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ABSTRACT
A geometric environment for the study of non-holonomic Lagrangian systems is developed. A definition of admissible displace-
ment valid in the presence of arbitrary non-linear kinetic constraints is proposed. The meaning of ideality for non-strictly mechani-
cal systems is analyzed. The concepts of geometric and/or dynamical symmetry of a constrained system are discussed and embodied
in a subsequent non-holonomic formulation of Noether theorem. A revisitation of the results in an “extrinsic” variational lan-
guage is worked out. A few examples and an appendix illustrating some properties of the manifold of admissible kinetic states are
presented.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0046925

I. INTRODUCTION
Despite its relatively ancient origin, non-holonomic mechanics is still a challenging field of research. The bibliography on the subject is

quite rich: besides the foundational aspects,1–3 a largely incomplete list of recent contributions includes Refs. 4–15 and references therein. An
extension of the symplectic reduction theory16,17 to non-holonomic mechanics is presented in Ref. 18. An analysis of the connection between
constrained systems and control theory may be found in Ref. 19. A variational principle for mechanical systems subject to kinetic constraints
and a corresponding formulation of Noether theorem are proposed in Ref. 20 and exemplified in Ref. 21. Alternative formulations of the
theorem are developed in Refs. 22–25.

Despite these contributions, work still remains to be done. Among the arguments deserving more in-depth analysis, a significant one is
the relationship between non-holonomic symmetries and conservation laws. This and other related topics are the subject of the present paper.

The presentation includes a preliminary discussion of the geometric setup. The concept of ideal constraints and the resulting equations
of motion are briefly reviewed.

A more subtle analysis concerns the concept of admissible displacement: the argument, straightforward in the case of linear constraints,
is extended to arbitrary non-linear ones through a process of “pointwise linearization,” associating to each kinetic state of the system a linear
constraint “osculating” the original one. The construction, based on the affine nature of the first jet of the configuration manifold, relies on the
introduction of an algorithm, here called the Poincaré–Cartan map, assigning to each function f (t, q, q̇) a semibasic 1-form ϑ( f ), expressing
the first order Taylor expansion of f along the fibers of the jet.

On this basis, a formulation of d’Alembert’s principle valid for both positional and kinetic constraints is obtained.
The interplay between admissible displacements and canonical lifts of specific classes of vector fields from the configuration manifold to

the velocity space is subsequently considered.26 The argument leads to a natural characterization of the geometric and/or dynamic symmetries
consistent with the constraints and to a subsequent analysis of the relation between symmetry properties and conservation laws for non-
holonomic systems.

For completeness, the whole setup is finally placed in an “extrinsic” variational context, centered on the use of an action functional I
defined on the totality of sections of the configuration manifold and not only on the admissible ones.
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The aim is to verify that an admissible section γ is a solution of the equations of motion if and only if it is an extremal of I with respect to
the totality of deformations with fixed end points tangent to fields of admissible virtual displacements along γ. Given the above, the analysis
of the behavior of the action functional under arbitrary admissible deformations of the extremals provides a further insight into the relation
between dynamic symmetries and conservation laws.

The presentation is completed by a (perhaps too) thorough discussion of a few examples and by an appendix illustrating the rela-
tion between specific attributes of the constraints—notably sub-linearity and partial integrability—and geometric properties of the family of
admissible displacements.

II. GEOMETRIC SETUP
A. Preliminaries

For convenience of the reader, we review here a few aspects of jet bundle geometry, especially relevant to the subsequent
discussion.26,27

(i) Let Vn+1
tÐ→R denote an (n + 1) dimensional fiber bundle referred to fibered coordinates t, q1, . . . , qn, with t representing absolute time.

The first jet j1(Vn+1)
πÐ→Vn+1 is an affine bundle over Vn+1, modeled on the vertical space V(Vn+1) and canonically isomorphic to the

affine submanifold {x ∣ ṫ(x) = 1} in T(Vn+1). We interpret Vn+1 as the configuration manifold of a Lagrangian system and j1(Vn+1) as
the associated velocity space.

The concepts of the vertical bundle V( j1(Vn+1)), contact bundle C( j1(Vn+1)), vertical lift of vectors, and the definition of the
fundamental tensor of j1(Vn+1) are regarded as known. For details, the reader is referred to Ref. 27 and references therein.

Unless otherwise stated, we refer to j1(Vn+1) to local jet coordinates t, qi, q̇i. The notation ωi ∶= dqi − q̇idt is used through-
out. The symbol ⟨ ∥ ⟩ indicates the non-singular pairing between V(j1(Vn+1)) and C(j1(Vn+1)) based on the duality relations
⟨ ∂

∂q̇r ∥ωk⟩ = δk
r .

For any function f ∈ ℱ ( j1(Vn+1)), the contact 1-form dv f = ∂ f
∂q̇k ωk, uniquely characterized by the requirement ⟨V ∥ dv f ⟩

= V( f ) ∀V ∈ V( j1(Vn+1)), is called the fiber differential of f .27 The fundamental tensor of j1(Vn+1) is denoted by J = ∂
∂q̇k ⊗ ωk.

(ii) Every vector field X ∈ D1(Vn+1) determines a corresponding variational vector field T(X) on the tangent space T(Vn+1).26,28 The latter
is tangent to the submanifold j1(Vn+1)

iÐ→T(Vn+1) if and only if the field X satisfies the condition ℒ X(dt) = 0,⇔ ⟨X, dt⟩ = α = const.
In the stated circumstance, the field X is called isochronous.

The totality of isochronous fields over Vn+1 form an infinite dimensional Lie algebra, henceforth denoted by H. Every element
X = α ∂

∂t + Xi ∂
∂qi ∈ H can be lifted to a vector field X̂ over j1(Vn+1), i-related to T(X). In coordinates, the resulting expression reads

X̂ ∶= α ∂

∂t
+ Xi ∂

∂qi + Ẋi ∂

∂q̇i , (1a)

with Ẋi = ∂Xi

∂t +
∂Xi

∂qk q̇k denoting the symbolic time derivative of Xi.
A significant feature of the algorithm (1a) is its localizability on curves: given any section γ : R→ Vn+1, the restriction of X̂ to the

first jet extension j1(γ) depends only on the knowledge of X on γ, thereby inducing a correspondence sending each isochronous vector
field X(t) = α( ∂

∂t )γ + Xi(t)( ∂
∂qi )

γ
along γ into the field,

X̂(t) = α( ∂
∂t
)

j1(γ)
+ Xi(t)( ∂

∂qi )
j1(γ)
+ dXi

dt
( ∂

∂q̇i )
j1(γ)

(1b)

along j1(γ).
(iii) An important result, borrowed from classical mechanics, is the existence of a correspondence ϑ : ℱ ( j1(Vn+1))→ D1(j1(Vn+1)),

henceforth called the Poincaré–Cartan map, converting each function f (t, q, q̇) into the semibasic 1-form,

ϑ( f ) = f dt + dvf = f dt + ∂ f
∂q̇k ωk. (2)

Through the algorithm (2), every function f ∈ ℱ (j1(Vn+1)) gives rise to a linear map g : V(j1(Vn+1))→ C(j1(Vn+1)) sending each
vertical vector U = U i ∂

∂q̇i into the contact 1-form g(U) = U d[ϑ( f )]. In coordinates, we have the expression
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g(U) = U (d f ∧ dt + d( ∂ f
∂q̇k ) ∧ ω

k − ∂ f
∂q̇k dq̇k ∧ dt) = Uh ∂2 f

∂q̇h ∂q̇k ω
k. (3)

In view of the latter, the map g is non-singular if and only if det( ∂2 f
∂q̇h ∂q̇k ) ≠ 0 everywhere on j1(Vn+1).

Remark 1. For later use, it is worth spending a few words on the relation between the map (2) and the affine nature of the fibration
j1(Vn+1)

πÐ→Vn+1. To this end, given any Ϛ ∈ Vn+1, we recall that the (n + 1)-dimensional vector space P1(Ϛ) ⊂ ℱ (π−1(Ϛ)) formed by the totality
of affine polynomials of degree 1 over the fiber π−1(Ϛ) is canonically isomorphic to the cotangent space T∗Ϛ (Vn+1) through the correspondence

p = a0 + ak q̇k ⇄ p̃ ∶= a0 dt∣Ϛ + ak dqk
∣Ϛ. (4)

Furthermore, each point x ∈ π−1(Ϛ) determines a projection ℱ (π−1(Ϛ))→ P1(Ϛ) assigning to every function f (q̇1, . . . , q̇n) the unique
polynomial p(x, f ) ∈ P1(Ϛ) defined by the conditions p(x, f )(x) = f (x), (dp(x, f ))

∣x
= (d f )∣x, namely,

p(x, f )(q̇1, . . . , q̇n) = f (q̇1(x), . . . , q̇n(x)) + ( ∂ f
∂q̇k )

x
(q̇k − q̇k(x)). (5)

On account of Eq. (4), polynomial (5) identifies a 1-form

p̃(x, f ) = [ f (x) − ( ∂ f
∂q̇k )

x
q̇k(x)]dt∣Ϛ + (

∂ f
∂q̇k )

x
dqk
∣Ϛ (6)

in the cotangent space T∗Ϛ (Vn+1). By means of the pull-back (πx)∗∗, the latter can be lifted to a 1-form

(πx)∗∗(p̃(x, f )) = [ f dt + ∂ f
∂q̇k (dqk − q̇k dt)]

x
= [ f dt + ∂ f

∂q̇k ω
k]

x

at the point x, synthetically denoted by ϑ( f )∣x.
In this way, by varying x in π−1(Ϛ) and Ϛ in Vn+1, we obtain a correspondence ϑ assigning to each function f ∈ ℱ (j1(Vn+1)) a semibasic

1-form ϑ( f ) ∈ D1(j1(Vn+1)), expressed in coordinates by Eq. (2). In particular, if p = a0 + ak q̇k is the linear polynomial over j1(Vn+1) associated
with the 1-form p̃ = a0 dt + ak dqk ∈ D1(Vn+1), a straightforward check shows that the 1-form ϑ(p) coincides with the pull-back π∗(p̃).

