. This motivated the development of Expected Success (es [10]),
which selects efforts individually per Sk (or `k). Thus, in rstes, a trace up-
crossing threshold `k is split according to the individual effort ek selected by es.
In the benchmark of [10], which consists mostly of queueing systems, es was
shown superior to seq. However, experimental outcomes on dfts in this work
are different: for UNAVA, rstes yielded mildly good results for HECS and RC;
for the other case studies and for all UNREL1000 experiments, rstes always
yielded null cis. It was found that the effort selected for most thresholds `k was
either too small—so splitting in ek was not enough for the rstes trace to reach
`k+1—or too large—so there was a splitting/truncation overhead. This point is
further addressed in the conclusions.

Beyond comparisons among the specific algorithms, be these for res or for
selecting thresholds, it seems clear that our approach to fta via isplit de-
ploys the expected results. For each parameterised case study CSp, we could find
a value of the parameter p where the level of resilience is such, that smc is less
efficient than our automatically-constructed isplit framework. This is partic-
ularly significant for big dfts like HECS and RWC, whose complex structure
could be exploited by our importance function.

6 Related work

Most work on dft analysis assumes discrete [43, 3] or exponentially distributed
[15, 29] components failure. Furthermore, components repair is seldom studied
in conjunction with dynamic gates [6, 3, 40, 29, 31]. In this work we address
repairable dfts, whose failure and repair times can follow arbitrary pdfs.
More in detail, rfts were first formally introduced as stochastic Petri nets in
[6, 13]. Our work stands on [32], which reviews [13] in the context of stochastic
automata with arbitrary pdfs. In particular we also address non-Markovian
continuous distributions: in Sec. 5 we experimented with exponential, Erlang,
uniform, Rayleigh, Weibull, normal, and log-normal pdfs. Furthermore and for
the first time, we consider the application of [13, 32] to study rare events.

Much effort in res has been dedicated to study highly reliable systems, de-
ploying either importance splitting or sampling. Typically, importance sampling
can be used when the system takes a particular shape. For instance, a common
assumption is that all failure (and repair) times are exponentially distributed
with parameters λi, for some λ ∈ R and i ∈ N>0. In these cases, a favourable
change of measure can be computed analytically [20, 23, 33, 34, 49, 39].
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In contrast, when the fail/repair times follow less-structured distributions,
importance splitting is more easily applicable. As long as a full system failure
can be broken down into several smaller components failures, an importance
splitting method can be devised. Of course, its efficiency relies heavily on the
choice of importance function. This choice is typically done ad hoc for the model
under study [44, 30, 46]. In that sense [24, 25, 11, 12] are among the first to
attempt a heuristic derivation of all parameters required to implement splitting.
This is based on formal specifications of the model and property query (the
dependability metric). Here we extended [11, 12, 8], using the structure of the
fault tree to define composition operands. With these operands we aggregate
the automatically-computed local importance functions of the tree nodes. This
aggregation results in an importance function for the whole model.

7 Conclusions
We have presented a theory to deploy automatic importance splitting (isplit)
for fault tree analysis of repairable dynamic fault trees (rfts). This Rare Event
Simulation approach supports arbitrary probability distributions of components
failure and repair. The core of our theory is an importance function I4 defined
structurally on the tree. From such function we implemented isplit algorithms,
and used them to estimate the unreliability and unavailability of highly-resilient
rfts. Departing from classical approaches, that define importance functions ad
hoc using expert knowledge, our theory computes all metadata required for res
from the model and metric specifications. Nonetheless, we have shown that for
a fixed simulation time budget and in the most resilient rfts, diverse isplit
algorithms can be automatically implemented from I4, and always converge to
narrower confidence intervals than standard Monte Carlo simulation.

There are several paths open for future development. First and foremost, we
are looking into new ways to define the importance function, e.g. to cover more
general categories of fts such as fault maintenance trees [37]. It would also be
interesting to look into possible correlations among specific res algorithms and
tree structures, that yield the most efficient estimations for a particular metric.
Moreover, we have defined I4 based on the tree structure alone. It would be
interesting to further include stochastic information in this phase, and not only
afterwards during the thresholds-selection phase.

