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A B S T R A C T

After the seminal works by Freeze and Harlan (1969), the sci-
entific community realized that groundwater and vadose zone
equation were breaking up. Hydrologists split into three com-
munities following the motto “you are my boundary condition”:
groundwater people, vadose zone scientists and surface water hy-
drologists. This compartmentalization of the scientific community
fostered a deepening of knowledge in single branches, allowing
to break things down into simple parts. However, this division
represented an obstacle to the comprehension of the complexity
that characterises the interactions between them. Eventually, this
separation of the communities continued into software code. As a
matter of fact, the boundary conditions were hard-wired, but they
offered a poor representation of the physics in the interaction be-
tween different domains.

Recently, there has been a renewed interest in studying the big
picture, the interactions between different domains. This it is evi-
dent in the development of a new research field named the Earth’s
Critical Zone (CZ). It is defined as the “ heterogeneous, near sur-
face environment in which complex interactions involving rock,
soil, water, air, and living organism regulate the natural habitat
and determine the availability of life-sustaining resources” (Na-
tional Research Council, 2001). Further interest in the studying
the CZ is given by the ever-increasing pressure due to the growth
in human population, wealth, and climatic changes.

This thesis focuses on the CZ while recognising the central role
of having a solid set of tools for modeling the water movements in
all conditions. Recently, Prentice et al. (2015) identified Reliable,
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2 abstract

Robust, and Realistic, the three R’s, as the three characteristics that
numerical models should have.

Soil moisture is one of the key components to simulate the pro-
cesses in the critical zone. The governing equation to describe the
water flow in a porous material is know as the Richards equation
and it dates back to 1931.

The numerical solution of the Richards equation is far from triv-
ial because of its mildly nonlinearity and it is often discarded in
favour of more empirical models. After the pioneering work by
Celia et al. (1990), a lot of work has been done in this direction
and several model, for instance Hydrus, GEOtop, Cathy, Parflow
adopted variants of the Newton algorithm to allows global con-
vergence.

Since Casulli and Zanolli (2010), anticipated by Brugnano and
Casulli (2008), a new method called nested Newton has been found
to guarantee convergence in any situation, even under the use of
large time steps and grid sizes. The research presented in this
thesis used this integration algorithm.

Besides the numerical aspect, another issue was the correct defi-
nition of the boundary condition at the soil surface. As a matter of
fact, the definition of the surface boundary condition is necessary
to capture the generation of surface run-off. In the literature sev-
eral approaches were proposed to couple surface and subsurface
flow, and in this work the approach presented by Gugole (2016)
has been used. The novelty regarded the discretization of the
shallow water equation and the Richards equation in an unique
algebraic system that was solved in a conservative manner.

Richards equation was criticized from many points of view, but
it is difficult to criticize its core mass conservation. The defini-
tion of the hydraulic properties of the soil, including both the soil
water retention function (SWRC) and the hydraulic conductivity
models, often uses simplified representation of the pore system
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describing it as bundle of cylindrical capillaries where the largest
ones drain first and are filled last. As pointed out by Bachmann
et al. (2002), “physical effects, like surface water film adsorption,
capillary condensation and surface flow in liquid films, as well as
volumetric changes of the pore space are often ignored”. Thus,
the capillary bundle concept is a rough, even if still useful approx-
imation of soil reality.

From these observations, during the research the code has been
designed to offer the opportunity to easily implement new soil
water hydraulic models that might be proposed in the future.

The Richards’ equation alone is not anymore sufficient to model
the water flow in soils. In fact, soil temperature affects the water
flow in soils. This is evident in cold regions where soil water is
subject to freezing and thawing processes, but also in unfrozen
soil, where temperature modifies water properties such as viscos-
ity, the surface tension, and the contact angle.

These microscopic variations of the water physical properties
have significant impacts in the mass and energy budget within
the CZ. For instance, it has been observed that the infiltration
rates between the stream and the vadose zone show a clear diur-
nal pattern: infiltration rates are highest in late afternoon, when
stream temperature is greatest, and they are lowest in early morn-
ing when stream temperature is least. In cold regions the run-off
production is strongly affected by the presence of ice with the
soil. Nonetheless, soil moisture modifies the thermal properties
of the soil: water is characterised by a high thermal inertia and
the thermal conductivity of ice is almost four times larger than
that of liquid water, and water flow carries a significant amount
of sensible heat. These aspects come under one the R of realistic.

Hence, the Richards’ equation has been coupled with the energy
equation for the unfrozen case. Moreover, the research developed
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a model to study the heat transfer considering the phase change
of water. In both cases robust numerical schemes have been used.

There are few models that already coupled the equations. One
of these models is GEOtop that was conceived and built in the
research group where this work was carried out. Such models
have some limitations. One of the main limitations regards their
implementations. In fact, these models were built as a monolithic
code and this turns in difficulties in maintaining and developing
existing codes.

In this work the codes have been developed by using Design Pat-
terns. As a result, the codes are easy to maintain, to extend, and
to reuse. Considering the CZ, these aspects are of crucial impor-
tance. Researchers should have a model that can be extended to
include more processes, i.e. increase its complexity and avoiding
the code to become too complicated.

The models were integrated in the Object Modelling System v3

(OMS3) framework. The system provides various components
for precipitation treatment, radiation estimation in complex ter-
rain, evaporation and transpiration that can be connected to each
other’s for generating inputs and outputs. Due to the modular-
ity of the system, whilst the components were developed and can
be enhanced independently, they can be seamlessly used at run
time by connecting them with the OMS3 DSL language based on
Groovy. OMS3 provides the basic services and, among them, tools
for calibration and implicit parallelization of component runs.

In sum, the thesis analyses the relevant literature to date. It
presents a detailed description of the physical processes related
to the water flow and the energy budget within the soil. Then,
it describes the numerical method used to solve and coupled the
equations. It also provides the informatics behind WHETGEO 1D
(Water HEat Tracers in GEOframe). Finally, the work focuses on
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the WHETGEO extension for the bidimensional case by showing
how the code can be designed to store grid information.
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The Earth’s Critical Zone (CZ) is defined as the heterogeneous,
near surface environment in which complex interactions involv-
ing rock, soil, water, air, and living organism regulate the natural
habitat and determine the availability of life-sustaining resources
(National Research Council, 2001). Clear interest in studying the
CZ is spurred on by ever-increasing pressure due to the growth
in human population and wealth, and climatic changes. Central
to simulating the processes in the CZ is the study of soil moisture
dynamics (Clark et al., 2015a). In the following we suggest that
studying the CZ requires tools that are not yet readily available to
researchers; then I propose one of my own. These tools should be
flexible enough to allow the quick embedding of advancements in
science.
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8 introduction

1.1 setting up the water budget

It is understood that the motion of water in soil is regulated by a
Darcian-Stokesian flow, meaning that any force is immediately dis-
sipated and water under a gradient of generalised forces acquires
a velocity which is linearly proportional to the gradient of the gen-
eralised force. This law is known as the Darcy-Buckingham law
and reads

~J = K(θ)~∇ (ψ + z) (1)

where the forces acting are gravity (z L) and the matric potential
ψ L, and where: J LT−1 is the Darcian flux; K LT−1 is the hy-
draulic conductivity; θ − is the dimensioneless volumetric water
content; ~∇ L−1 is the gradient operator; and z L is the vertical
coordinate, positive upward. The assumptions under which such
a law is derived from Newton’s law are presented in (Di Nucci,
2014; Whitaker, 1986). The hydraulic conductivity depends on
soil type (texture and structure) and water content, while the ther-
modynamic forces must be understood as gradients of the water
potential, which, in turn, can be split as matric potential, osmotic
potential and other potentials (Lu and Godt, 2013; Nobel, 1999).
However, in Eq. (1) we consider only the action of the matric po-
tential and of the gravity. On the basis of the law of motion in
Eq. (1), the mass conservation reads:

∂θ

∂t
= ∇ ·

(

K(θ)~∇ (ψ + z)
)

(2)

where ∇· [L−1] is the divergence operator. Equation (2) is usu-
ally known as the Richards equation (Richards, 1931), but was
previously formulated by Richardson (1922). Therefore, in the fol-
lowing we call it the R2 equation to remind of this double origin.
There are very informative reviews that cover its general, histor-
ical and numerical aspects, such as: (Farthing and Ogden, 2017;
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Paniconi and Putti, 2015; Zha et al., 2019). Therefore, it is not
deemed necessary to further summarize the matter here. The R2

equation is a function of two variables, θ and ψ, and its resolution
requires another relation between these two quantities. This rela-
tion is known as soil-water retention curves (SWRC), written in
the plural because we have many SWRC depending on soil char-
acteristics. A simple analytic model was proposed by Mualem,
1976 that assumed that soil is a bundle of capillaries and that the
largest capillaries drain first and fill last. In this case a relation
can be obtained between the radius of the capillaries and the suc-
tion, which was fully derived (Kosugi, 1999). However, there are
various reasons to take the capillary bundle concept as a rough
approximation of natural soil. To enumerate some of the issues:

1. Firstly, pores in soils are not bundles of well defined capillar-
ies of a single diameter; in fact, they can have quite random
structures, as revealed, for instance, by tomography (Yang
et al., 2018).

2. Secondly, logic and pore scale simulations, as in Tomin and
Lunati, 2016 for example, indicate that fluids fill the cavities
where they fall, and only eventually are they redistributed
according to the microstructure of the soil; that is to say, flu-
ids do not move instantaneously from the largest pores to
the smallest ones.

3. A set of relatively large pores can, in certain conditions, pref-
erentially drive the flow of water in a short time scale ac-
cording to laminar viscous flow driven by gravity, before
any redistribution happens (Germann and Beven, 1981).

4. The role of living matter, such as bacteria, animals, fungi,
vegetation, and roots, is usually eliminated from the hydro-
logical picture but it should have a relevant place (Benard
et al., 2019).
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Besides,

5. Capillary forces are not the only ones acting at the microscale
(Lu, 2016). In fact, measured suction values are far below
pressures that can be sustained by capillarity alone.

6. Temperature affects water viscosity; infiltration is faster at
warm temperatures and slower at cold ones (Constantz and
Murphy, 1991).

7. In high-latitude and high-elevation environments, soils may
be subject to freezing and thawing processes which affect
pore volume and water dynamics (Dall’Amico et al., 2011).

These facts certainly do not threaten the nature of mass conserva-
tion in (2). However, they can certainly alter the statistics which
generate the closure equations, i.e. the SWRC we currently use.

• Requirement I - Without entering into further details, we can
observe that the aforementioned issues have consequences
that would require a new software to include the possibility
of adopting new parameterizations of SWRC and hydraulic
conductivity quickly, easily and neatly.

1.2 the three or four worlds

The flow of water obeys the general laws of physics for conser-
vation of mass and momentum but, since the seminal works of
Freeze and Harlan in 1969, the scientific community has split up
(Furman, 2008) into three groups: groundwater people, vadose
zone scientists, and surface water hydrologists. This compartmen-
talisation of the scientific community was fostered to deepen the
knowledge within single branches, with the interactions between
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the different parts have been governed in models by assigning
boundary conditions (Furman, 2008). However, these boundary
conditions are intrinsically inadequate and inappropriate in rep-
resenting the physics of interactions between different domains
whose interactions depend strictly on the state of the system. When
these conditions are prescribed a priori (Furman, 2008), the proper
dynamics of the CZ fluxes cannot be obtained. There is the need
to overcome this situation and, therefore:

• Requirement II - the boundary conditions hard-wired into
algorithm implementation should be removed in favour of a
simultaneous treatment of the three compartments (surface
waters, vadose zone and groundwater).

Fortunately, Šimünek et al. (2012) found the way to smoothly
extend Richards equation into the groundwater equation. This
and other similar approaches are now used in various codes, such
as Hydrus, ParFlow (Ashby and Falgout, 1996; Jones and Wood-
ward, 2001; Kollet and Maxwell, 2006), CATHY (Paniconi and
Putti, 1994; Paniconi and Wood, 1993), and GEOtop 2.0 (Endrizzi
et al., 2014; Rigon et al., 2006a). To extend the R2 equation into
the saturated domain it is necessary to include the contribution of
groundwater storativity due matrix and fluid compressibility. The
common approach is to write the R2 equation as:

∂θ

∂t
+ Ss

θ

θs

∂ψ

∂t
= ∇ ·

(

K(ψ)~∇(ψ + z)
)

(3)

where Ss L−1 is the specific storage coefficient, defined as

Ss = ρg(nβ + α), (4)

with ρ ML−3 being the water density, g LT−2 gravitational acceler-
ation, n − the soil porosity, β LT2M−1 the liquid compressibility,
and α LT2M−1 the matrix compressibility. In the left-hand-side of
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Eq. (3), the first term accounts for changes in liquid saturation,
while the second term accounts for the compression or expansion
of the porous medium and the water. The left-hand-side term in
Eq. (3) can be rewritten as

(

c+ Ss
θ

θs

)

∂ψ

∂t
(5)

where c L−1 is the water retention capacity. Comparing the two
terms in brackets, we can see that for ψ < 0, then c >> Ss

θ
θs

; this
means that under unsaturated conditions, the contribution of the
specific storage is negligible. Whereas when the soil is saturated
and ψ > 0, then c = 0 and therefore what counts is the specific
storage. Because of this, it is possible to account for groundwater
specific storage simply by modifying the SWRC as:

θ(ψ) =

{

θ(ψ) if ψ < 0

θs + Ssψ if ψ > 0
(6)

Furthermore, switching from Richards to shallow water was
made possible in the equation writing thanks to, for example, (Ca-
sulli, 2017b; Gugole et al., 2018). Therefore, switching to a fully
integrated, simultaneous treatment of the three domains is now
possible.

1.3 the necessary coupling with the

energy budget

As remarked in point 6 above, temperature affects water viscos-
ity, which effectively doubles in passing from 5 to 20 ◦C (Eisenberg
et al., 2005), with a positive feedback on the infiltration process.
This has been clearly observed in natural systems (Eisenberg et
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al., 2005; Engeler et al., 2011; Ronan et al., 1998) where infiltration
rates follow diurnal and seasonal temperature-cycles. In fact, ac-
cording to Muskat and Meres (1936), the unsaturated hydraulic
conductivity can be expressed as

K(θ) = κr(θ) κ
ρ g

ν
(7)

where κr(θ) − is the relative permeability, κ L2 is the intrinsic
permeability, ρ L3M−1 is the liquid density, g is the acceleration
of gravity, and ν L2T−1 is the kinematic viscosity of the liquid.
Thus, for constant θ, variations in K(θ) due to temperature can be
accounted as (Constantz and Murphy, 1991):

K(θ,T2) = K(θ,T1)
ν(T1)

ν(T2)
(8)

Temperature is also responsible for the phase change of water,
point 7, and because of pore ice, as well as of the ice in frozen
soil, infiltration rates and subsurface flows are significantly modi-
fied (Walvoord et al., 2012).

• Requirement III - To account for thermodynamic effects, tem-
perature should be at least present in the R2 equation as a
parameter, as in Eq. (8). However, for a more accurate ap-
proximation of the water dynamics, the option to solve the
water and energy budgets simultaneously must be present.

Soil thermal properties are important physical parameters in mod-
elling land surface processes (Dai et al., 2019) since they control
the partitioning of energy at the soil surface and its redistribution
within the soil (Ochsner et al., 2001). For a multi-phase material,
like soil, their definition is always problematic since they depend
on the physical properties of each phase and their variations (Dai
et al., 2019; Dong et al., 2015; Nicolsky and Romanovsky, 2018).
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In literature different models have been proposed with such a
scope, and further studies on it are recommended (Dai et al., 2019):
nonetheless, when considering the phase change of water, the es-
timation of the unfrozen and frozen water fraction is still an un-
resolved issue for which different models, usually referred to as
SFCC, Soil Freezing Characteristics Curve, have been proposed
(Kurylyk and Watanabe, 2013). Thus, it is clear that the aspects re-
lated to the estimation of soil thermal properties fall fully within
Requirement I too. Moreover, there are other reasons for which
the equations of the water and energy budgets should be solved
in a coupled manner (Rigon et al., 2006a): for instance, this makes
it possible to include an appropriate treatment of evaporation and
transpiration processes (Bisht and Riley, 2019; Bonan, 2019), as
well as of the heat advection (Engeler et al., 2011; Frampton et al.,
2013; Ronan et al., 1998; Walvoord and Kurylyk, 2016; Wierenga
et al., 1970; Zhang et al., 2019).

1.4 heat transport

Under the conditions defined above, the governing equation
for the transport of energy in variably saturated porous media
is given by the following energy conservation equation:

∂h(ψ,T )

∂t
= ∇ · [λ(ψ)∇T − ρwcw(T − Tref )J ] (9)

where h is the specific enthalpy of the medium L2T−2, λMLΘ−1T−3

is the thermal conductivity of the soil, T Θ is the temperature, ρw
ML−3 is the water density, cw L2Θ−1T−2 is the specific heat capac-
ity of water, Tref Θ is a reference temperature used to define the
enthalpy, and Jw is the water flux LT−1. The first term in the right-
hand-side is the heat conduction flux described by the Fourier’s
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law, the second term is the sensible heat advection of liquid water.
The specific enthalpy of a control volume of soil Vc L3 can be cal-
culated as the sum of the enthalpy of the soil particles and liquid
water:

h = ρspcsp(1− θs)(T − Tref ) + ρwcwθ(ψ)(T − Tref ) (10)

where ρsp and ρw are the densities of the soil particles and water,
csp, cw, are the specif heat capacity of the soil particles and water.
Equation (9) is the so-called conservative form.

1.5 solutes transport

Besides the need to couple the energy and water budget, there
is a great urge to model solutes transport according to the water
movements. The range of applications for solute/tracer/pollu-
tants spans from agriculture to industry to research itself. In fact,
in recent years there has been a tumultuous growth of studies us-
ing tracers to asses the various pathways of water (Hrachowitz et
al., 2016). However, so far these studies have mostly used lumped
models with limited capability to investigate water age selection
processes, processes that became very important in the most re-
cent literature e.g. (Penna et al., 2018). Using more complex mod-
elling can benefit both the investigation of the processes and the
construction of more refined water budget closures. Even though
in this paper we do not detail the work on tracers, they must be
kept in mind in software design so that the modules to be imple-
mented eventually.
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1.6 organisation and scope

The thesis is structured as follows. After these introductory
remarks, Chapter 2 presents the WHETGEO-1D model. Firstly,
the Chapter presents general issues in solving the R2 equation
and the its coupling with the heat transport equation. Next, it
conducts an extended critical analysis of the implementation of
algorithms adopting an OOP and generic approach. The Chap-
ter then provides information for users and developers. Finally, it
concludes by presenting some test cases for the R2 and the heat
transport equation. The heat transfer problem in frozen ground is
addressed by Chapter 3. In particular, this Chapter firstly reviews
established approaches to study freezing and thawing phenomena
in soils and points to relevant issues. Then, it critically describes
the new approach we propose. It details the discretization of the
governing equation and the NCZ algorithm used to solve the re-
sulting nonlinear numerical system, and it presents the some ana-
lytical benchmarks, and its performance is compared over a range
of spatial and temporal resolutions. Finally, it briefly presents
the inclusion of freezing and thawing processes in WHETGEO-1D
and possible future outlooks. Chapter 4 deals with presentation
of the ongoing development of WHETGEO-2D model. The Chap-
ter starts presenting the problem of storing the grid information.
Then, it discusses the algorithm required to solve a PDE in a bi-
dimensional domain and a critical analysis of their implementa-
tion adopting the OOP and generic programming approach. At
the end, Chapter 4 briefly concludes with some test cases for the
R2 equation. Conclusions and future perspective are finally pre-
sented in Chapter 5.
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This Chapter describes the implementation and the content of
the software WHETGEO-1D (Water, HEat and Transport in GE-
Oframe) in observance of requirements I to V and aware of the
hydrologic facts described in points 1-7. Further requirements de-
rive from Numerics and Mathematics as argued below. We do not
treat transport since its numerics is slightly different from those
of the water and energy budget and this topic will be covered in
a future work.

2.1 general issues of the r2 equation

Equation (2) is said to be written in “mixed form” because it is
expressed in term of θ and ψ (and uses the SWRC to connect the
two variables).

The “ψ-based form” is derived from Eq. (2) by applying the
chain rule for derivatives:

c(ψ)
∂ψ

∂t
= ∇ · [K(ψ)∇(ψ + z)] (11)

where

c(ψ) =
∂θ(ψ)

∂ψ
(12)

with dimension L−1, is the specific moisture capacity, also called
hydraulic capacity. Even though Eq. (2) and Eq. (11) are analyt-
ically equivalent under the assumption that the water content is
a differentiable variable, this is not generally true in the discrete
domain where the derivative chain rule is not always valid (Far-
thing and Ogden, 2017). Because of this the ψ-based form may
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suffer from large balance errors in the presence of big nonlinear-
ities and strong gradients, as discussed in (Casulli and Zanolli,
2010; Farthing and Ogden, 2017; Zha et al., 2019) and literature
therein. The specific moisture capacity c, which appears in the
storage term, itself depends on ψ and so is not constant over a
discrete time interval during which ψ changes value. Let us dis-
cretise the time derivative in Eq. (11) by using the backward Euler
scheme and obtain:

c̃i
ψn+1
i − ψni

∆t
(13)

where c̃i is the discrete operator of the soil moisture capacity, c(ψ).
In order to preserve the chain rule of derivatives at the discrete
level, i.e. the equality c∂ψ/∂t = ∂θ(ψ)/∂t, c̃i has to satisfy the
requirement (Roe, 1981)

c̃i(ψ
n+1
i − ψni ) = θ(ψn+1

i )− θ(ψni ) (14)

As can be seen from the above equation, the right definition of
c̃i depends on the solution itself. To overcome this problem, in
literature different techniques have been presented to improve the
evaluation of c̃i, but none ensures mass conservation (Farthing
and Ogden, 2017).

There is a third form of Eq. (2), the so-called “θ-based form”, it
is obtained as

∂θ

∂t
= ∇ ·

[

K(θ)
∂θ

∂θ
∇ψ

]

+∇ · [K(θ)∇z] (15)

defining

D(θ) = K(θ)
∂ψ

∂θ
(16)

where D is th soil-water diffusivity L2T−1. Finally we get

∂θ

∂t
= ∇ · [D(θ)∇θ] +∇ · [K(θ)∇z] (17)
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The first term on the right-hand-side represents the water flow
due to capillary forces, while the second term is the contribution
due to gravity (Farthing and Ogden, 2017). The θ-based form is
mass-conserving and it can be solved perfectly by mass conserva-
tive methods (Casulli and Zanolli, 2010). However, it applicability
is limited to the unsaturated zone since water content varies be-
tween θr and θs, whereas water suction is not bounded. This for-
mulation is intrinsically not suited to fulfilling our requirement III.
Moreover, water content is discontinuous across layered soil since
the SWRCs are soil specific, whereas water suction is continuous
even in inhomogeneous soils (Bonan, 2019; Farthing and Ogden,
2017).

In WHETGEO, we directly use the conservative form of the R2

equation (Celia et al., 1990), Eq. (2), which seems the easiest way
to deal with both the mass conservation issues and the extension
of the equation to the saturated case.

2.1.1 The discretization of the R2 equation

The implicit finite volume discretization of Eq. (2) reads as:

θi(ψ
n+1
i ) = θi(ψ

n
i ) + ∆t

[

Kn+1

i+ 1

2

ψn+1
i+1 − ψn+1

i

∆zi+ 1

2

+Kn+1

i+ 1

2

−Kn+1

i− 1

2

ψn+1
i − ψn+1

i−1

∆zi− 1

2

−Kn+1

i− 1

2

+ Sni

]

(18)

where ∆t is the time step size,

Si =

∫

Ωi

S dΩ (19)
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is an optional source/sink term in volume, and θi(ψ) is the ith
water volume given by

θi(ψ) =

∫

Ωi

θ(ψ) dΩ. (20)

Equation (18) can be written in matrix form as

~θ(~ψ) +T~ψ = ~b (21)

where ~ψ = {ψi} is the tuple of unknowns, ~θ(~ψ) = θi(ψi) is a
tuple-function representing the discrete water volume, T is the
flux matrix, and ~b is the right-hand-side vector of Eq. (18), which
is properly augmented by the known Dirichlet boundary condi-
tion when necessary. For a given initial condition ψ0

i , at any time
step n = 1, 2, . . ., Eq. (18) constitutes a nonlinear system for ψn+1

i ,
with the nonlinearity affecting only the diagonal of the system
and being represented by the water volume θi(ψn+1

i ). This set of
equations is a consistent and conservative discretization of Eq. (2).
Therefore, regardless of the chosen spatial and temporal resolu-
tion, ψn+1

i is a conservative approximation of the new water suc-
tion.

2.1.2 Surface boundary condition

The definition of the type of surface boundary condition (Neu-
mann vs. Dirchlet) for the R2 equation is a non trivial task since
it can depend on the state of the system. In literature several ap-
proaches are used (Furman, 2008). These approaches are mainly
based on a switch of the type of the boundary condition from a
prescribed head to prescribed flux and viceversa. This switching
often causes numerical difficulties that need to be addressed (Fur-
man, 2008).
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To overcome this problem we have included an additional com-
putational node at the soil surface. As will be made clear in the
following, for it we prescribe an “equation state” like that pre-
sented in (Casulli, 2009):

H(ψ) =

{

ψ if ψ > 0

0 otherwise
(22)

where H L is the water depth, which also represents the pressure
if the ponding is assumed to happen in hydrostatic conditions. By
doing so, it is possible to prescribe as the surface boundary con-
dition the rainfall intensity (Neumann type) without resorting to
any switching techniques to reproduce infiltration excess or sat-
uration excess processes. In this case the system, Eq. (21), must
to be modified to account for the additional computational node
describing the state of the soil surface:



















































HN (ψ
n+1
N )− ∆t

[

0−Kn
N−

1

2

ψn+1
N − ψn+1

N−1

∆zN−
1

2

]

= HN (ψ
n
N ) + ∆t[Jn −Kn

N−
1

2

] if i == N

θi(ψ
n+1
i )− ∆t

[

Kn
i+ 1

2

ψn+1
i+1 − ψn+1

i

∆zi+ 1

2

−Kn
i− 1

2

ψn+1
i − ψn+1

i−1

∆zi− 1

2

]

= θi(ψ
n
i ) + ∆t[Kn

i+ 1

2

−Kn
i− 1

2

] if i = 1, 2, ...,N − 1

(23)
where Jn is the rainfall intensity and represents the Neumann
boundary condition used to drive the system at the soil surface.
For any time step, Eq. (23) can be written in matrix form, similar
to (Eq. (21)), as:

~V (~ψ) +T~ψ = ~b (24)

where ~ψ = {ψi} is the tuple of unknowns, ~V (~ψ) = (θi(ψi)) for i =
1, 2, ...,N − 1 and VN (ψ) = H(ψ) is a tuple-function representing



2.1 general issues of the r2 equation 23

N

N − 1

i+ 1

i

i− 1

H = H(ψ)

θ = θ(ψ)Depth

z

Soil surface

Soil bottom

Figure 2.1: Scheme of the computational domain to solve the Richards
equation in 1D. The uppermost node represents the water
depth at the soil surface. By considering this additional com-
putational node the boundary condition does not change its
nature depending on the solution.
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the discrete water volume, T is the flux matrix, and ~b is the right-
hand-side vector of Eq. (18), which is properly augmented by the
known Dirichlet boundary condition when necessary. For a given
initial condition ψ0

i , at any time step n = 1, 2, ... Eq. (24) constitutes
a nonlinear system for ψn+1

i , with the nonlinearity affecting only
the diagonal of the system and being represented by the water
volume Vi(ψn+1

i ). Therefore, regardless of the chosen spatial and
temporal resolution, ψn+1

i is a conservative approximation of the
new water suction.

2.2 heat transport and numerics issues

Equation (9) is said to be written in conservative form and ex-
presses an important property, which is the conservation of the
scalar quantity, in this case the specific enthalpy. It is interesting
to note that by making use of the mass conservation equation,
Eq. (2), Eq. (9) can be written in an analytically equivalent form,
the so called non-conservative form (Šimünek et al., 2005; Sopho-
cleous, 1979). The time derivative can be expressed as

∂h

∂t
= cT

∂T

∂t
+ ρwcw(T − Tref )

∂θ

∂t
+ ρwl

∂θ

∂t
=

c
∂T

∂t
+ ρw [l+ cw(T − Tref )]

∂θ

∂t
(25)

and substituting in Eq. (9)

cT
∂T

∂t
+ ρw [l+ cw(T − Tref )]

∂θ

∂t
= ∇ · [λ∇T − ρwcw(T − Tref )J ]

(26)
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where J is the Darcian flux defined by Eq. (1). Developing the
right-hand-side term

cT
∂T

∂t
+ ρw [l+ cw(T − Tref )]

∂θ

∂t
=

λ∇2T − ρwcw(T − Tref )∇ · J − ρwcwJ∇T (27)

and by making use of the continuity equation for the mass, the
Richards’ equation, it becomes

cT
∂T

∂t
= λ∇2T − ρwcwJ∇T (28)

Equation (28) expresses another important property which is the
maximum principle (Casulli and Zanolli, 2005), i.e. the analytical
solution is always bounded, above and below, by the maximum
and minimum of its initial and boundary values, as shown in ca-
sulli1988numerical.

Although Eq. (9) and Eq. (28) are analytically equivalent, once
they are discretized the corresponding numerical solution will, in
general, either be conservative or satisfy a discrete max-min prop-
erty (Casulli and Zanolli, 2005), but not both as would be required.

As in the case of the water flow, thermal budget issues can be
subdivided into three aspects: the discretization of the equation,
the inclusion of the appropriate boundary conditions, and the im-
plementation of some closure equation for the thermal capacity
and conductivity.

2.2.1 The discretization of the heat equation

The key feature (Casulli and Zanolli, 2005) to obtaining a nu-
merical solution for the heat transport equation that is both con-
servative and possesses the max-min property is to solve the con-
servative form of the heat equation by using the velocity field ob-
tained in solving the continuity equation Eq. (2). By making use
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of the up-wind scheme for the advection part and the centered
difference scheme for the diffusion part we have:

Cn+1
Ti

Tn+1
i = CnTiT

n
i − ρwcw∆t

[

1

2
Jn+1

1+ 1

2

(

Tn+1
i+1 + Tn+1

i

)

− 1

2

∣

∣

∣

∣

Jn+1

1+ 1

2

∣

∣

∣

∣

(

Tn+1
i+1 + Tn+1

i

)

− 1

2
Jn+1

1− 1

2

(

Tn+1
i + Tn+1

i−1

)

+
1

2

∣

∣

∣

∣

Jn+1

1− 1

2

∣

∣

∣

∣

(

Tn+1
i+1 + Tn+1

i

)

]

+ ∆t

[

λn
i+ 1

2

Tn+1
i+1 − Tn+1

i

∆zi+ 1

2

− λn
i− 1

2

Tn+1
i − Tn+1

i−1

∆zi− 1

2

]

(29)

where

CTi =

∫

Ωi

ρspcsp(1− θs) + ρwcwθ(ψ) dΩ (30)

When heat equation does not consider water phase changes, it is
decoupled from the R2 equation and the finite volume discretisa-
tion leads to a linear algebraic system of equations. However, once
freezing and thawing processes are considered, the heat equation
is fully coupled with the R2 equation, as in (Dall’Amico et al.,
2011) for instance, and the enthalpy function becomes nonlinear.
At this point, since the enthalpy function is nonlinear the NCZ al-
gorithm is required to linearise it, as shown in (Tubini et al., 2020).
So far, we have not considered the problem of water flow in freez-
ing soils, however being aware of this issue is important for the
future developments and code design.
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2.2.2 Driving the heat equation with the surface energy budget

At the soil surface the heat equation is driven by the surface
energy balance. The heat flux exchanged between the soil and the
atmosphere, the surface heat flux, F MT−3, is given as:

F = Sin + Sout + Lin + Lout +H+ LE (31)

where Sin is the incoming short wave radiation, Sout is the outgo-
ing short wave radiation, Lin is the incoming longwave radiation,
Lout is the outgoing longwave radiation, and H and LE are respec-
tively the turbulent fluxes of sensible heat and latent heat. Fluxes
are positive when directed toward the soil surface and all have the
dimension of an energy per unit area per unit time MT−3.