(iv) The presence of non-holonomic constraints is accounted for by restricting the space of admissible kinetic states to a fibered
submanifold,

Referring the space A to fibered coordinates t, q1, . . . , qn, z1, . . . , zr , the imbedding A iÐ→ j1(Vn+1) is locally expressed as

q̇k = ψk(t, q1, . . . , qn, z1, . . . , zr) , k = 1, . . . , n, (7a)

with rank∥ ∂(ψ1
⋅ ⋅ ⋅ψn

)

∂(z1 ⋅ ⋅ ⋅zr)
∥ = r. Alternatively, A can be represented implicitly as

gσ(t, q1, . . . , qn, q̇1, . . . , q̇n) = 0 , σ = 1, . . . , n − r, (7b)

with rank∥ ∂(g1
⋅ ⋅ ⋅gn−r

)

∂(q̇1 ⋅ ⋅ ⋅q̇n)
∥ = n − r.
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A section γ : R→ Vn+1 is admissible if and only if there exists a section γ̂ : R→ A, called the lift of γ, satisfying the conditions
π ⋅ γ̂ = γ, i ⋅ γ̂ = j1(γ).

Given any bundle W over j1(Vn+1), its restriction to the submanifold A is denoted by WA. For simplicity, no distinction is made
between A and its image i(A), between semibasic 1-forms in T∗A(j1(Vn+1)) and semibasic 1-forms in T∗(A), or between the tangent
space T(A) and its push-forward i∗(T(A)) ⊂ TA(j1(Vn+1)).

(v) The vertical and the contact bundles are easily adapted to the submanifold A, giving rise to analogous bundles, respectively denoted
by V(A), C(A), identified with corresponding sub-bundles of TA(j1(Vn+1)) and T∗A(j1(Vn+1)).

The annihilator of the vertical space V(A) under the pairing ⟨ ∥ ⟩ identifies a distinguished sub-bundle χ(A) ⊂ C(A), called
the Chetaev bundle.5 Its elements are contact 1-forms ν = νiωi along A, satisfying the conditions

⟨ν ∥ ∂

∂zA ⟩ = νk
∂ψk

∂zA = 0, A = 1, . . . , r.

If the submanifold A is represented in the implicit form (7b), a local basis for χ(A) is provided by the (pull-back of) the fiber
differentials dvgσ = ∂gσ

∂q̇k ωk.
(vi) The vector sub-bundle (χ(A))0 ⊂ TA(j1(Vn+1)) formed by the totality of vectors along A annihilating the Chetaev 1-forms under

ordinary pairing will play a central role in all subsequent developments. For the time being, referring χ(A) to the local basis dv gσ

induced by the representation (7b), we note that every Y ∈ (χ(A))0 satisfies the relation

0 = ⟨Y , dvgσ⟩ = ⟨Y , ωi⟩ ∂gσ

∂q̇i = ⟨J(Y), dgσ⟩ , σ = 1, . . . , n − r,

with J denoting the fundamental tensor of j1(Vn+1).
Therefore, for a vector Y ∈ TA(j1(Vn+1)), being an element of (χ(A))0 does not mean being tangent to the submanifold A but

having an image J(Y) tangent to A.

B. Ideal constraints
The equations of motion of a mechanical system subject to ideal kinetic constraints are well known.1–5,9–12,24 In this subsection, we add a

few remarks on the subject.
The situation we will consider is summarized as follows: in the manifold j1(Vn+1), we are given a semispray Ẑ, called the free dynamical

flow, determined by a corresponding “extrinsic” Lagrangian L̂ = L̂(t, q, q̇), describing what the evolution of a given system B would be in the
absence of kinetic constraints. For generality, the function L̂ is not assumed to be a polynomial of degree 2 in the variables q̇i but only to satisfy
the regularity condition det( ∂2L̂

∂q̇h ∂q̇k ) ≠ 0, i.e., to induce a non-singular map g : V(j1(Vn+1))→ C(j1(Vn+1)).
Composed with the pairing ⟨ ∥ ⟩, the map g determines a (possibly non-positive) scalar product between vertical vectors, expressed in

components as

(U, V) ∶= ⟨U ∥ g(V)⟩ = ∂2L̂
∂q̇h ∂q̇k UhVk.

In the stated geometric setup, the kinetic constraints are accounted for by the introduction of the submanifold A iÐ→ j1(Vn+1) and of
the associated class of admissible evolutions. The pull-back L ∶= i∗(L̂) = L̂(t, qk,ψk(t, qk, zA)) is called the intrinsic Lagrangian; the pull-back

pk = i∗( ∂L̂
∂q̇k ), related to L by the identities pk

∂ψk

∂zA = ∂L
∂zA , are called the kinetic momenta.

In a mechanical context, the constraints are thought of as devices interacting with the system through corresponding reactive forces,
modifying the original free flow Ẑ and converting it into an effective dynamical flow Z, tangent to the submanifold A. Being a physical
operation determined by the nature of the reactive forces, the conversion process has no natural counterpart in the pseudo-mechanical
context considered here, the term “pseudo” referring to the broader class of allowed Lagrangians.

To address this aspect, a natural approach, similar to the one adopted in classical mechanics, consists in postulating a specific conversion
algorithm, incorporating it into the definition of a corresponding class of constraints.

In doing this, attention must be paid to the fact that when applied to mechanical systems, the resulting scheme has a precise physical
meaning. To achieve this goal, we note that being a vertical vector, the difference Z − Ẑ is completely determined by the knowledge of the
contact 1-form g(Z − Ẑ) = (Z − Ẑ) dϑ(L̂), where, by definition, the contribution Ẑ dϑ(L̂) vanishes identically. Specifying the conversion
algorithm Ẑ → Z is therefore equivalent to characterizing the internal product Z dϑ(L̂).

On the other hand, since the effective flow Z is (the push forward of) a vector field over A, we have the identifications
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Z dϑ(L̂) = Z i∗(dϑ(L̂)) = Z d(Ldt + pk ω
k), (8)

with L and pk, respectively, denoting the intrinsic Lagrangian and the kinetic momenta. With this in mind, we introduce the following
definition:29

Definition 1. A kinetic constraint is called ideal if and only if the 1-form described by Eq. (8) is a Chetaev 1-form.

Let us verify that when applied to mechanical systems, Definition 1 reproduces the standard notion of ideality based on Gauss principle
of least constraint.4,5 For simplicity, we consider a discrete system, formed by N points Pi of masses mi, subject to arbitrary positional and/or
kinetic constraints.

We denote by F i the active forces, by ϕ
i

the reactive ones, and by Z the effective dynamical flow and adopt the standard notation of
analytical mechanics for positions, velocities, etc. The constraint function is then

C ∶= 1
2

N

∑
i=1

mi∣ai −
F i
mi
∣
2
, (9)

with

ai =
∂2Pi

∂t2 + 2
∂2Pi

∂t ∂qk ψk + ∂2Pi

∂qk ∂qr ψ
kψr + ∂ψi

∂qk (
∂ψk

∂t
+ ∂ψk

∂qr ψr + ∂ψk

∂zA żA).

Minimizing function (9) within the class of admissible accelerations at a given kinetic state x = (t, qi, zA) yields the equations

0 = ∂C
∂żA =

N

∑
i=1
(miai − F i) ⋅

∂ai
∂żA =

N

∑
i=1
(miai − F i) ⋅

∂Pi

∂qk
∂ψk

∂zA . (10)

Recalling the standard representation of ∑i miai ⋅
∂Pi
∂qk in terms of the kinetic energy T̂ = 1

2∑i miv
2
i and assuming the existence of a

generalized potential Û(t, q, q̇) satisfying the relation∑i F i ⋅ ∂Pi
∂qk = ∂Û

∂qk − d
dt

∂Û
∂q̇k , Eq. (10) can be written in the form

[Z( ∂L̂
∂q̇k ) −

∂L̂
∂qk ]

∂ψk

∂zA = 0, (11)

with L̂ = T̂ + Û denoting the extrinsic Lagrangian.
On the other hand, definition (3) of the Poincaré–Cartan map entails the identity

Z d(ϑ(L̂)) = Z [dL̂ ∧ dt + d( ∂L̂
∂q̇k ) ∧ ω

k + ∂L̂
∂q̇k dωk] = [Z( ∂L̂

∂q̇k ) −
∂L̂
∂qk ]ω

k.

Together with Eq. (11), the latter shows that Z d(ϑ(L̂)) is a Chetaev 1-form, thus proving that in a mechanical context, Definition 1
reproduces the content of Gauss principle.

Returning to the general case, Definition 1 itself is a statement about the fact that the evolution of any Lagrangian system subject to ideal
constraints is described in terms of the free Lagrangian L̂ by the equation30

Z d(ϑ(L̂)) = [Z( ∂L̂
∂q̇k ) −

∂L̂
∂qk ]ω

k ∈ χ(A), (12)

commonly written in the form (11) or in the equivalent one

Z( ∂L̂
∂q̇k ) −

∂L̂
∂qk = λσ

∂gσ

∂q̇k .