Regarding thresholds, the relatively bad performance of the Expected Success
algorithm shows a spot for improvement. In general, we believe that enhancing
its statistical properties should alleviate the behaviour mentioned in Sec. 5.2.
Moreover, techniques to increase trace independence during splitting (e.g. re-
sampling) could further improve the performance of the isplit algorithms. Fi-
nally, we are investigating enhancements in iosa and our tool chain, to exploit
the ratio between fail and dormancy pdfs of SBEs in warm SPARE gates.

Acknowledgments
The authors thank José and Manuel Villén-Altamirano, for fruitful discussions
that helped to better understand the application scope of our approach.



res for non-Markovian repairable fault trees 17

References

1. Abate, A., Budde, C.E., Cauchi, N., Hoque, K.A., Stoelinga, M.: Assessment of
maintenance policies for smart buildings: Application of formal methods to fault
maintenance trees. PHM Society European Conference 4(1) (2018), https://www.
phmpapers.org/index.php/phme/article/view/385

2. Bayes, A.J.: Statistical techniques for simulation models. Australian computer jour-
nal 2(4), 180–184 (1970)

3. Beccuti, M., Codetta-Raiteri, D., Franceschinis, G., Haddad, S.: Non determin-
istic repairable fault trees for computing optimal repair strategy. In: VALUE-
TOOLS 2008 (2010). https://doi.org/10.4108/ICST.VALUETOOLS2008.4411

4. Blanchet, J., Mandjes, M.: Rare event simulation for queues. In: Rubino and Tuffin
[36], pp. 87–124. https://doi.org/10.1002/9780470745403.ch5

5. Blom, H.A.P., Bakker, G.J.B., Krystul, J.: Rare event estimation for a large-scale
stochastic hybrid system with air traffic application. In: Rubino and Tuffin [36],
pp. 193–214. https://doi.org/10.1002/9780470745403.ch9

6. Bobbio, A., Codetta-Raiteri, D.: Parametric fault trees with dynamic
gates and repair boxes. In: RAMS 2004. pp. 459–465. IEEE (2004).
https://doi.org/10.1109/RAMS.2004.1285491

7. Boudali, H., Crouzen, P., Haverkort, B.R., Kuntz, M., Stoelinga, M.: Architectural
dependability evaluation with arcade. In: DSN’08. pp. 512–521. IEEE Computer
Society (2008). https://doi.org/10.1109/DSN.2008.4630122

8. Budde, C.E.: Automation of Importance Splitting Techniques for Rare Event
Simulation. Ph.D. thesis, FAMAF, Universidad Nacional de Córdoba, Cór-
doba, Argentina (2017), https://famaf.biblio.unc.edu.ar/cgi-bin/koha/opac-detail.
pl?biblionumber=18143

9. Budde, C.E., Biagi, M., Monti, R.E., D’Argenio, P.R., Stoelinga, M.: Rare
event simulation for non-Markovian repairable fault trees. arXiv e-prints
arXiv:1910.11672 (2019), https://arxiv.org/abs/1910.11672

10. Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Better automated importance split-
ting for transient rare events. In: SETTA. LNCS, vol. 10606, pp. 42–58. Springer
(2017). https://doi.org/10.1007/978-3-319-69483-2_3

11. Budde, C.E., D’Argenio, P.R., Hermanns, H.: Rare event simulation with fully
automated importance splitting. In: EPEW 2015. LNCS, vol. 9272, pp. 275–290.
Springer (2015). https://doi.org/10.1007/978-3-319-23267-6_18

12. Budde, C.E., D’Argenio, P.R., Monti, R.E.: Compositional construction of impor-
tance functions in fully automated importance splitting. In: VALUETOOLS 2016.
pp. 30–37 (2017). https://doi.org/10.4108/eai.25-10-2016.2266501