Similarly to the definition of the surface boundary condition
for the water flow, the surface boundary condition for the energy
equation is also system dependent. In fact, in Eq. (31) the only
fluxes that do not depend on the soil temperature and/or mois-
ture are the incoming shortwave and longwave radiation fluxes,
Sin and Lin. The outgoing shortwave radiation flux is usually pa-
rameterized as:

Sout = αSin (32)

where the surface albedo α − can be assumed to vary with the
soil moisture content (Saito et al., 2006) and radiation wavelength.
The outgoing longwave surface radiation is:

Lout = (ǫ− 1)Lin − ǫσT 4
s (33)

where Ts [Θ] the temperature of the topmost layer of soil, ǫ is
the soil emissivity, and σ is the Stefan-Boltzmann constant. The
sensible heat flux H is taken as:

H = −ρaca
rH

(Ta − Ts) (34)
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where ρa is the air density ML−3, and ca is the thermal capacity
of air per unit mass L2T−2Θ−1. Regarding the aerodynamic re-
sistances rH [T L−1], it should be noted that it can be evaluated
with different degrees of approximation and may require a spe-
cific modelling solution. For instance, the aerodynamic resistance
rH can be evaluated with models ranging from semi-empirical
models to the the Monin-Obukov similarity (Liu et al., 2007), or
even by solving the turbulent dynamics with direct methods (Mc-
donough, 2004; Raupach and Thom, 1981).

The latent heat flux is taken here as given by a formula of the
type:

LE = lρaEP
rHrv

rH + rv
(35)

where l ML2T−2 is the specific latent heat of vaporisation of wa-
ter, EP is the potential evapotranspiration, rH and rv TL−1 are
respectively the aerodynamic resistance and the soil surface resis-
tance to water vapour flow. The latent heat flux it is the sum of
two distinct processes evaporation and transpiration. Compared
to the other fluxes, latent heat flux presents further complications
because evaporation is both an energy and a water limited pro-
cess, and transpiration depends also on the physiology of trees
(as well as root distribution/growth and leaf cover). The latent
heat flux is associated to the water flux that must be accounted
in the R2 equation. Here we present a simplified treatment of the
latent heat flux as an external driving force. A more exhaustive
and physically based treatment of the latent heat flux, and the re-
lated water flux, is addressed in the ongoing development of the
Lysimeter GEO model by Concetta D’Amato.

Including the surface energy budget boundary condition re-
quires the computation of additional quantities such as the incom-
ing radiation fluxes, the shortwave radiation and the longwave
radiation, and the potential evapotranspiration flux. These quanti-
ties can be easily computed within the GEOframe system in which
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WHETGEO-1D is embedded. The proper estimation of the incom-
ing radiation fluxes is far from being a simple task and it is often
oversimplified in hydrological problems. Our approach is to use
the tools already developed inside the system GEOframe which
were tested independently and accurately (Formetta et al., 2013;
Formetta et al., 2014a). Similarly the evapotranspiration can be
computed with other GEOframe components (Bottazzi, 2020; Bot-
tazzi et al., 2021).

2.3 algorithms

By using a numerical method, here the finite volume method, a
partial differential equation is transformed into a system of non-
linear algebraic equations, as has already been shown. The system
has to be solved with iterative methods and, at their core, these
reduce the problem to using a linear systems solver. The solver
can be of various types, according to the dimension of the prob-
lem. For instance in 1D, the final system of finite volume problems
we present is tridiagonal and can be conveniently solved with the
Thomas algorithm (Campbell et al., 1995; Quarteroni et al., 2010),
which is a fast direct method. In 2D or 3D, the final matrix is
not tridiagonal and a different solution method must be used, for
instance the conjugate gradient (Shewchuk et al., 1994). These
algorithms are well known and do not need to be explained here.

However, the reduction of a nonlinear system to a linear one is
not trivial. We illustrate the issues by taking the R2 equation as
an example. As discussed in depth in Zha et al. (2019) and Far-
thing and Ogden (2017), and references therein, the linearisation
of the R2 equation is challenging. Following the work of Celia
et al. (1990), a lot of advancements have been made in this direc-
tion: Hydrus, CATHY, and ParFlow use variants of the Newton
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and Picard iteration methods (Paniconi and Putti, 1994; Zha et al.,
2019), while GEOtop 2.0 implements a suitable globally conver-
gent Newton method (Kelley, 2003). Although current algorithms
are relatively stable, they may fail to converge or require a consid-
erable computational cost (Zha et al., 2019). This has a significant
impacts both on the reliability of the solution, which can have
mass-balance errors, and on the computational cost to produce it
(Farthing and Ogden, 2017; Zha et al., 2019). Since Casulli and
Zanolli (2010) and Brugnano and Casulli (2008), a new method
was found, called nested Newton by the authors and NCZ in the
following, that guarantees convergence in any situation, even with
the use of large time steps and grid sizes.

2.3.1 The NCZ algorithm

As clearly pointed out by Casulli and Zanolli (2010), what makes
the linearisation of the R2 equation difficult is the non-monothonic
behaviour of the soil moisture capacity. A mathematical proof of
convergence for NCZ exists (Brugnano and Casulli, 2008, 2009;
Casulli and Zanolli, 2010, 2012), which is not repeated here. How-
ever, we take the time to illustrate this new algorithm with care.

Let us start again from the nonlinear system (Casulli and Zanolli,
2012):

~V (~ψ) +T~ψ = ~b (20)

where ~ψ = (ψi) is the tuple of unknowns, ~V (~ψ) = (Vi(ψi)) is a
nonnegative vectorial function and where the Vi(ψi) are defined
for all ψi ∈ R and can be expressed as:

Vi(ψi) =

∫ ψi

−∞

ai(ξ) dξ (36)
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For all i = 1, 2, ...,N , the following assumptions are made on the
functions ai(ψ) (we are here quite literally following (Casulli and
Zanolli, 2010)):

A1 : ai(ψ) is defined for all ψ ∈ R and is a nonnegative function
with bounded variations;

A2 : There exists li, ui ∈ R such that ai(ψ) is non-decreasing in
(−∞, li] and non-increasing in [ui,+∞).

T in (Eq. (20)) is the so-called matrix flux and it is a symmetric
and (at least) positive semidefinite matrix satisfying one of the
following properties:

T1 : T is a Stieltjes matrix, i.e., a symmetric M-matrix, or

T2 : T is irreducible, null(T) ≡ span(~v), with ~v > ~0 (compo-
nentwise), and T +D is a Stieltjes matrix for all diagonal
matrices D 	 O, with O denoting the null matrix.

Finally ~b is the vector of the known terms. When T satisfies prop-
erty T2, then for Eq. (20) to be physically and mathematically com-
patible, the following assumption about ~b is required:

0 < ~v⊺~b < ~v⊺~VMax (37)

where ~VMax =
∫ +∞

−∞
ai(ξ)dξ.

Having assumed that the ai(ψ) are non-negative functions of
bounded variations, they are differentiable almost everywhere, ad-
mit only discontinuities of the first kind, and can be expressed as
the difference of two non-negative, bounded, and non-decreasing
functions, say pi(ψ) and qi(ψ), such that:

ai(ψ) = pi(ψ)− qi(ψ) ≥ 0 (38)

0 ≤ q(ψ) ≤ p(ψ)
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for all ψ ∈ R. When a(ψ) satisfy assumptions A1 and A2, the cor-
responding decomposition (known as the Jordan decomposition
(Chistyakov, 1997) and presented in Figure 2.2), is given by:

pi(ψ) = ai(ψ) qi(ψ) = 0 if ψ ≤ ψ∗

i (39)

pi(ψ) = ai(ψ
∗

i ) qi(ψ) = pi(ψ)− ai(ψ) if ψ > ψ∗

i

where ψ∗

i is the position of the maximum of pi. Thereafter, ~V (~ψ)
can be expressed as

~V (~ψ) = ~V1(~ψ)− ~V2(~ψ) (40)

where the i-th component of ~V1(~ψ) and ~V2(~ψ) are defined as

V1,i(ψi) =

∫ ψi

−∞

pi(ξ) dξ V2,i(ψi) =

∫ ψi

−∞

qi(ξ) dξ (41)

By making use of Eq. (40) the algebraic system in Eq. (20) can
be written as

~V1(~ψ)− ~V2(~ψ) +T~ψ = ~b (42)

It is necessary here to point out exactly how the nonlinear sys-
tem, Eq. (20), reads when considering only the R2 equation and
when the water depth function is used to properly define the sur-
face boundary condition. In the first case, i.e. when Neumann or
Dirichlet boundary conditions are used, the vectorial function is
defined as ~V (~ψ) = (θi(ψi)) for i = 1, 2, ...,N .

Instead, when we consider the water depth function to describe
the computational node at the soil surface, the vectorial function
is defined as ~V (~ψ) = (θi(ψi)) for i = 1, 2, ...,N − 1 and VN (ψ) =
H(ψ). Therefore, the nonlinear system in Eq. (42) is valid to de-
scribe both the subsurface and surface waters when the symbols
are appropriately understood.

This aspect, the use of two different equation states, and the fact
that the NCZ algorithm can be successfully reused to solve other



2.3 algorithms 33

0.00

0.05

0.10

[m
−
1
]

ψ∗

c(ψ) p(ψ) q(ψ)

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

ψ [m]

0.0

0.2

0.4

[-
]

ψ∗

(a)

(b)

θ(ψ) θ1(ψ) θ2(ψ)

Figure 2.2: Graphical representation of the Jordan decomposition for
soil water content using the SWRC model by Van Genuchten
(Van Genuchten, 1980) for a clay loam soil (Bonan, 2019). (a)
shows the Jordan decomposition of c(ψ), (39). For ψ = ψ∗,
c(ψ) presents a maximum: for ψ < ψ∗ it is increasing, and
for ψ > ψ∗ it is decreasing. This non monothonic behaviour
causes problems when solving the nonlinear system. c(ψ)

is thus replaced by p(ψ) (in green) and q(ψ), in blue, two
monothonic functions whose difference is the original func-
tion c. Consequently, (b), θ(ψ) is replaced by θ1(ψ) and
θ2(ψ), Eq. (40).
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problems (Casulli and Zanolli, 2012; Tubini et al., 2020), requires a
careful design of its implementation, as discussed in the following
sections.

2.3.2 The scalar case

In this section we apply the NCZ algorith for solving a scalar
problem and we provide a graphical representation of the nested
iterations.

Let us consider the following scalar problem

θ(ψ) = b (43)

where θ(ψ) is the Van Genuchten model and b ∈ [θr, θs]. In this
case the Jordan decomposition reads as:

pi(ψ) = ci(ψ) qi(ψ) = 0 if ψ ≤ ψ∗

i (44)

pi(ψ) = ci(ψ
∗

i ) qi(ψ) = pi(ψ)− ci(ψ) if ψ > ψ∗

i

where

ψ∗ = − 1

α

(

n− 1

n

)
1

n

(45)

and the specific moisture capacity reads as

ci(ψ)







αimi ni
θs,i − θr,i

[1+ |αiψ|ni ]mi

|αiψi|ni−1 if ψ ≤ 0

0 if ψ > 0

(46)

This problem can be easily solved by using the NCZ algorithm,
Fig. (2.3). The initial guess ψ0 is chosen in such a way that ψ0 < ψ∗,
thus θ2(ψ) = 0. Then the inner-iteration starts. ψ0,3 solves the
equation θ1(ψ), and it is set as the result of the first the outer-
iteration. Now it is checked whether ψ1 solves θ1(ψ)− θ2(ψ) = b,
and in case the NCZ algortihm is terminated.
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Figure 2.3: Graphical representation of the NCZ iterations. Panel (a)
plots the function θ1(ψ), while panel (b) plots the function
θ2(ψ). For this problem we set θs = 0.41 m3m−3, θs = 0.095

m3m−3, α = 1.9 m−1, n = 1.31 −, and b = 0.35 −.
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This problem can be solved also with the Newton-Raphson al-
gorithm but in this case it is not possible to define a suitable in-
terval to pick the initial guess that ensure the convergence of the
algorithm.

2.4 informatics

The concepts and requirements previously illustrated must be
cast into a software whose usability, expandability and inspectabil-
ity are demanded by good software design, which adds further
requirements. As discussed in Serafin (2019), codes were usually
developed as monolithic code with severe drawbacks for maintain-
ability and developments to improve the description of environ-
mental processes, as has been proven by our own experience with
the model GEOtop (Endrizzi et al., 2014; Rigon et al., 2006a), and
by the experiences of other modelling frameworks (Bisht and Ri-
ley, 2019; Clark et al., 2015b; Clark et al., 2021). Based on these ex-
periences, the WHETGEO-1D code has been developed by adopt-
ing an Object-Oriented-Programming (OOP) approach and it has
been integrated into OMS3. Information on OMS3 is provided in
Appendix A. Furthermore, WHETGEO-1D is part of the system of
interoperable components called GEOframe, a short description of
which is given in Appendix B. The utility of GEOframe has been
partially discussed previously, when treating the surface energy
budget.

2.4.1 Design requirements

One of the major difficulties encountered by a research group
concerns the development and reuse of scientific software (Berti,
2000) and the writing of structurally clean code, i.e. a code that
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is easily readable and understandable, with objects that have a
specified, and possibly unique, responsibility (Martin, 2009).

An Object-Oriented-Programming approach, with the adoption
of standard design patterns (DPs) (Freeman et al., 2008; Gamma
et al., 1995) and the creation of new ones, has been adopted for
the internal classes design and hierarchy.

The design principles followed by the WHETGEO-1D software
can be summarised as follows:

A. The software should be open source to allow inspection and
improvements by third parties;

B. For the same reason it should be organised into parts, each
with a clear functional meaning and possibly a single respon-
sibility.

C. The software can be extended with minimal effort and with-
out modifications (according to the “open to extensions, closed
to modifications" principle Freeman et al., 2008). In particu-
lar, the parts to be modified are those that, according to the
discussion of the previous sections, could be changed to try
new closures, i.e. the SWRC and the hydraulic conductivi-
ties in the case of the R2 equation, and the thermal capacity
and thermal conductivity in the case of the energy budget.
Adding a new SWRC type or a new conductivity functions
should be easy.

D. The largest set of boundary conditions should be smoothly
manageable

E. The implementation of equations should be abstract, accord-
ing to the principle of “programming to interfaces and not
to concrete classes”, which is the core of contemporary OOP
(Gamma et al., 1995). The different equations describing the
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processes should be implemented within the set of classes
by implementing a common interface.

F. The implementation of algorithms should not depend on the
data formats of inputs and outputs.

Another requirement has to do with the user experience. In
fact, solvers of PDEs (Menard et al., 2020) tend to be complex to
understand and run when features are added. In particular, the
number of inputs grows exponentially when features are added,
and the user has to overcome a steep learning curve before being
able to use these software packages to appreciate all the cases
implemented and their physics.

G. To simplify this situation, WHETGEO-1D has to be imple-
mented is such a way that any of the alternative implemen-
tations must come only with their own parameters and vari-
ables, and appear to the user as simple as possible, though
not too simple.

There is finally a last requirement to consider:

H. For computational and research purposes, there will be one,two
and three dimensional (1D, 2D, 3D) implementations of the
aforementioned equations. Therefore, as much as possible
of the code should be shared across these. In particular, the
NCZ and Newton algorithms should be shareable across the
various applications.

This requirement implies that the geometry of the domain, as well
as the topology, be specified in an abstract manner to cope with
the specifics of each dimensionality.

The rest of this section is organised to respond to points from
A to H. A is actually responded to in the next section describ-
ing where the software can be downloaded and with which open
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license. Points B and C are accomplished by studying an appro-
priate design of classes and the use of design patterns (Freeman
et al., 2008; Gamma et al., 1995). For D, generic programming is
used and specific classes are implemented. E is resolved by de-
ploying a set of classes that implement a common interface with
an extension that allows it to obtain the required functionalities.

To respond to the issues raised in F and G, WHETGEO-1D is
implemented as various components of OMS3, as shown below,
each one with its own inputs. Therefore, the number of flags to
check and the number of unused inputs are reduced to the mini-
mum required by the solvers and parameterizations that the user
chooses. If users want to solve the R2 equation alone, for instance,
they can pick out the appropriate component and do not need to
know about the inputs and details of the energy budget. The sep-
aration into components has two other advantages. First, it eases
the testing of a single process against available analytical solutions
and against other models results (Bisht and Riley, 2019). Second,
it improves the model structure, facilitating the representation of
new processes (Clark et al., 2021).

Point H is solved by deploying new components for the 1D, 2D,
and 3D cases. In the following section we mainly deal with points
B to E. Before discussing details of some classes, a few general
choices have to be reported. Data of any type are stored internally
in vectors of doubles, in turn encapsulated in appropriate Java
objects. OOP good practice would suggest that an object should
be immutable (Bloch, 2001), but we decided that the main classes
have to be mutable and allocated once forever as singletons (Free-
man et al., 2008; Gamma et al., 1995). This potentially exposes
the software to side effects but frees it to allocate new objects at
any time step and decreases the computational burden and mem-
ory occupancy generated by deallocating unused obsolete objects
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at runtime. This approach may be considered a specific design
pattern for partial differential equation solvers.

2.4.2 The software organisation

The more visible effect of our choices is that we have built vari-
ous OMS3 components:

• whetgeo1d-1.0-beta

• netcdf-1.0-beta

• closureequation-1.0-beta

• buffer-1.0-beta

• numerical-1.0-beta

Internally, the classes are assembled by using some interfaces and
abstract classes, since WHETGEO-1D is coded using the Java lan-
guage.

In order to improve the re-usability of the Java code we adopted
a generic programming approach (Berti, 2000) that consists in de-
coupling of algorithm implementations from the concrete data
representation while preserving efficiency. The generic approach
has been balanced with domain-specific ones that can improve the
computational efficiency of the software, as is the case of the previ-
ously mentioned Thomas algorithm used in 1-D implementations.

Another requirement regards the division of software classes
into three main groups, as the lack of a proper separation between
the parameterisation of physical processes and their numerical so-
lutions has been recognised as one of the weak points of exist-
ing land surface models (Clark et al., 2015b; Clark et al., 2021).
One group describes the mathematical-physical problem, the sec-
ond one implements the numerical solution (Berti, 2000), and the
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third one contains the growing group of concrete classes. The
first group contains the SWRC, and hydraulic and thermal con-
ductivity, and it forms a stand-alone library since its content can
eventually be reused in the 2D and 3D version of WHETGEO-1D.
Similarly, we grouped the classes that solve linear and nonlinear
algebraic systems, containing the Thomas, conjugate gradient, and
the various Netwon types of algorithms, in a second stand-alone
library. The third group of classes gathers the concrete implemen-
tations and the variety of OMS3 components that are deployed.

The classes used, and their repository for third parties inspec-
tion, are illustrated in the 00_Notebooks referred in section 4 and
in the supplemental material. However, there are three pivotal
groups of classes that we want to mention here: These contain the
description of the geometry of the integration domain, the closure
equation, and the state equation.

Computational domain, i.e. the Geometry class

One of the key aspects to have in a generic solver regards the
management of the grid and, in particular, the definition of its
topology, or how grid elements are connected to each other. In the
1D case the description of the topology is quite simple since it can
be implicitly contained in the vector representation: each element
of the vector corresponds to a control volume of the grid and it is
only connected with the elements preceding and following it. It
is worth noting that this approach is peculiar to 1D problems and
cannot be adopted for the 2D and 3D domains, where, especially
when unstructured grids are used, the grid topology requires a
smart implementation of the incidence and adjacency matrices.

For each control volume it is necessary to store its geometrical
quantities, their position and dimension, its variables, its parame-
ter set, and the form of the equation to be solved there, referred to
in the following as “equation state". The appropriate arrangement
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of information together with the internal design of the classes al-
lows us to create a generic finite volume solver.

Closure equations, i.e. the ClosureEquation abstract class

The ClosureEquation class is shown in the UML diagram of
Fig. (2.4). As explained in the Introduction, one of the core con-
cepts of modelling water and heat transport in soils is the SWRC.
Soil is a multi-phase material, thus knowledge of its composition
is of crucial importance in defining its unsaturated hydraulic con-
ductivity and its thermal properties, specific internal energy and
thermal conductivity.

An abstract class ClosureEquation is defined to contain only ab-
stract methods that would be overwritten by the concrete classes
implementing it. The ClosureEquation class essentially defines a
new data-type. A closer inspection of Fig. (2.4) reveals that the
ClosureEquation is composed by aggregation with the Parameter

class, which contains all the physical parameters of the model.
Moreover, the Parameter class is implemented by using the Sin-
gleton pattern (Freeman et al., 2008). This design pattern is func-
tional to have only one instance of the Parameter class shared by
all the ClosureEquation objects and to provide a global point of
access to the Parameter instance.

The Simple Factory pattern SoilWaterRetentionCurvesFactory

accomplishes the task of implementing the concrete classes accord-
ingly whit the OO principles: “Program to an interface, not an im-
plementation” and “open for extension but close for modification”
Freeman et al., 2008; Gamma et al., 1995. By preferring polymor-
phism to inheritance and using the Factory pattern (Freeman et
al., 2008; Gamma et al., 1995), the developers can easily include
and extend existing code or new formulations or parametrisations
of SWRC. Besides, the Simple Factory fulfils the dependency in-
version principle (Eckel, 2003), thus new extensions cannot affect
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the functioning of existing code. The same closure equation, for
instance a particular SWRC, can be used to compute the soil water
volume, when solving the R2 equation, and the specific enthalpy
of the soil, when solving the heat equation.

Conductivity models, i.e. the ConductivityEquation abstract class

The abstract class ConductionEquation defines the interface to
implement the hydraulic conductivity models and the thermal
conductivity models. In Fig. (2.5) is reported the UML diagram.
The ConductionEquation is composed by aggregation with the
ClosureEquation class.

To include in WHETGEO the dependence of the soil hydraulic
conductivity on temperature with adopted the Decorator pattern
(Freeman et al., 2008; Gamma et al., 1995). The Decorator pattern
extends an object’s behaviour without subclassing it but defining
a new class that wraps the original class. The decorator pattern
fulfils the “Single Responsibility Principle” and the “Open-Closed
principle”. In Fig. (2.6) the base decorator class,
UnsaturatedHydraulicConductivityTemperatureDecorator, imple-
ments the
ConductivityEquation interface and contains a reference to the
ConductivityEquation object. The Ronan1998 is concrete class im-
plementing the
UnsaturatedHydraulicConductivityTemperatureDecorator and de-
fines the implementation of the abstract methods.

Equation state, i.e. the EquationState class

The EquationState class in Fig. (2.7) contains the implementa-
tion of the discretised form of the equation state of the PDE under
scrutiny. It contains a reference each to the ClosureEquation ob-
ject, to the Geometry and ProblemVariables objects.
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Notably, the solver of a PDE problem can refer to the abstract
class and to its abstract object without implying the specific con-
crete equation to be solved or its concrete parameterisations. More-
over, the compositionality of the EquationState allows the cre-
ation of new solvers from existing closures without the need to
add new subclasses. As shown in the UML of Figure 4, the
EquationState class defines methods used to linearise the PDE
when it is nonlinear. For instance, it computes the first and sec-
ond derivatives, and the functions necessary to define the Jordan
decomposition as required by the NCZ algorithm. Specifically,
these methods are p, q, pIntegral, qIntegral, computeXStar, and
initialGuess.

In our code design the ClosureEquation class is limited to com-
puting a physical parameterisation, whereas the EquationState

class is used to discretise the equation state of the PDE, and when-
ever required to properly linearise it. Any new concrete EquationState
subclass can either have the same physics of another with a differ-
ent solver or a different physics with the same solver.

2.4.3 Generic Programming at work

As explained in Section 2.1.2, the definition of the surface bound-
ary condition for the R2 equation can require the introduction of
an additional computation node at the soil surface to simulate
the water depth. This means that we have two different equation
states, one for the soil water content and one for the water depth.
On the other hand, when considering the Neumann or Dirichlet
boundary condition we have only one equation state, for the soil
water content. The nonlinear solver of the NCZ algorithm must
work seamlessly with any type of boundary condition used, and
with any type of equation involved in the problem.
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Let us consider, for example, the case of the R2 equation with
water depth as the surface boundary condition. Figure (2.8) re-
ports the pseudocode for computing the nonlinear functions in
the NCZ algorithm using a procedural approach. When traversing
the computational grid we need to resort to an if-else statement
to compute the nonlinear function of each control volume: the
control volume N represents the control volume for the surface
water and in this case we need to use the water depth equation
state, H(ψ) in Fig. (2.8). The remaining control volumes represent
the soil moisture and for them we need to use the SWRC equa-
tion state, θ(ψ) in Fig. (2.8). The main limit of this approach is
that the computation of the nonlinear functions, H(ψ) and θ(ψ),
is hard-wired into the code of the NCZ algorithm. This presents a
shortcoming for the reusability of the code since, as the boundary
condition changes and the physical problem changes, it is neces-
sary to modify the for loop and the name of the objects computing
the nonlinear functions.

Adopting the OOP and generic programming approach, Fig. (2.9),
it is possible to implement the NCZ algorithm in such a way that
enhances its reusability. The key feature is the decoupling of the
computational grid from the algorithm(data) (Berti, 2000). This
is achieved through two elements. The first consists in creating a
container of the objects that deal with the equation states of the
problem, equationState, eS in Fig. (2.9). Second, we use a label
equationStateID, eSID in Fig. (2.9), to specify the behaviour of
each control volume. So, the behaviour of each control volume is
determined by this label and not by the position of the element
in the grid. Specifically, when we traverse the grid we use the
equationStateID to determine which object inside the container
equationState to use.

The NCZ algorithm has been implemented in the NestedNewtonThomas
class. The NestedNewtonThomas contains a reference to the Thomas
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Algorithm 1: Procedural code

for i = 1, 2, . . . , N do

if i == N then

Compute H
(

ψ[i]
)

else

Compute θ
(

ψ[i]
)

end if

end for

N

N − 1

i+ 1

i

i− 1

H = H(ψ) θ = θ(ψ)

Figure 2.8: Adopting a procedural approach, the computation of the
equation states is hard-wired into the code. The behaviour of
each control volume is determined by an if-else statement
according to the position of the element in the grid. In this
case the properties of the grid, here the equation state, are
joined with the topology. Here the non linear function V (ψ)

is replaced with either H(ψ) or θ(ψ) according with the po-
sition of the node. To keep the pseudocode short, H(ψ) and
θ(ψ) stand for all the nonlinear function used in the NCZ
algorithm, and the method f stands for one of the methods
defined in the EquationState class.
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Algorithm 1: Generic OOP code

int[ ] eSID
List<EquationState> eS = {H(ψ), θ(ψ)}
for i = 1, 2, . . . , N do

Compute eS.get
(

eSID[i]
)

.f(ψ[i])
end for

N

N − 1

i+ 1

i

i− 1

H = H(ψ) θ = θ(ψ) eSID

0

1

1

1

1

1

Figure 2.9: Adopting OOP with a generic programming approach, the
computation of the equation states is independent from
the grid. In fact, the behaviour of each control volume is
determined by the vector eSID - equationStateID in the
code - that determines which object belonging to the class
EquationState of eS - equationState in the code - must be
used to compute the equation state. In this manner it is pos-
sible to traverse the computation domain without resorting
to the if-else statement. Here the non linear function V (ψ)

is consistently replaced with either H(ψ) or θ(ψ) according
to the position of the node. To keep the pseudocode short,
H(ψ) and θ(ψ) stand for all the nonlinear function used in
the NCZ algorithm, and the method f stands for one of the
methods defined in the class EquationState.
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object, whose task is to solve a linear system, and to a list of
EquationState objects, Fig. (2.10). Considering the ubiquity of
nonlinear problems in Hydrology and the robustness of the NCZ
algorithm, the NCZ algorithm has been encapsulated in a stand-
alone library.

The example has been illustrated in 1D but it becomes even
more effective when working on 2D or 3D, especially with an un-
structured grid.

2.5 information for users and devel-

opers

While most of the what written so far is of general application,
the deployment shown here is 1D. Information on WHETGEO-1D
for users and developers is provided in the supplemental material,
where there is a Jupyter Notebook that contains the guidelines for
executing the codes for any of the components. Its name starts
with "00_" and we call it "Notebook Zero" of the components. The
latest executable code can be downloaded from

• https://github.com/geoframecomponents/WHETGEO-1D

and can be compiled by following the instructions therein. The
version of the OMS3 compiled project can be found here https:
//github.com/GEOframeOMSProjects/OMS_Project_WHETG
EO1D. The code can be executed in the OMS3 console, which can
be downloaded and installed according to the instructions given
at:

• https://geoframe.blogspot.com/2020/01/the-winter-schoo
l-on-geoframe-system-is.html

https://github.com/geoframecomponents/WHETGEO-1D
https://github.com/GEOframeOMSProjects/OMS_Project_WHETGEO1D
https://github.com/GEOframeOMSProjects/OMS_Project_WHETGEO1D
https://github.com/GEOframeOMSProjects/OMS_Project_WHETGEO1D
https://geoframe.blogspot.com/2020/01/the-winter-school-on-geoframe-system-is.html
https://geoframe.blogspot.com/2020/01/the-winter-school-on-geoframe-system-is.html
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Some brief information about GEOframe can be found in Ap-
pendix B, and more comprehensive information is at:

• https://abouthydrology.blogspot.com/2015/03/jgrass-new
age-essentials.html

• https://geoframe.blogspot.com/2020/01/gsw2020-photos
-and-material.html

To run the tests, please follow the instructions on the Github repos-
itory of the GEOframe components. If a user wants to compile
the code themselves, they can use the appropriate Gradle script
that guarantees independence from any IDE. For further informa-
tion about input and output formats for WHETGEO-1D, please
see the Notebook 00_WHETGEO1D_Richards.ipynb in the folder
Documentation of the Zenodo distribution.

2.5.1 Workflow for Users

Examples of uses of WHETGEO-1D can be found in the form
of Python Notebooks in the directory Notebooks/Jupyter. Doc-
umentation can be found in form of Python Notebooks in the
directory Documentation. Simulations with WHETGEO-1D are
run as OMS3 simulations. Therefore, the first operation to ac-
complish is to prepare the appropriate .sim files. For new users,
many simulation files are available in the directory simulation of
the Zenodo distribution. As shown in Fig. (2.11), in the modelling
solutions that involve WHETGEO-1D, there is always a ”Main”
component that is in charge of running the core code for solving
the PDE. The inputs and the outputs are treated by other OMS3

components. They are tied together by a Domain Specific Lan-
guage (DSL) based on Groovy. This allows for great flexibility in
using various input and output formats.

https://abouthydrology.blogspot.com/2015/03/jgrass-newage-essentials.html
https://abouthydrology.blogspot.com/2015/03/jgrass-newage-essentials.html
https://geoframe.blogspot.com/2020/01/gsw2020-photos-and-material.html
https://geoframe.blogspot.com/2020/01/gsw2020-photos-and-material.html
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2.5.2 Inputs and outputs

Input data can be broadly classified into time series, computa-
tional grid data, and simulation parameters. Time series are used
to specify the boundary conditions of the problem. Time series are
contained in .csv files with a specific format that is OMS3 compli-
ant (David, n.d.). With computational grid data we refer to the
domain discretisation, initial condition, and soil parameters. All
these data are stored in a netCDF file. Time series and compu-
tational grid data are elaborated with dedicated Python modules
distributed under the geoframepy package (Tubini and R, 2021).
The simulation parameters, such as the start date and end date of
the simulation, time step size, and file paths, are specified by the
user in the OMS3 .sim file.