As anticipated in Eq. (8), Eq. (11) can be formulated in terms of geometric objects pertaining to the environment A, namely, the intrinsic
Lagrangian L and the kinetic momenta pk. The argument is entirely straightforward;4,5 on account of the identity ∂L

∂qk = ∂L̂
∂qk + pr

∂ψr

∂qk , the
resulting equation reads
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[Z(pk) −
∂L
∂qk + pr

∂ψr

∂qk ]
∂ψk

∂zA = 0. (13)

Remark 2. The approach adopted so far focuses on the genesis of the equations of motion, rather than on their technical aspects. The
conclusion, expressed in intrinsic form by Eq. (13), is that for Lagrangian systems subject to ideal constraints, the significant dynamical objects
are the intrinsic Lagrangian L and the momenta pk. We could therefore do without the extrinsic Lagrangian and set up a formalism based solely
on intrinsic quantities.

Although formally correct, this procedure would spoil the analysis of the first integrals, reducing it to a mere formalism, devoid of any
geometrical insight. We will therefore continue to use the extrinsic Lagrangian L̂, bearing in mind that, as a dynamic object, the latter is defined
up to an equivalence relation of the form

L̂ ∼ L̂′ ⇐⇒ (dL̂)
x
− (dL̂)

x
= (dḟ )

x
∀ f ∈ ℱ (Vn+1), ∀ x ∈ A,

accounting both for the arbitrariness in the prolongation of L̂ outside the submanifold A and for the invariance of the Lagrange equations under
arbitrary gauge transformations L̂′ = L̂ + ḟ , f ∈ ℱ (Vn+1). We let the reader verify that equivalent Lagrangians L̂, L̂′ do indeed lead to the same
intrinsic equations (13).

C. Admissible displacements
(i) An important element of rationalization comes from the analysis of the concept of admissible displacement in the presence of non-

holonomic constraints.
Matters are straightforward when all constraints are linear: in this case, A is an affine sub-bundle of j1(Vn+1), formed by the totality

of kinetic states x = ( ∂
∂t )π(x) + q̇i(x)( ∂

∂qi )
π(x)

annihilating the linear module spanned by n − r independent 1-forms μσ = μσ0dt + μσi dqi,

σ = 1, . . . , n − r, or, what is the same, fulfilling a set of linear equations of the form gσ(t, q, q̇) = μσ0(t, q) + μσi (t, q)q̇i = 0.
In any configuration Ϛ ∈ Vn+1, the admissible displacements are then vectors X = X0( ∂

∂t )Ϛ + Xi( ∂
∂qi )

Ϛ
∈ TϚ(Vn+1) satisfying the

condition ⟨X,μσ⟩ = 0.
In the stated circumstance, the Poincaré–Cartan map (2) entails the identification

ϑ(gσ) = gσdt + ∂gσ

∂q̇k ω
k = (μσ0 + μσk q̇k)dt + μσk(dqk − q̇kdt) = π∗(μσ).

For any kinetic state x ∈ π−1(Ϛ) and any vector X̂ ∈ Tx(j1(Vn+1)), the latter implies the relation

showing that the vanishing of ⟨(πx)∗X̂,μσ⟩, σ = 1, . . . , n − r is equivalent to the vanishing of ⟨X̂, ν⟩ ∀ ν ∈ χ(A).
Summing up, we conclude that in the presence of linear constraints, the admissible displacements are push-forward of vectors

belonging to the sub-bundle (χ(A))0 ⊂ T(j1(Vn+1)).
Dropping the linearity assumption does not change the result but requires a more careful interpretation. In fact,

● the lack of a description of the constraints based solely on the environment Vn+1 precludes any possibility of defining the
admissible displacements regardless of the knowledge of the kinetic state of the system;

● if A πÐ→Vn+1 is not an affine sub-bundle of j1(Vn+1), for each Ϛ ∈ Vn+1, the image space π∗(Tx(j1(Vn+1))may generally depend
on the point x in the fiber π−1(Ϛ).

Both aspects are accounted for by the interpretation of the Poincaré–Cartan map outlined in Remark 1. To clarify this point, we represent
A in the implicit form (7b), and denote by πA the restriction to A of the projection π : j1(Vn+1)→ Vn+1.

We then observe that for any configuration Ϛ ∈ Vn+1, the fiber AϚ ∶= π−1
A (Ϛ) is a submanifold of the affine space π−1(Ϛ), locally described

by the equations gσ(t(Ϛ), qi(Ϛ), q̇i) = 0, and that for any kinetic state x ∈ AϚ, the tangent plane to AϚ at x is the affine submanifold of π−1(Ϛ)
described by the equations +(∂gσ

∂q̇k )
x
(q̇k − q̇k(x)) = 0, the cancellation being due to the vanishing of gσ on A.

For any x ∈ AϚ, there exists therefore a linear constraint tangent to the original one, i.e., approximating it in a neighborhood of x, up to
second order terms in the velocities.
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The idea is then that as far as the admissible displacements X ∈ TϚ(Vn+1) are concerned, the restrictions imposed by the origi-
nal constraint when the system is in the kinetic state x coincide with those imposed by the corresponding linearized one, i.e., with
notation (6),

X admissible ⇐⇒ ⟨X, p̃(x,gσ)⟩ = ⟨X,(∂gσ

∂q̇k )
x
((dqk)Ϛ − q̇k(x)(dt)Ϛ)⟩ = 0. (14)

However, as already pointed out, the requirement [Eq. (14)] is equivalent to the validity of a representation of the form X = (πx)∗(X̂),
with X̂ ∈ Tx(j1(Vn+1)) satisfying ⟨X̂, (dvgσ)x⟩ = 0, σ = 1, . . . , n − r, i.e., with X̂ annihilating the totality of Chetaev 1-forms at x.

We can therefore state:

Proposition 1. If the system is in a kinetic state x projecting into a configuration Ϛ, the admissible displacements X ∈ TϚ(Vn+1) are images
under the map π∗ of vectors belonging to the annihilator (χ(A)x)0 ⊂ Tx(j1(Vn+1)).

In coordinates, on account of Eq. (14), the displacements allowed by the constraints when the system is in the kinetic state x have
components X0( ∂

∂t )Ϛ + Xi( ∂
∂qi )

Ϛ
fulfilling the conditions (Xk − X0q̇k(x))(∂gσ

∂q̇k )
x
= 0, summarized into the representation

Xk = X0 ψk(x) +UA(∂ψ
k

∂zA )
x

for arbitrary X0, UA ∈ R. For later use, setting VA = UA − X0zA, we express it in the more convenient form

Xk = X0(ψk − zA ∂ψk

∂zA )
x
+ VA(∂ψ

k

∂zA )
x
. (15)

An admissible displacement satisfying ⟨X, dt⟩ = 0 is called a virtual displacement.

(ii) In a mechanical context, the previous arguments help extending d’Alembert’s principle of virtual work to the class of ideal kinetic
constraints.

On account of Eq. (15), given a system of points placed in positions Pi = Pi(Ϛ) with velocities v i(x) = (∂Pi
∂t )Ϛ + (

∂Pi
∂qk )

Ϛ
q̇k(x), the

effect of a virtual displacement X is, in fact, the family of displacements

δPi = (
∂Pi

∂qk )
Ϛ
Xk = ( ∂Pi

∂qk )
Ϛ
(∂ψ

k

∂zA )
x

VA.

Accordingly, the virtual work done by the reactive force is

δL =
N

∑
i=1

ϕ
i
⋅ δPi =

N

∑
i=1

ϕ
i
⋅ ( ∂Pi

∂qk )
Ϛ
(∂ψ

k

∂zA )
x

VA.

In particular, the vanishing of δL for all virtual displacements is expressed by the condition

N

∑
i=1

ϕ
i
⋅ ( ∂Pi

∂qk )
Ϛ
(∂ψ

k

∂zA )
x
= 0

which, on account of the second law Fi + ϕi = miai , is a restatement of Eq. (10).
In the present context, d’Alembert’s characterization of ideality is therefore perfectly meaningful and equivalent to Gauss one.

(iii) Proposition 1 does not exclude the existence of unconditionally admissible displacements, namely, of displacements X ∈ TϚ(Vn+1)
whose admissibility holds for any kinetic state x ∈ AϚ: a necessary and sufficient condition for this to happen is the existence of vector
fields V = VA ∂

∂zA along AϚ satisfying a relation of the form

Xk = X0(ψk
Ϛ − zA ∂ψk

Ϛ

∂zA ) + VA ∂ψk
Ϛ

∂zA , (16)

with X0, Xk = const and with ψk
Ϛ denoting the restriction of the function ψk to the fiber AϚ.
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A typical and somehow foundational example occurs when all constraints are linear. For more general constraints, we consider
the following two alternatives:
(a) when X0 ≠ 0, by a proper choice of the coordinates qi, we can ensure the validity of the representation X = X0 ∂

∂t . Up to a reorder-
ing of indices, in the neighborhood of each point x ∈ AϚ, we also entitled to adopt q̇1, . . . , q̇r as fiber coordinates, thus expressing
the first r functions ψk

Ϛ (z) as ψA
Ϛ = zA, A = 1, . . . , r.

In the resulting framework, Eq. (16) entails the relation ψk
Ϛ − zA ∂ψk

Ϛ
∂zA = 0, characterizing the ψk

Ϛ ’s as homogeneous functions
of degree 1 in the variables zA.