13. Codetta-Raiteri, D., Iacono, M., Franceschinis, G., Vittorini, V.: Repairable fault
tree for the automatic evaluation of repair policies. In: DSN 2004. pp. 659–668.
IEEE Computer Society (2004). https://doi.org/10.1109/DSN.2004.1311936

14. Coppit, D., Sullivan, K.J., Dugan, J.B.: Formal semantics of models for compu-
tational engineering: a case study on dynamic fault trees. In: ISSRE 2000. pp.
270–282 (2000). https://doi.org/10.1109/ISSRE.2000.885878

15. Crouzen, P., Boudali, H., Stoelinga, M.: Dynamic fault tree analysis using in-
put/output interactive Markov chains. In: DSN 2007. pp. 708–717. IEEE Computer
Society (2007). https://doi.org/10.1109/DSN.2007.37

16. D’Argenio, P.R., Monti, R.E.: Input/Output Stochastic Automata with Urgency:
Confluence and weak determinism. In: ICTAC. LNCS, vol. 11187, pp. 132–152.
Springer (2018). https://doi.org/10.1007/978-3-030-02508-3_8

https://www.phmpapers.org/index.php/phme/article/view/385
https://www.phmpapers.org/index.php/phme/article/view/385
https://doi.org/10.4108/ICST.VALUETOOLS2008.4411
https://doi.org/10.1002/9780470745403.ch5
https://doi.org/10.1002/9780470745403.ch9
https://doi.org/10.1109/RAMS.2004.1285491
https://doi.org/10.1109/DSN.2008.4630122
https://git.snt.utwente.nl/buddece/CEB_thesis/raw/master/thesis.pdf
https://git.snt.utwente.nl/buddece/CEB_thesis/raw/master/thesis.pdf
https://famaf.biblio.unc.edu.ar/cgi-bin/koha/opac-detail.pl?biblionumber=18143
https://famaf.biblio.unc.edu.ar/cgi-bin/koha/opac-detail.pl?biblionumber=18143
https://arxiv.org/abs/1910.11672
https://doi.org/10.1007/978-3-319-69483-2_3
https://doi.org/10.1007/978-3-319-23267-6_18
https://doi.org/10.4108/eai.25-10-2016.2266501
https://doi.org/10.1109/DSN.2004.1311936
https://doi.org/10.1109/ISSRE.2000.885878
https://doi.org/10.1109/DSN.2007.37
https://doi.org/10.1007/978-3-030-02508-3_8


18 Budde, Biagi, Monti, D’Argenio, Stoelinga

17. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and se-
quence dependencies. In: ARMS 1990. pp. 286–293. IEEE (1990).
https://doi.org/10.1109/ARMS.1990.67971

18. Garvels, M.J.J., van Ommeren, J.K.C.W., Kroese, D.P.: On the importance func-
tion in splitting simulation. European Transactions on Telecommunications 13(4),
363–371 (2002). https://doi.org/10.1002/ett.4460130408

19. Garvels, M.J.J.: The splitting method in rare event simulation. Ph.D. thesis, De-
partment of Computer Science, University of Twente, Enschede, The Netherlands
(2000), http://eprints.eemcs.utwente.nl/14291/

20. Goyal, A., Shahabuddin, P., Heidelberger, P., Nicola, V.F., Glynn, P.W.:
A unified framework for simulating Markovian models of highly de-
pendable systems. IEEE Transactions on Computers 41(1), 36–51 (1992).
https://doi.org/10.1109/12.123381

21. Guck, D., Spel, J., Stoelinga, M.: DFTCalc: Reliability centered maintenance via
fault tree analysis (tool paper). In: ICFEM 2015. LNCS, vol. 9407, pp. 304–311.
Springer (2015). https://doi.org/10.1007/978-3-319-25423-4_19

22. Guck, D., Katoen, J.P., Stoelinga, M., Luiten, T., Romijn, J.: Smart railroad main-
tenance engineering with stochastic model checking. In: Railways 2014. Civil-Comp
Proceedings, Civil-Comp Press (2014). https://doi.org/10.4203/ccp.104.299