For the design of the output workflow we took advantage of the
OMS3 system that allows the user to connect stand-alone compo-
nents. Figure (2.11) shows the output workflow for saving output
data and where Main, Buffer, and netCDF writer are the stand-
alone OMS3 components. Main stands for the generic component
having the responsibility of solving the PDE. Buffer has the re-
sponsibility of temporarily storing output data, and Writer han-
dles the saving of data to the disk. The Buffer component has the
sole purpose of storing data and this has two important advan-
tages. The first is that it limits the number of accesses to the disk
to save output, i.e. reducing the computational time. The second
is that it introduces a layer separating the Main component from
the netCDF writer. This increases the flexibility of the modelling
solution, as future developers can adopt different file formats, or
develop different writer components that, instead of saving all the
outputs, can save discrete outputs or aggregated outputs. The
advantage is that developers need only know the legacy of the
Buffer component and customise the both output file format and
memory optimisation strategy, such as chuncking, according to
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their need. Currently all outputs are stored in a netCDF-3 for-
mat (Unidata, 2021). netCDF is a self-describing portable data
format developed and maintained by UCAR Unidata. netCDF is
commonly used by the Geo-science community and there is an
ever-growing number of tools for processing and visualisation.

The choice of including the Buffer component in the workflow
of the modelling solution is motivated by earlier experiences of
the GEOtop community with the GEOtop model, and by more
recent experience with the FreeThaw1D model (Tubini et al., 2020),
where long spin-ups of the model (∼ 1500 years) were required
with consequent large output files (∼ 100 GB). Furthermore, in
anticipation of the 2D and 3D developments, the netCDF-3 format
is probably not the most appropriate and could be abandoned
in favour of more performing file formats Unidata, n.d.-a, n.d.-b,
such as netCDF-4 or HDF5.

WHETGEO-1D can be integrated with the built-in calibration
component LUCA (Formetta et al., 2014a; Hay et al., 2006) and the
Verification component, as shown in Fig. (2.12). The former is
used to calibrate optimal parameters, the latter to compute the
indices of goodness of simulated data versus measured data. Be-
sides the LUCA component and the Verification component, it is
necessary to add two more components, specifically the Buffer

calibration parameters and the Measurement point data. The
Buffer calibration parameters is needed to interface the Main com-
ponent with the LUCA component. In fact, in the WHETGEO-1D
Main component, physical parameters are stored as vectors, whilst
LUCA handles calibration parameters as scalars (single value). The
Buffer calibration component receives the optimal parameters
set from the LUCA component and returns them packed in appro-
priate vectors. The Verification component receives as input
two, OMS3-compliant time series: one for measured data and one
for simulated data. In this case it is necessary to extract from the
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Figure 2.11: Workflow of WHETGEO-1D. The boundary condition read-
ers, computational grid reader, Main, Buffer, and netCDF

writer are stand-alone OMS3 components. Main stands for
the generic component with the responsibility of solving
the PDE, the Buffer temporarily stores output data that
later are passed to the netCDF writer component, which
in turn saves data to the disk. The Buffer component has
the sole purpose of storing data. This has two adavantages:
the first one is to limit the number of accesses to the disk to
save output, i.e. reducing the computational time, and the
second one is to introduce a layer separating the Main com-
ponent, which handles the numerical solution of the PDE,
and the component responsible for saving outputs.
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simulation output only the simulated data at the measurement
points of the variable used to calibrate the model. These data are
then saved as OMS3 time series. It interesting that the integration
of WHETGEO-1D with the OMS3 built-in calibration components
is achieved by adding two new, stand-alone components without
modifying the source code of the existing components, i.e. the
Main component, the Buffer component, and the netCDF writer.

2.5.3 Workflow for Developers

Here, as an example, we present how to add the Brooks-Corey
(Brooks and Corey, 1964) model as an extension of the code base.
The constitutive relationships are given by:

θ(ψ) =







θr + (θs − θr)

(

ψd

ψ

)n

if ψ ≤ ψd

θs if ψ > ψd

(47)

K(ψ) = Ks

[

θ(ψ)− θr

θs − θr

]3+ 2

n

(48)

where θs and θr are, respectively, the saturated and residual values
of the volumetric water content, ψd is the air-entry water suction
value, n is the pore size distribution index, and Ks is the saturated
hydraulic conductivity at saturation.

The standard approach to adding a new SWRC parametriza-
tion, here the Brooks and Corey model, requires the definition a
new class that extends the abstract class ClosureEquation. This
new class, SWRCBrooksCorey, provides the implementation of the
abstract methods defined in the super class ClosureEquation, and
inherits the association with the Parameters class. Specifically, the
SWRCBrooksCorey class overrides the following methods:

• f calculates the water content for a given water suction value
and set of parameters, Eq. (47);
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Figure 2.12: Workflow of WHETGEO-1D integrated with LUCA. The
cyan lines identify those components required to inte-
grate WHETGEO-1D with LUCA. The LUCA and Verifi-
cation components are built-in OMS3 components. The
former is used to calibrate optimal parameters, the lat-
ter to compute the indices of goodness of simulated data
versus measured data. To integrate WHETGEO-1D with
the OMS3 calibration components it is necessary to add
two other components into the workflow, specifically the
Buffer calibration parameters component and the measure-
ment point data component. LUCA handles scalar pa-
rameters whilst WHETGEO-1D uses vectorial parameters.
The Buffer calibration parameters creates an interface
between these two components, simply creating vectorial
parameters from scalar parameters. The Verification

component requires the input time series as a .csv file
of simulated data at the measurement points. To accom-
plish this requirement, it is necessary to modify the out-
put strategy: the Buffer component passes output data
to the Measurement points data component. This com-
ponent extracts only the simulated variables at the mea-
surement points and passes them to the OMS3 time series
writer, .csv writer, which save the simulated time series
as a .csv file.
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• df calculates the first derivative of Eq. (47);

• ddf calculates the second derivative of Eq. (47).

In order to use the Brooks-Corey model in the Richards’ equa-
tion it is necessary to define a new class, SoilWaterVolumeBrooksCorey,
that extends the abstract class StateEquation. Specifically the
SoilWaterVolumeBrooksCorey class overrides the following meth-
ods:

• equationState calculates the water volume using the Brook-
Corey model for a given water suction value and set of pa-
rameters, Eq. (20).

• dEquationState calculates the first derivative of the equationState
function, in this the moisture capacity function. This method
is used within the linearisation algorithm.

• ddEquationState calculates the second derivative of the equationState
function. This method is relevant for those models where the
ψ∗ cannot be computed analytically but requires the applica-
tion of a root finding method such as the bisection method.
An example is the soil internal energy function when consid-
ering the phase change of water Tubini et al., 2020.

• p calculates the p function of the Jordan decomposition.

• pIntegral calculates the V1 function of the Jordan decompo-
sition.

• computeXStar calculates the ψ∗ value to properly define the
functions p and V1.

• initialGuess calculates the initial guess for the linearisation
algorithm.



2.6 r2 test cases 61

2.6 r2 test cases

In this section we test the solver of the R2 equation against the
analytical solutions presented by Srivastava and Yeh (1991) and
by Vanderborght et al. (2005). Then we present and discuss two
“behavioural” test cases to try out WHETGEO-1D in simulating
both the infiltration excess and the saturation excess process.

2.6.1 Analytical solution of Srivastava and Yeh (1991)

Srivastava and Yeh (1991) derived an analytical solution describ-
ing the one-dimensional transient infiltration in an homogeneous
and layered soil. The hydraulic properties of the soil are described
by the following constitutive relations:

K(ψ) = Kse
αψ (49)

θ(ψ) = θr + (θs − θr)e
αψ (50)

where Ks is the saturated hydraulic conductivity, θr is the resid-
ual water content, θs is the saturated water content, and α is the
soil pore-size distribution parameter, representing the desatura-
tion rate of the SWRC. The lower boundary condition is repre-
sented by the water table, ψ = 0 m, while the upper boundary
condition is subjected to a constant flux, q. The initial condition
corresponds to the steady state profile due to a prescribed initial
flux at the soil surface and prescribed pressure at the lower bound-
ary. The analytical solution is derived by linearising Richards’
equation and using Laplace’s transformation. Details on the an-
alytical solution can be found in (Srivastava and Yeh, 1991).
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Figure 2.13: Comparison between the analytical and numerical solu-
tions for the test problem TP1.

Homogeneous soil

We consider a one-dimension homogeneous soil layer of 1 m

depth (TP1). The saturated hydraulic conductivity value is as-
sumed to be 2.778× 10−6 ms−1, with θs = 0.45 m3m−3, θr = 0.2

m3m−3, and α = 1 m−1. The initial condition is determined by im-
posing as lower boundary condition ψ = 0 m and a constant water
flux at the soil surface qA = 2.776× 10−7 ms−1. For times greater
than 0 the water flux at the soil surface is qB = 2.5e− 6 m s−1. The
domain is discretised with a uniform grid space ∆z = 0.001 m and
the time step is ∆t = 60 s. The model accuracy is enhanced by al-
lowing two Picard iterations per time step. Figure (2.13) shows a
comparison between the numerical and the analytical solutions.
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Figure 2.14: Relative water suction error for the test problem TP1.

Layered soil

In this numerical problem (TP2) we consider one-dimensional
vertical infiltration toward the water table through a layered soil.
The initial condition is determined by imposing as lower bound-
ary condition ψ = 0 m and a constant water flux at the soil surface
qA = 2.776× 10−7 ms−1. For times greater than 0 the water flux
at the soil surface is qB = 2.5× 10−6 ms−1. The domain is dis-
cretised with a uniform grid space ∆z = 0.001 m and the time
step is ∆t = 60 s. The model accuracy is enhanced by allowing
two Picard iterations per time step. The hydraulic conductivity at
the interface is computed as the harmonic mean of the neighbours
(Romano et al., 1998). Comparison between the numerical and the
analytical solution for water suction is shown in Fig. (2.15).
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Figure 2.15: Comparison between the analytical and numerical solu-
tions for the test problem TP2.
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Figure 2.16: Comparison of relative water suction error δ for the test
problem TP2 using different interface hydraulic conductiv-
ity algorithms. Panel (a) is computed with max., panel (b)
with harmonic mean, and panel (c) with geometric mean.
As reported in (Romano et al., 1998), the harmonic mean
offers the best agreement with the analytical solution. This
is particularly evident at the interface between the two lay-
ers.
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Table 2.1: Hydraulic properties for the three soil types used in the Van-
derborght test case (TP3).

Soil type θs m
3m−3 θr m

3m−3 α m−1 n − Ks ms−1

Sand 0.43 0.045 15.0 3 1.16× 10−4

Loam 0.43 0.08 4.0 1.6 5.79× 10−6

Clay 0.4 0.1 1.0 1.1 1.16× 10−6

2.6.2 Analytical solution of Vanderborght et al. (2005)

The next test case was defined by Vanderborght et al. (2005) to
evaluate the steady-state flux in layered soil profiles. For this nu-
merical problem (TP3) we consider a soil column of 2 m depth
with one soil type for depth 0 m – 0.5 m overlying another soil
type for depth 0.5 m – 2 m, specifically for loam over sand, sand
over loam, and clay over sand. The soil parameters are defined in
Tab. (2.1). The initial condition for water suction is a uniform pro-
file with ψ = −20 m, the surface boundary condition is a constant
flux q = 5.79× 10−8 ms−1, and at the bottom we impose a free
drainage boundary condition. The domain is discretized with a
uniform grid space ∆z = 0.01 m and the time step is ∆t = 3600

s. In order to reach the steady state condition the simulation lasts
2 years. Comparison between the numerical and the analytical
solution is shown in Fig. (2.17).

2.6.3 Surface boundary condition

The definition of the surface boundary condition is a nontriv-
ial task since it is a system-dependent boundary condition. The
infiltration rate through the soil surface depends on precipitation,
rainfall intensity J , and on the moisture condition of the soil. Be-
cause of this, the surface boundary condition may change from the
Dirichlet type - prescribed water suction - to the Neumann type
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Figure 2.17: Comparison between the analytical and the numerical so-
lution for the test problem TP3. The three panels show the
vertical profile of water suction at steady state for a con-
stant flow rate of 5.79 10−8 ms−1: (a) clay-sand soil profile,
(b) loam-sand soil profile, and (c) sand-loam soil profile.

- prescribed flux - and vice-versa. The works by Horton (1933)
and Dunne and Black (1970) establish the conceptual framework
to explain the runoff generation.

The infiltration excess or Horton runoff occurs when the rainfall
intensity is larger than infiltration capacity of the soil:

∣

∣

∣
J
∣

∣

∣
>

∣

∣

∣
−K(ψ)

∂

∂z
(ψ + z)

∣

∣

∣

z=0
(51)

Infiltration excess is most commonly observed with short-duration,
intense rainfall.

The saturation excess or Dunnian runoff occurs when the soil is
saturated and additional water cannot infiltrate through the soil
surface. Saturation excess generally occurs with long-duration,
moderate rainfall, or with a series of successive precipitation events.
In this case the soil depth or the presence of a bedrock are deter-
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Table 2.2: Hydraulic properties of the silty clay loam soil (Bonan, 2019)
for the Horton runoff numerical experiment.

θr m
3m−3 θs m

3m−3 α m−1 n − Ks ms−1

0.089 0.43 1.0 1.23 1.9447× 10−7

mining factors for saturation excess. Another possible cause is the
rise of the water table up to the soil surface.

Infiltration excess

In this numerical experiment we consider a homogeneous soil
of 3 m depth. Soil hydraulic properties are described with the Van
Genuchten’s model, Table (2.2).

The initial condition is assumed to be hydrostatic with ψ = 0

m at the bottom. The surface boundary condition is a synthetic
rainfall, as in Fig. (2.18) (a), lasting 15 min with constant intensity
of 0.028 mm s−1. At the bottom we prescribed a Dirichlet boundary
condition with constant ψ = 0 m so the transient is driven only
by the surface boundary condition. In Fig. (2.18) panel (a), the
time is indicated when it would be necessary to switch from the
Neumann type to the Dirichlet type boundary condition.

Figure (2.18) shows a comparison of water ponding at the soil
surface considering two different initial conditions of the soil, wet
and dry. For the wet case, the initial condition is hydrostatic with
ψ = 0 m at the bottom. For the dry case, the initial condition is
hydrostatic with ψ = −100 m at the bottom. In the wet initial
condition the hydraulic conductivity is higher than for the dry
initial condition, however, in the dry case the capillary gradient
is larger and because of this the soil infiltration capacity is higher,
as in Fig. (2.18) panel (a). With regards to the water ponding, the
maximum value is almost the same in both cases, 1 mm higher in
the wet case, but the time evolution is different: in the wet case
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Figure 2.18: Panel (a) shows a comparison between the rainfall intensity
J and actual soil infiltration i. The rainfall intensity exceeds
the actual infiltration rate so water builds up at the soil sur-
face (blue line). Panel (b) shows the time evolution of the
water suction within the soil. From the numerical point of
view, as water builds up at the soil surface it would be nec-
essary to switch the boundary condition, from Neumann
type to Dirichlet type.
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Figure 2.19: Panel (a) shows a comparison between the infiltration rate
for two cases: wet and dry initial condition. In the dry case,
soil infiltration is greater than the wet case even though the
hydraulic conductivity is smaller. This is due to the higher
capillary gradients that develop in the soil. Panel (b) shows
the time evolution of the water ponding at the soil surface.

the water only infiltrates completely 13 h later than the dry case.
This delay may seem counter-intuitive since wetter conditions are
associated with higher values of hydraulic conductivity, Fig. (2.19),
but in the wet soil the capillary gradients are smaller than in the
dry soil, Fig. (2.20).

In Fig. (2.22) we compare the water ponding as the soil temper-
ature varies. The temperature-hydraulic conductivity relationship
is model using the model presented in Ronan et al. (1998). The
soil temperature in these simulation is kept constant over time.
As temperature is lower the reference value of T = 20 ◦C the
infiltration is slower because the hydraulic conductivity is lower
the reference value, whereas when temperature is higher the in-
filtration is faster. From this synthetic experiment it is clear how
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Figure 2.20: Panel (a) shows the hydraulic conductivity field for the case
of wet soil, while panel (b) shows the hydraulic conductiv-
ity field for the case of dry soil.
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Figure 2.21: Panel (a) shows the capillary gradient for the case of wet
soil, panel (b) shows the the capillary gradient for the case
of dry soil. As can be seen, in the dry soil the capillary
gradient is two orders of magnitude larger than in the wet
soil. Because of this higher gradient water infiltrates faster
in the dry soil than in the wet soil.
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Figure 2.22: Comparison of the water ponding time evolution consider-
ing different soil temperatures. The temperature in these
simulations is uniform and kept constant over time. The
reference value of for temperature is T = 20 ◦C. As soil
temperature is lower the reference value the infiltration is
lower, vice-verse when temperature is higher.

temperature can affect the water infiltration and thus simulate the
coupled water and energy budget.

Saturation excess

In this section we present two numerical experiments to simu-
late the saturation excess process. Saturation excess is more crit-
ical, in terms of simulation stability, than the infiltration excess
(Forums, n.d.). We consider two cases: one in which the water ta-
ble reaches the soil surface; and another in which the total rainfall
amount is larger than the maximum water holding capacity but
the rainfall intensity is less than the maximum infiltration rate.
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Table 2.3: Hydraulic properties of the loam layer and clay layer, respec-
tively, (Bonan, 2019) for the numerical experiment on Dun-
nian runoff due to water table rising.

θr m
3m−3 θs m

3m−3 α m−1 n − Ks ms−1

0.078 0.43 3.6 1.56 2.8889× 10−6

0.068 0.38 0.8 1.09 5.5556× 10−7

Table 2.4: Hydraulic properties of the loamy sand layer and clay layer,
respectively, (Bonan, 2019) for the numerical experiment on
Dunnian runoff due rainfall.

θr m
3m−3 θs m

3m−3 α m−1 n − Ks ms−1

0.057 0.41 12.4 2.28 4.0528× 10−5

0.068 0.38 0.8 1.09 5.5556× 10−7

Firstly, we consider a layered soil of 3 m depth. The thicknesses
of the loamy layer and clay layer are, respectively, 0.5 m, and
2.5 m. The soil hydraulic properties are described with the Van
Genuchten’s model, Tab. (2.3). The initial condition is assumed
to be hydrostatic with ψ = 0 m at the bottom. At the surface
boundary condition we prescribe no rainfall, while at the bottom
a variable Dirichlet boundary condition is prescribed Fig. (2.23)
(a). The transient is driven by variation of the water table. In
Fig. (2.23) panel (a) the time is indicated when it would be neces-
sary to switch the surface boundary condition from the Neumann
type to the Dirichlet type boundary condition and vice-versa.

Secondly, we consider a layered soil of 3 m depth. The thick-
nesses of the loamy sand layer and the clay layer are, respectively,
0.3 m, and 2.7 m. The soil hydraulic properties are described with
the Van Genuchten’s model, Tab. (2.4). The initial condition is as-
sumed to be hydrostatic with ψ = −2 m at the bottom. The surface
boundary condition is a synthetic rainfall Fig. (2.21) (a), at the bot-
tom we prescribed a Dirichlet boundary condition with constant
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Figure 2.23: Panel (a) shows the water table position, Dirichlet bound-
ary condition, and the water ponding at the soil surface.
The dotted red lines indicate the times at which the bound-
ary condition at the soil surface should be switched. The
first line indicates the switch from the Neumann type to
the Dirichlet type since water starts building up. The sec-
ond line indicates the switch form the Dirichlet type to the
Neumann type because there is no water at the soil sur-
face. Panel (b) shows the time evolution of the water suc-
tion within the soil.
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Figure 2.24: Panel (a) shows the rainfall and the water ponding at the
soil surface. Initially rainfall can infiltrate into the soil and
no water builds up a the soil surface. As the uppermost
layer of the soil saturates water starts ponding at the soil
surface. The dotted red lines indicate the times at which the
boundary condition at the soil surface should be switched.
Panel (b) shows the time evolution of the saturation degree
within the soil.

ψ = −2 m so the transient is driven only by the surface boundary
condition. Figure (2.24) panel (b) shows the time evolution of the
degree of saturation within the soil. Initially water infiltrates in
the soil but then the clay layer, which is characterised by a lower
conductivity than the loam-sand layer, limits the deep infiltration
causing the saturation of the loam-sand layer from below.

Figure (2.25) presents the aforementioned numerical test taking
in account the effect of soil temperature on the hydraulic conduc-
tivity. As before the temperature is uniform and kept constant
over time.
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Figure 2.25: In this numerical experiment the run-off varies with soil
temperature. As the soil becomes colder the maximum for
water ponding increases and water takes more time to infil-
trate.
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Figure 2.26: In this numerical experiment there is no saturation excess
since the greater thickness of the uppermost layer ensure a
sufficient water storage capacity for the forcing rainfall.

Repeating the above numerical experiment with a thicker loam-
sandy layer, Fig. (2.26), there is no water ponding at the soil sur-
face. In this case all the rainfall can infiltrate into the loam-sandy
layer thanks to the increased water storage capacity.

Example of a calibration with

In this section I present an application of WHETGEO-1D com-
bined with the LUCA component to calibrate some measurements
of water content (Formetta et al., 2016b). This is meant to be a cali-
bration exercise. The calibration process is described in Fig. (2.12).
Figure (2.27) shows a comparison between measurements and sim-
ulated values for site C1. As can be seen WHETGEO-1D is able to
reproduce the stable soil moisture patterns both at low and high
saturation levels, as well as the main wetting front. Table 2.5 re-
ports the indices of goodness-of-fit for the four depths.
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Figure 2.27: Comparison between measurement data of soil moisture,
black, and simulated values, red, for location C1. Panel
(a) shows the rainfall, panel (b), soil moisture dynamics at
depth 0.3 m, panel (c) at depth 0.6 m, panel (c) at depth 0.9

m, panel (c) at depth 1.2 m.

Table 2.5: Kling-Gupta Efficiency (KGE) coefficient and root mean
squared error (RMSE) values quantify the model godness of
fit.

Depth m KGE RMSE m3m−3%

0.3 0.69 3.05

0.6 0.82 1.86

0.9 0.89 1.39

1.2 0.82 1.29
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Table 2.6: Optimal parameter set estimated by using the LUCA calibra-
tion algorithm. Dz is the depth of each layer measured from
the soil surface.

Dz m Ks ms−1 θr m
3m−3 θs m

3m−3 α m−1 n −
0.15 2.1× 10−3 0.553 0.061 11.36 2.919

0.45 7.1× 10−5 0.550 0.031 1.90 1.374

0.75 8.4× 10−5 0.530 0.044 2.10 1.364

1.05 8.9× 10−5 0.550 0.056 2.15 1.425

1.35 1.9× 10−6 0.536 0.070 2.10 1.314

2.35 3.1× 10−6 0.498 0.069 2.40 1.360

2.6.4 Energy budget

This Section presents some behavioural test case on the pure
heat conduction considering the surface energy balance, and on
the couple water and energy budget.

Pure heat diffusion with surface energy budget

The soil column is 30 m deep and the initial condition is a
constant temperature profile T = 12 ◦C. Figure (2.28) panel (a)
shows the components of the surface energy fluxes and the ther-
mal regime of the uppermost 2 m of the soil column. As can be
seen in panel (b), the soil temperature falls below 0 ◦C; therefore
it is not reasonable to neglect freezing and thawing processes.

Coupled water and energy budget

In this it is presented a simulation of coupled water and heat
transport in soil.
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2.7 code availability

The source code is written in Java using the object-oriented pro-
gramming paradigm. It can be found at https://github.com/g
eoframecomponents/WHETGEO-1D. The OMS3 project can be
found at https://github.com/GEOframeOMSProjects/OMS_Pro
ject_WHETGEO1D. A frozen version of the OMS project used can
be found at https://zenodo.org/record/4749319.

2.8 conclusion remarks

In this chapter we discussed the issues raised by implementing
a new expandable system to model the Earth’s CZ. Firstly, math-
ematical issues were discussed and then the software-engineering
aspects were faced. The implementation has been shown to solve
the issues presented in 7 observations, 3 requirements, and A to
H design specifications. Each of these was analysed and informed
the choice of algorithms and code implementation. The first de-
ployment of the concepts was the 1D stand-alone water budget
and the coupled water and energy budgets WHETGEO versions.

The water budget was tested against analytical solutions pre-
sented in (Srivastava and Yeh, 1991) and (Vanderborght et al.,
2005). Some behavioural simulations were also performed to show
some features of the code, such as the ability to deal with switch-
ing boundary conditions. Moreover some synthetic simulations
has been presented about the pure heat diffusion and the heat
advection-diffusion. As noted further development is required to
properly include freezing and thawing processes in soils.

https://github.com/geoframecomponents/WHETGEO-1D
https://github.com/geoframecomponents/WHETGEO-1D
https://github.com/GEOframeOMSProjects/OMS_Project_WHETGEO1D
https://github.com/GEOframeOMSProjects/OMS_Project_WHETGEO1D
https://zenodo.org/record/4749319
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Figure 2.28: Behavioural test case of pure heat conduction in soil con-
sidering the surface energy budget. Panel (a) shows the
surface energy fluxes driving the simulation. The external
fluxes, incoming shortwave and longwave radiation, and
the latent heat flux, are computed with existing GEOframe
components. Panel (b) shows the thermal regime of the up-
permost 2 m of the soil column. As can be seen, during
winter the temperature of the uppermost layer goes below
0 ◦C, the grey line is the 0 ◦C isotherm, therefore, it is not
reasonable to overlook the phase change of water.
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Figure 2.29: Behavioural test case of pure heat conduction in soil con-
sidering the surface energy budget. Panel (a) shows the
surface energy fluxes driving the simulation. The external
fluxes, incoming shortwave and longwave radiation, and
the latent heat flux, are computed with existing GEOframe
components. Panel (b) shows the thermal regime of the up-
permost 2 m of the soil column. As can be seen, during
winter the temperature of the uppermost layer goes below
0 ◦C, the grey line is the 0 ◦C isotherm, therefore, it is not
reasonable to overlook the phase change of water.
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Figure 2.30: Behavioural test case of pure heat conduction in soil con-
sidering the surface energy budget. Panel (a) shows the
surface energy fluxes driving the simulation. The external
fluxes, incoming shortwave and longwave radiation, and
the latent heat flux, are computed with existing GEOframe
components. Panel (b) shows the thermal regime of the up-
permost 2 m of the soil column. As can be seen, during
winter the temperature of the uppermost layer goes below
0 ◦C, the grey line is the 0 ◦C isotherm, therefore, it is not
reasonable to overlook the phase change of water.
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3.1 introduction

Freezing and thawing of soils affect a wide range of biogeo-
chemical and hydrological (Schuur et al., 2015; Walvoord and
Kurylyk, 2016) processes and interact with engineered structures
in cold regions. Correspondingly, the simulation of freezing and
thawing soil is an important an well-researched topic (Harris et al.,
2009; Streletskiy et al., 2019). Climate change brings additional ur-
gency and new phenomena of interest to these studies. It is thus
not a surprise that many models of freezing and thawing soil and

85
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ice exist, some of which are reviewed in Appendix 3.7. Here, we
propose a solution to a central challenge that these models have
in common.

Published models can be categorized as empirical, analytical,
or numerical (Riseborough et al., 2008). Empirical methods relate
ground temperature or thawing/freezing depth (TFD) to simple
topoclimatic factors (Riseborough et al., 2008; Zhang et al., 2008)
and are relatively simple to apply. By contrast, analytical and nu-
merical models are based on the conservation of mass and energy
and can be divided in two broad groups (Tan et al., 2011). The
first group focuses primarily on freezing and thawing, commonly
known as the Stefan problem. The governing equation describes
energy conservation with the heat flux modelled using the Fourier
law. The second group considers the coupled problem of heat
transfer and water flow in soils. In this case energy-entalphy con-
servation equation includes also the advective heat flux and it is
coupled with the mass conservation equation. For both groups,
the latent heat transfer during phase change of water leads to
problems related to convergence, conservation, and restrictions to
discretization of space and time (Bao et al., 2016).

Historically (Hu and Argyropoulos, 1996; Vuik, 1993), the first
attempts to solve the problem of heat conduction considering the
phenomena of solidification and melting date back to the studies
by Lame and Clapeyron in 1831, and the analytical solutions pre-
sented by Stefan around 1890, and Neumann in 1921. Later, other
analytical solutions were proposed in order to overcome some
simplifications that were too restrictive (Riseborough et al., 2008;
Walvoord and Kurylyk, 2016; Zhang et al., 2008). These analytical
solutions, however, are limited to one dimensional problems and
constrained in their initial and boundary conditions as well as the
description of soil characteristics (Kurylyk et al., 2014a).
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By contrast, numerical models can accommodate complex pro-
cesses or configurations, including soil heterogeneities, compli-
cated temperature boundary conditions, intermittent freeze-thaw
and temporally variable thermal properties. Accurately represent-
ing phase transitions, however, is a non-trivial task and several
different methods have been published. They can be broadly cast
in two general groups: the so-called front-tracking methods and
the fixed-grid methods (Voller et al., 1990). Even though this con-
tribution is focused on modelling heat transfer in frozen soil or
ice, the following review includes, and is relevant for, other fields
of research that involve phase change.

Front-tracking methods are suitable whenever the two phases
are divided by a spatially smooth and continuous front and thus
the state of the system can be conveniently described by the po-
sition of this interface (Voller et al., 1990). The moving front is
tracked defining a continuity (’Stefan’) condition on the heat flux
across it. For example, the one-dimensional model by Goodrich
(1978, 1982) uses front-tracking in modelling frozen soil and the
SICOPOLIS model (Greve, 1997a, 1997b; Greve and Blatter, 2016)
uses it to model polythermal ice sheets.

In frozen soil, however, a significant proportion of water can re-
main liquid at temperatures well below 0 ◦C. This depression of
the melting temperature is due to the presence of solutes (Bouy-
oucos, 1920; Bouyoucos, 1923; Bouyoucos, 1913; Bouyoucos and
McCool, 1915), surface effects in the interaction between water
and soil particles as well as water and ice (Anderson and Tice,
1972; Clow, 2018), and the Gibbs-Thomson effect (Rempel et al.,
2004; Watanabe and Mizoguchi, 2002). To some degree, also poly-
crystalline ice has a temperature-dependent liquid water content
(Langham, 1974). The gradual phase change over a range of tem-
peratures in soils is commonly described with the soil freezing
characteristic curve (SFCC) (Kurylyk and Watanabe, 2013). More-



88 heat conduction in frozen soils 1d

over the presence of a partially frozen region is also common in ice
and snow where liquid and solid phase coexist in thick isothermal
layers.

With phase change occurring over a range of temperatures, rather
than at one specific temperature, front-tracking methods become
computationally expensive (Voller et al., 1990) and conceptually
ambiguous. This is the case in many industrial (Voller and Cross,
1981) and environmental problems. Additionally, front tracking is
complicated because it requires either a deforming grid or a trans-
formed coordinate system (Aschwanden and Blatter, 2009). By
contrast, fixed-grid methods can accurately describing the ther-
modynamics of the problem without requiring additional com-
plications in handling the computational domain. For these rea-
sons, fixed-grid methods are generally preferable to front-tracking
methods when simulating frozen soil.

Fixed-grid methods include the latent heat of fusion in their gov-
erning equation, avoiding the necessity to define a continuity con-
dition across the moving boundary and related implementation
problems. All contemporary fixed-grid methods we reviewed aim
to solve the numerical integration using globally convergent algo-
rithms. Three differing approaches for treating the latent heat of
fusion exists: the enthalpy method, using a source term, and using
apparent heat capacity. As analytical expressions, these methods
look the same because their governing equations can be obtained
from each other by the chain rule of derivation. As we will illus-
trate in the next section, problems can arise in the discrete domain
where this rule is not always valid.

Here we present a numerical model of heat conduction with
freezing and thawing in soils without water flow that guaran-
tees exact energy conservation for any time step size and for a
wide range of soil freezing characteristics. It is novel in using
the nested Newton-Casulli-Zanolli (NCZ) algorithm (Casulli and
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Zanolli, 2010) for solving the nonlinear system obtained from dis-
cretizing the governing equation, written in terms of the specific
enthalpy, using a semi-implicit finite volume scheme. The NCZ al-
gorithm has previously been applied to solving water flow in soils
and to our knowledge this is first application for solving the heat
equation. Long time steps, such as hours or days, are desirable
in several applications including permafrost thaw, or surface com-
ponents of climate models, and models dedicated to avalanche
prediction.