This fact, together with the implicitly assumed differentiability, forces each ψk
Ϛ to be a homogeneous polynomial of degree

1: the existence of unconditionally admissible displacements X satisfying ⟨X, dt⟩ ≠ 0 implies therefore the affine character of the
submanifold AϚ ⊂ π−1(Ϛ).

(b) if X0 = 0, Eq. (16) reads

Xk = VA ∂ψk
Ϛ

∂zA . (17)

The virtual displacements X fulfilling Eq. (17) form a (possibly 0-dimensional) subspace U of the vertical space VϚ(Vn+1)
⊂ TϚ(Vn+1).

To grasp their meaning, we recall that VϚ(Vn+1) is the modeling space of the fiber π−1(Ϛ), that every X = Xk( ∂
∂qk )

Ϛ

∈ VϚ(Vn+1) can be lifted to a vertical vector field X(v) = Xk ∂
∂q̇k on π−1(Ϛ), and that the 1-parameter group of translations

x → x + ξX induced by X in π−1(Ϛ) coincides with the 1-parameter group of diffeomorphisms φξ : q̇k → q̇k + ξXk determined
by X(v).

On this account, the content of Eq. (17) is that a vector X belongs to the subspace U if and only if its lift X(v) is tangent to
the submanifold AϚ ⊂ π−1(Ϛ), i.e., if and only if the group of translations associated with X acts on AϚ, sending each point x ∈ AϚ
into a point x → x + ξX ∈ AϚ.

If s ∶= dimU > 0, this action makes AϚ into an affine bundle over the manifold AϚ/U, quotient of AϚ under the equivalence
relation

x ∼ y ⇔ x − y ∈ U.

We can therefore specialize the choice of the coordinates in AϚ, assuming z1, . . . , zs as affine coordinates along the fibers of
the bundle AϚ → AϚ/U and zs+1, . . . , zr as local coordinates on the base manifold AϚ/U.

In this way, each vector field ∂
∂zλ , λ = 1, . . . , s is tangent to the orbits of the 1-parameter group of translations generated by

a vector X(λ) ∈ U, i.e., it is the restriction to AϚ of the vertical lift X(v)
(λ) of X(λ), thereby satisfying an equation of the form

i∗(
∂

∂zλ
) = ∂ψk

Ϛ

∂zλ
∂

∂q̇k ∶= ψ
k
λ

∂

∂q̇k ,

with ψ k
λ ∶=

∂ψk
Ϛ

∂zλ = const.
From this, we conclude that when s > 0, i.e., when the family of unconditionally admissible virtual displacements is non-

empty, the imbedding AϚ → π−1(Ϛ) admits a canonical representation of the form

q̇k = ψk
Ϛ =

s

∑
λ=1

ψ k
λ zλ + ψ k

0 (zs+1, . . . , zr),

with ψ k
λ = const.

In the stated circumstance, the vectors X(λ) = ψ k
λ ( ∂

∂qk )
Ϛ
, λ = 1, . . . , s span U .

(iv) The previous arguments are especially relevant in the study of the class H of isochronous vector fields. A field X ∈ H is said to be
consistent with the constraints if and only if, for any kinetic state x ∈ A, the vector Xπ(x) is an admissible displacement, i.e., if and only
if Xπ(x) is unconditionally admissible.

A necessary and sufficient condition for this to happen is the vanishing of ⟨X̂, ν⟩ ∀ ν ∈ χ(A), X̂ denoting the lift of the field X described
by Eq. (1a).

The totality of isochronous vector fields consistent with the constraints will be denoted by H0. In coordinates, setting X = α ∂
∂t

+ Xi(t, q) ∂
∂qi (with α = const.), the consistency requirement can be expressed in either forms

Xk = α(ψk − zA ∂ψk

∂zA ) + VA ∂ψk

∂zA , (18a)
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with V = VA ∂
∂zA ∈ D1(A), or

Xk ∂gσ

∂q̇k = α ψ
k ∂gσ

∂q̇k , σ = 1, . . . , n − r. (18b)

The situation is pointwise identical to the one discussed in point (iii). We can therefore draw the following conclusions:

● if all constraints are linear, referring the submanifold A to affine coordinates zA and adopting the representation ψk = ψ k
A (t, q)zA

+ ψ k
0 (t, q), Eq. (18a) reads

Xk = α ψ k
0 + VA ψ k

A .

The requirement ∂Xk

∂zB = 0 entails the vanishing of ∂VA

∂zB . Conversely, any choice of the coefficient α and of a set of components
VA = VA(t, q) yield a field X ∈ H0;

● if A is not an affine sub-bundle of j1(Vn+1), a necessary and sufficient condition for the family H0 to be non-empty is the existence of
fibered coordinates t, qi, zA on A yielding a representation of the functions ψk of the form

ψk =
s

∑
α=1

ψ k
λ (t, q)zλ + ψ k

0 (t, q, zs+1, . . . , zr). (19)

The latter entails a factorization of the projection A→ Vn+1 into the product of an affine fibration of A over an intermediate base
space Q referred to coordinates t, qi, zs+1, . . . , zr , followed by a fibration Q→ Vn+1.

Constraints admitting a representation of the form (19) are called sub-linear. In the stated circumstance, the family H0 is locally generated
by the fields

X(λ) = ψ k
λ (t, q) ∂

∂qk , λ = 1, . . . , s.

III. GEOMETRIC AND DYNAMICAL SYMMETRIES
A. Non–holonomic Noether theorem: A differential approach

Let us now focus on the class H0 of isochronous vector fields consistent with the constraints. A field X ∈ H0 whose lift X̂ = α ∂
∂t + Xi ∂

∂qi

+ Ẋi ∂
∂q̇i satisfies the requirement i∗(X̂(L̂)) = 0 is called a geometric symmetry of the system.
Keeping the notation Z for the dynamical flow and ϑ for the Poincaré–Cartan map, for any X ∈ H0, we have the relation

Z ℒ X̂(ϑ(L̂)) = Z [X̂(L̂)dt + X̂( ∂L̂
∂q̇k )ω

k + ∂L̂
∂q̇k (dXk − Ẋkdt)] = i∗(X̂(L̂)),

whence recalling the representation (12) of the evolution equations, as well as the fact that the condition X ∈ H0 implies X̂ ∈ (χ(A))0,

Z(⟨X̂, ϑ(L̂)⟩) = Z d(X̂ ϑ(L̂)) = Z [ℒ X̂ (ϑ(L̂)) − X̂ d(ϑ(L̂))]
= i∗(X̂(L̂)) + ⟨X̂, Z d(ϑ(L̂))⟩ = i∗(X̂(L̂)). (20)

Equation (20) implies the following non-holonomic counterpart of Noether theorem:

Proposition 2. Whenever a field X ∈ H0 is a geometric symmetry of the system, the scalar i∗(⟨X̂, ϑ(L̂)⟩) is a first integral of the equations
of motion.

When the submanifold A is represented in the implicit form gσ(t, q, q̇) = 0, straightforward consequences of Proposition 2 are as follows:

● if all functions gσ are homogeneous polynomials of degree 1 in the variables q̇k, the vanishing of ∂L̂
∂t entails the conservation of the

Hamiltonian,

i∗( ∂L̂
∂q̇k q̇k − L̂) = pkψ

k − L
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● if all functions gσ satisfy ∂gσ

∂q̇k = 0, the vanishing of ∂L̂
∂qk entails the conservation of the momentum pk = i∗( ∂L̂

∂q̇k ).
Both statements are entirely obvious. Their proof is left to the reader.

B. Dynamical symmetries
A more general approach to the study of first integrals is obtained by replacing the concept of geometric symmetry with the weaker one

of dynamical symmetry. To this end, given an admissible section γ : R→ Vn+1, we denote by γ̂ : R→ A the lift of γ and by H∣γ the restriction
to the curve γ of the family H of isochronous vector fields.

The elements of H∣γ are vector fields along γ, expressed in coordinates as

X = X0( ∂
∂t
)
γ
+ Xk(t)( ∂

∂qk )
γ
, (21)

with X0 = const. The field (21) is called admissible if and only if, for each t, the vector X(t) is an admissible displacement of the system in the
kinetic state γ̂(t). A necessary and sufficient condition for this to happen is the validity of the relation

(Xk − X0 dqk

dt
)(∂gσ

∂q̇k )
γ̂
= 0 , σ = 1, . . . , n − r. (22)

Every X ∈ H∣γ can be lifted to a field X̂ along γ̂ [Sec. II, Eq. (1b)]. The lift algorithm, expressed in coordinates as X̂ = X0( ∂
∂t )̂γ + Xk( ∂

∂qk )̂
γ

+ dXk

dt (
∂
∂q̇k )̂

γ
, allows us to associate to the dynamical flow Z a distinguished family H(Z) of vector fields defined along the submanifold A

[formally, a family of sections of the vector bundle TA(j1(Vn+1))→ A].
The construction relies on the fact that the integral lines of Z are jet-extensions of sections γ : R→ Vn+1. Given any field

Y : A→ TA(j1(Vn+1)) satisfying Z(⟨Y , dt⟩) = 0 and an integral curve γ̂ of Z, we can then evaluate the restriction Yγ̂ ∶= Y ⋅ γ̂ and project it
to a vector field Xγ = π∗(Yγ̂) along the section γ = π ⋅ γ̂.