23. Heidelberger, P.: Fast simulation of rare events in queueing and relia-
bility models. ACM Trans. Model. Comput. Simul. 5(1), 43–85 (1995).
https://doi.org/10.1145/203091.203094

24. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: CAV 2013. LNCS, vol. 8044, pp. 576–591. Springer
(2013). https://doi.org/10.1007/978-3-642-39799-8_38

25. Jégourel, C., Legay, A., Sedwards, S., Traonouez, L.M.: Distributed verification of
rare properties using importance splitting observers. In: AVoCS 2015. ECEASST,
vol. 72 (2015). https://doi.org/10.14279/tuj.eceasst.72.1024

26. Junges, S., Guck, D., Katoen, J.P., Rensink, A., Stoelinga, M.: Fault trees
on a diet. In: SETTA 2015. LNCS, vol. 9409, pp. 3–18. Springer (2015).
https://doi.org/10.1007/978-3-319-25942-0_1

27. Junges, S., Guck, D., Katoen, J., Stoelinga, M.: Uncovering dynamic
fault trees. In: DSN 2016. pp. 299–310. IEEE Computer Society (2016).
https://doi.org/10.1109/DSN.2016.35

28. Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling.
National Bureau of Standards applied mathematics series 12, 27–30 (1951)

29. Katoen, J.P., Stoelinga, M.: Boosting Fault Tree Analysis by Formal Methods,
LNCS, vol. 10500, pp. 368–389. Springer (2017). https://doi.org/10.1007/978-3-
319-68270-9_19

30. L’Ecuyer, P., Le Gland, F., Lezaud, P., Tuffin, B.: Splitting techniques. In: Rubino
and Tuffin [36], pp. 39–61. https://doi.org/10.1002/9780470745403.ch3

31. Liu, Y., Wu, Y., Kalbarczyk, Z.: Smart maintenance via dynamic fault tree anal-
ysis: A case study on Singapore MRT system. In: DSN 2017. pp. 511–518. IEEE
Computer Society (2017). https://doi.org/10.1109/DSN.2017.50

32. Monti, R.E.: Stochastic Automata for Fault Tolerant Concurrent Systems. Ph.D.
thesis, FAMAF, Universidad Nacional de Córdoba, Córdoba, Argentina (2018)

33. Nicola, V.F., Shahabuddin, P., Nakayama, M.K.: Techniques for fast simulation
of models of highly dependable systems. IEEE Transactions on Reliability 50(3),
246–264 (2001). https://doi.org/10.1109/24.974122

https://doi.org/10.1109/ARMS.1990.67971
https://doi.org/10.1002/ett.4460130408
http://eprints.eemcs.utwente.nl/14291/
https://doi.org/10.1109/12.123381
https://doi.org/10.1007/978-3-319-25423-4_19
https://doi.org/10.4203/ccp.104.299
https://doi.org/10.1145/203091.203094
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.14279/tuj.eceasst.72.1024
https://doi.org/10.1007/978-3-319-25942-0_1
https://doi.org/10.1109/DSN.2016.35
https://doi.org/10.1007/978-3-319-68270-9_19
https://doi.org/10.1007/978-3-319-68270-9_19
https://doi.org/10.1002/9780470745403.ch3
https://doi.org/10.1109/DSN.2017.50
https://doi.org/10.1109/24.974122


res for non-Markovian repairable fault trees 19

34. Ridder, A.: Importance sampling simulations of Markovian reliability systems
using cross-entropy. Annals of Operations Research 134(1), 119–136 (2005).
https://doi.org/10.1007/s10479-005-5727-9

35. Rubino, G., Tuffin, B.: Introduction to rare event simulation. In:
Rare Event Simulation Using Monte Carlo Methods [36], pp. 1–13.
https://doi.org/10.1002/9780470745403.ch1

36. Rubino, G., Tuffin, B. (eds.): Rare Event Simulation Using Monte Carlo Methods.
John Wiley & Sons, Ltd (2009)

37. Ruijters, E., Guck, D., Drolenga, P., Peters, M., Stoelinga, M.: Maintenance
analysis and optimization via statistical model checking. In: QEST 2016. LNCS,
vol. 9826, pp. 331–347. Springer (2016). https://doi.org/10.1007/978-3-319-43425-
4_22