3.2 the governing equations and their

numerical issues

The governing equation of the problem in the first of the three
approaches is written in terms of both the total enthalpy and tem-
perature

∂h(T )

∂t
= ∇ · [λ(T )∇T ] (52)

where h(T ) is the specific enthalpy, T is temperature, λ(T ) is the
thermal conductivity, and t is the time.

In the approach relying on apparent heat capacity, the govern-
ing equation is

Ca
∂T

∂t
= ∇ · [λ(T )∇T ] (53)

where

Ca =
∂h

∂T
= CT + ρwlf

∂θw

∂T
(54)

is the apparent heat capacity that is the sum of the actual heat ca-
pacity CT and a term representing the additional thermal capacity
arising from phase change with the local derivative of the SFCC
(Dall’Amico, 2010).



90 heat conduction in frozen soils 1d

In the approach using a source term for latent heat, it is consid-
ered as a heat source

CT
∂T

∂t
= ∇ · [λ(T )∇T ]− ρwlf

∂θw

∂T
, (55)

and in this equation, there are two unknowns: the temperature,
and the liquid fraction θw appearing in the source term.

The specific enthalpy per unit mass is defined as

h = u+ pv (56)

where u is the specific internal energy, p is pressure, and v is the
specific volume, the inverse of density. Assuming that the heat
transfer occurs at constant pressure and volume the differential
of the specific energy and of the specific enthalpy are equal (Ap-
pendix C). However, since the term enthalpy method is commonly
used in the literature, we will refer to enthalpy instead of internal
energy.

When considering freezing and thawing processes, the specific
enthalpy of a control volume of soil Vc can be calculated as the
sum of the enthalpy of the soil particles, liquid water and ice
(Dall’Amico et al., 2011):

h = hsp + hw + hi (57)

Defining a reference temperature Tref the above terms becomes

hsp = ρspcsp(1− θs)(T − Tref )

hw = ρwcwθw(T )(T − Tref ) + ρwlfθw(T )

hi = ρiciθi(T )(T − Tref )

(58)

where lf is the specific latent heat of fusion, ρsp, ρw and ρi are
the densities of the soil particles, water, and ice, csp, cw, ci are the
specif heat capacity of the soil particles, water, and ice, θw(T ) is
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the unfrozen water content, and θi(T ) is the ice content. The liq-
uid water content and the ice content are evaluated using SFCCs
(Dall’Amico et al., 2011) which are dependent on temperature and,
in the general case, on temperature and water saturation. Usually
the reference temperature, Tref , is set to 273.15 K, the melting
temperature of pure water at standard atmospheric pressure. By
using Eq. (58) the enthalpy Eq. (57) can be rewritten as

h = CT (T − Tref ) + ρwlfθw(T ) (59)

where CT = ρspcsp(1− θs)+ ρwcwθw(T )+ ρiciθi(T ) is the bulk heat
capacity of the soil volume Vc.

SFCCs have an inflection point (Bao et al., 2016; Hansson et
al., 2004) causing a sharp change in their derivative. This non-
linear behaviour gives rise to convergence problems during the
solution of the system of equations resulting from the numeri-
cal approximation of the governing equation (Casulli and Zanolli,
2010; Voller, 1990). This is true for any method used such as finite
differences (Bao et al., 2016; Sergueev et al., 2003; Westermann
et al., 2016), finite elements (McKenzie et al., 2007), and finite vol-
umes (Dall’Amico et al., 2011). As a consequence, the robustness
(stability) of the numerics used is a fundamental and important
issue in frozen soil models.

There is a more subtle aspect in the integration though. Analyti-
cally, Eq. (52), Eq. (53) and Eq. (55) are equivalent because Eq. (53)
and Eq. (55) are derived from Eq. (52) by applying the chain rule
of derivative on the enthalpy under the general assumption that
the enthalpy is a differentiable variable. However, this is not neces-
sarily so in the discrete domain where the derivative chain rule is
not always valid. This is a known issue when dealing with hyper-
bolic equations (Roe, 1981), but often overlooked when treating
the parabolic ones.

The apparent heat-capacity approach, Eq. (53) can suffer from
large balance errors in the presence of high nonlinearities and
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strong gradients (Casulli and Zanolli, 2010). The key to deriving
a conservative numerical method here concerns the discretization
of the apparent heat capacity, and Nicolsky et al. (2007a) as well
as Voller et al. (1990) discussed suitable techniques. It is worth
to note that the solution of the apparent heat-capacity approach
presents the same issue of the ψ-based form of the R2.

The source-term approach presents problems analogous to those
of the apparent heat-capacity formulation. Specifically, Eq. (55)
is derived from Eq. (53) by moving the latent heat term to the
right-hand-side of the equation. Equation (55) can be solved nu-
merically using an iterative procedure (Voller et al., 1990) or the
Decoupled Energy Conservation Parametrization method (DECP)
(Zhang et al., 2008). As pointed out by Voller et al. (1990), the
numerical solutions based on an iterative procedure may suffer
from non-convergence problem unless under-relaxation is wisely
applied, and additionally, it necessary to guarantee that the liquid
fraction is in the range (0, 1). With DECP, the energy equation
is first solved without latent heat. Then, soil temperature and
the liquid and solid fractions are readjusted to ensure energy con-
servation during phase change. This method is mainly used in
land-surface models (LSMs) (Dai et al., 2003; Foley et al., 1996;
Verseghy, 1991). In this case, Nicolsky et al. (2007b) showed that it
results in an artificial stretch of the phase change region, with con-
sequent inaccuracies in the simulation of active-layer thickness. A
summary of relevant models is given in Table 3.1 and more details
in Appendix 3.7.

In summary, the governing equation can be written using three
different approaches that are equivalent analytically, but not in
their discrete formulation. Of the three, the enthalpy approach
remains conservative, even when discretized, and should be pre-
ferred. An additional fundamental problem is the solution of the
nonlinear system of equations. Current algorithms either require
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time step adaptation or may fail to converge, leading to unsta-
ble simulations and reduced computational efficiency (Casulli and
Zanolli, 2010). Here we address this fundamental challenge by us-
ing the NCZ algorithm to solve the nonlinear system of equations.
Compared to other algorithms, it guarantees convergence of the
solution for any integration time step. When the time step is not
constrained by numerical issues, it can be chosen to better match
the time scale of the process under investigation.

3.3 discretization of the enthalpy equa-

tion

The implicit finite volume discretization of Eq. (52) reads as

hi(T
n+1
i ) = hi(T

n
i ) + ∆t

[

Λ
n+1

i+ 1

2

Tn+1
i+1 − Tn+1

i

∆zi+ 1

2

−

Λ
n+1

i− 1

2

Tn+1
i − Tn+1

i−1

∆zi− 1

2

+ Sni

]

(60)

where ∆t is the time step size,

Sni =

∫

Ωi

SdΩ (61)

is an optional source/sink term in volume, and hi(T ) is the ith
enthalpy given by

hi(T ) =

∫

Ωi

h(T ) dΩ. (62)

Equation (60) can be written in matrix form as

h(T ) +AT = b (63)
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Table 3.1: Diversity of formulations and solvers in current models of
heat transfer and phase change in the cryosphere. Theoretical
limitations do not necessarily affect the usability of models
for their intended purpose. More details are in Section 3.7.

Model Form Time discretization Nonlinear solver Theoretical limitations
CLM N. L. Ha Crank-Nicolson DECPf Artificial stretch of phase change

regionh and non-convergencei.
Monotonicity time step restriction.

CoupModel A. H. Cb. Explicit Not required Stability time step restriction.
CryoGrid A. H. Cb. Implicit Newton based

algorithm
Nonlinear solverg.

GEOtop A. H. Cb. Implicit Globally convergent
Newton algorithm

Nonlinear solverg.

GIPL-2.0 E. F.c Implicit Newton algorithm with
Godunov splitting

Nonlinear solverg.

Goodrich N. L. H.a Implicit Front tacking method Computationally expensive.
Problems arise when the phase
change occurs over a range of
temperatures.

Hydrus 1D A. H. Cb. Implicit Picard iteration Nonlinear solverg.
MarsFlow E. F.c Implicit Newton-Raphson algorithm Nonlinear solverg.
NEST S. T.d Explicit Not required Stability time step restriction.
SoilVision A. H. Cb. Explicit and implicit Newton-Raphson algorithm Nonlinear solverg.
SUTRA A. H. Cb. Implicit Picard iteration Nonlinear solverg.
Crocus E. F.c Implicit DECPf Artificial stretch of phase change

region due to the DECPh

and non-convergencei.
SNOWPACK S. T Implicit DECPf Artificial stretch of phase change

regionh and non-convergencei.
ORCHIDEE N. L. Ha Explicit DECPf Artificial stretch of phase change

regionh and non-convergencei.
JSBACH S. T.d Implicit DECPf Artificial stretch of phase change

regionh and non-convergencei.
Aschwanden
Blatter

E. G. M.c Implicit Newton based algorithm Nonlinear solverg.

SICOPOLIS N. L. H.a Implicit Front tracking method with a
transformed coordinate system

Computationally expensive.

Schoof Hewitt E. F.e Implicit and explicit Not required Requires the partition of the
domain in cold and temperate
regions.

aThe governing equation is written in only in terms of temperature and the
latent heat is not included. bApparent heat capacity formulation. cEnthalpy
formulation. dSource term formulation. eThe heat flux is written in terms of
enthalpy and not of temperature as in the enthalpy formulation. f Decoupled
Energy Conservation Parametrization. gConvergence of the nonlinear solver
can be problematic (Casulli and Zanolli, 2010, 2012). h (Nicolsky et al., 2007a).
i (Voller et al., 1990).
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where T = {Ti} is the vector of unknowns, h(T ) = hi(Ti) is a vec-
torial function representing the discrete enthalpy, A is the energy
flux matrix, and b is the right-hand-side vector of Eq. (60), which is
properly augmented by the known Dirichlet boundary condition
when necessary. For a given initial condition T 0

i , at any time step
n = 1, 2, . . . Eq. (60) constitutes a nonlinear system for Tn+1

i , with
the nonlinearity affecting only the diagonal of the system and be-
ing represented by the enthalpy hi(Tn+1

i ). This set of equations is
a consistent and conservative discretization of Eq. (52). Therefore,
regardless of the chosen spatial and temporal resolution, Tn+1

i is
a conservative approximation of the new temperature.

3.4 analytical benchmarks

The numerical model is compared for the problem of a column
of freezing water, i.e. the Stefan problem, with the analytical solu-
tion presented by Neumann (cited in Kurylyk et al., 2014b), and
for the problem of a column of soil with the three-zone with the
analytical solution presented by Lunardini (1988).

3.4.1 Neumann analytical solution

The Neumann analytical solution gives the solution of unilateral
freezing of a semi-infinite domain for both the temperature profile
and the position of the moving boundary. Kurylyk et al. (2014b)
recommended the Neumann solution due to its ability to repre-
sent differences between the thermal diffusivities of the thawed
and frozen zones. Here we consider the freezing of pure water
instead of soil since it is more numerically demanding. Consider
a semi-infinite domain of pure water at temperature T (z, 0) = T0
where T0 > Tm, Fig. (3.1). At the surface a Dirichlet boundary
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Ice

Liquid water

0

ζ(t)

z

T = Ts

z → ∞ : T = T0

Figure 3.1: Scheme showing the setting of the Neumann solution for the
freezing case. Initially all water is liquid, T0 > Tm. Because
of the surface boundary condition, Ts < Tm, a freezing front,
ζ, propagates downward.

condition is imposed T (z = 0, t) = Ts, with Ts < Tm. As a con-
sequence a freezing front ζ propagates downward separating the
solid and the liquid phase. The governing equations are

∂h

∂t
= λ

∂2T

∂z2
(64)

T (ζ, t) = Tm (65)

λi
∂T

∂z

∣

∣

∣

∣

∣

z=ζ−

dt = λw
∂T

∂z

∣

∣

∣

∣

∣

z=ζ+

dt+ lfρ dζ (66)

At the moving boundary ζ(t), the temperature is equal to the
melting temperature of water, and the time evolution of ζ(t) is
described by the third equation, the Stefan condition. This condi-
tion states that the difference of the heat fluxes at the interface of
the two substances is consumed for the phase change. The deriva-
tion of the analytical solution is reported in Appendix (D). The
parameters used in the comparison are given in Table (D.1). The
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Table 3.2: Maximum error m of the freezing front position from the nu-
merical solution with the NCZ algorithm for different space
and time discretizations relative to the Neumann analytical
solution.For the numerical solution the position of the freez-
ing front has been reconstructed from the linear interpolation
of the temperature profile.

∆t = 60 s ∆t = 300 s ∆t = 3600 s

∆z = 0.001 m 0.00737 0.00153 0.00739

∆z = 0.005 m 0.00271 0.00302 0.00714

∆z = 0.01 m 0.00536 0.00553 0.00905

numerical model is able to simulate the freezing problem of water
well as seen in Fig. (3.2) and Fig. (3.3).

For comparison, Kurylyk et al. (2014b) tested the numerical
model SUTRA against the Neumann analytical solution consid-
ering a soil porosity of 0.50 m3m−3. For their test the time step
was of 0.04− 0.4 s, the vertical spatial discretization 0.001 m, and
the parameter ǫ was increased to −0.01 ◦C to match the analyt-
ical solution. The maximum absolute error of the freezing front
position was 0.00099 m.

In our model, the choice of a small melting temperature range
ǫ = 0.0001 ◦C does not affect the quality of the numerical solution
even at a large time step of 3600 s. Looking at Table (3.2) it is
clear that the choice of the time step size is somehow related to
the choice of the spatial discretization: using a small time step
with a coarse grid does not necessarily improve the accuracy of
the position of the freezing front.

We use the Neumann analytical solution to asses the the ro-
bustness of the NCZ algorithm in comparison with the Newton-
Raphson and globally-convergent Newton methods. As reported
by Dall’Amico et al. (2011), Figure (3.4) represents a well known
case for which the Newton-Raphson algorithm can not converge.
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Figure 3.2: Propagation of the freezing front compared between the
Neumann analytical and the numerical solution with the
NCZ algorithm. Two space discretizations are used: (a)
∆z = 0.005 m, and (b) ∆z = 0.001 m. The integration time
step is ∆t = 3600 s.
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Figure 3.3: Panels (a) and (c) show the temperature evolution for the
Neumann analytical and the numerical solution with the
NCZ algorithm at various depths for a spatial discretization
∆z = 0.005 m and ∆z = 0.001 m respectively. The integra-
tion time step is ∆t = 3600 s. Panels (b) and (d) show the
absolute error.
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TT
k−1

T
k

Figure 3.4: A scheme of problem which illustrates how the Newton-
Raphson method can not converge towards T (Dall’Amico,
2010). In this case, the Newton-Raphson method fails to con-
verge to T since it cycles between T k and T k+1 values.

Instead, the solution continuously cycles between the iterates T k−1

and T k. While the Newton-Raphson algorithm converges to the
exact solution if a good initial guess for T k exists, this represents
a severe constraint for the reliable application for an iterative al-
gorithm in a numerical model. An improvement of the Newton-
Raphson algorithm can be obtained using the globally convergent
Newton scheme (Dall’Amico et al., 2011). It uses the Newton-
Raphson algorithm to provide the right search direction and, in
order to avoid overshooting, a reduction factor δ is used to find the
new estimate. This represents an improvement over the Newton-
Raphson method, but its ability to converge depends on the choice
of the parameter δ and on the treatment of the apparent heat ca-
pacity (Dall’Amico et al., 2011; Hansson et al., 2004; Nicolsky et
al., 2007a). As such, this algorithm does not guarantees to con-
verge for any time step size and the requirements for small time
steps can become a limiting factor. For example, in (Dall’Amico
et al., 2011) the comparison between the Neumann solution and
GEOtop has been done with a time step of 10 s.

A comparison of the numerical solutions obtained with the Newton-
Raphson algorithm, globally convergent Newton algorithm, and
the NCZ algorithm shows significant differences Fig. (3.5). Newton-
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Figure 3.5: Comparison between the Neumann analytical solution and
the numerical solution obtained with Newton-Raphson (N.
R.), globally convergent Newton (g. c. N.), and NCZ algo-
rithms. All the numerical simulations use the same spatial
discretization ∆z = 0.005 m.

Raphson cannot reproduce the analytical solution even if a time
step of ∆t = 10 s is used. The globally convergent Newton is in
good agreement with the analytical solution if ∆t = 10 s. With an
hourly time step, however, the example with the globally conver-
gent Newton method is not able to reproduce the position of the
freezing front over longer periods of time. By contrast, the NCZ al-
gorithm reproduces the analytical solution well using ∆t = 3600 s.
The quality of the solution obtained with the globally convergent
Newton algorithm depends not only on the time step duration but
also on the definition of the parameter δ, Fig. (3.6). The additional
necessity for an arbitrarily chosen parameter in the globally con-
vergent Newton algorithm further underscores the robustness of
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Figure 3.6: Comparison between the Neumann analytical solution and
the numerical solution obtained with globally convergent
Newton algorithm (g. c. N.). All the numerical simulations
use the same spatial discretization ∆z = 0.005 m and a time
step size of ∆t = 3600 s. This figure shows as the numerical
solution depends on the choice of the parameter δ.

the NCZ algorithm, for which convergence only depends on the
right definition of the Jordan decomposition.

3.4.2 Lunardini analytical solution

Lunardini (1988) derived an analytical solution (Appendix (E))
for the temporal evolution of temperature during the freezing of a
semi-infinite and initially unfrozen soil column. In contrast to the
Neumann analytical solution, in the Lunardini analytical solution
the domain is divided into three regions Fig. (3.7) on the basis
of temperature: unfrozen, T < Tm, partially frozen, Tm < T <

Tf , and fully frozen, T > Tf . The domain is initially unfrozen
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Table 3.3: Maximum absolute error ◦C of the temperature after 24 h

from the numerical solution with the NCZ algorithm relative
to the Lunardini analytical solution. The space resolution is
∆x = 0.01 m.

Tm = −4 ◦C Tm = −1 ◦C Tm = −0.1 ◦C

∆t = 300 s 0.00683 0.01419 0.11436

∆t = 900 s 0.01496 0.02448 0.11565

∆t = 3600 s 0.05115 0.08286 0.12116

with T = T0 = 4 ◦C. At the left boundary condition a Dirichlet
boundary condition is imposed with T (x = 0, t) = Ts = −6 ◦C,
and the right boundary temperature is kept equal to the initial
condition, T (z → ∞, t) = T0. Because the left boundary condition,
Ts < 0 ◦C, a freezing front propagates from left to right.

We computed benchmark T1 proposed by the InterFrost project
(InterFrost Project, n.d.), parameters are given in Table (E.1). The
model agrees well with the analytical solution for all the three
cases of Tm in terms of both the temperature profile, Fig. (3.8)
and Table (3.3), and the freezing front position, Fig. (3.9) and Ta-
ble (3.4), even with an hourly time step.

For comparison, McKenzie et al. (2007) compared the numer-
ical model SUTRA against the Lunardini analytical solution for
the cases Tm = −4 ◦C and Tm = −1 ◦C using a time step size
of 900 s and a space resolution of 0.01 m. For the first test case
the maximum absolute error was 0.01 ◦C, and for the second 0.1
◦C. Their parameters, however, differ from those suggested by the
InterFrost consortium, making performance comparisons difficult.
In particular, their porosity was 0.05 m3m−3, whereas InterFrost
uses 0.336 m3m−3. As this determines the amount of latent heat
involved in phase change, smaller errors are to be suspected to
occur with the parameters used by McKenzie et al. (2007).
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Figure 3.7: Scheme showing the setting of Lunardini problem (Ruhaak
et al., 2015). Initially the domain is unfrozen with T = T0.
Because of Ts < 0 on the left boundary, a freezing front prop-
agates from left to right. X1(t) and X(t) identify respectively
the isotherm corresponding to Tm, and Tf .

Table 3.4: Maximum error m of the freezing front position from the nu-
merical solution with the NCZ algorithm relative to the Lu-
nardini analytical solution. The space resolution is ∆x = 0.01

m.

Tm = −4 ◦C Tm = −1 ◦C Tm = −0.1 ◦C

∆t = 300 s 0.00032 0.00051 0.00001

∆t = 900 s 0.00043 0.00027 0.00016

∆t = 3600 s 0.00062 0.00057 0.00047
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Figure 3.8: Comparison between the Lunardini solution and the numeri-
cal solution with the NCZ algorithm for the three cases of T1

benchmark: (a) Tm = −4 ◦C, (b) Tm = −1 ◦C, (c) Tm = −0.1
◦C. The colours represent different times frame. The inte-
gration time step is ∆t = 3600 s, and the space resolution is
∆x = 0.01 m.
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Figure 3.9: Propagation of the zero-isotherm for the Lunardini solution
and the numerical solution with the NCZ algorithm for the
three cases of T1 benchmark: (a) Tm = −4 ◦C, (b) Tm = −1
◦C, (c) Tm = −0.1 ◦C. The integration time step is ∆t = 3600

s, and the space resolution is ∆x = 0.01 m.

3.5 numerical test

In the previous sections, we have demonstrated that the pro-
posed method can reproduce the Neumann analytical solution, as
well as the Lunardini analytical solution, even when using larger
time steps than other numerical models.

After comparing simulation results with analytical solutions,
we now analyse the difference between solutions using hourly,
daily, and 10-day time steps. The domain is a soil column of
20 m depth that is uniformly at T = −3 ◦C, initially. The bot-
tom boundary condition is adiabatic and at the surface, we use
a Dirichlet boundary condition. The original forcing has hourly
resolution and for longer time steps, corresponding averages are
computed. As temperature gradients and the influence of phase
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change are usually greatest near the soil surface, the thickness ∆z

is parameterized with an exponential function (Gubler et al., 2013)

∆zi = ∆zmin(1+ b)i−1 (67)

where ∆zmin is the thickness of the first layer, b is the growth
rate and i is the layer index, being one at the ground surface and
increasing downward. The parameters used are reported in Ta-
ble (3.5). All three simulations were spun-up for a period of 1400

years to reach a stable thermal regime. After spin-up, we per-
formed a simulation of 100 years.

Figure (3.10) compares the zero-isotherm position computed af-
ter 100 years for the three different time steps.

Interestingly, there are no significant deviations in the results.
The larger deviations occur when the zero-isotherm is shallow: at
the beginning of the thawing season as well as the freezing one,
Fig. (3.11) and Fig. (3.12). At the beginning of the thawing season,
Fig. (3.11), there is a time lag of about one month between the be-
ginning of the thawing season for the hourly simulation and the
10-days simulation. This can be attributed to different surface tem-
perature used to drive the simulations. In particular, in the case
of the hourly simulation it is possible to see the oscillations of the
position of the zero-isotherm, panel (c), related to the oscillation
of the surface temperature around 0 ◦C, panel (a). Figure (3.12)
shows the detail of the freezing season. In panel (c) it is possi-
ble to note that when the zero-isotherm is deep there is a good
agreement between the three simulations. The main differences
occurs at the soil surface since with larger time steps the signal
of the surface boundary condition is smoothed and does not os-
cillate around 0 ◦C. Moreover, by using an hourly time step and
a daily time step it is possible to capture the joining of the down-
ward and upward freezing front, while this is not possible with
the 10-days time step since the joining occurs between two consec-
utive time steps. This can be attributed on one side to the diurnal
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Figure 3.10: Comparison of the position of the zero-isotherm, panel (c),
after 100 years of three simulations: using an hourly bound-
ary condition with time step of ∆t = 1 h, using a daily
boundary condition with a time step of ∆t = 1 day, and a
10-day boundary condition with a time step of ∆t = 10 day.
Panel (a) shows the surface temperature for the hourly, the
daily and the 10-days simulations. Panel (b) shows the devi-
ation of the position of the zero-isotherm after 100 years be-
tween the hourly and the 10-days simulation, and between
the daily and the 10-days simulation.
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cycles of surface boundary condition, and on the other side that
using a larger time step we lose accuracy in capturing the timing
of thawing/freezing even if we use the same boundary condition.

With larger time steps, we lose some of the information of the
boundary conditions and the accuracy of the numerical model de-
creases because it is first-order accurate in time. The overall per-
formance relative to simulations with smaller time steps, however,
is largely preserved. While the order of accuracy can be increased
to second order in time using the Crank-Nicholson method, this
would incur a time step restriction to guarantee the monotonicity
of the solution. As this restriction is proportional to the square of
the space discretization, ∆z2, the Crank-Nicholson method would
represent a severe constrain whenever high spatial resolution is
required.

Figure (3.13) compares the minimum, mean, and maximum tem-
perature profile respectively for the three simulations. (a) shows
the ground temperature envelope for the hourly simulation. The
maximum envelop presents an ’elbow’ that is due to the phase-
change effects Fig. (3.13). As can be seen in (b) and (d), close to
the soil surface the hourly simulation presents larger values for
both the minimum and maximum temperature due the fact that
the hourly boundary condition presents a greater amplitude that
is smoothed computing the daily and 10-day average. The maxi-
mum temperature profile, Fig. (3.13) panel (d), presents an ’elbow’
due to the so-called zero curtain effect. The zero curtain effect,
Fig. (3.14), is the period of time during which the temperature re-
mains nearly constant and very close to the freezing point because
of the latent heat released during the phase change of water.

In the mean temperature profile, the 10 day simulation presents
a larger deviation from the hourly simulation than the daily simu-
lation. The large deviation can be explained with the interaction of
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Figure 3.11: Detail of the beginning of the thawing season for the year
1999. Panel (a) shows the surface temperature for the
hourly, the daily and the 10-days simulations. Panel (b)
shows the deviation of the position of the zero-isotherm
after 100 years between the hourly and the 10-days simu-
lation, and between the daily and the 10-days simulation.
Panel (c) shows the position of the zero-isotherm after 100

years for the three simulations. In (b) there is a time lag
of about one month between the beginning of thawing sea-
son for the hourly simulation and the 10-days one, dashed
grey line. This can be attributed to the different surface
temperature used to drive the simulations.
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Figure 3.12: Detail of the beginning of the freezing season for the year
1999. Panel (a) shows the surface temperature for the
hourly, the daily and the 10-days simulations. Panel (b)
shows the deviation of the position of the zero-isotherm
after 100 years between the hourly and the 10-days simu-
lation, and between the daily and the 10-days simulation.
Panel (c) shows the position of the zero-isotherm after 100

years for the three simulations. The joining of the down-
ward and upward freezing front is captured by the hourly
and the daily simulations, (c). It is interesting to note that
for the 10-days simulation the joining occurs in-between of
two consecutive time step.
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Figure 3.13: (a) The minimum, mean, and maximum temperature pro-
file for the hourly simulation. (b), (c), (d) show the com-
parison of the minimum, mean, and maximum tempera-
ture profile respectively for the three simulations: with an
hourly surface temperature boundary condition and ∆t = 1

h, with a daily air temperature boundary condition and
∆t = 1 day, with a ten day air temperature boundary con-
dition and ∆t = 10 day. All three simulations last 100 years.
The maximum difference of Tmean between the hourly, and
daily simulation is of 0.04 ◦C, while between the hourly,
and ten-days simulation is of 0.3 ◦C.
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Figure 3.14: Hourly temperature at 1.5 m depth. Note the prolonged
period of 43 days when temperature remained within ±0.1
◦C. This is the so-called zero-curtain effect, and it is due to
latent heat of fusion that is continually released during the
freezing of soil moisture.

the time-step size with the thermal offset effect, Fig. (3.13). If the
thermal conductivity of water is set equal to that of ice, λw = λi,
the maximum difference between the three profiles is reduced to
0.003 ◦C with a maximum deviation of 0.003 ◦C from the initial
condition, that is also equal to the mean of the forcing boundary
condition. It is interesting to note that mean temperature, panel
(c), is constant throughout the soil column.

Regarding the spatial discretization Fig. (3.16) reports a com-
parison of the zero-isotherm position obtained using an hourly
time step, a daily time step, and a 10 day time step. The results
are still in good agreement, but is it interesting to note that the
zero-isotherm presents some steps, independent of the size of the
time step, and some details are missed, such as the joining of the
downward and upward freezing fronts captured with the finer
grid. These steps are caused by the greater thickness of the grid
elements. Because temperature is computed in the middle of each
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Figure 3.15: Temperature profile envelope considering λw = λi. (a) The
minimum, mean, and maximum temperature profile for
the hourly simulation. (b), (c), (d) show the comparison
of the minimum, mean, and maximum temperature pro-
file respectively for the three simulations: with an hourly
surface temperature boundary condition and ∆t = 1 h,
with a daily surface temperature boundary condition and
∆t = 1 day, with a ten day surface temperature boundary
condition and ∆t = 10 day. All three simulations last 100
years. Because λw = λi the mean temperature, panel (c), is
constant throughout the soil column and it is not possible
to appreciate the thermal offset. The mean temperature is
very close to the initial temperature profile, the maximum
error is of 0.003 ◦C.
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control volume, more time is required to achieve complete phase
change of water, resulting in slower variation of the zero-isotherm
position. Moreover, the joining of the downward and upward
freezing front is not captured neither by the hourly nor by the
daily simulations.

For this numerical test we checked the mean number of itera-
tions required to solve the nonlinear system with the NCZ algo-
rithm, the Newton-Raphson algorithm, and the globally conver-
gent Newton algorithm. We performed a simulation lasting 1 year

with a time step ∆t = 1 h and for different spatial discretizations.
As can be seen in Table 3.6, neither the Newton-Raphson nor the
globally convergent Newton converge: they always reach the max-
imum number of iterations allowed with a consequent increase of
the computational cost.

These synthetic experiments demonstrate that spatial and tem-
poral discretization can be chosen accordingly to the aim the study
without any constrains due to the convergence and stability issues
of the numerical scheme.

3.6 freethaw-1d and whetgeo-1d

This section is meant to show how to include FreeThaw-1D in
WHETGEO-1D. Firstly it is necessary to implement a new con-
crete class of ClosureEquation implementing a SFC, as an exam-
ple the SFC presented by Dall’Amico et al. (2011). Then we need of
two more classes. One of type ConductivityModel implementing
a soil thermal conductivity model for frozen soil. The other one
is a concrete class derived from the abstract class EquationState.
Compared to FreeThaw-1D, WHETEGEO-1D enables to drive the
simulation by using the surface energy balance.



116 heat conduction in frozen soils 1d

−20
0

20

T
s
u
r
f

[◦
C
]

Hourly Daily 10 days

0.0

0.1

0.2

D
ev
ia
ti
on

[m
] 1h - 10d

1d - 10d

1999-01 1999-03 1999-05 1999-07 1999-09 1999-11 2000-01

Time [yyyy-mm]

18

19

20

Z
er
o

is
ot
h
er
m

[m
]

(a)

(b)

(c)

∆t = 1 h

∆t = 1 d

∆t = 10 d

Figure 3.16: Comparison of the position of the zero-isotherm, panel (c),
after 100 years of three simulations: using an hourly bound-
ary condition with time step of ∆t = 1 h, using a daily
boundary condition with a time step of ∆t = 1 day, and
a 10-day boundary condition with a time step of ∆t = 10

day. Panel (a) shows the surface temperature for the hourly,
the daily and the 10-days simulations. Panel (b) shows
the deviation of the position of the zero-isotherm after 100

years between the hourly and the 10-days simulation, and
between the daily and the 10-days simulation. By using
a coarser spatial discretization, the zero-isotherm presents
some ’steps’, panel (c), independently on the size of the
time step. Another consequence of this is that the joining
of the downward and upward freezing front is not captured
neither by the hourly nor by the daily simulations.
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Table 3.5: Input parameters for the numerical tests.