In view of the stated assumptions, Xγ is automatically in the class H∣γ. We can therefore lift it to a vector field X̂γ̂ along γ̂ and compare
it with the original Yγ̂ . The family H(Z) is then defined as the collection of fields Y fulfilling the condition X̂γ̂ = Yγ̂ for all integral curves
of Z.

By abuse of notation, the elements of H(Z) are henceforth denoted by X̂. In coordinates, every X̂ ∈ H(Z) admits a representation of the
form

X̂ = X0(t, q, z) ∂
∂t
+ Xk(t, q, z) ∂

∂qk + Z(Xk) ∂

∂q̇k , (23a)

more conveniently written as

X̂ = X0Z +Uk ∂

∂qk + Z(Uk) ∂

∂q̇k , (23b)

with Z(X0) = 0 and Uk = Xk − X0ψk. Note that, in general, X̂ is not required to be tangent to the submanifold A.
The field X̂ is consistent with the constraints if and only if, for each x ∈ A, the vector Xπ(x) = π∗(X̂x) is an admissible displacement

of the system in the kinetic state x. On account of Proposition 1, the consistency requirement is expressed by the condition X̂ ∈ (χ(A))0,
mathematically equivalent to the validity of a representation of the form

J(X̂) = Uk ∂

∂q̇k = i∗(V) = V(ψk) ∂

∂q̇k (24)

for arbitrary choice of the vector field V = VA ∂
∂zA ∈ D1(A).

The subset X̂ ∈ H(Z) formed by the totality of fields consistent with the constraints is denoted by H0(Z). According to Eq. (24), every
X̂ ∈ H0(Z) is uniquely determined by the assignment of a first integral X0 ∈ ℱ (𝒜 ) and of vertical vector field V ∈ D1(A), without any
restriction on the nature of the imbedding i : A→ j1(Vn+1).

After these preliminaries, let us now come to the construction of possible first integrals: a vector field X̂ ∈ H0(Z) satisfying the condition
X̂(L̂) = 0 is called a dynamical symmetry of the system. With this terminology, every lift of a geometric symmetry is a dynamical symmetry.
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Conversely, a dynamical symmetry is the lift of a geometric symmetry if and only if the components X0, Uk involved in the representation
(23b) satisfy the conditions X0 = const, ∂Uk

∂zA = 0.
Given a dynamical symmetry X̂, in order to evaluate the derivative Z(⟨X̂, ϑ(L̂)⟩), we prolong X̂ to a field defined in a neighborhood of

A, noting that since the dynamical flow Z is tangent to A, the value of Z(⟨X̂, ϑ(L̂)⟩) is independent of the prolongation process.
On account Eq. (23a), we have then the relations

Z ℒ X̂ ω
k = Z (dXk − Z(Xk)dt − q̇kdX0) = 0,

Z ℒ X̂(ϑ(L̂)) = Z [X̂(L̂)dt + L̂dX0 + X̂( ∂L̂
∂q̇k )ω

k + ∂L̂
∂q̇k ℒ X̂ ω

k] = X̂(L̂),

whence also recalling the representation (12) of the evolution equations, as well as the condition X̂ ∈ (χ(A))0,

Z(⟨X̂, ϑ(L̂)⟩) = Z d(X̂ ϑ(L̂)) = Z [ℒ X̂ (ϑ(L̂)) − X̂ d(ϑ(L̂))] = X̂(L̂) + ⟨X̂, Z d(ϑ(L̂)⟩ = X̂(L̂). (25)

We have therefore the following generalization of Proposition 2:

Proposition 3. Whenever a field X̂ ∈ H0(Z) is a dynamical symmetry, the scalar ⟨X̂, ϑ(L̂)⟩ is a first integral of the equations of motion.

Despite the formal analogies, dynamical symmetries are more difficult to evaluate than geometric ones. For this reason, it is often prefer-
able to invert the content of Proposition 3 and use the first integrals as a tool for the determination of the dynamic symmetries. This is achieved
through the following corollary:

Corollary 1. If F(t, q, z) is a first integral of the equations of motion, every vector field of the form

X̂ = X0Z + VA ∂ψk

∂zA
∂

∂qk + Z(VA ∂ψk

∂zA )
∂

∂q̇k

fulfilling the conditions Z(X0) = 0, ⟨X̂, ϑ(L̂)⟩ = F is a dynamical symmetry of the system.
The proof follows at once from Eqs. (23b), (24), and (25). A specialization of Corollary 1, especially useful for practical purposes, is

expressed by the following corollary, whose proof is again a straightforward consequence of Eqs. (23b)–(25):

Corollary 2. Let Ŷ denote a dynamical symmetry satisfying the condition ⟨Ŷ , ϑ(L̂)⟩ = 1. Then, given any first integral F, the vector field
X̂ = FŶ is a dynamical symmetry satisfying ⟨X̂, ϑ(L̂)⟩ = F.

C. Intrinsic formulation
Rephrased in terms of the intrinsic Lagrangian L ∶= i∗(L̂) and of the kinetic momenta pk ∶= i∗( ∂L̂

∂q̇k ), Proposition 3 entails the following
proposition:

Proposition 4. If X0(t, q, z) and V = VA ∂
∂zA are, respectively, a first integral and a vertical vector field fulfilling the relation

X0Z(L) + V(ψk)( ∂L
∂qk − pr

∂ψr

∂qk ) + pk Z(V(ψk)) = 0, (26)

the scalar X0L + VA ∂L
∂zA is a first integral of the equations of motion.

Proof. Regardless of the results established so far, Eq. (26), together with the identity

VA ∂L
∂zA = VA ∂L̂

∂q̇k
∂ψk

∂zA = pkV(ψk),

yields the expression

Z(X0L + pkV(ψk)) = X0Z(L) + pk Z(V(ψk)) + V(ψk)Z(pk) = VA ∂ψk

∂zA (Z(pk) + pr
∂ψr

∂qk −
∂L
∂qk ),
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whose vanishing is ensured by the evolution equation (13). ◻

To verify that Proposition 4 is a restatement of Proposition 3, we observe that on account of Eq. (23b), given the pair X0, V , the vector
field X̂ = X0Z + V(ψk) ∂

∂qk + Z(V(ψk)) ∂
∂q̇k belongs to the class H0(Z).

Furthermore, the identities ∂L
∂qk = ∂L̂

∂qk + pr
∂ψr

∂qk , Z(L̂) = Z(L) entail the relation

X̂(L̂) = X0Z(L) + V(ψk)( ∂L
∂qk − pr

∂ψr

∂qk ) + pkZ(V(ψk)),

which, together with Eq. (26), qualifies X̂ as a dynamical symmetry of the system.31 Given the above equation, the identity

⟨X̂, ϑ(L̂)⟩ = X0L̂ + pkV(ψk) = X0L + VA ∂L
∂zA (27)

establishes the required conclusion.

IV. THE VARIATIONAL SETUP
A. The action principle for non-holonomic Lagrangian mechanics

The non-holonomic Lagrange equation (11) may be interpreted as stationarity conditions for an action functional with respect to a
specified class of variations. The argument is well known. A brief outline is presented below.

In order to encompass all possible situations, we define an isochronous deformation of an admissible section γ : qk = qk(t) as a
1-parameter family of curves γξ : t = φ0(ξ, τ), qk = φk(ξ, τ) fulfilling the conditions

φ0(ξ, τ) = τ + a(ξ), a(0) = 0, φk(0, τ) = qk(τ),

expressing the requirements dt
dτ = 1 and γ0 = γ.

It goes without saying that in the case of deformations with fixed end points on a closed interval [t0, t1], the function a(ξ) is identically
zero so that the representation of γξ takes the simpler form qk = φk(ξ, t).

The vector field X = a′(0)( ∂
∂t )γ +

∂φk

∂ξ ∣ξ=0
( ∂
∂qk )

γ
∶= X0( ∂

∂t )γ + Xk( ∂
∂qk )

γ
is called the infinitesimal deformation associated with γξ . By

Eq. (21), every such field is automatically in the class H∣γ.
An isochronous deformation γξ is called admissible if an only if the associated infinitesimal deformation X is admissible in the sense of

Eq. (22). In the stated circumstance, the differences Uk ∶= Xk − X0ψk
∣γ̂ satisfy a relation of the form

Uk = V(ψk) = VA(∂ψ
k

∂zA )
γ̂
,

i.e., they form the components of a vertical vector field U = i∗(V) = VA( ∂
∂zA )γ̂ tangent to the submanifold A.

It should be noted that unlike what happens in ordinary variational calculus, the present notion of admissibility does not impose any
restriction on the curves γξ(t), ξ ≠ 0—which, in fact, are not required to belong the submanifold A—but only on the tangent vector to the
orbits of the deformation at ξ = 0. This makes the extrinsic approach essential in all subsequent developments.

With these premises, let I[γ] denote the action functional assigning to each section γ : [t0, t1]→ Vn+1 the value of the integral

∫ t1
t0

L̂(t, qk(t), dqk

dt )dt. The aim is to show that an admissible section γ is a solution of the dynamical equation (11) if and only if it is an
extremal of I[γ] with respect to arbitrary admissible deformations with fixed end-points.