38. Ruijters, E., Guck, D., van Noort, M., Stoelinga, M.: Reliability-centered mainte-
nance of the electrically insulated railway joint via fault tree analysis: A practical
experience report. In: DSN 2016. pp. 662–669. IEEE Computer Society (2016).
https://doi.org/10.1109/DSN.2016.67

39. Ruijters, E., Reijsbergen, D., de Boer, P.T., Stoelinga, M.: Rare event simulation
for dynamic fault trees. Reliability Engineering & System Safety 186, 220–231
(2019). https://doi.org/10.1016/j.ress.2019.02.004

40. Ruijters, E., Stoelinga, M.: Fault tree analysis: A survey of the state-of-the-art
in modeling, analysis and tools. Computer Science Review 15-16, 29–62 (2015).
https://doi.org/10.1016/j.cosrev.2015.03.001

41. Sullivan, K.J., Dugan, J.B.: Galileo user’s manual & design overview. https:
//www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm (1998),
v2.1-alpha

42. Sullivan, K., Dugan, J., Coppit, D.: The Galileo fault tree anal-
ysis tool. In: 29th Annual International Symposium on Fault-
Tolerant Computing (Cat. No.99CB36352). pp. 232–235. IEEE (1999).
https://doi.org/10.1109/FTCS.1999.781056

43. Vesely, W., Stamatelatos, M., Dugan, J., Fragola, J., Minarick, J., Railsback, J.:
Fault tree handbook with aerospace applications. NASA Office of Safety and Mis-
sion Assurance (2002), version 1.1

44. Villén-Altamirano, J.: RESTART method for the case where rare events can occur
in retrials from any threshold. Int. J. Electron. Commun. 52(3), 183–189 (1998)

45. Villén-Altamirano, J.: Importance functions for RESTART simula-
tion of highly-dependable systems. Simulation 83(12), 821–828 (2007).
https://doi.org/10.1177/0037549707081257

46. Villén-Altamirano, J.: RESTART vs splitting: A comparative study. Performance
Evaluation 121-122, 38–47 (2018). https://doi.org/10.1016/j.peva.2018.02.002

47. Villén-Altamirano, M., Martínez-Marrón, A., Gamo, J., Fernández-Cuesta, F.: En-
hancement of the accelerated simulation method RESTART by considering mul-
tiple thresholds. In: Proc. 14th Int. Teletraffic Congress, Teletraffic Science and
Engineering, vol. 1, pp. 797–810. Elsevier (1994). https://doi.org/10.1016/B978-0-
444-82031-0.50084-6

48. Villén-Altamirano, M., Villén-Altamirano, J.: RESTART: a method for accelerat-
ing rare event simulations. In: Queueing, Performance and Control in ATM (ITC-
13). pp. 71–76. Elsevier (1991)

49. Xiao, G., Li, Z., Li, T.: Dependability estimation for non-Markov consecutive-k-
out-of-n: F repairable systems by fast simulation. Reliability Engineering & System
Safety 92(3), 293–299 (2007). https://doi.org/10.1016/j.ress.2006.04.004

https://doi.org/10.1007/s10479-005-5727-9
https://doi.org/10.1002/9780470745403.ch1
https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1109/DSN.2016.67
https://doi.org/10.1016/j.ress.2019.02.004
https://doi.org/10.1016/j.cosrev.2015.03.001
https://www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm
https://www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm
https://doi.org/10.1109/FTCS.1999.781056
https://doi.org/10.1177/0037549707081257
https://doi.org/10.1016/j.peva.2018.02.002
https://doi.org/10.1016/B978-0-444-82031-0.50084-6
https://doi.org/10.1016/B978-0-444-82031-0.50084-6
https://doi.org/10.1016/j.ress.2006.04.004


20 Budde, Biagi, Monti, D’Argenio, Stoelinga

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Rare event simulation fornon-Markovian repairable fault trees