Symbol Parameter Value Units
∆t time step 3600, 86400, 864000 s

∆za
min thickness of the first control volume 0.002, 0.005 m

ba growth rate ground depth 0.01, 0.1 −
zmax maximal ground depth 20 m

lf latent heat of fusion 333700 J kg−1

cw specific heat of water 4188 J m−3 ◦C−1

ci specific heat of ice 2117 J m−3 ◦C−1

csp specific heat of soil particles 1000 J m−3 ◦C−1

ρw water density 1000 kg m−3

ρi ice density 1000 kg m−3

ρsp soil particles density 2700 kg m−3

λw thermal conductivity of water 0.6 W m−1 ◦C−1

λi thermal conductivity of ice 2.09 W m−1 ◦C−1

λsp thermal conductivity of soil particles 3.0 W m−1 ◦C−1

θs saturation water content 0.46 −
θr residual water content 0.1 −
α Van Genuchten parameter 1.5 m−1

n Van Genuchten parameter 1.2 −
T0 initial temperature −3 ◦C

SFCC Dall’Amico
Thermal conductivity model Johansen

a We used two different space discretizations. The thickness of the ground
layer is parametrized as dzi = dzmin(1+ b)(i−1) (Gubler et al., 2013).
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Number of control volumes
500 1000 2000 5000 10000

Mean number of
iterations NCZ

12 3 14 16 18

Mean number of
iterations N. R.

40 40 40 40 40

Mean number of
iterations g. c. N.

40 40 40 40 40

Table 3.6: Summary of the mean number of iterations for the NCZ algo-
rithm, the Newton-Raphson algorithm (N. R.), and the glob-
ally convergent Newton algorithm (g. c. N.). The simulation
lasts 1 year with a time step ∆t = 1 h. We considered dif-
ferent spatial discretizations. The tolerance ε = 10e− 11 has
been rescaled with the water latent heat of fusion and the
water density. The maximum number of iteration for each
time step is 40. As can be seen the Newton-Rapshon and the
globally convergent Newton does not converge so it always
reaches the maximum number of iteration allowed.
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Table 3.7: Parameters of the SFC model.

θr m
3m−3 θs m

3m−3 α m−1 n −
0.068 0.38 0.8 1.09

Here I reproduce the simulation presented in Section 2.6.4 con-
sidering the phase change of water. The soil column is 30 m deep
and the initial condition is a constant temperature profile T = 12
◦C. The parameters of the SFC are presented in Tab. (3.7) Fig-
ure (3.17) shows in panel (a) the components of the surface energy
fluxes, and the thermal regime of the uppermost 2 m of the soil col-
umn. As can be seen in panel (b), the soil temperature fall below
the 0 ◦C thus neglecting freezing and thawing processing results
in a strong approximation. Figure (3.18) shows a comparison be-
tween the position of the 0 ◦C isotherm and the temperature at
0.05 m of the two simulation: considering the phase change of wa-
ter and without it. Here it is worth to remark that as in FreeThaw-
1D also in WHETGEO-1D the water flow is not allowed when
considering the phase change.

Moreover, WHETGEO-1D thanks to the adoption of the generic
programming approach allows to simulate the thermal regime of
frozen soil underneath waterbodies (Langer et al., 2016; Ling and
Zhang, 2003). In fact waterbodies are wide spread in the north-
ern landscape (Pienitz et al., 2008) and they significantly affect the
ground thermal regime (Arp et al., 2016; Langer et al., 2016; Vin-
cent et al., 2017). In presenting this possible possible reasearch
address of WHETGEO-1D I do not claim to be exhaustive and,
but I would like to outline another advantage resulting from the
code design I developed. At the base of studying the influence of
shallow thaw lakes on the permafrost thermal regime model there
is the solution of the enthalpy equation on two different domains:
within the soil and in the waterbody. In this WHETGEO-1D offers
a great advantage since, thanks to the generic approach, it is pos-
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Figure 3.17: Behavioural test case of the pure heat conduction in soil
considering the surface energy budget and the phase
change of water. Panel (a) shows the surface energy fluxes
driving the simulation. The external fluxes, incoming short-
wave and longwave radiation, and the latent heat flux, are
computed with existing GEOframe components. Panel (b)
shows the thermal regime of the uppermost 2 m of the soil
column.
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Figure 3.18: Panel (a) shows a comparison of the soil temperature at
0.05 m considering the phase change of water and with-
out. As can be seen, in the latter case the soil temperature
reaches lower value and fluctuates more: when considering
the phase change of water we include in the problem the
latent heat of water that increase the thermal inertia of the
soil. Panel (b) shows a comparison of the position of the
zero-isotherm in the two simulation. When the phase of
water is not included the zero-isotherm does deeper into
the ground.
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Figure 3.19: Panel (a) shows the case of only soil. Panel (b) shows the
case with a waterbody of 1 m depth. As can be seen the
presence of the surface water limits the propagation of the
thawing front during the warm season due to the higher
amount of heat required to completely thaw the frozen wa-
terbody.

sible to solve in a coupled and conservative manner the enthalpy
equation in both domains. Figure (3.19) shows a comparison be-
tween a simulation considering only soil, and the other one where
a waterbody of 1 m depth is considered. The initial condition is
a uniform temperature profile of −1 ◦C. At top of the domain a
Dirichlet boundary condition is imposed. The temperature oscil-
lates around −1 ◦C with an amplitude of 15 ◦C. At the bottom
a no flux boundary condition is prescribed. This is a first-order
model since it neglects other processes that would be necessary
to include in the model such as wind water mixing (Langer et
al., 2016), thermal stratification, snow cover, subsidence and ac-
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tive erosion (Ling and Zhang, 2003), and water flow. However, it
is worth to remark that the solution of the nonlinear governing
equation can be achieved with a small effort, simply adding the
classes to describe the soil specific entahlpy and the water specific
enthalpy.

3.7 commonly used simulation software

The heat equation can be written in different forms that are ana-
lytically equivalent, but subject to differing numerical advantages
and disadvantages. In the scientific literature, several simulators,
i.e. software that implements a particular model (set of equations),
for solving the heat equation with freezing and thawing have been
presented. Here we review commonly used frozen soil models in
terms of their governing equations and methods of finding numer-
ical solutions.

Heat transfer with phase change of water is a cross-cutting prob-
lem existing in many geophysical phenomena other than frozen
soil. This includes, for example, the seasonal snow pack, glaciers,
and ice-sheets. Our contribution does not seek to present an im-
provement in the description of these problems and we ignore
typical processes such as metamorphism and settling in seasonal
snow or strain heating and deformation in glaciers and ice sheets.
Nevertheless, corresponding models may benefit from the NCZ
algorithm in the treatment of the nonlinearity arising from phase
change and, furthermore, broadening our review to also include
some snow and glacier models supports the generalisation of our
findings.
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CLM

The Community Land Model (CLM) is the LSM for the Com-
munity Earth System Model (Oleson et al., 2004). It includes a
module to simulate the ground temperature considering freez-
ing and thawing. The governing equation is written in the non-
conservative form and does not include the latent heat term (Ole-
son et al., 2004) (Lawrence et al., 2019). The heat conduction
equation is solved using a Crank-Nicholson method. The tem-
perature profile is calculated adopting the DECP approach. This
approach does not require to solve a nonlinear system, since the
latent heat is treated in an explicit way, but Nicolsky et al. (2007b)
have pointed out that this two-step procedure can overestimate
the region where the phase change occurs, resulting in inaccura-
cies in the simulation of active-layer thickness.

CoupModel

The CoupModel (Jansson and Karlberg, 2011) is a one-dimensional
numerical model to simulate the heat and water flow as well as
carbon and nitrogen budgets in a soil-plant-atmosphere system
(Hollesen et al., 2011). The governing equation for heat flow in
the soil is defined using the apparent heat capacity, and solved
with an explicit numerical method. This does not require to solve
a non-linear system but sets a time step restriction to avoid numer-
ical oscillation.

CryoGrid

CryoGrid 2 simulates the ground thermal regime based on con-
ductive heat transfer in the soil and in the snowpack (Westermann
et al., 2013). The heat equation is written using the apparent
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heat capacity and solved using the method of lines (Westermann
et al., 2013). The resulting system of ordinary differential equa-
tions is solved numerically with the package CVODE of Sundials
that implements a modified Newton method, and Inexact Newton
method, or a fixed-point solver to linearize the algebraic system
resulting from the discretization of the heat transfer equation. The
convergence of the Newton-type methods can be problematic (Ca-
sulli and Zanolli, 2012).

GEOtop

GEOtop (Endrizzi et al., 2014; Rigon et al., 2006a) is a physically
based distributed model of the mass and energy balance of the hy-
drological cycle. It includes a module for solving the energy equa-
tion in freezing soil (Dall’Amico et al., 2011); this module can also
be linked with the solver for the Richards equation. The govern-
ing equation for heat transfer is written in conservative form, but
when solving the equation the apparent heat capacity formulation
is used. A globally convergent Newton algorithm is used to deal
with the non-linearities arising from phase change (Dall’Amico et
al., 2011). The globally convergent Newton algorithm represents
an improvement over the Newton-Rapshon algorithm, however,
as shown in Section (3.4.1) it does not perform as well as the NCZ
algorithm, and additionally, the choice of the parameter δ is non
trivial.

GIPL-2.0

GIPL-2.0 simulates the ground thermal regime by solving the
heat equation with phase change numerically (Marchenko et al.,
2008). The governing equation is written in the conservative form
and Newton’s method is used to linearize the energy equation.
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To overcome convergence problems when solving the non-linear
system, GIPL-2.0 implements a fractional time step approach, Go-
dunov splitting. The key point of the solution regards the treat-
ment of the enthalpy time derivative: in case of a non zero gradi-
ent of temperature exists the time derivative is approximated with
a difference derivative, otherwise using the analytical representa-
tion.

Goodrich

Goodrich (1982) presented a one-dimensional model to simu-
late the ground thermal regime considering the phase change of
water. The governing equation is written in the non conserva-
tive form and does not include the latent heat of fusion. Phase
change is treated with the front tracking method, which offers
good accuracy for problems in which phase change occurs at a
fixed temperature (Goodrich, 1982). This model does not use a
SFCC, and instead, the soil is represented as homogeneous layers
with distinct frozen and thawed thermal properties.

Hydrus 1D

Hydrus 1D includes a module to simulate water flow and heat
transport in frozen soil. The governing equation is written us-
ing the apparent heat capacity formulation and Picard iteration is
used to linearize the algebraic nonlinear system. In their paper,
Hansson et al. (2004) explain that during the Picard iteration the
solution can easily oscillate whenever the temperature decrease
below the melting temperature. To avoid these oscillation the tem-
perature is reset to the critical value and iteration restarted. Hy-
drus 1D adopts an empirical time-step adaptation criterion. It is
worthwhile to notice that the modified Picard iteration was pro-
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posed by Celia et al. (1990) to solve the Richards equation – prob-
lem for which the NCZ algorithm was originally proposed (Ca-
sulli and Zanolli, 2010).

MarsFlo

MarsFlo is a three-phase numerical model to simulate the heat
transfer and water flow in partially frozen, partially saturated
porous media (Painter, 2011). The heat equation is written in the
conservative form. The equation is solved using an implicit finite
difference method, and the resulting nonlinear system is solved
using a Newton-Raphson method. To overcome convergence and
stability problems, three modification were introduced (Painter,
2011). The convergence of the Newton-Raphson method can be
problematic (Casulli and Zanolli, 2012).

NEST

Zhang et al. (2003) developed a one-dimensional physically based
model of Northern Ecosystem Soil Temperature (NEST). The heat
equation is written in the source term formulation and solved with
the DECP approach. The numerical method is explicit in time,
thus the maximum time step is of 30 minutes to prevent oscilla-
tions in the solution.

Sergueev et al.

This is a two dimensional model and the governing equation is
written in the enthaply form (Sergueev et al., 2003). This model
implements a fractional time step approach (Godunov splitting):
each time step is divided into two steps and at each step, a differ-
ent dimension is treated implicitly. The system of finite difference
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equations is non-linear and is solved with the Newton’s method.
As in GIPL-2.0, the time derivative of enthalpy is computed either
using the difference derivative or the analytical derivative accord-
ing with the gradient of the temperature field.

SoilVision

The heat equation is written using the apparent heat capacity.
The equation are solved using a finite element solver, FlexPDE
suite, both explicit and implicit in time. In case of implicit meth-
ods, the resulting non-linear system is solved using the Newton-
Raphson method. The convergence of the Newton-Raphson method
can be problematic (Casulli and Zanolli, 2012).

SUTRA

SUTRA is an established USGS groundwater flow and coupled
transport model (Voss and Provost, 2002). McKenzie et al. (2007)
and McKenzie and Voss (2013) have extended the model to simu-
late freezing and thawing processes in the soil. The heat equation
is written using the apparent heat capacity formulation and non-
linearities are solved using Picard iteration. The convergence of
the Newton-type method can be problematic (Casulli and Zanolli,
2012).

Crocus

Crocus is a one-dimensional finite difference model that solves
the mass and energy balance within the snowpack taking into ac-
count metamorphism and settling. The first versions of Crocus
(Brun et al., 1992; Brun et al., 1989) were not enthalpy-based. The
governing equation was written in terms of temperature and wa-
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ter content. It was solved by using the Crank-Nicholson method,
and the phase change is treated by using the DECP approach
(Brun et al., 1992). After the integration within SURFEX (Vionnet
et al., 2012), Crocus uses the enthalpy formulation and the numer-
ical scheme is fully implicit, based on the numerics of ISBA-ES
(Boone and Etchevers, 2001). Similarly to the previous version,
the heat balance equation is solved adopting the DECP approach
(Boone and Etchevers, 2001). Even though recent work Crocus is
based on a simple bucket approach for liquid water percolation
(Lafaysse et al., 2017; Morin et al., 2012), D’Amboise et al. (2017)
implemented a routine for water flow in the snowpack based on
the Richards equation, which is characterized by nonlinear be-
haviour like the enthalpy equation. To solve it, they adopted an
approach based on Picard iteration with variable time steps (Pan-
iconi and Putti, 1994).

SNOWPACK

SNOWPACK (Lehning et al., 1999) solves the heat transfer and
creep/settlement equations using a Lagrangian finite element method.
The governing equation is written using the source/sink formula-
tion and it is solved using the DECP approach (Bartelt and Lehn-
ing, 2002; Lehning et al., 1999). Regarding the water flow, SNOW-
PACK implements three different schemes: a simple bucket-type
approach, an approximation of Richards equation, and the full
Richards equation (Wever et al., 2014). The full Richards equation
is solved using Picard iteration with variable time steps (Paniconi
and Putti, 1994).
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ORCHIDEE

ORCHIDEE is terrestrial biosphere model and it is part of the
IPSL-CM4 Earth system model developed by the Institute Pierre
Simon Laplace (IPLS) (Krinner et al., 2005). In the version 1.9.6 the
snow is described with a single layer of constant density (Wang et
al., 2013). Because of the limitations of the this approach, Wang
et al. introduce a three-layer snow model, ORCHIDEE-ES, largely
inspired from ISBA-ES (Boone and Etchevers, 2001) to consider
snow settling, water percolation, and water refreezing. The gov-
erning equation is written in the non-conservative form and does
not include the latent heat term. The temperature profile is calcu-
lated adopting the DECP approach.

JSBACH

JSBACH is the land surface model developed by the Max Plank
Institute (Ekici et al., 2014). It is a component of the Earth System
Model (MPI-ESM) that also include ECHAM6 for the atmosphere
and MPI-OM for the ocean. JSBACH simulates both the frozen
soil and the snowpack. In both cases the heat conduction is as-
sumed to be the dominant method of heat transfer. The govern-
ing equation is written in the source term formulation and solved
with the DECP approach (Ekici et al., 2014).

Ice-sheet models

For glacier and ice-sheet models it is necessary to distinguish be-
tween cold and temperate ice. Following Aschwanden and Blatter
(2005), “ice is treated as temperate if a change in heat content leads
to a change in liquid water content alone, and is considered cold
if a change in heat content leads to a temperature change alone.”
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This means that cold ice is always below the melting temperature
and thus the phase change does not occur. As result, present-day
ice sheet models can be classified into: ’cold-ice method’ models
and polythermal models.

’Cold-ice method’ does not consider the phase change of ice.
Because of this the heat capacity can be assumed to be constant
and therefore the governing equation can be written in terms of
only temperature. These models are easy to implement, but their
applicability is restricted since in general temperate zones can be
present (Aschwanden and Blatter, 2009). In fact, since the phase
change of ice is overlooked, locally, the ’cold-ice method’ violates
the energy conservation, overestimates the temperate region (As-
chwanden and Blatter, 2009), and can not quantify the liquid wa-
ter content that affects viscosity in temperate ice (Lliboutry and
Duval, 1985).

By contrast, polythermal ice-sheet models consider the phase
change of ice. Similar to freezing soil models, the polythermal
ice-sheet models can be classified in two groups on the base of
the treatment of the phase change: front tracking method and en-
thalpy method (Nedjar, 2002). SICOPLOIS (Greve, 1997a, 1997b;
Greve and Blatter, 2016) is the only ’truly’ polythermal ice sheet
model. It employs the polythermal two-layer scheme (Greve, 1997b):
the temperature field and the water content field are computed
separately for the ice and temperate domain and a Stefan-type con-
dition is applied at the cold-temperate surface (CTS). This model
defines the CTS for both energy flux and mass flux. The drawback
of this method relate to the implementation and restriction on the
geometry and topology of the CTS (Aschwanden et al., 2012).

Aschwanden and Blatter (2009) presented an enthalpy gradient
method. This is a fixed-grid method that differs from the enthalpy
method commonly used for freezing soil in its definition of the en-
ergy flux. In the enthalpy method, the heat flux is expressed in
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terms of the temperature gradient, whereas in the enthalpy gradi-
ent method it is expressed in terms of enthalpy, assuming that the
heat capacity is constant (Aschwanden and Blatter, 2009). The en-
thalpy approach combines the advantage of solving one equation
for the entire domain, cold-ice models, and the correct description
of the thermodynamics of temperate ice (front tracking model).
This model is implemented in COMSOL Multiphysics (Aschwan-
den and Blatter, 2009), where nonlinear problems are solved using
either a Newton algorithm or a damped Newton algorithm. Also
in this case the NCZ may represent a valid option to solve the non-
linear system. To the authors’ knowledge, the enthalpy gradient
method has not be used in freezing soil models.

Hewitt and Schoof (2016) presented an enthalpy-based finite
volume method for polythermal ice. To solve the equation at each
time step the computational domain is explicitly divided in the
cold and temperate regions, and the energy equation is solved
adopting a combination of implicit and explicit methods (Hewitt
and Schoof, 2016). It is worth to note that in the temperate re-
gion, temperature is set equal to the melting temperature of the
ice. This limits the application of this model to simulate freezing
soil, where temperature can be larger than the melting tempera-
ture of water.

3.8 code availability

The source code is written in Java using the object-oriented pro-
gramming paradigm. It can be found at https://github.com/g
eoframecomponents/FreeThaw1D (Tubini, 2020c). The OMS3

project can be found at https://github.com/GEOframeOMS
Projects/OMS_FreeThaw1D (Tubini, 2020b). A frozen version

https://github.com/geoframecomponents/FreeThaw1D
https://github.com/geoframecomponents/FreeThaw1D
https://github.com/GEOframeOMSProjects/OMS_FreeThaw1D
https://github.com/GEOframeOMSProjects/OMS_FreeThaw1D
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of the OMS project used in (Tubini et al., 2020) can be found at
http://dx.doi.org/10.5281/zenodo.4017668 (Tubini, 2020a)

3.9 conclusion remarks

We have presented a new model for simulating the ground ther-
mal regime in the presence of freezing and thawing based on the
heat-transfer equation and the application of the NCZ algorithm.
To our knowledge, this is the only method that guarantees con-
vergence while also permitting large time steps. The numerical
model was implemented and verified against the Neumann and
Lunardini analytical solutions. In both cases, the results were in
good agreement even with an hourly integration time step. For
the Neumann solution, we considered pure water instead of sat-
urated soil since it is more numerically demanding, and no con-
vergence problems were encountered despite choosing a narrow
temperature range (0.0001 ◦C) over which phase change occurs.

Numerical experiments demonstrated the robustness of the model
by comparing results at differing temporal and spatial resolutions.
Results obtained with time steps of 1 h, 1 day, and 10 days are
consistent. The robustness of the numerics allows the user to
choose both the space and time discretization without any restric-
tion due to stability and convergence issues. As a consequence,
this method is effective for simulating permafrost thaw, a phe-
nomenon that occurs at depth, in response to seasonal and multi-
annual cycles, and often over tens, hundreds or even thousands of
years. Furthermore, phenomena like hysteresis or the variation of
solute concentration upon freezing (Clow, 2018) can be included
in the numerical model if the enthalpy function (i.e. its parame-
ters) does not change within the current time step of integration.

http://dx.doi.org/10.5281/zenodo.4017668
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While we presented a finite volume method, the NCZ algorithm
can be also used with finite difference and finite element method.
Beyond applications to frozen soil, it can be used to study other
geophysical phenomena that involve phase change of a substance
simply by changing the definition of the enthalpy function and
the thermal conductivity function. Examples include, glacier dy-
namics (Aschwanden et al., 2012), snow pack evolution (Brun et
al., 1992; Lehning et al., 1999), and magma bodies (De Lorenzo
et al., 2006). This may be even further expanded to industrial
problems involving phase change materials used in energy recov-
ery systems (Mongibello et al., 2018; Nazzi Ehms et al., 2019) or
casting problems of pure metals and alloys (Lewis and Ravindran,
2000).
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In this chapter I present the deployment of the first building
block of WHETGEO-2D, i.e. the solver of the R2 equation. Re-
garding the mathematical and numerical issues they are essen-
tially the same of WHETGEO-1D and were deeply discussed in
Chapter 2. Here we focus on the setting up of the geometrical sup-
port framework to solve a partial differential equation (PDE) and
on the differences in the algorithms between the one-dimensional
and the bi-dimensional cases. The definition and the storage of
the computational grid is a key concept in solving any PDE in
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a multidimensional domain Berti (2000). In the one-dimensional
case the computational domain does not pose particular problems
since the geometry is represented by a line and the topological
information is embedded in the grid structure through the index-
ing system, i.e. the index of the grid element both account for
the topology and geometry. At the same time, solving a PDE
in a bi-dimensional domain requires new algorithms to solve the
linearized system and a new method for assembling the matrix
of the system. This Chapter is organized as follows. Section 4.1
discuss the problem related to the definition and the storage of
the computational grid. Then, in Section 4.2 the algorithms as
well as their implementation are presented, and finally in Section
4.4 WHETGEO-2D is tested against analytical solutions and com-
pared with some benchmarks presented in literature.

4.1 grid

In order to numerically solve a PDE the first step consists in
the discretization of the physical domain. This requires to re-
place the continuous physical domain by a discrete one formed
of non-overlapping elements that completely fill the physical do-
main. The grid support must provide two types of information:
the geometric information and the topology information. The for-
mer concerns the area of elements, the length of edges, the coor-
dinates of element centroids, and the components of the normal
vectors of the edges. Whereas the topological information defines
how mesh components are related and located one with respect
to the other.

The problems related to the definition and to the storage of
the topological information were not introduced before since in
the one dimension the elements connectivity is implicitly defined.
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Figure 4.1: Example of structured grid. In black are reported local in-
dices, while in red the global indices. The relation between
local and global indices is n = i+ j Ni.

Whereas, when working in the bi-dimensional domain, as well as
in the tri-dimensional domain, the definition and the storage of
the topological information is a key aspect. It is worth to note
also in multi-dimensional domain the adoption of so-called struc-
tured or Cartesian grid relieve to need to explicitly define the grid
topology. In fact, the connectedness of the elements derives di-
rectly from the indexing system. This structure reflects also in
building the system of discretized equations. In fact, a key aspect
when working with structured grid is the possibility to establish a
direct correspondence between local indices, used to define the lo-
cal stencil for an element, and the global indices, used to assembly
the global matrix as shown in Fig. (4.1).

However, the use of structured grids presents two main limits.
The first one is related to the limited geometric flexibility offered
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by structured grids which hampers the quality of results by im-
peding reasonable parameterizations of spatial locations. This is a
key aspect when applying a PDE solver to a real case study. The
second one is related to development of reusable software in nu-
merical computation. Specifically, when working with structured
grid data is often melted into the grid data structure (Bader and
Berti, 1998): as seen in the previous paragraph, grid indices can
be used to traverse the grid, and at the same time to access data.
This is computationally efficient but without any flexibility.

Therefore, in order to improve reusability WHETGEO-2D has
been implemented by handling the computational grid as an un-
structured grid. This requires to explicitly define the topological
information. In fact, in unstructured grid there is no correspon-
dence between local indices and global indices therefore it is nec-
essary to resort to number grid elements and to define their recip-
rocal relationship through connectivity tables. It is worth to make
clear that this approach on one side is more complex and less ef-
ficient compared to the one relying on a structured grid, but it
allows to split the grid information into its topology information,
and its geometric information (Bader and Berti, 1998; Berti, 2000).
The adoption of unstructured grid permits to deal with complex
geometries and to have better description of the heterogeneities of
the domain. From an informatic point of view, this means keep-
ing the algorithms separate from data. Put differently, the topol-
ogy defines the connectedness and guides the iteration over the
grid elements to access the geometric data and physical quantities
involved in the PDE which are stored separately.

The first step to define the connectivity tables consist in number-
ing all the nodes of the grid as Fig. (4.2). Then we number all the
edges of the grid and associate to each one the pairwise of nodes
defining its extremes. This association is called Hasse diagram
(Skiena, 1990). About the edges, it is worth to point out another
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Figure 4.2: Hesse diagram to define grid topology. Nodes are univo-
cally identified with a number. Each edge is numbered and
defined by using the nodes defining its extremes. Similarly
each face is defined by using their set of nodes.

difference to the structured grid. In a structured grid it is possible
to know whether an edge is inside the domain or it is a border
edge on which a boundary condition must be applied by using
indices. This is not possible in an unstructured grid, therefore it
is necessary to define the set of edges that constitute the border
of the domain. In a similar way as for the edges it is possible to
define faces by using their set of nodes. Furthermore we can as-
sociate to each face its set of edges. It is worth to note that this
information is somehow redundant since can be retrieved for the
knowledge of the set of nodes defining the face. However since
the aim is to solve the PDE with a finite-volume method for which
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it is necessary to compute for each element the fluxes through all
its edges, it is convenient to explicit the set of edges for each ele-
ment once for all.

Nevertheless, finite-volume methods are inherent conservative
since for any edge common to two elements, the flux leaving the
edge of one element is equal to the flux entering the neighbour
element through the same edge. The magnitude of these fluxes
is the same but they have opposite sign. From this property it is
possible to speed-up the computation of fluxes by looping over
edges. This is the so called face connectivity. For each edge it is
necessary to explicit its neighbour elements consistently with the
orientation of the edge. Therefore the algorithm for calculating
fluxes is presented in Algorithm 1.

Algorithm 1 Compute fluxes by using a face connectivity.

for all edges f ∈ Edges do

2: if f is on the boundary then

compute boundary flux
4: else

compute F
6: assign F to the outward neighbour

assign −F to the inward neighbour
8: end if

end for

Besides the connectivity information it is necessary to attribute
to each entity of the grid its geometric information. For instance,
for to each node it is necessary to associate its coordinate, to each
edge its length and so on.

To associate to each entity of the grid its geometric information
and the variables of the PDE we use the number of the entity. In
light of this the grid data are stored in appropriate Java containers,
HashMap, that allows to store key and value pair. The key is the
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number of the grid entity, while the value can be a scalar or a
vector and it can be the topological information, the value of the
geometrical information, and the value of a physical variable of
the problem.

4.2 algorithms

Differently from the one-dimensional case, the linear system de-
rived from the discretization of the PDE, or its appropriate lin-
earization, cannot be solved with a direct method such as the
Thomas algorithm (Quarteroni et al., 2010) since the matrix is not
tri-diagonal. Besides, the assembly of the matrix system is not
trivial as in the one-dimensional case but requires a little more
operations. We accomplish the latter task by using a ‘matop’ inter-
face whose use we inherit form lectures by Prof. Vincezo Casulli
and by Prof. Michael Dumbser that we acknowledge here.

4.2.1 Conjugate gradient method

To solve the linearized algebraic system obtained by using the
NCZ algorithm we choose to adopt the conjugate gradient method
(CG) (Shewchuk et al., 1994). The CG method, Algorithm 2, is
proved to be globally convergent for all linear system whose co-
efficient matrix is symmetric and positive definite. These require-
ments on the coefficient matrix will pose some constrain on the
discretization of advective fluxes. In fact the adoption of up-wind
schemes requires an explicit time discretization with consequently
limitation of the time step size (Casulli and Zanolli, 2005).

Moreover it is worth to point out that the CG method is an itera-
tive solver whereas the Thomas algorithm is a direct method This
significantly affect the computational time. To obtain a faster con-
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Algorithm 2 Conjugate gradient method

1: r0 := b−Ax0

2: if r0 < ε then

3: return x0 and exit
4: end if

5: d0 := r0

6: r0 := b−Ax0

7: for k = 0, . . . ,N − 1 do

8: vk = Adk

9: αk =
r
⊺

krk

d
⊺

kvk

10: xk+1 = xk + αkdk
11: rk+1 = rk − αkvk
12: if rk+1 < ε then

13: return x0 and exit
14: end if

15: βk+1 =
r
⊺

k+1
rk+1

r
⊺

krk

16: dk+1 = rk+1 + βk+1dk

17: end for
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vergence rate in solving the linear system, we adopt a simple di-
agonal scaling preconditioner, Jacobi preconditioner (Quarteroni
et al., 2010).

4.2.2 Matrix-free algorithm

A key operation used in iterative solver for solving most of PDE
is sparse matrix-vector product (Berti, 2000). One of the problem
it is necessary to cope with the solution of a PDE in a 2D domain
is how to properly store the flux matrix T, Eq. (18). In fact the
flux matrix T is a sparse matrix, i.e. it is mostly composed by
zeros. Storing a sparse matrix impacts on both the memory usage
and the algorithm efficiency. For this reason in literature several
ways to efficiently handle sparse matrix are presented (Davis, 2006;
Golub and Van Loan, 2013) as well as software libraries (Braun,
2015; Heimsund, 2011; Wendykier, 2010).

To avoid to use matrix algebra, which would require implement-
ing or importing various libraries, I implemented the solver for
the R2 equation, WHETGEO-2D, in a matrix-free form. A matrix-
free method does not require to explicitly store the coefficient of
the flux matrix, but it directly evaluate the matrix-vector prod-
ucts. In fact a closer inspection of the NCZ algorithm and the CG
algorithm reveals that in both algorithms a matrix-vector multipli-
cation is required. This observation has lead to a specific design
of the classes that deals with the solution of the nonlinear system.

4.3 code design

In developing the WHETGEO-2D component solving the R2

equation I reused the classes developed for WHETGEO-1D im-
plementing the SWRC,
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ClosureEquation class, and the hydraulic conductivity models,
ConductivityEquation class. As discussed in Section 2.3 and in
Section 4.2 the algorithm required to solve a PDE in the bi-dimensional
case are different from those used in in the one-dimensional case.
Of course one can argue that also for the one-dimensional case
it is possible to adopt the same algorithms required for the bi-
dimensional case, but this would have entailed an overburden
both from the informatic and numerical point of view. About
the former it is worth to clear that in the one-dimensional domain
there is no need to explicitly define the topology, and the flux ma-
trix can be easily stored in three vectors without and the need to
resort to a matrix-free method.

4.3.1 The matrix-vector product, Matop

Since the matrix-vector product is an operation required both
by the NCZ algorithm and by the CG method, it is convenient to
implement it as a standalone class. The Matop is an abstract class,
Fig. (4.3), defining and abstract method to compute the matrix-
vector product without using a sparse matrix storages. The con-
crete implementation of Matop class is left to subclasses accord-
ingly to the PDE under scrutiny.

4.3.2 The Conjugate gradient method, ConjugateGradient

The ConjugateGradient class implements the CG method. Look-
ing at the Algorithm 2 to apply the CG method it is necessary to
define the matrix-vector product. This is specific of each equation
to be solved, thus the ConjugateGradient class contains a refer-
ence to the Matop object, Fig. (4.4). In this manner the ConjugateGradient
class can be used for different PDE by simply creating the appro-
priate Matop object.
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Matop

#result: Map<Integer, Double>

+solve(args): Map<Integer, Double>

MatopRichards2D

#geometry: Geometry
#variables: ProblemVariables
#topology: Topology

+solve(args): Map<Integer, Double>

MatopFactory

+create(String): Matop

creates

Figure 4.3: UML class diagram for the Simple Factory pattern applied
for the choice of the required Matop object. Matop is the ab-
stract class defining the interface that is implemented by the
concrete class MatopRichards2D.