To this end, given any deformation γξ : qk = φk(ξ, t) satisfying the admissibility requirement Xk ∶= ∂φk

∂ξ ∣ξ=0
= VA(∂ψ

k

∂zA )
γ̂
, we evaluate

dI[γξ]
dξ
∣
ξ=0
= [ d

dξ ∫
t1

t0

L̂(t,φk,
∂φk

∂t
)dt]

ξ=0
= ∫

t1

t0

( ∂L̂
∂qk Xk + ∂L̂

∂q̇k
dXk

dt
)dt,

i.e., integrating by parts and making use of the end points conditions X(t0) = X(t1) = 0,
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dI[γξ]
dξ
∣
ξ=0
= ∫

t1

t0

( ∂L̂
∂qk −

d
dt

∂L̂
∂q̇k )Xkdt = ∫

t1

t0

( ∂L̂
∂qk −

d
dt

∂L̂
∂q̇k )

∂ψk

∂zA VAdt.

The vanishing of dI[γξ]
dξ ∣ξ=0

for all admissible deformations with fixed end points is therefore expressed by the condition

( ∂L̂
∂qk −

d
dt

∂L̂
∂q̇k )

∂ψk

∂zA = 0

identical to the Lagrange equation (11). This establishes the required identification between solutions of the problem of motion and extremals
of the action functional with respect to the prescribed class of admissible deformations.

B. Dynamical symmetries and conservation laws
The study of the behavior of the action functional under admissible deformations with variable end points provides a further insight into

the relationship between dynamic symmetries and conservation laws.
The argument is entirely classical: given a section γ : [t0, t1]→ Vn+1 satisfying the Lagrange equations, we evaluate the action integral

I[γξ] along an admissible deformation of the general type γξ : t = τ + a(ξ), qk = φk(ξ, τ), namely,

I[γξ] = ∫
t1

t0

L̂(τ + a(ξ),φk(ξ, τ), ∂φ
k

∂τ
)dτ.

Let X = X0( ∂
∂t )γ + Xk( ∂

∂qk )
γ

denote the corresponding infinitesimal deformation, satisfying the prescriptions illustrated in

Subsection III A, namely, X0 = a′(0) = const, Xk = ∂φk

∂ξ ∣ξ=0
= X0ψk∣

γ̂ +Uk, with Uk = V(ψk).

Since, by hypothesis, the lift γ̂ of the section γ is an integral line of the dynamical flow Z, the lift X̂ = X0( ∂
∂t )̂γ + Xk( ∂

∂qk )̂
γ
+ dXk

dt (
∂
∂q̇k )̂

γ
of

the field X can be expressed in the form [analogous to Eq. (23b)]

X̂ = (X0Z +Uk ∂

∂qk +
dUk

dt
∂

∂q̇k )
γ̂
. (28)

On account of Eq. (28), a straightforward calculation yields the evaluation

dI[γξ]
dξ
∣
ξ=0
= ∫

t1

t0

(X0 ∂L̂
∂t
+ Xk ∂L̂

∂qk +
dXk

dt
∂L̂
∂q̇k )Xkdt = ∫

t1

t0

X̂(L̂)dt = ∫
t1

t0

(X0Z(L̂) +Uk ∂L̂
∂qk +

dUk

dt
∂L̂
∂q̇k )dt, (29)

whence integrating by parts and recalling the identifications Uk = V(ψk), L = i∗(L̂), pk = i∗( ∂L̂
∂q̇k ) as well as the fact that curve γ(t) is a solution

of the equations of motion, >

(30)

As it stands, Eq. (30) is simply a statement concerning a single section γ. However, it is easily converted into a general result valid along
any solution of the equations of motion.

To this end, rather than focusing on a specific section γ, we regard as our primary object a dynamical symmetry X̂ ∈ H0(Z), i.e., a field of
the form (23b) along A satisfying the conditions X̂ ∈ (χ(A))0, X̂(L̂) = 0. Then,

● given any curve γ : [t0, t1]→ Vn+1 obeying the equations of motion, the restriction of X̂ to the lift γ̂ is the lift of an admissible
infinitesimal deformation of γ, i.e., of a field X tangent to an admissible deformation γξ ;

● in view of Eqs. (29) and (30), the vanishing of X̂(L̂) ensures the vanishing of dI[γξ]
dξ ∣ξ=0

and therefore also of the increment

[X0L + pkV(ψk)]t1

t0
along γ.

This being true for any solution γ of the equations of motion, recalling the identification (27), we conclude that whenever the field X̂ is a
dynamical symmetry, the scalar ⟨X̂, ϑ(L̂)⟩ = X0L + pkV(ψk) is a first integral of the equations of motion.
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V. EXAMPLES
A. The Chaplygin sleigh

The Chaplygin sleigh is a plane rigid body B with mass center G, sliding without friction on a horizontal plane. The presence of a sharp
blade placed in a point Q ≠ G forces the velocity of Q to be parallel to (G −Q).

We denote by a the distance QG, by m the mass of B, by I its moment of inertia with respect to the vertical axis through Q, and by
r ∶=
√

I/m the so called radius of gyration.
The configuration of the system is determined by the Cartesian coordinates x, y of the point Q and by the angle φ between the vector

(G −Q) and the x axis.
Setting q1 = x, q2 = y, q3 = φ and denoting by v = ẋ e1 + ẏ e2 the velocity of Q, the kinetic constraint is expressed by the condition

g(t, q, q̇) = ẋ sin φ − ẏ cos φ = 0.

Setting z1 = v =
√

ẋ2 + ẏ2, z2 = φ̇, the representation of the submanifold A takes the form q̇k = ψk(t, q, z), with

ψ1(t, q, z) = v cos φ, ψ2(t, q, z) = v sin φ, ψ3(t, q, z) = φ̇. (31)

The extrinsic Lagrangian coincides with the kinetic energy

L̂ = T̂ = 1
2

m(ẋ2 + ẏ2) + 1
2

Iφ̇2 −maφ̇(ẋ sin φ − ẏ cos φ), (32)

while the intrinsic one reads

L = i∗(L̂) = 1
2

m(v2 + r2φ̇2). (33)

In view of Eqs. (18a), (21), (31), and (32), the geometric symmetries of the system are represented by vector fields of the form

X = α ∂

∂t
+ VA(t, q) ∂ψ

k

∂zA
∂

∂qk = α
∂

∂t
+ V1(cos φ

∂

∂x
+ sin φ

∂

∂y
) + V2 ∂

∂φ
,

satisfying the condition

i∗(X̂(L̂)) = i∗[V2 ∂L̂
∂φ
+ d

dt
(V1 cos φ)∂L̂

∂ẋ
+ d

dt
(V1 sin φ)∂L̂

∂ẏ
+ dV2

dt
∂L̂
∂φ̇
]

= m(v dV1

dt
+ r2φ̇

dV2

dt
+ aφ̇2V1 − avφ̇V2) = 0.

Evaluating the symbolic time derivatives, the latter reads

v(∂V1

∂t
+ ∂V1

∂x
v cos φ + ∂V1

∂y
v sin φ + ∂V1

∂φ
φ̇) + aφ̇2V1

+ r2φ̇(∂V2

∂t
+ ∂V2

∂x
v cos φ + ∂V2

∂y
v sin φ + ∂V2

∂φ
φ̇) − avφ̇V2 = 0. (34)

The validity of Eq. (34) requires the simultaneous vanishing of the coefficients of the monomials v, φ̇, v2, vφ̇, φ̇2, namely,

∂V1

∂t
= ∂V2

∂t
= 0, (35a)

∂V1

∂x
cos φ + ∂V1

∂y
sin φ = 0, (35b)

r2 ∂V2

∂φ
+ aV1 = 0, (35c)

J. Math. Phys. 62, 052901 (2021); doi: 10.1063/5.0046925 62, 052901-14

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

∂V1

∂φ
+ r2(∂V2

∂x
cos φ + ∂V2

∂y
sin φ) − aV2 = 0. (35d)

Equations (35b) and (35c) imply the relation

r2 ∂

∂φ
(∂V2

∂x
cos φ + ∂V2

∂y
sin φ) = −a(∂V1

∂x
cos φ + ∂V1

∂y
sin φ) = 0.

In view of this, Eqs. (35c) and (35d) entail the second order differential equation

∂2V1

∂φ2 = a
∂V2

∂φ
= −a2

r2 V1, (36)

Together with Eqs. (35a) and (35b), the latter admits the general solution

V1 = A cos(a
r
φ + β), (37)

with A,β ∈ R .32 Comparing this with Eqs. (35c) and (35d) yields the expression

V2 = −1
r

A sin(a
r
φ + β).

The geometric symmetries of the Chaplygin sleigh form therefore a three-dimensional vector space, spanned by the totality of vector
fields of the form

X = α ∂

∂t
+ A[cos(a

r
φ + β)(cos φ

∂

∂x
+ sin φ

∂

∂y
) − 1

r
sin(a

r
φ + β) ∂

∂φ
].

The corresponding first integrals are the three parameter family of functions

⟨X̂, ϑ(L̂)⟩ = −1
2
αm(v2 + r2φ̇2) + A[cos(a

r
φ + β)mv − sin(a

r
φ + β)mrφ̇].

In particular, we highlight the conservation laws

v2 + r2φ2 = k2
1, (38a)

v cos(a
r
φ + β) − rφ̇ sin(a

r
φ + β) = k2 (38b)

for arbitrary choices of β, k1, k2 ∈ R.
Concerning the determination of possible dynamical symmetries, we proceed as indicated in Corollary 2: by Eqs. (13) and (31)–(33), the

intrinsic equations of motion read

dv
dt
= aφ̇2, (39a)

dφ̇
dt
= − a

r2 v φ̇. (39b)

Equations (38a) and (39a) entail the relation

dv
dt
= a

r2 (k
2
1 − v2),

mathematically equivalent to
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d
dt
[−∫

dv
k2

1 − v2 +
a
r2 t ] = 0 Ô⇒ − 1

2k1
log

k1 + v
k1 − v

+ a
r2 t = const.

The quantity

F ∶=
√

k2
1 − v2

k1 + v
exp(k1 at

r2 ) =
rφ̇

v +
√
v2 + r2φ̇2

exp(
√
v2 + r2φ̇2 at

r2 ) (40)

is therefore a first integral of the equations of motion.
At the same time, with the choice V = 1

mr2φ̇
∂
∂φ̇ , the field

Ŷ = V(ψk) ∂

∂qk + Z(V(ψk)) ∂

∂q̇k =
1

mr2φ̇
( ∂

∂φ
+ av

r2
∂

∂φ̇
)

is easily recognized as a dynamical symmetry satisfying i∗(⟨Ŷ , ϑ(L̂)⟩) = 1
mr2φ̇ i∗( ∂L̂

∂φ̇) = 1. In view of Corollary 2, the field

X̂ = F Ŷ = 1

mr[v +
√
v2 + r2φ̇2 ]

exp(
√
v2 + r2φ̇2 at

r2 )( ∂

∂φ
+ av

r2
∂

∂φ̇
)

is therefore a dynamical symmetry associated with the first integral (40).

B. The rolling disk
A classical example of a non-holonomic system is a homogeneous disk of mass m and radius R whose plane remains vertical and which

rolls without slipping on a horizontal plane. The configuration of the system is determined by the Cartesian coordinates x, y of the mass
center of the disk, by the angle θ between the plane of the disk and the xz plane, and by the rotation angle φ of the disk around its symmetry
axis.

Setting q1 = x, q2 = y, q3 = θ, q4 = φ, z1 = θ̇, z2 = φ̇, the kinetic constraint is expressed by the conditions

g1 = ẋ + R φ̇ cos θ = 0, g2 = ẏ + R φ̇ sin θ = 0

or, in parametric form, by the equations q̇k = ψk(t, q, z), with

ψ1 = −R φ̇ cos θ, ψ2 = −R φ̇ sin θ, ψ3 = θ̇, ψ4 = φ̇. (41)

The extrinsic and intrinsic Lagrangians read, respectively,

L̂ = T̂ = 1
2

m(ẋ2 + ẏ2) + 1
8

mR2(2 φ̇2 + θ̇2), (42)

L = i∗(L̂) = 1
8

mR2(6 φ̇2 + θ̇2). (43)

In view of Eqs. (18a), (21), (41), and (42), the geometric symmetries of the system are vector fields of the form

X = α ∂

∂t
+ VA ∂ψk

∂zA
∂

∂qk = α
∂

∂t
+ V1 ∂

∂θ
− V2(R cos θ

∂

∂x
+ R sin θ

∂

∂y
− ∂

∂φ
)

fulfilling the condition

i∗(X̂(L̂)) = i∗[dV1

dt
∂L̂
∂θ̇
− R(dV2cos θ

dt
∂L̂
∂ẋ
+ dV2sin θ

dt
∂L̂
∂ẏ
) + dV2

dt
∂L̂
∂φ̇
] = 1

4
mR2(dV1

dt
θ̇ + 6

dV2

dt
φ̇) = 0. (44)

Evaluating the symbolic time derivatives, Eq. (44) reads
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[∂V1

∂t
− R(∂V1

∂x
cos θ + ∂V1

∂y
sin θ)φ̇ + ∂V1

∂θ
θ̇ + ∂V1

∂φ
φ̇] θ̇

+ 6[∂V2

∂t
− R(∂V2

∂x
cos θ + ∂V2

∂y
sin θ)φ̇ + ∂V2

∂θ
θ̇ + ∂V2

∂φ
φ̇] φ̇ = 0. (45)

The validity of Eq. (45) requires the simultaneous vanishing of the coefficients of the monomials θ̇, φ̇, θ̇2, φ̇2, θ̇ φ̇, namely,

∂V1

∂t
= ∂V2

∂t
= 0, (46a)

∂V1

∂θ
= 0 Ô⇒ V1 = V1(x, y,φ), (46b)

∂V1

∂x
R cos θ + ∂V1

∂y
R sin θ − ∂V1

∂φ
− 6

∂V2

∂θ
= 0, (46c)

∂V2

∂x
R cos θ + ∂V2

∂y
R sin θ − ∂V2

∂φ
= 0. (46d)

On account of Eqs. (46a) and (46b), Eq. (46c) implies the relation

V2 = 1
6
[∂V1

∂x
R sin θ − ∂V1

∂y
R cos θ − ∂V1

∂φ
θ + f (x, y,φ)].

In view of the latter, Eq. (46d) reads

∂2V1

∂φ ∂x
R sin θ − ∂2V1

∂φ ∂y
R cos θ − ∂2V1

∂φ2 θ + ∂ f
∂φ

−R cos θ (∂
2V1

∂x2 R sin θ − ∂2V1

∂x ∂y
R cos θ − ∂2V1

∂x ∂φ
θ + ∂ f

∂x
)

−R sin θ ( ∂
2V1

∂x ∂y
R sin θ − ∂2V1

∂y2 R cos θ − ∂2V1

∂y ∂φ
θ + ∂ f

∂y
) = 0.

Since both functions V1, f are independent of the variable θ, the validity of the previous equation for all values of ϑ entails the set of
conditions

∂2V1

∂φ2 =
∂2V1

∂x ∂φ
= ∂2V1

∂y ∂φ
= 0 Ô⇒ ∂V1

∂φ
= β = const.,

∂2V1

∂x ∂y
= −∂

2V1

∂x2 +
∂2V1

∂y2 = 0,

∂ f
∂φ
= ∂ f

∂x
= ∂ f

∂y
= 0,

whence by elementary calculations

V1 = βφ + a(x2 + y2) + bx + cy + d, f = e,

with β, a, b, c, d, e = const.
Collecting all results, we conclude that the most general geometric symmetry of the system is described by a vector field of the form

X = α ∂

∂t
+ [a(x2 + y2) + bx + cy + d + βφ] ∂

∂θ

− 1
6
[(2ax + b)R sin θ − (2ay + c)R cos θ + e − βθ](R cos θ

∂

∂x
+ R sin θ

∂

∂y
− ∂

∂φ
).
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The resulting vector space is therefore spanned by the fields

X(1) =
∂

∂t
, X(2) =

∂

∂θ
, X(3) = R cos θ

∂

∂x
+ R sin θ

∂

∂y
− ∂

∂φ
,

X(4) = (x2 + y2) ∂

∂θ
− R

3
(x sin θ − y cos θ)X(3), X(5) = φ

∂

∂θ
+ θ

6
X(3),

X(6) = x
∂

∂θ
− R

6
sin θX(3), X(7) = y

∂

∂θ
+ R

6
cos θX(3).

In view of the relation

i∗(ϑ(L̂)) = −L dt −mR φ̇(cos θ dx + sin θ dy) + 1
4

mR2(2φ̇ dφ + θ̇ dθ)

up to numerical factors, these determine the first integrals

F(1) = 6 φ̇2 + θ̇2, F(2) = θ̇, F(3) = φ̇, (47a)

F(4) = (x2 + y2) θ̇ + 2R(x sin θ − y cos θ) φ̇, F(5) = φ θ̇ − θφ̇, (47b)

F(6) = x θ̇ + R φ̇ sin θ, F(7) = y θ̇ − R φ̇ cos θ. (47c)

Equation (47a), in turn, entails the conservation law

d
dt

h(θ − θ̇t,φ − φ̇t) = ∂h
∂ξ
(dθ

dt
− θ̇) + ∂h

∂η
(dφ

dt
− φ̇) = 0,

with h(ξ,η) being any differentiable function on the torus S1 × S1. We have therefore two further independent first integral that, without loss
of generality, can be chosen in the form

F(8) = cos(θ − θ̇t), F(9) = cos(φ − φ̇t). (48)

By Corollary 1, noting that the field Ŷ = 1
F(1)

X(1) is a dynamical symmetry satisfying ⟨Ŷ , ϑ(L̂)⟩ = const, it is easily seen that the first
integrals (48) are, respectively, associated, up to numerical factors, to the dynamic symmetries,

X̂(8) = F(8)Ŷ =
cos(θ − θ̇t)

6φ̇2 + θ̇2

∂

∂t
, X̂(9) = F(9)Ŷ =

(φ − φ̇t)
6φ̇2 + θ̇2

∂

∂t
.

C. Charged particle subject to a sub-linear kinetic constraint
Consider a point particle with rest mass m0 and electric charge e, moving in an inertial frame under the action of a constant

electromagnetic field E = E e2, B = B e3.
Denoting by qk, k = 1, 2, 3 the Cartesian coordinates and by v = q̇k ek the velocity of P, the relativistic equations of motion

d
dt

m0v√
1 − v2/c2

= e(E + v ∧ B) (49)

can be derived from the extrinsic Lagrangian

L̂ = m0c2(1 −
√

1 − v2/c2) + eq2(E − Bq̇1). (50)

A control device forces the velocity of P to fulfill the constraint equation

g(q̇1, q̇2, q̇3) = (q̇1 − q̇3)2 − (q̇2)2 − c2 = 0 (51)
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expressed in the parametric form as q̇k = ψk(z1, z2), with

ψ1 = c
2
(z1 + cosh z2), ψ2 = c sinh z2, ψ3 = c

2
(z1 − cosh z2). (52)

The representation (52) is of the sub-linear type ψk = ψk
1z1 + ψk

0(z2), with

ψk
1 =

c
2
(1, 0, 1), ψk

0 =
c
2
(cosh z2, 2 sinh z2, − cosh z2). (53)

This entails the existence of an isochronous vector field

X = ψk
1

∂

∂qk =
c
2
( ∂

∂q1 +
∂

∂q3 ) (54)

consistent with the constraints, i.e., satisfying the condition33

⟨X̂, dvg⟩ = c
2
⟨ ∂

∂q1 +
∂

∂q3 , 2(q̇1 − q̇3)(ω1 − ω3) − 2 q̇2ω2⟩ = 0.