ConjugateGradientMethodPrec

-residual: Map<Integer, Double>
-x: Map<Integer, Double>
-p: Map<Integer, Double>
-result: Map<Integer, Double>
-matop: Matop

+solve(args): Map<Integer, Double>

Matop

+result: Map<Integer, Double>

+solve(args): Map<Integer, Double>

Figure 4.4: UML class diagram for the ConjugateGradientPrec. This
class deals with the solution of a linear system whose co-
efficient matrix is symmetric and positive definite. The
ConjugateGradientPrec class contains a reference to a Matop

object implementing the matrix-vector product for the PDE
under scrutiny.
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4.3.3 The NCZ algorithm, NestedNewtonCG

As explained previously, for the bi-dimensional case the
NestedNewtonThomas class, dealing with the NCZ algorithm, can-
not be reused. Therefore a new implementation of the NCZ algo-
rithm is required. Figure (4.5) provides the UML diagram of the
NestedNewtonCG class. It contains a reference to the ConjugateGradient
object, to the Matop object, to the Variable object, to the Topology

object, and to a list of EquationState objects.

4.4 test cases

In this Section I firstly test the WHETGEO-2D against the an-
alytical solution presented by Srivastava and Yeh (1991) for the
one-dimensional infiltration, and then I show the performance of
WHETGEO-2D with some test problems presented in literature.

4.4.1 Analytical solution of Srivastava and Yeh (1991)

WHETGEO-2D has been tested against the numerical solution
presented by Srivastava and Yeh (1991) for the one-dimensional
transient infiltration in an homogeneous and layered soil. In this
case the flux is provided on top of the domain uniformly along
the x axis.

Homogeneous soil

We consider a one-dimension homogeneous soil layer of 1 m

depth (TP1). The saturated hydraulic conductivity value is as-
sumed to be 2.78× 10−6 ms−1, with θs = 0.4 m3m−3, θr = 0.06

m3m−3, and α = 0.001 m−1. The initial condition is determined by
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Figure 4.6: Comparison between the analytical and numerical solution
for a wetting homogeneous soil.

imposing as lower boundary condition ψ = 0 m and a constant wa-
ter flux at the soil surface qA = 2.78× 10−7 ms−1. For times greater
than 0 the water flux at the soil surface is qB = 2.5× 10−6 ms−1.
The domain is discretised with a uniform grid space ∆z = 0.001

m and the time step is ∆t = 60 s. Figure (4.6) shows a com-
parison between the numerical and the analytical solutions. Fig-
ure (4.7) shows the comparison between the analytical and nu-
merical solution during a drainage scenario. The initial condition
is determined by imposing as lower boundary condition ψ = 0

m and a constant water flux at the soil surface qA = 2.5× 10−6

ms−1. For times greater than 0 the water flux at the soil surface is
qB = 2.78× 10−7 ms−1. The domain is discretised with a uniform
grid space ∆z = 0.001 m and the time step is ∆t = 60 s.
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Figure 4.7: Comparison between the analytical and numerical solution
for a wetting homogeneous soil.
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Layered soil

We consider one-dimensional vertical infiltration toward the wa-
ter table through a layered soil both for a wetting scenario and for
a drainage scenario. The α of the two layers are set to be 0.001

m−1, and the saturated hydraulic conductivities of the lower and
upper layers are equal to 2.786× 10−6 ms−1 and 2.786× 10−5 ms−1,
respectively. The thickness of each layer is 1 m. The saturated and
residual water contents are taken as 0.40 m3m−3 and 0.06 m3m−3,
respectively

For the wetting scenario, Fig. (4.8), the initial condition is de-
termined by imposing as lower boundary condition ψ = 0 m

and a constant water flux at the soil surface qA = 2.78 × 10−7

ms−1. For times greater than 0 the water flux at the soil surface is
qB = 2.5× 10−6 ms−1.

Whereas, for the drainage scenario, Fig. (4.9), the initial con-
dition is determined by imposing as lower boundary condition
ψ = 0 and a constant water flux at the soil surface qA = 2.5× 10−6

ms−1. For times greater than 0 the water flux at the soil surface is
qB = 2.78× 10−7 ms−1.

In both the simulations the domain is discretized with a uni-
form grid space ∆z = 0.001 m and the time step is ∆t = 60 s.

4.4.2 Test problem 1

In test problem (TP1) we consider a rectangular domain 5 m

wide × 3 m deep divided into alternating blocks of clay and sand
(Kirkland et al., 1992; McBride et al., 2006). The Van Genucthen
model is used to define the pressure-moisture relationship. The
hydraulic properties of the sand and clay are reported in Tab. (4.1).
A no-flow boundary condition is prescribed everywhere except for
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Figure 4.8: Comparison between the analytical and numerical solution
for a layered soil in a wetting scenario.
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Figure 4.9: Comparison between the analytical and numerical solution
for layered soil in a drainage scenarion.
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Table 4.1: Hydraulic properties of the soils for TP1.

θs m
3m−3 θr m

3m−3 α m−1 n − Ks ms−1

Sand 0.3658 0.0286 2.8 2.239 6.262× 10−5

Clay 0.4686 0.1060 1.04 1.3954 1.516× 10−6
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x [m]

0.0

0.5

1.0
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2.0

2.5

3.0

z
[m

]

Flux 0.05 [m day−1]
Clay

Sand

Figure 4.10: Scheme showing the setting of TP1. Zero flux boundary
conditions except as noted, thick black line.

a constant water flux rate of 0.5 m per day applied to the top of the
sand surface Fig. (4.10). The initial condition is a constant water
suction of −500 m. The simulation was run using both a cartesian
grid and an unstructured grid. The saturation degree is examined
after 12.5 day of simulation, Fig. (4.11) and Fig. (4.12)

4.4.3 Test problem 2

This test problem (TP2) involves water flow into initially very
dry layered soil of sand and clay with a developing water table
(Casulli and Zanolli, 2010; Forsyth et al., 1995; Kirkland et al.,
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Figure 4.11: Solution for the saturation degree after 12.5 day of simula-
tion. In this simulation a cartesian grid with a step size of
0.05 m was used.



4.4 test cases 155

0 1 2 3 4 5

x [m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0
z
[m

]

0.0

0.2

0.4

0.6

0.8

1

S
e
[-
]

Figure 4.12: Solution for the saturation degree after 12.5 day of simula-
tion. In this simulation an unstructured grid was used.

1992; McBride et al., 2006). The Van Genucthen model is used,
and the hydraulic properties of the sand and clay are reported in
Tab. (4.2). The domain is 5 m wide × 3 m deep and to achieve
a perched table, a 3 m × 1 m region of sand was bounded by
clay as shown in Fig. (4.13). A no-flow boundary condition is pre-
scribed everywhere except for a constant water flux rate of 0.5 m

per day applied to the top of the sand surface. The initial condi-
tion is a constant water suction of −500 m. The simulation was
run using both a cartesian grid and an unstructured grid. The sat-
uration degree is examined after 15 day of simulation, Fig. (4.14)
and Fig. (4.15).
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Table 4.2: Hydraulic properties of the soils for TP2.

θs m
3m−3 θr m

3m−3 α m−1 n − Ks ms−1

Sand 0.3658 0.0286 2.8 2.239 6.262× 10−5

Clay 0.4686 0.1060 1.04 1.3954 1.516× 10−6
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Figure 4.13: Scheme showing the setting of TP2. Zero flux boundary
conditions except as noted, thick black line.
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Figure 4.14: Solution for the saturation degree after 1 day of simulation.
In this simulation a cartesian grid with a step size of 0.05

m was used.
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Figure 4.15: Solution for the saturation degree after 1 day of simulation.
In this simulation an unstructured grid was used.
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Figure 4.16: Scheme showing the setting of TP3.

4.4.4 Test problem 3

This test problem (TP3) has been presented by Manzini and
Ferraris (2004) and involves the infiltration in a layered soil as
presented in Fig. (4.16). The domain is a square of L = 1 m and
the interface separating the two layers is

ζ(x) =
[

0.1
(

1− cos
(πx

L

))

+ 0.45
]

L (68)

As regards the boundary conditions, at the top and bottom side an
homogeneous Dirichlet boundary condition is prescribed, that is
ψ(x, z = 0) = ψ(z, z = L) = 0 m, whereas on the two vertical sides
a no flux boundary condition is prescribed. The initial condition
is

ψ(x, z) = 0− z (69)
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Table 4.3: Hydraulic properties of the soils for TP3.

θs m
3m−3 θr m

3m−3 α m−1 n − Ks ms−1

Fine sediment 0.5 0.120 2.8 3 5.56e− 06× 10−6

Coarse sediment 0.46 0.034 1.6 1.37 6.945e− 07× 10−7

The van Genuchten model is used to prescribe the pressure-moisture
relationship. The hydraulic properties are given in Tab. (4.3). The
time step size is set to ∆t = 900 s. Figure (4.17) reports the time
evolution of the water content. The result is in good agreement
with that reported in (Manzini and Ferraris, 2004).

4.5 conclusion remarks

This Chapter lays the groundwork for the development of WHETGEO-
2D. The main effort has been the design and the implementation
of the classes required to solve a PDE in a bi-dimensional domain.
I presented the first deployment of the component solving the R2

equation, and it has been succesfully tested against the analytical
solution presented by Srivastava and Yeh (1991) and the bench-
marks presented in (Kirkland et al., 1992; Manzini and Ferraris,
2004; McBride et al., 2006).
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Figure 4.17: Test problem 3, time evolution of the water content.
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5.1 concluding remarks

This thesis presented the development of new tools to study
the critical zone. In Chapter 2 it has been presented WHETGEO
and its 1D deployment. WHETGEO-1D is a new, physically based
model simulating the water and energy budgets in a soil column.
This Chapter outlined the mathematical and numerical issues in-
volved in solving the Richardson-Richards equation, convention-
ally known as Richards equation, and the heat equation in het-
erogeneous soils. In particular, for the Richardson-Richards equa-
tion (R2) we take advantage of the nested Newton-Casulli-Zanolli
(NCZ) algorithm that ensures the convergence of the numerical
solution in any condition. Starting from numerical and modelling
needs, the Chapter presented the design of a software that is in-
tended to be the first building block of a new, customisable, land-
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surface model that is integrated with process-based hydrology.
WHETGEO is developed as an open-source code, adopting the
Object-Oriented paradigm and a generic programming approach
in order to improve its usability and expandability. WHETGEO
is fully integrated in the GEOframe/OMS3 system allowing the
use of the many ancillary tools it provides. Finally, the water bud-
get was successfully tested against the analytical solutions pre-
sented in (Srivastava and Yeh, 1991) and in (Vanderborght et al.,
2005). Then some behavioural tests on both the water budget and
the heat budget are presented. A calibration exercise by joining
WHETGEO-1D with the automatica calibrator LUCA has been
presented too.

Chapter 3 presented the application of the NCZ algorithm in
modeling the heat transfer in frozen soils, and an extensive review
of commonly used simulation software in the Cryospheric field.
The numerical model was implemented and verified against the
Neumann and Lunardini analytical solutions. In both cases, the
results were in good agreement even with an hourly integration
time step. For the Neumann solution, we considered pure water
instead of saturated soil since it is more numerically demanding,
and no convergence problems were encountered despite choosing
a narrow temperature range (0, 0001 ◦C) over which phase change
occurs. Numerical experiments demonstrated the robustness of
the model by comparing results at differing temporal and spatial
resolutions. Results obtained with time steps of 1 h, 1 day, and
10 days are consistent. The robustness of the numerics allows the
user to choose both the space and time discretization without any
restriction due to stability and convergence issues. As a conse-
quence, this method is effective for simulating permafrost thaw,
a phenomenon that occurs at depth, in response to seasonal and
multi-annual cycles, and often over tens, hundreds or even thou-
sands of years. Furthermore, phenomena like hysteresis or the
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variation of solute concentration upon freezing (Clow, 2018) can
be included in the numerical model if the enthalpy function (i.e.
its parameters) does not change within the current time step of
integration. Beyond applications to frozen soil, it can be used to
study other geophysical phenomena that involve phase change
of a substance simply by changing the definition of the enthalpy
function and the thermal conductivity function. Examples include,
glacier dynamics (Aschwanden et al., 2012), snow pack evolution
(Brun et al., 1992; Lehning et al., 1999), and magma bodies (De
Lorenzo et al., 2006). This may be even further expanded to indus-
trial problems involving phase change materials used in energy
recovery systems (Mongibello et al., 2018; Nazzi Ehms et al., 2019)
or casting problems of pure metals and alloys (Lewis and Ravin-
dran, 2000).

In Chapter 4 I outlined the ongoing development of WHET-
GEO - 2D. The first part of the Chapter is dedicated to implemen-
tation of unstructured grids in order to have a reusable software.
A particular focus has been paid to the importance in separat-
ing the topological information of the grid from the geometrical
information. Then, the algorithms required to solve a PDE in a bi-
dimensional domain were discussed as well as the design of the
classes used to implement the numerical solver. Finally, the com-
ponent solving the Richards’ equation has been tested against the
analytical solutions presented in (Srivastava and Yeh, 1991; Van-
derborght et al., 2005) and some benchmarks presented in (Kirk-
land et al., 1992; Manzini and Ferraris, 2004; McBride et al., 2006).

5.2 contribution

chapter 2 has been accepted in peer review on the scientific
journal Geoscientific Model Development with the title Implement-
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ing the Water, HEat and Transport model in GEOframe WHETGEO-
1D v.1.0: algorithms, informatics, design patterns, open science
features, and 1D deployment. The paper has been coauthored by
Prof. Riccardo Rigon. Author contributions: Conceptualization,
R.R. and N.T.; Methodology: N.T. and R.R. Software engineering:
N.T. and R.R.; Code writing N.T. Code Revision: RR and NT; Data
curation and simulations, N.T.; Paper Writing, Review, Editing;
N.T. and R.R.

chapter 3 has been accepted to be published on the scientific
journal The Cryosphere with the title A method for solving heat
transfer with phase change in ice or soil that allows for large
time steps while guaranteeing energy conservation. The paper
has been coauthored by Prof. Stephan Gruber and Prof. Riccardo
Rigon. Author contributions: NT, SG, and RR conceptualized the
study; NT and RR developed the software; Data curation and sim-
ulations, N.T.; NT wrote the original draft; NT, SG, and RR re-
viewed and edited the manuscript. All the authors have read and
agreed to the published version of the manuscript.

5.3 future research

In this Section I will briefly outline possible future research di-
rections of the tools developed during my Ph.D. studies.

5.3.1 Frozen ground

A first application of FreeThaw-1D has been presented in the
master Thesis by Enrico Borinato that I co-supervised. Starting
from the work by (Nicolsky and Romanovsky, 2018), that aimed
to asses through numerical experiments the influence of unfrozen
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liquid water on permafrost thawing and the redistribution of the
incoming heat flux, Enrico Borinato applied FreeThaw-1D in order
to understand which is the effect of the choice of the soil thermal
conductivity model in simulating long-term permafrost degrada-
tion. In fact, the definition of the apparent thermal conductivity of
the soil is always problematic since it depends on the fractions of
soil components. One of the outcomes of this thesis is the choice of
the soil thermal conductivity model affect the simulated soil ther-
mal regime as far as the unfrozen liquid water content is higher.

In Chapter 3 it has been presented how to extend WHETGEO-
1D to in order to model freezing-thawing processes as done in
FreeThaw-1D model. Moreover, it has been shown a numerical
experiment, although quite naive, in which WHETGEO-1D was
used to simulate sub-lake talik evolution. The primary scope of
this numerical experiment was to demonstrate that the software
design allows the user to easily extend WHETGEO-1D in order to
simulate new processes by simultaneously solving the heat con-
duction equation over two different domains. The possibility to
deal with different equation state represent a novelty compared
to FreeThaw-1D. Besides, while in Borinato’s thesis FreeThaw-
1D was use to test different soil thermal conductivity model in
WHETGEO-1D it is possible to model each soil layer with a dif-
ferent soil freezing characteristic curve and soil thermal conduc-
tivity model. This adds more flexibility in the description of the
soil properties since the spatial variability is can be controlled not
only by specifying different set of parameters but also through the
definition of parameterizations.

Although heat conduction-based models are widely used, their
application is limited to setting with minimal groundwater flow
(Wellman et al., 2013). Future developments should aim to con-
sider the water flow and the associated heat advection and possi-
bly an extension to a multi-domain. In fact the ongoing climate
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change is reducing the the extent and the thickness of permafrost
with a consequent deepening of the active layer and extent of
discontinuous permafrost area (Kurylyk et al., 2016; Wellman et
al., 2013). These changes in permafrost conditions in turn sig-
nificantly affect the hydrological regime (Hinzman et al., 2005;
Kurylyk et al., 2016; Michel and Van Everdingen, 1994). For in-
stance, the distribution of permafrost modifies the groundwater
flow regime (Carey and Woo, 2005; Metcalfe and Buttle, 1999;
Quinton and Marsh, 1999), the thickness of the active layer ex-
erts control on the timing and magnitude of subsurface runoff
and streamflow (Cheng and Jin, 2013; Kane et al., 2013; Woo et al.,
2008). Therefore in discontinuous permafrost are heat conduction-
based models are not suitable to be applied since they overlook
at the the heat advection transport that represents a significant
contribution in the soil energy budget.

Many permafrost area are interested by ice-rich ground (Brown
et al. 1997). Excess ice, defined as ice that exists in excess of the
thawed consolidated pore space, is particularly important as its
thawing can cause loss of soil strength, slope instability (Couture
et al., 2003), differential subsidence and thermokarst (Kokelj and
Jorgenson, 2013). Variation of the surface microtopography sig-
nificantly affects the thermal and hydrologic condition of the soil
Zona et al., 2011. Nontheless subsidence constitutes a threat for in-
frastructure (Streletskiy et al., 2012). As pointed out by Shur et al.
(2005) it is necessary to move from the simple conceptual model
based on the existence of a seasonally frozen ground, active layer,
overlying permafrost, to a the three layer model which foresees
the existence of a transition layer between the active layer and
permafrost. The transition zone is characterised by being ice-rich.
Because of this high thermal inertia, the transition zone serves as
a buffer between the active layer and the underlying permafrost
promoting the thermal stability of the ground and limiting the
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thaw penetration (Hinkel and Nelson, 2003; Nelson et al., 1998;
Shur et al., 2005). As a matter of fact several model-based stud-
ies predict widespread permafrost degradation under the current
climate warming, but field-based studies reveal that permafrost
system may be more resilient than such scenarios imply (Couture
and Pollard, 2017). It is evident that this apparent thermal stabil-
ity will last until the transition zone will not be completely thawed
(Shiklomanov et al., 2013). Besides the supplementary thermal in-
ertia there is another aspect that is strictly related to the transi-
tion zone: heave and subsidence of the ground surface. A recent
study in the Mackenzie Delta (O’Neill et al., 2019) demonstrates
that overlooking the surface subsidence, due to excess ice thaw-
ing, leads to a misleading interpretation of ALT measurements.
When excess ice and the associated ground subsidence is ignored
in permafrost models, simulations tends to overestimate thaw pen-
etration (O’Neill et al., 2019). Excess ice is therefore a key process
in permafrost system that is often poorly described in many nu-
merical models (Ekici et al., 2019; Lee et al., 2014).

Finally, it is worth to point out that there is the urgency to
adopt an integrated approach in studying permafrost time evo-
lution (Vincent et al., 2017). Though climate is the main factor in
determining the presence of permafrost, also ecological processes
concur in controlling permafrost formation and degradation (Shur
and Jorgenson, 2007). This require to move from a perspective de-
scribing permafrost as a two-layer system, where the active layer
overlies the frozen permafrost, to a perspective in which we in-
clude a third layer that lies between the active layer and the Atmo-
sphere above (Vincent et al., 2017). The third layer includes both
ecological processes and human activities and its importance lies
in controlling the surface heat balance (Shur and Jorgenson, 2007;
Vincent et al., 2017). In accordance with what Freeze and Harlan
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(1969) said more than 50 years ago it is necessary to consider inter-

faces as zones rather than sharp discontinuities (Vincent et al., 2017).

5.3.2 Lysimeter GEO

A possible application of WHETGEO-1D is Lysimeter GEO (LysGEO),
a numerical ecohydrological model of the soil-vegetation-atmosphere
(SVA) continuum system. LysGEO is currently developed by Con-
cetta D’Amato, a Ph.D. student of Prof. Riccardo Rigon. In the
SVA system, measuring and modelling water and solute fluxes, is
a challenge because of the several non-linear and dynamic inter-
acting processes controlling the water flux (Romano et al., 2011).
LysGEO modelling idea is coupling infiltration and evapotranspi-
ration processes by using a numerical model which considers the
root water uptake and the water stress factor to compute the ac-
tual evapotranspiration. Root water uptake affect and is affected
by soil moisture and at the same time drives the dynamics of soil
CO2 (Teodosio et al., 2017), affecting in a significant way the mod-
ulation of actual transpiration (Caldwell et al., 1998; Da Rocha et
al., 2004; Howard et al., 2009). Root water uptake has a key role
in the soil water balance and is effect is determined by root water
compensation and hydraulic redistribution. These two important
mechanisms regulate root water uptake, but also enhancing nutri-
ent uptake and in very dry condition the evaporation flux from
the soil surface through hydraulic descent in extremely dry con-
ditions (Teodosio et al., 2017). Considering the one-dimensional
problem, LysGEO links infiltration and evapotranspiration pro-
cesses by using appropriate stress factors (Ball et al., 1987; Jarvis,
1976), with which actual evapotranspiration is computed and the
corresponding amount of water removed from Richards’ equation
balance (Casulli and Zanolli, 2010) by using the sink term. As re-
gards the IT implementation, LysGEO is a system of components
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built upon the OMS3. The infiltration component of this virtual
lysimeter is WHETGEO 1D - Water, Heat and Transport in GE-
Oframe, which is a new, physically based model estimating the
water and energy budgets in a soil column. Evapotranspiration
flow (ET) is estimated using the GEOframe-ETP component (Bot-
tazzi et al., 2021; Formetta et al., 2014a). This component includes
three evapotranspiration models: Priestley-Taylor depending on
radiation and weakly from temperature (Formetta et al., 2014a;
Priestley and Taylor, 1972), Penman-Monteith (FAO), where evap-
otranspiration is affected by temperature, radiation, air humid-
ity and wind speed (Allen et al., 1998) and Prospero (Bottazzi
et al., 2021), which is based on computing the ET using a multi-
layer canopy model, solving the energy balance both for the sun-
light and shadow vegetation, extending the recently developed
Schymanski and Or method from a leaf to the canopy level. In
LysGEO the coupling between infiltration and evapotranspiration
is made possible by BrokerGEO component, which computes the
water stress factor for vegetation by using Jarvis model (Jarvis,
1976) or the Ball-Berry one (Ball et al., 1987), taking information
about the water content by WHETGEO-1D model. BrokerGEO
uses root density from which it is computed how much water
is removed from the column of soil, according to the root distri-
bution. The code of LysGEO and BrokerGEO are open-source
and available on GitHub GEOframe web page: https://github
.com/GEOframeOMSProjects/OMS_Project_LysimeterGEO;
https://github.com/geoframecomponents/BrokerGEO.

5.3.3 WHETGEO-2D

Currently WHETGEO-2D solves only the R2 equation. As first
development it is necessary to implement the coupling with the
shallow water equation as presented in (Gugole, 2016; Gugole

https://github.com/GEOframeOMSProjects/OMS_Project_LysimeterGEO
https://github.com/GEOframeOMSProjects/OMS_Project_LysimeterGEO
https://github.com/geoframecomponents/BrokerGEO
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et al., 2018) in order to correctly define the surface boundary
condition for the Richards’ equation, as deeply discussed in the
Introduction. A possible application of WHETGEO-2D regards
the analysis of slope cross-section stability. In such application,
WHETGEO-2D is used to simulate the surface-subsurface flow,
and specifically to compute the spatial distribution of the soil
water pressure, and it is coupled with the hillslope-stability de-
scribed in (Formetta et al., 2014a; Formetta et al., 2016c; Formetta
et al., 2016d) model to compute the safety factor. The point of
strength of WHETGEO-2D is represented by its robust numerics
combined with the adoption of unstructured grids that allow to
properly discretize complex geometries and soil stratigraphy. As
pointed out by Tufano et al. (2021) thickness and stratigraphic set-
tings are often overlooked in the slope stability analysis whereas
they are exert a strong control on both the spatial distribution of
soil water pressure and the depth of failure surface. Although
WHETGEO-2D permit to properly consider the soil setting, only
with its extension in the tri-dimensional domain will be possible
to taking into account of the effect of hillslope morphology on soil
water pressure distribution (Formetta et al., 2016d).



A O B J E C T M O D E L L I N G

S Y S T E M V. 3

The Object Modeling System v.3 (OMS3) is a component-based
environmental modelling framework that provides a consistent
and efficient way to: 1) create science simulation components; 2)
develop, parameterise, and evaluate environmental models, and
modify and adjust them as science advances; and 3) re-purpose en-
vironmental models for emerging customer requirements (David
et al., 2013).

In OMS3 the term component refers to self-contained, separate
software units that implement independent functions in a context-
independent manner (David et al., 2013). This means that develop-
ers and researches can build their model as composition of stand-
alone components, moving away from the monolithic approach.
The entire GEOframe system is built upon the OMS3 framework.

Compared to other Environmental Modelling Frameworks (EMF),
OMS3 is characterised by being a non-invasive and lightweight
framework (Lloyd et al., 2011). That is to say, the model code is
not tightly coupled with the underlying framework - OMS3 -, i.e.
the environmental modeller does not need a deep knowledge of
the API, and the modelling components can still function and con-
tinue to evolve outside the framework (David et al., 2013). In fact,
OMS3 relies on specific annotations to provide meta data for Java
code. These annotations describe elements such as classes, fields,
and methods, and are used by the framework to interpret the com-
ponent as a building block of the modelling solution (MS), hence
controlling its connectivity and data flow (David et al., 2013). It
is worth noting that, being meta data, these annotations do not
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directly affect the execution of the source code outside the OMS3

- non-invasive and lightweight framework.
Besides the technical aspects, the adoption of a software frame-

work has a positive effect on "non-functional" quality attributes,
such as maintainability, portability, reusability and understand-
ability (David et al., 2013). The component-based approach allows
the developer to break down the problem into smaller parts, each
one tackled by a specific component. Hence, the components are
joined together to build the desired modelling solution (point B).
This facilitates the construction of new MSs, thanks to the plug-in
system of model components (David et al., 2013; Peckham et al.,
2013; Serafin, 2019). Thanks to the modularity, the updating of a
component with the most recent scientific advances is facilitated
and has no side effects on the other components. The other advan-
tage regards the long term development of the code. From past
experiences, one of the main limits to model development and
maintenance was related to the lack of a proper software archi-
tectural design (Bancheri, 2017; David et al., 2013; Formetta et al.,
2014a; Rizzoli et al., 2006; Serafin, 2019). Moreover, it is interesting
to note that the component-based approach encourages collective
model development (Serafin, 2019) and also eases the attribution
of authorship since any component is a stand-alone chunk of code
and can be authored separately.

Besides, the adoption of an environmental modelling frame-
work promotes the concept of reproducible research, easing third
parties inspection and providing consistent and verifiable model
results (Bancheri, 2017; Formetta et al., 2013; Serafin, 2019).

Another advantage of using OMS3 is represented by the oppor-
tunity to keep the code development transparent to the user.



B G E O F R A M E

WHETGEO-1D was implemented as a Java component within
the GEOframe, an open-source, component-based hydrological
modelling system. Within GEOframe, each part of the hydro-
logical cycle is implemented in a self-contained building block,
an OMS3 component (David et al., 2013). Components can be
joined together to obtain multiple modelling solutions that can
accomplish from simple to very complicated tasks. GEOframe
has proved great flexibility and robustness in several applications
(Abera et al., 2017a; Abera et al., 2017b; Bancheri et al., 2020).
There are more than 50 components available that can be grouped
into the following categories:

• Geomorphic and DEM analyses;

• Spatial extrapolation/interpolation of meteorological variables;

• Estimation of the radiation budget;

• Estimation of evapotranspiration;

• Estimation of runoff production with integral distributed
models;

• Channel routing;

• Travel time analysis;

• Calibration algorithms.

175



176 geoframe

Using the components for geomorphic and DEM analyses Rigon
et al., 2006b, the basin can be discretised into Hydrological Re-
sponse Units (HRUs), i.e., hydrologically similar parts, such as
a catchment or a hillslope or one of its parts. The meteorolog-
ical forcing data can be spatially interpolated using a geostatis-
tical approach, such as the Kriging technique (Bancheri et al.,
2018). Both shortwave and longwave radiation components are
available for the estimation of the radiation budget (Formetta et
al., 2013; Formetta et al., 2016a). Evapotranspiration can be es-
timated using three different formulations: the FAO Evapotran-
spiration model (Allen et al., 1998), the Priestley-Taylor model
(Priestley and Taylor, 1972), and the Prospero model, (Bottazzi,
2020; Bottazzi et al., 2021). Snow melting and the snow water
equivalent can also be simulated with three models, as described
in (Formetta et al., 2014b). Runoff production is performed by
using the Embedded Reservoir Model (ERM) or a combination of
its reservoirs (Bancheri et al., 2020). The discharge generated at
each hillslope is routed to the outlet using the Muskingum-Cunge
method (Bancheri et al., 2020). Travel time analysis of a generic
pollutant within the catchment can be done using the approach
proposed in (Rigon et al., 2016a; Rigon et al., 2016b). Model pa-
rameters can be calibrated using two algorithms, and several ob-
jective functions: Let Us CAlibrate (LUCA) (Hay et al., 2006) and
Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995).
A graph-based structure, called NET3 (Serafin, 2019), is employed
for the management of process simulations. NET3 is designed us-
ing a river network/graph structure analogy, where each HRU is
a node of the graph, and the channel links are the connections
between the nodes. In any NET3 node, a different modelling so-
lution can be implemented and nodes (HRUs or channels) can
be connected or disconnected at run-time through scripting. GE-
Oframe is open source and helps the reproducibility and replica-
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bility of research (Bancheri, 2017). Developers and users can easily
collaborate, share documentation, and archive examples and data
within the GEOframe community.





C E N T H A L P Y A N D

I N T E R N A L E N E R GY

Following the work by Dall’Amico (2010), the internal energy
in its canonical form, Uc, can be written as

Uc = Uc(S,V ,M) (70)

where S is the entropy, V is the volume, and M the mass of the
constituents. These are the independent variables and are called
extensive variables since they depend linearly on the mass of the
substance. The first differential of Eq. (70) is

dUc =

(

∂Uc

∂S

)

dS +

(

∂Uc

∂V

)

dV +

(

∂Uc

∂M

)

dM (71)

According to Callen (1985) it is possible to define
(

∂Uc

∂S

)

≡ T , the temperature (72)

−
(

∂Uc

∂V

)

≡ p , the pressure (73)

(

∂Uc

∂M

)

≡ µ , the chemical potential (74)

With this notation, Eq. (71) becomes

dUc = TdS − pdV + µdM (75)

By making use of the Legendre transformation it is possible to
define the enthalpy potential Hc as

Hc(S, p,M) = Uc(S,V ,M) + pV (S, p,M) (76)
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The differential of the enthalpy is

dHc = d[Uc + pV ] = TdS − pdV + µdM + V dp+ pdV =

TdS + µdM + V dp (77)

If we assume that the transformation occurs at constant pressure
and volume then Eq. (75) becomes

dUc = TdS + µdM (78)

and Eq. (77)
dHc = TdS + µdM (79)

Hence, from Eq. (78) and Eq. (79) the differential of the internal
energy and the differential of enthalpy are equal. Therefore the
governing equation, Eq. (52), can be equivalently written in term
of either the specific enthalpy or the specific internal energy.



D N E U M A N N A N A LY T I C A L

S O L U T I O N

In this section we report the derivation of the Neumann analyt-
ical. The enthalpy is defined as

h(T ) =











ρwcw(T − Tref ) + ρwlf if T ≥ Tm

ρici(T − Tref ) if T < Tm − ǫ

ρici(T − ǫ− Tref ) + h
′

(T − (Tm − ǫ)) otherwise

(80)

where the singularity of the enthalpy function at T = Tm has been
linearized with

h
′

=
ρwcw(Tm − Tref ) + ρwlf − ρici(Tm − ǫ− Tref )

ǫ
(81)

and ǫ is a parameter defining the temperature range over which
the phase change of water occurs, Fig. (D.1). In the following
tests ǫ is set to be equal to 0.0001 ◦C. The introduction of this
linearization is necessary since the enthalpy function needs to be
continuously differentiable according to assumption A1 in Section
2.3.1. It is worth to underline that the temperature range ǫ can
be chosen sufficiently small in order to make this approximation
negligible when compared to the physical behaviour of water, con-
sidering that: (a) The melting of water in temperate ice is known
to actually occur progressively below 0 ◦C along grain boundaries
(Langham, 1974; Nye and Frank, 1973). (b) Freezing often occurs
below the melting point when nucleation is relevant. (c) In porous
media such as soil, ice melts across a range of temperatures due
to the Gibbs-Thompson effect in pores and surface affects at the
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Figure D.1: (a) Comparison between the enthalpy function of pure water
and the enthalpy function used in the numerical model. (b)
Note that the energy jump due to the latent heat at Tm = 0
◦C has been linearized and the steepness is controlled by the
parameter ǫ.

interfaces between ice and particles (Rempel et al., 2004; Watanabe
and Mizoguchi, 2002).

Even though the internal energy function is very steep, the code
used does not suffer of convergence problem with a time step of
3600 s. The thermal conductivity is defined as:

λ(T ) =

{

λw if T ≥ Tm

λi if T < Tm
(82)

Defining the following constant:

αw =
λw

ρwcw
αi =

λi

ρici
(83)

A =
Tm − Ts

erf(γ)
B =

Tm − T0

erf

(

γ

√

αi

αw

) (84)
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the moving boundary function is

ζ(t) = 2γ
√
αit for t > 0 (85)

where the coefficient γ can be found solving the following equa-
tion

γ
√
αilfρ−

λi√
παi

Ae−γ
2 − αw√

παw
Be

γ2
αi

αw = 0 (86)

Finally the analytical solution for problem with Dirichlet bound-
ary condition for the thawed and frozen zones are:



























T (z, t) = Ts +
Tm − Ts

erf(γ)
erf

(

z

2
√
αi t

)

0 < z < ζ(t)

T (z, t) = T0 +
Tm − T0

erfc

(

γ

√

αi

αw

) erfc

(

z

2
√
αw t

)

z > ζ(t)

(87)
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Table D.1: Input parameters for the comparison between Neumann an-
alytical solution and the numerical solution with the NCZ
algorithm.

Symbol Parameter Value Unit
∆t time step 60, 300, 3600 s

∆z control volume size 0.001, 0.005, 0.01 m

lf latent heat of fusion 333700 J kg−1

cw specific heat capacity of water 4187 J m−3 ◦C−1

ci specific heat capacity of ice 2108 J m−3 ◦C−1

ρw water density 1000 kg m−3

ρi ice density 970 kg m−3

λw thermal conductivity of water 0.6 W m−1 ◦C−1

λi thermal conductivity of ice 2.09 W m−1 ◦C−1

ǫ melting temperature range 0.0001 ◦C

T0 initial temperature +5 ◦C

Ts surface temperature −5 ◦C



E L U N A R D I N I A N A LY T I C A L

S O L U T I O N

equations and table of parameters The solution fo the Lunardini
problem (i.e. the Lunardini solution) as described by McKenzie
(McKenzie et al., 2007) is given by the following set of equations:

T1 = (Tm − Ts)

erf

(

x

2
√
α1t

)

erf(ψ)
+ Ts (88)

T2 = (Tm − Tf )

erf

(

x

2
√
α4t

)

− erf(γ)

erf(γ)− erf

(

ψ

√

α1

α4

) + Tf (89)

T3 = (T0 − Tf )

− erfc

(

x

2
√
α3t

)

erfc

(

ψ

√

α4

α3

) + T0 (90)

where T1, T2, and T3 are the temperatures at distance, x, from
the temperature boundary for the frozen, partially frozen, and un-
frozen zone respectively; erf and erfc are the error function, and
the complementary error function respectively; T0, Tm, Tf , and
Ts are the temperatures of the initial condition; the solidus, the
liquidus, and the boundary temperature, respectively; α1 and α3
are the thermal diffusivities for the frozen, and unfrozen zone re-
spectively, defined as λ1/C1 and λ3/C3 where C1 and C3 are the
volumetric bulk-heat capacities of the frozen and unfrozen zones.
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The thermal diffusivity of the partially frozen zone is assumed to
be constant across the transition region, and the thermal diffusiv-
ity with latent heat term included, α4, is defined as:

α4 =
λ2

C2 +
γdlf∆ξ

(Tf − Tm)

(91)

where γd is the dry unit of soil solids, and ∆ξ = ξ0 − ξf where ξ0
and ξf are the ratio of unfrozen water to soil solids for the fully
thawed and frozen conditions respectively. For a time, t, in the
region 0 ≤ x ≤ X1(t) the temperature is T1 and X1(t) is given by

X1(t) = 2ψ
√
α1t (92)

and from X1(t) ≤ x ≤ X(t) the temperature is T2, where X(t) is
given by

X(t) = 2γ
√
α4t (93)

and for x ≥ X(t) the temperature is T3. The unknowns, ψ and γ,
are solving the set of these two equations:

Tm − Ts

Tm − Tf
exp−ψ

2(1−α1/α4) =

λ2

λ1

√

α1

α4
erf(ψ)

erf(γ)− erf

(

ψ

√

α1

α4

) (94)

(Tm − Tf )
λ2

λ3
Tm − Tf

α3

α4
exp−γ

2(1−α4/α3) =

erf(γ)− erf

(
√

α1

α4
ψ

)

erf

(

γ

√

α4

α3

) (95)
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Table E.1: Input parameters for the comparison between Lunardini an-
alytical solution and the numerical solution with the NCZ
algorithm.

Symbol Parameter Value Unit
∆t time step 300, 900, 3600 s

∆x control volume size 0.01 m

Lf latent heat of fusion 334560 J kg−1

C1 volumetric heat
capacity, forzen

690030 J m−3 ◦C−1

C2 volumetric heat
capacity, partially forzen

690030 J m−3 ◦C−1

C3 volumetric heat
capacity, unforzen

690030 J m−3 ◦C−1

γd dry unit density of soil solids 1680 kg m−3

ξ0 ratio of liq. water
to soil solids, unfrozen

0.2 -

ξf ratio of liq. water
to soil solids, frozen

0.0782 -

λ1 thermal conductivity, frozen 3.462696 W m−1 ◦C−1

λ2 thermal conductivity, partially frozen 2.939946 W m−1 ◦C−1

λ3 thermal conductivity, unfrozen 2.417196 W m−1 ◦C−1

γ solution parameter for
Eq. (94) and Eq. (95)

5.616, 2.060, 1.397 a -

ψ solution parameter for
Eq. (94) and Eq. (95)

0.158, 0.137, 0.061 a -

T0 initial temperature +4 ◦C

Ts boundary temperature −6 ◦C

Tf liquidus temperature 0 ◦C

Tf solidus temperature −0.1, −1, −4 ◦C
a The first value refers to Tm = −0.1 ◦C the second value to Tm = −1 ◦C, and

the third value to Tm = −4 ◦C.





B I B L I O G R A P H Y

Abera, W., Formetta, G., Borga, M., & Rigon, R. (2017a). Estimat-
ing the water budget components and their variability in
a pre-alpine basin with JGrass-NewAge. Advances in Water

Resources, 104, 37–54.
Abera, W., Formetta, G., Brocca, L., & Rigon, R. (2017b). Modeling

the water budget of the Upper Blue Nile basin using the
JGrass-NewAge model system and satellite data. Hydrology

and Earth System Sciences, 21(6), 3145–3165.
Allen, R. G., Pereira, L. S., Raes, D., Smith, M., et al. (1998). Crop

evapotranspiration-Guidelines for computing crop water requirements-
FAO Irrigation and drainage paper 56. Fao, Rome, 300(9),
D05109.

Anderson, D. M., & Tice, A. R. (1972). Predicting unfrozen water
contents in frozen soils from surface area measurements.
Highway research record, 393, 12–18.

Arp, C. D., Jones, B. M., Grosse, G., Bondurant, A. C., Romanovsky,
V. E., Hinkel, K. M., & Parsekian, A. D. (2016). Threshold
sensitivity of shallow Arctic lakes and sublake permafrost
to changing winter climate. Geophysical Research Letters, 43(12),
6358–6365.

Aschwanden, A., & Blatter, H. (2009). Mathematical modeling and
numerical simulation of polythermal glaciers. Journal of Geo-

physical Research: Earth Surface, 114(F1).
Aschwanden, A., & Blatter, H. (2005). Meltwater production due

to strain heating in Storglaciären, Sweden. Journal of Geo-

physical Research: Earth Surface, 110(F4).

189



190 bibliography

Aschwanden, A., Bueler, E., Khroulev, C., & Blatter, H. (2012). An
enthalpy formulation for glaciers and ice sheets. Journal of

Glaciology, 58(209), 441–457.
Ashby, S. F., & Falgout, R. D. (1996). A parallel multigrid precondi-

tioned conjugate gradient algorithm for groundwater flow
simulations. Nuclear science and engineering, 124(1), 145–159.

Bachmann, J., Horton, R., Grant, S. A., & Van der Ploeg, R. (2002).
Temperature dependence of water retention curves for wet-
table and water-repellent soils. Soil Science Society of America

Journal, 66(1), 44.
Bader, G., & Berti, G. (1998). Design principles of reusable soft-

ware components for the numerical solution of PDE prob-
lems. Concepts of Numerical Software. Vieweg Verlag, To appear.

Proceedings of the 14th GAMM Seminar, Kiel.
Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987). A model predicting

stomatal conductance and its contribution to the control of
photosynthesis under different environmental conditions.
Progress in photosynthesis research (pp. 221–224). Springer.

Bancheri, M. (2017). A flexible approach to the estimation of water bud-

gets and its connection to the travel time theory (Doctoral dis-
sertation). University of Trento.

Bancheri, M., Rigon, R., & Manfreda, S. (2020). The GEOframe-
NewAge modelling system applied in a data scarce envi-
ronment. Water, 12(1), 86.

Bancheri, M., Serafin, F., Bottazzi, M., Abera, W., Formetta, G., &
Rigon, R. (2018). The design, deployment, and testing of
kriging models in GEOframe with SIK-0.9. 8. Geoscientific

Model Development, 11(6), 2189–2207.
Bao, H., Koike, T., Yang, K., Wang, L., Shrestha, M., & Lawford,

P. (2016). Development of an enthalpy-based frozen soil
model and its validation in a cold region in China. Journal

of Geophysical Research: Atmospheres, 121(10), 5259–5280.



bibliography 191

Bartelt, P., & Lehning, M. (2002). A physical SNOWPACK model
for the swiss avalanche warning: Part i: Numerical model.
Cold Regions Science and Technology, 35(3), 123–145.

Benard, P., Zarebanadkouki, M., & Carminati, A. (2019). Physics
and hydraulics of the rhizosphere network. Journal of Plant

Nutrition and Soil Science, 182(1), 5–8.
Berti, G. (2000). Generic software components for scientific computing.

Citeseer.
Bisht, G., & Riley, W. J. (2019). Development and verification of a

numerical library for solving global terrestrial multiphysics
problems. Journal of Advances in Modeling Earth Systems, 11(6),
1516–1542.

Bloch, J. (2001). Effective Java: Programming Language Guide. Addison-
Wesley Professional.

Bonan, G. (2019). Climate change and terrestrial ecosystem modeling.
Cambridge University Press.

Boone, A., & Etchevers, P. (2001). An intercomparison of three
snow schemes of varying complexity coupled to the same
land surface model: Local-scale evaluation at an Alpine site.
Journal of Hydrometeorology, 2(4), 374–394.

Borinato, E. (2021). Advances in permafrost modelling: Application of

the nested Newton algorithm for solving the heat equation. (Mas-
ter’s thesis). University of Trento.

Bottazzi, M. (2020). Transpiration theory and the Prospero component

of GEOframe (Doctoral dissertation). University of Trento.
Bottazzi, M., Bancheri, M., Mobilia, M., Bertoldi, G., Longobardi,

A., & Rigon, R. (2021). Comparing evapotranspiration esti-
mates from the GEOframe-Prospero model and three em-
pirical models under different climate conditions. Water,
19(9), 1221.



192 bibliography

Bouyoucos, G. (1920). Degree of temperature to which soils can
be cooled without freezing. Monthly Weather Review, 48(12),
718–718.

Bouyoucos, G. J. (1923). Movement of soil moisture from small
capillaries to the large capillaries of the soil upon freezing.
Journal of Agricultural Research, 24(5), 427–432.

Bouyoucos, G. J. (1913). An investigation of soil temperature and
some of the most important facters influencing it. Technical

Bulletin of Michigan Agriculture Experimental Station, 17, 1–
196.

Bouyoucos, G., & McCool, M. (1915). The freezing point method
as a new means of measuring the concentration of the soil
solution directly in the soil.• mich. Michigan State Univer-

sity. Agricultural Experiment Station, 24.
Braun, M. L. (2015). http://jblas.org/
Brooks, R., & Corey, T. (1964). Hydraulic properties of porous me-

dia. Hydrology Papers, Colorado State University, 24, 37.
Brugnano, L., & Casulli, V. (2008). Iterative solution of piecewise

linear systems. SIAM Journal on Scientific Computing, 30(1),
463–472.

Brugnano, L., & Casulli, V. (2009). Iterative solution of piecewise
linear systems and applications to flows in porous media.
SIAM Journal on Scientific Computing, 31(3), 1858–1873.

Brun, E., David, P., Sudul, M., & Brunot, G. (1992). A numerical
model to simulate snow-cover stratigraphy for operational
avalanche forecasting. Journal of Glaciology, 38(128), 13–22.

Brun, E., Martin, E., Simon, V., Gendre, C., & Coleou, C. (1989).
An energy and mass model of snow cover suitable for oper-
ational avalanche forecasting. Journal of Glaciology, 35(121),
333–342.

http://jblas.org/


bibliography 193

Caldwell, M. M., Dawson, T. E., & Richards, J. H. (1998). Hydraulic
lift: Consequences of water efflux from the roots of plants.
Oecologia, 113(2), 151–161.

Callen, H. B. (1985). Thermodynamics and an introduction to thermo-

statistics. John Wiley; Sons, Inc.
Campbell, G. S., Jungbauer Jr, J., Bristow, K. L., & Hungerford,

R. D. (1995). Soil temperature and water content beneath a
surface fire. Soil Science, 159(6), 363–374.

Carey, S. K., & Woo, M.-k. (2005). Freezing of subarctic hillslopes,
Wolf Creek Basin, Yukon, Canada. Arctic, Antarctic, and Alpine

Research, 37(1), 1–10.
Casulli, V. (2017a). Lectures notes on advanced numerical methods

for free-surface hydrodynamics.
Casulli, V. (2009). A high-resolution wetting and drying algorithm

for free-surface hydrodynamics. International Journal for Nu-

merical Methods in Fluids, 60(4), 391–408.
Casulli, V. (2017b). A coupled surface-subsurface model for hy-

drostatic flows under saturated and variably saturated con-
ditions. International Journal for Numerical Methods in Fluids,
85(8), 449–464.

Casulli, V., & Walters, R. A. (2000). An unstructured grid, three-
dimensional model based on the shallow water equations.
International Journal for Numerical Methods in Fluids, 32(3),
331–348.

Casulli, V., & Zanolli, P. (2005). High resolution methods for mul-
tidimensional advection–diffusion problems in free-surface
hydrodynamics. Ocean Modelling, 10(1-2), 137–151.

Casulli, V., & Zanolli, P. (2010). A nested Newton-type algorithm
for finite volume methods solving Richards’ equation in
mixed form. SIAM Journal on Scientific Computing, 32(4), 2255–
2273.



194 bibliography

Casulli, V., & Zanolli, P. (2012). Iterative solutions of mildly non-
linear systems. Journal of Computational and Applied Mathe-

matics, 236(16), 3937–3947.
Celia, M. A., Bouloutas, E. T., & Zarba, R. L. (1990). A general

mass-conservative numerical solution for the unsaturated
flow equation. Water Resources Research, 26(7), 1483–1496.

Cheng, G., & Jin, H. (2013). Permafrost and groundwater on the
Qinghai-Tibet Plateau and in northeast China. Hydrogeology

Journal, 21(1), 5–23.
Chistyakov, V. (1997). On mappings of bounded variation. Journal

of Dynamical and Control Systems, 3(2), 261.
Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D.,

Gochis, D. J., Hooper, R. P., Kumar, M., Leung, L. R., Mackay,
D. S., et al. (2015a). Improving the representation of hydro-
logic processes in Earth System Models. Water Resources Re-

search, 51(8), 5929–5956.
Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E.,

Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W.,
Brekke, L. D., et al. (2015b). A unified approach for process-
based hydrologic modeling: 1. modeling concept. Water Re-

sources Research, 51(4), 2498–2514.
Clark, M. P., Zolfaghari, R., Green, K. R., Trim, S., Knoben, W. J. M.,

Bennet, A., & Nijssen, B. (2021). The numerical implemen-
tation of land models: Problem formulation and laugh tests.
Journal of Hydrometeorology, 22(6), 2498–2514.

Clow, G. D. (2018). CVPM 1.1: A flexible heat-transfer modeling
system for permafrost. Geoscientific Model Development, 11(12),
4889–4908.

Constantz, J. (1982). Temperature dependence of unsaturated hy-
draulic conductivity of two soils. Soil Science Society of Amer-

ica Journal, 46(3), 466–470.



bibliography 195

Constantz, J., & Murphy, F. (1991). The temperature dependence
of ponded infiltration under isothermal conditions. Journal

of Hydrology, 122(1-4), 119–128.
Couture, N. J., & Pollard, W. H. (2017). A model for quantifying

ground-ice volume, Yukon Coast, Western Arctic Canada.
Permafrost and Periglacial Processes, 28(3), 534–542.

Couture, R., Smith, S., Robinson, S., Burgess, M., & Solomon, S.
(2003). On the hazards to infrastructure in the canadian
north associated with thawing of permafrost. Proceedings

of Geohazards.
Da Rocha, H. R., Goulden, M. L., Miller, S. D., Menton, M. C.,

Pinto, L. D., de Freitas, H. C., & e Silva Figueira, A. M.
(2004). Seasonality of water and heat fluxes over a tropical
forest in eastern Amazonia. Ecological applications, 14(sp4),
22–32.

Dai, Y., Wei, N., Yuan, H., Zhang, S., Shangguan, W., Liu, S., Lu,
X., & Xin, Y. (2019). Evaluation of soil thermal conductivity
schemes for use in land surface modeling. Journal of Ad-

vances in Modeling Earth Systems, 11(11), 3454–3473.
Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich,

M. G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu,
G., et al. (2003). The common land model. Bulletin of the

American Meteorological Society, 84(8), 1013–1024.
Dall’Amico, M., Endrizzi, S., Gruber, S., & Rigon, R. (2011). A

robust and energy-conserving model of freezing variably-
saturated soil. The Cryosphere, 5(2), 469–484.

Dall’Amico, M. (2010). Coupled water and heat transfer in permafrost

modeling (Doctoral dissertation). University of Trento.
D’Amato, C. (n.d.).
D’Amato, C., Tubini, N., & Rigon, R. (2022). Lysimeter geo a 1d

land surface model for the virtual investigation of the in-
teraction of critical zone, vegetation and atmosphere. in



196 bibliography

preparation for Geophysical Research Geoscientific Model Devel-

opmentLetters.
D’Amboise, C. J., Müller, K., Oxarango, L., Morin, S., & Schuler, T.

(2017). Implementation of a physically based water perco-
lation routine in the crocus/surfex (v7. 3) snowpack model.
Geophysical Research Geoscientific Model DevelopmentLetters,
10(9), 3547–3566.

David, O. (n.d.).
David, O., Ascough II, J. C., Lloyd, W., Green, T. R., Rojas, K.,

Leavesley, G. H., & Ahuja, L. R. (2013). A software engineer-
ing perspective on environmental modeling framework de-
sign: The Object Modeling System. Environmental Modelling

& Software, 39, 201–213.
David Olaf. (n.d.). https://alm.engr.colostate.edu/cb/wiki/17118

Davis, T. A. (2006). Direct methods for sparse linear systems. Society
for Industrial; Applied Mathematics.

De Lorenzo, S., Di Renzo, V., Civetta, L., D’antonio, M., & Gas-
parini, P. (2006). Thermal model of the Vesuvius magma
chamber. Geophysical Research Letters, 33(17).

Di Nucci, C. (2014). Theoretical derivation of the conservation
equations for single phase flow in porous media: A con-
tinuum approach. Meccanica, 49(12), 2829–2838.

Dong, Y., McCartney, J. S., & Lu, N. (2015). Critical review of ther-
mal conductivity models for unsaturated soils. Geotechnical

and Geological Engineering, 33(2), 207–221.
Dunne, T., & Black, R. D. (1970). An experimental investigation

of runoff production in permeable soils. Water Resources Re-

search, 6(2), 478–490.
Eckel, B. (2003). Thinking in JAVA. Prentice Hall Professional.
Eisenberg, D., Kauzmann, W., & Kauzmann, W. (2005). The struc-

ture and properties of water. Oxford University Press on De-
mand.

https://alm.engr.colostate.edu/cb/wiki/17118


bibliography 197

Ekici, A., Beer, C., Hagemann, S., Boike, J., Langer, M., & Hauck, C.
(2014). Simulating high-latitude permafrost regions by the
JSBACH terrestrial ecosystem model. Geophysical Research

Geoscientific Model DevelopmentLetters, 7(2), 631–647.
Ekici, S. A., Lee, H., Lawrence, D. M., Swenson, S. C., & Prigent, C.

(2019). Ground subsidence effects on simulating dynamic
high-latitude surface inundation under permafrost thaw us-
ing CLM5. Geophysical Research Geoscientific Model Develop-

mentLetters (GMD), 12(12), 5291–5300.
Endrizzi, S., Gruber, S., Dall’Amico, M., & Rigon, R. (2014). Geotop

2.0: Simulating the combined energy and water balance at
and below the land surface accounting for soil freezing,
snow cover and terrain effects. Geophysical Research Geosci-

entific Model Development Letters, 7(6), 2831–2857.
Engeler, I., Franssen, H. H., Müller, R., & Stauffer, F. (2011). The im-

portance of coupled modelling of variably saturated ground-
water flow-heat transport for assessing river–aquifer inter-
actions. Journal of Hydrology, 397(3-4), 295–305.

Farthing, M. W., & Ogden, F. L. (2017). Numerical solution of
Richards’ equation: A review of advances and challenges.
Soil Science Society of America Journal, 81(6), 1257–1269.

Feddes, R. A., Hoff, H., Bruen, M., Dawson, T., De Rosnay, P.,
Dirmeyer, P., Jackson, R. B., Kabat, P., Kleidon, A., Lilly, A.,
et al. (2001). Modeling root water uptake in hydrological
and climate models. Bulletin of the American Meteorological

Society, 82(12), 2797–2810.
Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D.,

Sitch, S., & Haxeltine, A. (1996). An integrated biosphere
model of land surface processes, terrestrial carbon balance,
and vegetation dynamics. Global Biogeochemical Cycles, 10(4),
603–628.



198 bibliography

Formetta, G., Rigon, R., Chávez, J., & David, O. (2013). Modeling
shortwave solar radiation using the jgrass-newage system.
Geophysical Research Geoscientific Model Development Letters,
6(4), 915–928.

Formetta, G. (2013). Hydrological modelling with components: The

OMS3 NewAge-JGrass system (Doctoral dissertation). Uni-
versity of Trento.

Formetta, G., Antonello, A., Franceschi, S., David, O., & Rigon, R.
(2014a). Hydrological modelling with components: A GIS-
based open-source framework. Environmental Modelling &

Software, 55, 190–200.
Formetta, G., Bancheri, M., David, O., & Rigon, R. (2016a). Perfor-

mance of site-specific parameterizations of longwave radia-
tion. Hydrology and Earth System Sciences, 20(11), 4641–4654.

Formetta, G., Capparelli, G., David, O., Green, T. R., & Rigon, R.
(2016b). Integration of a three-dimensional process-based
hydrological model into the object modeling system. Water,
8(1), 12.

Formetta, G., Capparelli, G., & Versace, P. (2016c). Evaluating per-
formance of simplified physically based models for shallow
landslide susceptibility. Hydrology and Earth System Sciences,
20(11), 4585–4603.

Formetta, G., Kampf, S. K., David, O., & Rigon, R. (2014b). Snow
water equivalent modeling components in NewAge-JGrass.
Geophysical Research Geoscientific Model Development Letters,
7(3), 725–736.

Formetta, G., Simoni, S., Godt, J. W., Lu, N., & Rigon, R. (2016d).
Geomorphological control on variably saturated hillslope
hydrology and slope instability. Water Resources Research,
52(6), 4590–4607.

Forsyth, P. A., Wu, Y., & Pruess, K. (1995). Robust numerical meth-
ods for saturated-unsaturated flow with dry initial condi-



bibliography 199

tions in heterogeneous media. Advances in Water Resources,
18(1), 25–38.

Forums, P. P. D. (n.d.). https://www.pc-progress.com/forum/vi
ewtopic.php?f=3&t=3632

Frampton, A., Painter, S. L., & Destouni, G. (2013). Permafrost
degradation and subsurface-flow changes caused by sur-
face warming trends. Hydrogeology Journal, 21(1), 271–280.

Freeman, E., Robson, E., Bates, B., & Sierra, K. (2008). Head first

design patterns. O’Reilly Media, Inc."
Freeze, R. A., & Harlan, R. (1969). Blueprint for a physically-based,

digitally-simulated hydrologic response model. Journal of

Hydrology, 9(3), 237–258.
Furman, A. (2008). Modeling coupled surface–subsurface flow pro-

cesses: A review. Vadose Zone Journal, 7(2), 741–756.
Gamma, E., Helm, R., Johnson, R., Vlissides, J., & Patterns, D.

(1995). Elements of reusable object-oriented software. De-

sign Patterns. massachusetts: Addison-Wesley Publishing Com-

pany.
Germann, P., & Beven, K. (1981). Water flow in soil macropores

I. an experimental approach. Journal of Soil Science, 32(1), 1–
13.

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (Vol. 3).
Johns Hopkins University Press.

Goodrich, L. (1978). Some results of a numerical study of ground
thermal regimes. Proceedings of the Third International Confer-

ence on Permafrost.
Goodrich, L. (1982). The influence of snow cover on the ground

thermal regime. Canadian Geotechnical Journal, 19(4), 421–
432.

Greenspan, D., & Casulli, V. (1988). Numerical analysis for applied

mathematics, science, and engineering. Addison Wesley.

https://www.pc-progress.com/forum/viewtopic.php?f=3&t=3632
https://www.pc-progress.com/forum/viewtopic.php?f=3&t=3632


200 bibliography

Greve, R. (1997a). Application of a polythermal three-dimensional
ice sheet model to the greenland ice sheet: Response to
steady-state and transient climate scenarios. Journal of Cli-

mate, 10(5), 901–918.
Greve, R. (1997b). A continuum–mechanical formulation for shal-

low polythermal ice sheets. Philosophical Transactions of the

Royal Society of London. Series A: Mathematical, Physical and

Engineering Sciences, 355(1726), 921–974.
Greve, R., & Blatter, H. (2016). Comparison of thermodynamics

solvers in the polythermal ice sheet model SICOPOLIS. Po-

lar Science, 10(1), 11–23.
Gubler, S., Endrizzi, S., Gruber, S., & Purves, R. S. (2013). Sensi-

tivities and uncertainties of modeled ground temperatures
in mountain environments. Geophysical Research Geoscientific

Model Development Letters, 6(4), 1319–1336.
Gugole, F. (2016). A fast semi-implicit 3D algorithm for the solution

of coupled free-surfave and variably saturated sub-surface flows.

(Master’s thesis). University of Trento.
Gugole, F., Dumbser, M., & Stelling, G. (2018). An efficient three-

dimensional semi-implicit finite volume scheme for the so-
lution of coupled free-surface and variably saturated sub-
surface flow. EGU General Assembly Conference Abstracts, 600.

Hansson, K., Šimünek, J., Mizoguchi, M., Lundin, L.-C., & Van
Genuchten, M. T. (2004). Water flow and heat transport in
frozen soil. Vadose Zone Journal, 3(2), 693–704.

Harris, C., Arenson, L. U., Christiansen, H. H., Etzelmüller, B.,
Frauenfelder, R., Gruber, S., Haeberli, W., Hauck, C., Hoel-
zle, M., Humlum, O., et al. (2009). Permafrost and climate
in Europe: Monitoring and modelling thermal, geomorpho-
logical and geotechnical responses. Earth-Science Reviews,
92(3-4), 117–171.



bibliography 201

Hay, L. E., Leavesley, G. H., Clark, M. P., Markstrom, S. L., Viger,
R. J., & Umemoto, M. (2006). Step wise, multiple objective
calibration of a hydrologic model for a snowmelt domi-
nated basin 1. Journal of the American Water Resources As-

sociation, 42(4), 877–890.
Heimsund, B.-O. (2011). https://github.com/fommil/matrix-tool

kits-java
Hewitt, I., & Schoof, C. (2016). A model for polythermal ice incor-

porating gravity-driven moisture transport. Journal of Fluid

Mechanics, 797(June).
Hinkel, K., & Nelson, F. (2003). Spatial and temporal patterns of

active layer thickness at Circumpolar Active Layer Monitor-
ing (CALM) sites in northern Alaska, 1995–2000. Journal of

Geophysical Research: Atmospheres, 108(D2).
Hinzman, L. D., Bettez, N. D., Bolton, W. R., Chapin, F. S., Dyurg-

erov, M. B., Fastie, C. L., Griffith, B., Hollister, R. D., Hope,
A., Huntington, H. P., et al. (2005). Evidence and implica-
tions of recent climate change in northern Alaska and other
arctic regions. Climatic change, 72(3), 251–298.

Hollesen, J., Elberling, B., & Jansson, P.-E. (2011). Future active
layer dynamics and carbon dioxide production from thaw-
ing permafrost layers in northeast Greenland. Global Change

Biology, 17(2), 911–926.
Horton, R. E. (1933). The role of infiltration in the hydrologic cycle.

Transactions American Geophysical Union, 14(1), 446–460.
Howard, A. R., Van Iersel, M. W., Richards, J. H., & Donovan, L. A.

(2009). Night-time transpiration can decrease hydraulic re-
distribution. Plant, Cell & Environment, 32(8), 1060–1070.

Hrachowitz, M., Benettin, P., Van Breukelen, B. M., Fovet, O., How-
den, N. J., Ruiz, L., Van Der Velde, Y., & Wade, A. J. (2016).
Transit times—the link between hydrology and water qual-

https://github.com/fommil/matrix-toolkits-java
https://github.com/fommil/matrix-toolkits-java


202 bibliography

ity at the catchment scale. Wiley Interdisciplinary Reviews:

Water, 3(5), 629–657.
Hu, H., & Argyropoulos, S. A. (1996). Mathematical modelling of

solidification and melting: A review. Modelling and Simula-

tion in Materials Science and Engineering, 4(4), 371.
InterFrost Project. (n.d.). https://wiki.lsce.ipsl.fr/interfrost/doku

.php?id=test_cases:one
Jansson, P., & Karlberg, L. (2011). Coupled heat and mass transfer

model for soil-plant-atmosphere systems.
Jarvis, P. (1976). The interpretation of the variations in leaf wa-

ter potential and stomatal conductance found in canopies
in the field. Philosophical Transactions of the Royal Society of

London. Biological Sciences, 273(927), 593–610.
Johansen, O. (1977). Thermal conductivity of soils (tech. rep.). Cold

Regions Research and E.
Jones, J. E., & Woodward, C. S. (2001). Newton–Krylov-multigrid

solvers for large-scale, highly heterogeneous, variably sat-
urated flow problems. Advances in Water Resources, 24(7),
763–774.