On account of Eq. (50), the same field satisfies the relation X̂(L̂) = 0, thereby representing a geometric symmetry of the system. By
Proposition 2, we conclude that the scalar

i∗(⟨X̂, ϑ(L̂)⟩) = i∗( ∂L̂
∂q̇1 +

∂L̂
∂q̇3 ) =

m0c
√

2 z1
√

1 − (z1)2 − 3 sinh2(z2)
− Beq2

is a first integral of the equations of motion. As a check, we may observe that in view of the identification ∂ψk

∂z1 = c
2 (1, 0, 1), the first

Lagrange–Chetaev equation reads

APPENDIX: PARTIAL INTEGRABILITY AND SUB-LINEARITY CONDITIONS FOR KINETIC CONSTRAINTS

In this appendix, we discuss two arguments that, although not strictly relevant in a dynamical context, provide a deeper insight into the
geometry of the submanifold A.

(i) Partially integrable constraints.
When the submanifold A admits an implicit representation involving one or more functions of the form gα(t, q, q̇) = d f α

dt , the
conditions gα = 0 can be integrated and converted into positional restrictions, thus decreasing the number of independent vari-
ables qi along any admissible evolution. In this sense, a truly non-holonomic system is one in which no such a reduction process is
available.

To analyze this point, let C denote a completely integrable k-dimensional distribution (2r + 1 ≤ k ≤ n + r + 1) containing the
annihilator (χ(A))0 of the Chetaev bundle.34 Then,

(a) in the neighborhood of each point, C admits p = n + r + 1 − k functionally independent “first integrals” f α(t, q, z), meant as
functions satisfying Y( f α) = 0 for all Y ∈ C;

(b) the differentials df α span the annihilator C0, which, by construction, is contained in χ(A): each df α is therefore a Chetaev 1-form,
hence a semibasic 1-form satisfying ⟨Z, d f α⟩ = 0 for all semisprays Z ∈ D1(A);

In view of (b), each f α is independent of the variables zA: more specifically, it is the pull-back of a function f α(t, q) on Vn+1

satisfying d f α

dt = 0 along any admissible evolution of the system: of the n − r kinetic constraints gσ = 0, p have therefore a positional
character.

Conversely, if the kinetic constraints imply the validity of p independent conservation laws f α(t, q) = const, the symbolic
time derivatives ḟ α = ∂ f α

∂t +
∂ f α

∂qk q̇k satisfy the relations

i∗(ḟ α) = ḟ α(t, qk,ψk(t, q, z)) = 0 ⇒ ∂ ḟ α

∂q̇k
∂ψk

∂zA = 0 ⇒ i∗(dv ḟ α) ∈ χ(A).
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On the other hand, by the very definition of ḟ α, we have

i∗(dv ḟ α) = i∗(∂ f α

∂qk ω
k) = ∂ f α

∂qk (dqk − ψk dt) = ∂ f α

∂qk dqk + ∂ f α

∂t
dt = d f α,

whence d f α ∈ χ(A). The annihilator of the p-dimensional module spanned by the differentials df α is therefore a completely
integrable distribution C ⊃ (χ(A))0.

Summing up, we conclude that the kinetic constraints induce a foliation of the configuration manifold Vn+1 into a p-
parameter family of leaves f α(t, q) = const, p being the co-dimension of the smallest completely integrable distribution C
containing the annihilator (χ(A))0, namely, the distribution obtained by “closing” (χ(A))0 with respect to the Lie bracket
operation.

The extreme cases p = n − r (⇔ C = (χ(A))0) and p = 0 (⇔ C = D1(A)) correspond, respectively, to the case of totally
integrable constraints and to the strictly non-holonomic case.

(ii) Sub-linear constraints.
By definition, the sub-linear constraints are kinetic constraints admitting a parametric representation of the form

ψk =
s

∑
α=1

ψ k
α (t, q)zα + ψ k

0 (t, q, zs+1, . . . , zr). (A1)

An intrinsic characterization of this type of constraints can be based on the following considerations:

● given a semispray Z = ∂
∂t + ψ

k ∂
∂qk + ZA ∂

∂zA and a semibasic 1-form μ = μ0dt + μkdqk, the correspondence

P(μ) ∶= μ − ⟨Z,μ⟩ dt = μk ω
k

does not depend on the specific choice of Z, maps μ into a contact 1-form, and satisfies the relation P2 = P: it is therefore a
projection of the module of semibasic 1-forms onto the module of contact 1-forms over A;

● given a contact 1-form σ = σkωk and a vertical vector field V = VA ∂
∂zA , the Lie derivative ℒV σ = V(σk)ωk − σkV(ψk) dt is a

semibasic 1-form. The composite map DV ∶= P ○ℒV is therefore a differential operator on the module of contact 1-forms,
whose action is expressed in components as

DVσ ∶= P(ℒV σ) = V(σk)ωk. (A2)

Equation (A2) entails the properties DVωk = 0, DV( f σ) = V( f )σ + f DVσ, D f Vσ = f DVσ ∀ f ∈ ℱ (𝒜 ) . In particular,
when ν is a Chetaev 1-form, the relation ℒV ν = V(νk)ωk and Eq. (A2) provide the identification DV ν =ℒVν.

Given the above, we state the following theorem:

Theorem 1. A necessary and sufficient condition for the validity of representation (A1) is the existence of a completely integrable s-
dimensional distribution D ⊂ V(A) such that, denoted by D0 the annihilator of D under the pairing ⟨ ∥ ⟩, the image DV(D0) is contained in
D0 for any vertical vector field V ∈ V(A).

Proof. Necessity: assuming the validity of representation (A1), denote by D the completely integrable distribution spanned by the fields
∂
∂z1 , . . . , ∂

∂zs . Then, for all V ∈ V(A) and all σ ∈ D0, the relation

⟨DVσ ∥
∂

∂zα
⟩ = V(σk)

∂ψk

∂zα
= V(σk ψ

k
α ) = V(⟨σ ∥ ∂

∂zα
⟩) = 0

proves DVσ ∈ D0.
Sufficiency: given a distribution D with the required properties, in the neighborhood of each point x ∈ A, there exist local coordinates

t, q̄k, z̄A satisfying D = Span{ ∂
∂ z̄1 , . . . , ∂

∂ z̄s }. Up to a reordering of q̄1, . . . , q̄n, we can ensure the non-vanishing of det∥∂(ψ
1
⋅ ⋅ ⋅ψs
)

∂(z̄1 ⋅ ⋅ ⋅z̄s)
∥.

In this way, performing the transformation

qk = q̄k, zα = ψα(t, q̄, z̄), zl = z̄l, α = 1, . . . , s, l = s + 1, . . . , r,

we get a new coordinate system t, qk, zA satisfying the conditions
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∂

∂z̄α
= ∂zβ

∂z̄α
∂

∂zβ
Ô⇒ D = Span{ ∂

∂z1 , . . . ,
∂

∂zs }, (A3)

ψα(t, q, z) = zα. (A4)

By Eq. (A3), the annihilator D0 contains the totality of 1-forms σ = σkωk fulfilling the condition σk
∂ψk

∂zα = 0, α = 1, . . . , s. For any
V = VA ∂

∂zA , this implies

the cancelation being due to the requirement DV(D0) ⊂ D0.
By the arbitrariness of V we conclude that, under the stated assumptions, there exists a local coordinate system in which the vanishing of

σk
∂ψk

∂zα implies the vanishing of ∂2ψk

∂zA ∂zα ∀A = 1, . . . , r. A moment’s thought shows that this entails the validity of a linear relation of the form

∂2ψk

∂zA ∂zα
= γ βαA

∂ψk

∂zβ
(A5)

On account of Eq. (A4), for k = λ = 1, . . . , s, Eq. (A5) yields the relations

0 = ∂2ψλ

∂zA ∂zα
= γ βαA

∂ψλ

∂zβ
= γ ββA δ

λ
β = γ λβA.

In view of these, Eq. (A5) reduces to

∂2ψk

∂zA ∂zα
= 0 ∀ k = 1, . . . , n, A = 1, . . . , r, α = 1, . . . , s,

mathematically equivalent to Eq. (A1). ◻

Remark 3. If a distribution D with the properties stated in Theorem 1 exists, its annihilator D0 contains the totality of Chetaev 1-forms
ν ∈ χ(A) and therefore also the Lie derivatives ℒV ν = DV ν ∀V ∈ V(A). Hence, dim(D) cannot exceed the difference n − dim(Λ), Λ denoting
the module generated by the family of 1-forms {ν,ℒV ν ∣ ν ∈ χ(A), V ∈ V(A)}.

In particular, when ℒV(χ(A)) ⊂ χ(A) and only in that case, the distribution D = V(A) generated by the totality of vertical vector fields
satisfies all requirements of Theorem 1. The validity of ℒ V(χ(A)) ⊂ χ(A) is therefore equivalent to dimD = r, i.e., to the linearity of the
constraints.
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