Kane, D. L., Yoshikawa, K., & McNamara, J. P. (2013). Regional
groundwater flow in an area mapped as continuous per-
mafrost, NE Alaska (USA). Hydrogeology Journal, 21(1), 41–
52.

Kelley, C. T. (2003). Solving nonlinear equations with Newton’s method.
Society for Industrial; Applied Mathematics.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization.
Proceedings of ICNN’95-international conference on neural net-

works, 4, 1942–1948.
Kirkland, M. R., Hills, R., & Wierenga, P. (1992). Algorithms for

solving Richards’ equation for variably saturated soils. Wa-

ter Resources Research, 28(8), 2049–2058.

https://wiki.lsce.ipsl.fr/interfrost/doku.php?id=test_cases:one
https://wiki.lsce.ipsl.fr/interfrost/doku.php?id=test_cases:one


bibliography 203

Kokelj, S. V., & Jorgenson, M. (2013). Advances in thermokarst
research. Permafrost and Periglacial Processes, 24(2), 108–119.

Kollet, S. J., & Maxwell, R. M. (2006). Integrated surface–groundwater
flow modeling: A free-surface overland flow boundary con-
dition in a parallel groundwater flow model. Advances in

Water Resources, 29(7), 945–958.
Kosugi, K. (1999). General model for unsaturated hydraulic con-

ductivity for soils with lognormal pore-size distribution.
Soil Science Society of America Journal, 63(2), 270–277.

Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher,
J., Friedlingstein, P., Ciais, P., Sitch, S., & Prentice, I. C. (2005).
A dynamic global vegetation model for studies of the cou-
pled atmosphere-biosphere system. Global Biogeochemical Cy-

cles, 19(1).
Kurylyk, B. L., Hayashi, M., Quinton, W. L., McKenzie, J. M., &

Voss, C. I. (2016). Influence of vertical and lateral heat trans-
fer on permafrost thaw, peatland landscape transition, and
groundwater flow. Water Resources Research, 52(2), 1286–1305.

Kurylyk, B. L., MacQuarrie, K. T., & McKenzie, J. M. (2014a). Cli-
mate change impacts on groundwater and soil tempera-
tures in cold and temperate regions: Implications, mathe-
matical theory, and emerging simulation tools. Earth-Science

Reviews, 138, 313–334.
Kurylyk, B. L., McKenzie, J. M., MacQuarrie, K. T., & Voss, C. I.

(2014b). Analytical solutions for benchmarking cold regions
subsurface water flow and energy transport models: One-
dimensional soil thaw with conduction and advection. Ad-

vances in Water Resources, 70, 172–184.
Kurylyk, B. L., & Watanabe, K. (2013). The mathematical repre-

sentation of freezing and thawing processes in variably-
saturated, non-deformable soils. Advances in Water Resources,
60, 160–177.



204 bibliography

Lafaysse, M., Cluzet, B., Dumont, M., Lejeune, Y., Vionnet, V., &
Morin, S. (2017). A multiphysical ensemble system of nu-
merical snow modelling. The Cryosphere, 11(3), 1173.

Langer, M., Westermann, S., Boike, J., Kirillin, G., Grosse, G., Peng,
S., & Krinner, G. (2016). Rapid degradation of permafrost
underneath waterbodies in tundra landscapes—toward a
representation of thermokarst in land surface models. Jour-

nal of Geophysical Research: Earth Surface, 121(12), 2446–2470.
Langham, E. (1974). Phase equilibria of veins in polycrystalline ice.

Canadian Journal of Earth Sciences, 11(9), 1280–1287.
Larwa, B. (2019). Heat transfer model to predict temperature dis-

tribution in the ground. Energies, 12(1), 25.
Lawrence, D., Fisher, R., Koven, C., Oleson, K., Swenson, S., &

Vertenstein, M. (2019). CLM5 documentation (tech. rep.). Tech-
nical report, Boulder, CO: National Center for Atmospheric
Research.

Lee, H., Swenson, S. C., Slater, A. G., & Lawrence, D. M. (2014).
Effects of excess ground ice on projections of permafrost
in a warming climate. Environmental Research Letters, 9(12),
124006.

Lehning, M., Bartelt, P., Brown, B., Russi, T., Stöckli, U., & Zim-
merli, M. (1999). SNOWPACK model calculations for avalanche
warning based upon a new network of weather and snow
stations. Cold Regions Science and Technology, 30(1-3), 145–
157.

Lewis, R., & Ravindran, K. (2000). Finite element simulation of
metal casting. International Journal for Numerical Methods in

Engineering, 47(1-3), 29–59.
Ling, F., & Zhang, T. (2003). Numerical simulation of permafrost

thermal regime and talik development under shallow thaw
lakes on the Alaskan Arctic Coastal Plain. Journal of Geo-

physical Research: Atmospheres, 108(D16).



bibliography 205

Liu, S., Lu, L., Mao, D., & Jia, L. (2007). Evaluating parameteriza-
tions of aerodynamic resistance to heat transfer using field
measurements. Hydrology and Earth System Sciences, 11(2),
769–783.

Lliboutry, L., & Duval, P. (1985). Various isotropic and anisotropic
ices found in glaciers and polar ice caps and their corre-
sponding rheologies. Annales Geophysicae, 3(2), 207–224.

Lloyd, W., David, O., Ascough II, J. C., Rojas, K. W., Carlson, J. R.,
Leavesley, G. H., Krause, P., Green, T. R., & Ahuja, L. R.
(2011). Environmental modeling framework invasiveness:
Analysis and implications. Environmental Modelling & Soft-

ware, 26(10), 1240–1250.
Lu, N. (2016). Generalized soil water retention equation for ad-

sorption and capillarity. Journal of Geotechnical and Geoenvi-

ronmental Engineering, 142(10), 04016051.
Lu, N., & Godt, J. W. (2013). Hillslope hydrology and stability. Cam-

bridge University Press.
Lunardini, V. J. (1988). Freezing of soil with an unfrozen water content

and variable thermal properties (tech. rep. No. 88-2). US Army
Corps of Engineers, Cold Regions Research & Engineering
Laboratory.

Manzini, G., & Ferraris, S. (2004). Mass-conservative finite volume
methods on 2-D unstructured grids for the Richards’ equa-
tion. Advances in Water Resources, 27(12), 1199–1215.

Marchenko, S., Romanovsky, V., & Tipenko, G. (2008). Numerical
modeling of spatial permafrost dynamics in Alaska. Pro-

ceedings of the 9th International Conference on Permafrost, 29,
1125–1130.

Martin, R. C. (2009). Clean code: A handbook of agile software crafts-

manship. Pearson Education.
McBride, D., Cross, M., Croft, N., Bennett, C., & Gebhardt, J. (2006).

Computational modelling of variably saturated flow in porous



206 bibliography

media with complex three-dimensional geometries. Interna-

tional Journal for Numerical Methods in Fluids, 50(9), 1085–
1117.

Mcdonough, J. M. (2004). Introductory lectures on turbulence physics,

mathematics and modeling (tech. rep.). University of Kentucky.
McKenzie, J. M., & Voss, C. I. (2013). Permafrost thaw in a nested

groundwater-flow system. Hydrogeology Journal, 21(1), 299–
316.

McKenzie, J. M., Voss, C. I., & Siegel, D. I. (2007). Groundwater
flow with energy transport and water–ice phase change:
Numerical simulations, benchmarks, and application to freez-
ing in peat bogs. Advances in Water Resources, 30(4), 966–983.

Menard, C. B., Essery, R., Krinner, G., Arduini, G., Bartlett, P.,
Boone, A., Brutel-Vuilmet, C., Burke, E., Cuntz, M., Dai, Y.,
et al. (2020). Scientific and human errors in a snow model
intercomparison. Bulletin of the American Meteorological Soci-

ety, 1–46.
Metcalfe, R., & Buttle, J. (1999). Semi-distributed water balance

dynamics in a small boreal forest basin. Journal of Hydrology,
226(1-2), 66–87.

Michel, F. A., & Van Everdingen, R. O. (1994). Changes in hy-
drogeologic regimes in permafrost regions due to climatic
change. Permafrost and Periglacial Processes, 5(3), 191–195.

Mongibello, L., Bianco, N., Caliano, M., & Graditi, G. (2018). Nu-
merical simulation of an aluminum container including a
phase change material for cooling energy storage. Applied

System Innovation, 1(3), 34.
Morin, S., Lejeune, Y., Lesaffre, B., Panel, J.-M., Poncet, D., David,

P., & Sudul, M. (2012). An 18-yr long (1993-2011) snow and
meteorological dataset from a mid-altitude mountain site
(Col de Porte, France, 1325 m alt.) for driving and evaluat-
ing snowpack models. Earth System Science Data, 4(1), 13.



bibliography 207

Mualem, Y. (1976). A new model for predicting the hydraulic con-
ductivity of unsaturated porous media. Water Resources Re-

search, 12(3), 513–522.
Muskat, M., & Meres, M. W. (1936). The flow of heterogeneous

fluids through porous media. Physics, 7(9), 346–363.
National Research Council. (2001). Basic research opportunities in

earth science.
Nazzi Ehms, J. H., De Césaro Oliveski, R., Oliveira Rocha, L. A.,

Biserni, C., & Garai, M. (2019). Fixed grid numerical mod-
els for solidification and melting of phase change materials
(PCMs). Applied Sciences, 9(20), 4334.

Nedjar, B. (2002). An enthalpy-based finite element method for
nonlinear heat problems involving phase change. Comput-

ers & Structures, 80(1), 9–21.
Nelson, F., Outcalt, S., Brown, J., Shiklomanov, N., & Hinkel, K.

(1998). Spatial and temporal attributes of the active layer
thickness record, Barrow, Alaska, USA. Proceedings of the

Seventh International Conference on Permafrost, Yellowknife, NWT,

23-27 June 1998, (57), 797–802.
Nicolsky, D., Romanovsky, V., & Tipenko, G. (2007a). Using in-

situ temperature measurements to estimate saturated soil
thermal properties by solving a sequence of optimization
problems. The Cryosphere, 1(1), 41–58.

Nicolsky, D., Romanovsky, V., Alexeev, V., & Lawrence, D. (2007b).
Improved modeling of permafrost dynamics in a gcm land-
surface scheme. Geophysical Research Letters, 34(8).

Nicolsky, D., & Romanovsky, V. E. (2018). Modeling long-term per-
mafrost degradation. Journal of Geophysical Research: Earth

Surface, 123(8), 1756–1771.
Nobel, P. (1999). Physicochemical & environmental plant physiology.

Academic Press.



208 bibliography

Nye, J., & Frank, F. (1973). Hydrology of the intergranular veins in
a temperate glacier. Symposium on the Hydrology of Glaciers,
95, 157–161.

Ochsner, T. E., Horton, R., & Ren, T. (2001). A new perspective on
soil thermal properties. Soil Science Society of America Jour-

nal, 65(6), 1641–1647.
Oleson, K., Dai, Y., Bonan, B., Bosilovichm, M., Dickinson, R., Dirmeyer,

P., Hoffman, F., Houser, P., Levis, S., Niu, G.-Y., et al. (2004).
Technical description of the Community Land Model (CLM) (tech.
rep.). NCAR.

O’Neill, H. B., Smith, S., & Duchesne, C. (2019). Long-term per-
mafrost degradation and thermokarst subsidence in the Macken-
zie Delta area indicated by thaw tube measurements. Cold

Regions Engineering 2019 (pp. 643–651). American Society of
Civil Engineers Reston, VA.

Painter, S. L. (2011). Three-phase numerical model of water migra-
tion in partially frozen geological media: Model formula-
tion, validation, and applications. Computational Geosciences,
15(1), 69–85.

Paniconi, C., & Putti, M. (1994). A comparison of Picard and New-
ton iteration in the numerical solution of multidimensional
variably saturated flow problems. Water Resources Research,
30(12), 3357–3374.

Paniconi, C., & Putti, M. (2015). Physically based modeling in
catchment hydrology at 50: Survey and outlook. Water Re-

sources Research, 51(9), 7090–7129.
Paniconi, C., & Wood, E. F. (1993). A detailed model for simulation

of catchment scale subsurface hydrologic processes. Water

Resources Research, 29(6), 1601–1620.
Peckham, S. D., Hutton, E. W., & Norris, B. (2013). A component-

based approach to integrated modeling in the geosciences:
The design of CSDMS. Computers & Geosciences, 53, 3–12.



bibliography 209

Penna, D., Hopp, L., Scandellari, F., Allen, S. T., Benettin, P., Beyer,
M., Geris, J., Klaus, J., Marshall, J. D., Schwendenmann,
L., et al. (2018). Ideas and perspectives: Tracing terrestrial
ecosystem water fluxes using hydrogen and oxygen stable
isotopes–challenges and opportunities from an interdisci-
plinary perspective. Biogeosciences, 15(21), 6399–6415.

Pienitz, R., Doran, P. T., & Lamoureux, S. F. (2008). Origin and
geomorphology of lakes in the polar regions. Polar lakes and

rivers: limnology of Arctic and Antarctic aquatic ecosystems, 25–
41.

Prentice, I. C., Liang, X., Medlyn, B. E., & Wang, Y.-P. (2015). Reli-
able, robust and realistic: The three R’s of next-generation
land-surface modelling. Atmospheric Chemistry and Physics,
15(10), 5987–6005.

Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of sur-
face heat flux and evaporation using large-scale parameters.
Monthly Weather Review, 100(2), 81–92.

Quarteroni, A., Sacco, R., & Saleri, F. (2010). Numerical mathematics

(Vol. 37). Springer Science & Business Media.
Quinton, W., & Marsh, P. (1999). A conceptual framework for

runoff generation in a permafrost environment. Hydrolog-

ical Processes, 13(16), 2563–2581.
Raupach, M., & Thom, A. S. (1981). Turbulence in and above plant

canopies. Annual Review of Fluid Mechanics, 13(1), 97–129.
Rempel, A. W., Wettlaufer, J., & Worster, M. G. (2004). Premelting

dynamics in a continuum model of frost heave. Journal of

Fluid Mechanics, 498, 227.
Richards, L. A. (1931). Capillary conduction of liquids through

porous mediums. Physics, 1(5), 318–333.
Richardson, L. F. (1922). Weather prediction by numerical process.

Cambridge University Press.



210 bibliography

Rigon, R., Bancheri, M., Formetta, G., & de Lavenne, A. (2016a).
The geomorphological unit hydrograph from a historical-
critical perspective. Earth Surface Processes and Landforms,
41(1), 27–37.

Rigon, R., Bancheri, M., & Green, T. R. (2016b). Age-ranked hydro-
logical budgets and a travel time description of catchment
hydrology. Hydrology and Earth System Sciences, 20(12), 4929–
4947.

Rigon, R., Bertoldi, G., & Over, T. M. (2006a). GEOtop: A dis-
tributed hydrological model with coupled water and en-
ergy budgets. Journal of Hydrometeorology, 7(3), 371–388.

Rigon, R., Ghesla, E., Tiso, C., & Cozzini, A. (2006b). The HORTON

machine: A system for dem analysis the reference manual. (tech.
rep.). University of Trento.

Riseborough, D., Shiklomanov, N., Etzelmüller, B., Gruber, S., &
Marchenko, S. (2008). Recent advances in permafrost mod-
elling. Permafrost and Periglacial Processes, 19(2), 137–156.

Rizzoli, A., Svensson, M., Rowe, E., Donatelli, M., Muetzelfeldt, R.,
van der Wal, T., van Evert, F., & Villa, F. (2006). Modelling

framework (SeamFrame) requirements (tech. rep.). SEAMLESS.
Roe, P. L. (1981). Approximate Riemann solvers, parameter vec-

tors, and difference schemes. Journal of Computational Physics,
43(2), 357–372.

Romano, N., Palladino, M., & Chirico, G. (2011). Parameterization
of a bucket model for soil-vegetation-atmosphere modeling
under seasonal climatic regimes. Hydrology and Earth System

Sciences, 15(12), 3877–3893.
Romano, N., Brunone, B., & Santini, A. (1998). Numerical anal-

ysis of one-dimensional unsaturated flow in layered soils.
Advances in Water Resources, 21(4), 315–324.

Ronan, A. D., Prudic, D. E., Thodal, C. E., & Constantz, J. (1998).
Field study and simulation of diurnal temperature effects



bibliography 211

on infiltration and variably saturated flow beneath an ephemeral
stream. Water Resources Research, 34(9), 2137–2153.

Ruhaak, W., Anbergen, H., Grenier, C., McKenzie, J., Kurylyk, B.,
Molson, J., Roux, N., & Sass, I. (2015). Benchmarking nu-
merical freeze/thaw models. Energy Procedia.

Saito, H., Šimünek, J., & Mohanty, B. P. (2006). Numerical analysis
of coupled water, vapor, and heat transport in the vadose
zone. Vadose Zone Journal, 5(2), 784–800.

Schuur, E. A., McGuire, A. D., Schädel, C., Grosse, G., Harden, J.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence,
D. M., et al. (2015). Climate change and the permafrost car-
bon feedback. Nature, 520(7546), 171–179.

Serafin, F. (2019). Enabling modeling framework with surrogate model-

ing capabilities and complex networks (Doctoral dissertation).
University of Trento.

Sergueev, D., Tipenko, G., Romanovsky, V., & Romanovskii, N.
(2003). Mountain permafrost thickness evolution under in-
fluence of long-term climate fluctuations (results of numeri-
cal simulation). Proceedings of the VII International Permafrost

Conference, Switzerland, 21–25.
Shewchuk, J. R. et al. (1994). An introduction to the conjugate gra-

dient method without the agonizing pain.
Shiklomanov, N. I., Streletskiy, D. A., Little, J. D., & Nelson, F. E.

(2013). Isotropic thaw subsidence in undisturbed permafrost
landscapes. Geophysical Research Letters, 40(24), 6356–6361.

Shiklomanov, N. I., Streletskiy, D. A., Nelson, F. E., Hollister, R. D.,
Romanovsky, V. E., Tweedie, C. E., Bockheim, J. G., & Brown,
J. (2010). Decadal variations of active-layer thickness in moisture-
controlled landscapes, Barrow, Alaska. Journal of Geophysical

Research: Biogeosciences, 115(G4).



212 bibliography

Shur, Y. L., & Jorgenson, M. (2007). Patterns of permafrost forma-
tion and degradation in relation to climate and ecosystems.
Permafrost and Periglacial Processes, 18(1), 7–19.

Shur, Y., Hinkel, K. M., & Nelson, F. E. (2005). The transient layer:
Implications for geocryology and climate-change science.
Permafrost and Periglacial Processes, 16(1), 5–17.

Šimünek, J., Van Genuchten, M. T., & Sejna, M. (2012). The HY-
DRUS software package for simulating the two-and three-
dimensional movement of water, heat, and multiple solutes
in variably-saturated porous media. Technical manual.

Šimünek, J., Van Genuchten, M. T., & Sejna, M. (2005). The HYDRUS-
1D software package for simulating the one-dimensional
movement of water, heat, and multiple solutes in variably-
saturated media. University of California-Riverside Research

Reports, 3, 1–240.
Skiena, S. (1990). Graph isomorphism. Implementing Discrete Math-

ematics: Combinatorics and Graph Theory with Mathematica,
181–187.

Sophocleous, M. (1979). Analysis of water and heat flow in unsaturated-
saturated porous media. Water Resources Research, 15(5), 1195–
1206.

Srivastava, R., & Yeh, T.-C. J. (1991). Analytical solutions for one-
dimensional, transient infiltration toward the water table
in homogeneous and layered soils. Water Resources Research,
27(5), 753–762.

Streletskiy, D. A., Shiklomanov, N. I., & Nelson, F. E. (2012). Per-
mafrost, infrastructure, and climate change: A GIS-based
landscape approach to geotechnical modeling. Arctic, Antarc-

tic, and Alpine Research, 44(3), 368–380.
Streletskiy, D. A., Suter, L. J., Shiklomanov, N. I., Porfiriev, B. N., &

Eliseev, D. O. (2019). Assessment of climate change impacts
on buildings, structures and infrastructure in the russian



bibliography 213

regions on permafrost. Environmental Research Letters, 14(2),
025003.

Tan, X., Chen, W., Tian, H., & Cao, J. (2011). Water flow and heat
transport including ice/water phase change in porous me-
dia: Numerical simulation and application. Cold Regions Sci-

ence and Technology, 68(1-2), 74–84.
Teodosio, B., Pauwels, V. R., Loheide, S. P., & Daly, E. (2017). Re-

lationship between root water uptake and soil respiration:
A modeling perspective. Journal of Geophysical Research: Bio-

geosciences, 122(8), 1954–1968.
Tomin, P., & Lunati, I. (2016). Investigating Darcy-scale assump-

tions by means of a multiphysics algorithm. Advances in

Water Resources, 95, 80–91.
Tubini, N., & R, R. (2021). Geoframepy [Last accessed: 25 August

2021]. https://pypi.org/project/geoframepy/
Tubini, N. (2020a). https://zenodo.org/record/4017668#.X4l3f-1

S82w
Tubini, N. (2020b). FreeThaw-1D OMS project [Last accessed: 16 Oc-

tober 2020]. https://github.com/GEOframeOMSProjects
/OMS_FreeThaw1D

Tubini, N. (2020c). FreeThaw-1D source code [Last accessed: 16 Oc-
tober 2020]. https://github.com/geoframecomponents/Fr
eeThaw1D

Tubini, N., Gruber, S., & Rigon, R. (2020). A method for solving
heat transfer with phase change in ice or soil that allows for
large time steps while guaranteeing energy conservation.
The Cryosphere, 1–41.

Tufano, R., Formetta, G., Calcaterra, D., & De Vita, P. (2021). Hy-
drological control of soil thickness spatial variability on
the initiation of rainfall-induced shallow landslides using
a three-dimensional model. Landslides, 1–14.

https://pypi.org/project/geoframepy/
https://zenodo.org/record/4017668#.X4l3f-1S82w
https://zenodo.org/record/4017668#.X4l3f-1S82w
https://github.com/GEOframeOMSProjects/OMS_FreeThaw1D
https://github.com/GEOframeOMSProjects/OMS_FreeThaw1D
https://github.com/geoframecomponents/FreeThaw1D
https://github.com/geoframecomponents/FreeThaw1D


214 bibliography

Unidata. (n.d.-a). Chunking Data with NetCDF-4 [Last accessed: 1

April 2021].
Unidata. (n.d.-b). Formats and performance [Last accessed: 1 April

2021].
Unidata. (2021). NetCDF version 4.3.22. Boulder, CO: UCAR/U-

nidata Program Center. https://doi.org/https://doi.or
g/10.5065/D6H70CW6

Van Genuchten, M. T. (1980). A closed-form equation for predict-
ing the hydraulic conductivity of unsaturated soils. Soil Sci-

ence Society of America Journal, 44(5), 892–898.
Vanderborght, J., Kasteel, R., Herbst, M., Javaux, M., Thiéry, D.,

Vanclooster, M., Mouvet, C., & Vereecken, H. (2005). A set
of analytical benchmarks to test numerical models of flow
and transport in soils. Vadose Zone Journal, 4(1), 206–221.

Verseghy, D. L. (1991). CLASS—A canadian land surface scheme
for GCMs. I. Soil model. International Journal of Climatology,
11(2), 111–133.

Vincent, W. F., Lemay, M., & Allard, M. (2017). Arctic permafrost
landscapes in transition: Towards an integrated earth sys-
tem approach. Arctic Science, 3(2), 39–64.

Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Moigne, P. L.,
Martin, E., & Willemet, J.-M. (2012). The detailed snowpack
scheme crocus and its implementation in SURFEX v7. 2.
Geophysical Research Geoscientific Model Development Letters,
5(3), 773–791.

Voller, V. R., Swaminathan, C. R., & Thomas, B. G. (1990). Fixed
grid techniques for phase change problems: A review. Inter-

national Journal for Numerical Methods in Engineering, 30(4),
875–898.

Voller, V., & Cross, M. (1981). Accurate solutions of moving bound-
ary problems using the enthalpy method. International Jour-

nal of Heat and Mass Transfer, 24(3), 545–556.

https://doi.org/https://doi.org/10.5065/D6H70CW6
https://doi.org/https://doi.org/10.5065/D6H70CW6


bibliography 215

Voller, V. R. (1990). Fast implicit finite-difference method for the
analysis of phase change problems. Numerical Heat Transfer,
17(2), 155–169.

Voss, C. I., & Provost, A. (2002). SUTRA: A model for 2D or 3D

saturated-unsaturated, variable-density ground-water flow with

solute or energy transport (tech. rep.). U.S. Geological Survey
Water-Resources Investigations Report.

Vuik, C. (1993). Some historical notes about the stefan problem.
Walvoord, M. A., & Kurylyk, B. L. (2016). Hydrologic impacts of

thawing permafrost—A review. Vadose Zone Journal, 15(6).
Walvoord, M. A., Voss, C. I., & Wellman, T. P. (2012). Influence of

permafrost distribution on groundwater flow in the context
of climate-driven permafrost thaw: Example from Yukon
Flats Basin, Alaska, United States. Water Resources Research,
48(7).

Wang, T., Ottlé, C., Boone, A., Ciais, P., Brun, E., Morin, S., Krinner,
G., Piao, S., & Peng, S. (2013). Evaluation of an improved
intermediate complexity snow scheme in the ORCHIDEE
land surface model. Journal of Geophysical Research: Atmo-

spheres, 118(12), 6064–6079.
Watanabe, K., & Mizoguchi, M. (2002). Amount of unfrozen wa-

ter in frozen porous media saturated with solution. Cold

Regions Science and Technology, 34(2), 103–110.
Wellman, T. P., Voss, C. I., & Walvoord, M. A. (2013). Impacts of cli-

mate, lake size, and supra-and sub-permafrost groundwa-
ter flow on lake-talik evolution, Yukon Flats, Alaska (USA).
Hydrogeology Journal, 21(1), 281–298.

Wendykier, P. (2010). https://sites.google.com/site/piotrwendyk
ier/software/parallelcolt

Westermann, S., Langer, M., Boike, J., Heikenfeld, M., Peter, M., Et-
zelmüller, B., & Krinner, G. (2016). Simulating the thermal
regime and thaw processes of ice-rich permafrost ground

https://sites.google.com/site/piotrwendykier/software/parallelcolt
https://sites.google.com/site/piotrwendykier/software/parallelcolt


216 bibliography

with the land-surface model cryogrid 3. Geophysical Research

Geoscientific Model Development Letters, 9(2), 523–546.
Westermann, S., Schuler, T., Gisnås, K., & Etzelmüller, B. (2013).

Transient thermal modeling of permafrost conditions in South-
ern Norway. The Cryosphere, 7(2), 719–739.

Wever, N., Fierz, C., Mitterer, C., Hirashima, H., & Lehning, M.
(2014). Solving Richards equation for snow improves snow-
pack meltwater runoff estimations in detailed multi-layer
snowpack model. The Cryosphere, 8(1), 257.

Whitaker, S. (1986). Flow in porous media I: A theoretical deriva-
tion of Darcy’s law. Transport in porous media, 1(1), 3–25.

Wierenga, P., Hagan, R. M., & Nielsen, D. (1970). Soil temperature
profiles during infiltration and redistribution of cool and
warm irrigation water. Water Resources Research, 6(1), 230–
238.

Woo, M.-K., Kane, D. L., Carey, S. K., & Yang, D. (2008). Progress
in permafrost hydrology in the new millennium. Permafrost

and Periglacial Processes, 19(2), 237–254.
Yang, Y., Wu, J., Zhao, S., Han, Q., Pan, X., He, F., & Chen, C.

(2018). Assessment of the responses of soil pore properties
to combined soil structure amendments using X-ray com-
puted tomography. Scientific reports, 8(1), 1–10.

Zha, Y., Yang, J., Zeng, J., Tso, C.-H. M., Zeng, W., & Shi, L. (2019).
Review of numerical solution of Richardson–Richards equa-
tion for variably saturated flow in soils. Wiley Interdisci-

plinary Reviews: Water, 6(5), e1364.
Zhang, S., Meurey, C., & Calvet, J.-C. (2019). Identification of soil-

cooling rains in southern France from soil temperature and
soil moisture observations. Atmospheric Chemistry and Physics,
19(7), 5005–5020.

Zhang, Y., Carey, S. K., & Quinton, W. L. (2008). Evaluation of
the algorithms and parameterizations for ground thawing



bibliography 217

and freezing simulation in permafrost regions. Journal of

Geophysical Research: Atmospheres, 113(D17).
Zhang, Y., Chen, W., & Cihlar, J. (2003). A process-based model

for quantifying the impact of climate change on permafrost
thermal regimes. Journal of Geophysical Research: Atmospheres,
108(D22).

Zona, D., Lipson, D., Zulueta, R., Oberbauer, S., & Oechel, W.
(2011). Microtopographic controls on ecosystem function-
ing in the Arctic Coastal Plain. Journal of Geophysical Re-

search: Biogeosciences, 116(G4).



218 bibliography


	Titlepage
	Acknowledgements
	Contents
	1 Introduction
	1.1 Setting up the water budget
	1.2 The three or four worlds
	1.3 The necessary coupling with the energy budget
	1.4 Heat transport
	1.5 Solutes transport
	1.6 Organisation and scope

	2 WHETGEO-1D
	2.1 General issues of the TEXT equation
	2.1.1 The discretization of the TEXT equation
	2.1.2 Surface boundary condition

	2.2 Heat transport and numerics issues
	2.2.1 The discretization of the heat equation
	2.2.2 Driving the heat equation with the surface energy budget

	2.3 Algorithms
	2.3.1 The NCZ algorithm
	2.3.2 The scalar case

	2.4 Informatics
	2.4.1 Design requirements
	2.4.2 The software organisation
	2.4.3 Generic Programming at work

	2.5 Information for Users and Developers
	2.5.1 Workflow for Users
	2.5.2 Inputs and outputs
	2.5.3 Workflow for Developers

	2.6 R2 test cases
	2.6.1 Analytical solution of Srivastava and Yeh (1991)
	2.6.2 Analytical solution of Vanderborght et al. (2005)
	2.6.3 Surface boundary condition
	2.6.4 Energy budget

	2.7 Code availability
	2.8 Conclusion remarks

	3 Heat conduction in frozen soil 1D
	3.1 Introduction
	3.2 The governing equations and their numerical issues
	3.3 Discretization of the enthalpy equation
	3.4 Analytical benchmarks
	3.4.1 Neumann analytical solution
	3.4.2 Lunardini analytical solution

	3.5 Numerical test
	3.6 FreeThaw-1D and WHETGEO-1D
	3.7 Commonly used simulation software
	3.8 Code availability
	3.9 Conclusion remarks

	4 Richards 2D
	4.1 Grid
	4.2 Algorithms
	4.2.1 Conjugate gradient method
	4.2.2 Matrix-free algorithm

	4.3 Code design
	4.3.1 The matrix-vector product, Matop
	4.3.2 The Conjugate gradient method, ConjugateGradient
	4.3.3 The NCZ algorithm, NestedNewtonCG

	4.4 Test cases
	4.4.1 Analytical solution of Srivastava and Yeh (1991)
	4.4.2 Test problem 1
	4.4.3 Test problem 2
	4.4.4 Test problem 3

	4.5 Conclusion remarks

	5 Synopsis
	5.1 Concluding remarks
	5.2 Contribution
	5.3 Future research
	5.3.1 Frozen ground
	5.3.2 Lysimeter GEO
	5.3.3 WHETGEO-2D


	A Object Modelling System v. 3
	B GEOframe
	C Enthalpy and internal energy
	D Neumann Analytical solution
	E Lunardini Analytical solution
	 Bibliography

