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Abstract. We study the ground-state properties of ultracold bosons in an
optical lattice in the regime of strong interactions. The system is described by
a non-standard Bose–Hubbard model with both occupation-dependent tunneling
and on-site interaction. We find that for sufficiently strong coupling, the
system features a phase transition from a Mott insulator with one particle
per site to a superfluid of spatially extended particle pairs living on top of
the Mott background—instead of the usual transition to a superfluid of single
particles/holes. Increasing the interaction further, a superfluid of particle pairs
localized on a single site (rather than being extended) on top of the Mott
background appears. This happens at the same interaction strength where the
Mott-insulator phase with two particles per site is destroyed completely by
particle–hole fluctuations for arbitrarily small tunneling. In another regime,
characterized by weak interaction but high occupation numbers, we observe a
dynamical instability in the superfluid excitation spectrum. The new ground state
is a superfluid, forming a two-dimensional (2D) slab, localized along one spatial
direction that is chosen spontaneously.
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1. Introduction

Systems of ultracold atoms in optical lattices provide a unique playground for controlled
realizations of many-body physics [1, 2]. For sufficiently deep lattices, the kinetics is exhausted
by tunneling processes, and an initially weak interparticle interaction eventually becomes
important with respect to the kinetics, when the lattice is ramped up. A consequence of
this competition is the quantum phase transition from a superfluid of delocalized bosons to
a Mott insulator, where the particles are localized at minima of the lattice by a repulsive
contact interaction [3]. This effect has been observed in seminal experiments with ultracold
rubidium atoms in a cubic lattice [4]. It is described quantitatively by means of the simple
Bose–Hubbard model [3, 5], whose parameters are the interaction energy U for each pair
of particles occupying the same lattice site, and the matrix element J for tunneling between
neighboring sites. Intriguing Hubbard-type physics can also be observed if the above scenario
is extended to fermions, mixtures of several particle species, exotic lattice geometries or long-
ranged dipolar interaction [1, 2, 6].

In this paper, we consider a different type of extension of the bosonic Hubbard model,
becoming relevant when the interaction between the particles is enhanced, e.g., by means of
a Feshbach resonance. As long as the interaction is weak compared to the lattice potential, a
system of ultracold atoms can be described, to a good approximation, in terms of the lowest-
band single-particle Bloch or Wannier states, the latter being localized at the minima of the
lattice [7]. Under these conditions, the Hubbard interaction U and tunneling parameter J are
given by respective matrix elements with respect to the single-particle Wannier states. This
approximation corresponds to degenerate perturbation theory up to first order with respect to
the interaction, with only the intraband coupling induced by the interaction taken into account.
However, if the interaction is stronger, higher-order corrections start playing a role. One may
still describe the system in terms of lattice-site occupation numbers n j , but the occupied
Wannier-like orbitals will have admixtures from higher bands, depending on the occupation.
The most significant effect of the repulsive interaction will be a broadening of the Wannier-
like orbitals with increasing occupation, effectively enhancing J and decreasing U . In terms
of the Hubbard description, we take this into account by replacing J and U by functions Jn̂i ,n̂ j

and Un̂i of the number operators n̂i . Quantitative consequences of this kind of modification
to the plain bosonic Hubbard model have been studied by several authors at a theoretical
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level [8]–[10]. Considering an interaction-induced modification of the Wannier functions,
additional Mott insulator phases have also been predicted [11, 12]. In [13], the effect of the
interaction-induced coupling to the first excited band on the Mott transition was considered. Re-
entrant behavior in the superfluid–Mott transition has also been predicted due to the interaction-
induced modification of Hubbard parameters [13, 14]. The effect of interaction on the tunneling
dynamics in one-dimensional (1D) double-well and triple-well potentials has been studied in
[15, 16], where the authors found enhanced correlated pair tunneling near the fermionization
limit. Moreover, occupation-number-dependent on-site interaction has been observed
experimentally in the coherent dynamics of an atomic ensemble [17]. Similar occupation-
dependent effects have been observed in Bose–Bose [18] and Fermi–Bose mixtures [19]–[21],
and—in the latter case—have been explained theoretically in terms of occupation-dependent
parameters U and J [22].

In this work, we show that new quantum phases can arise in Hubbard models with number-
dependent parameters. After writing down the effective single-band Hamiltonian, including
the effect of the site occupation, we find that for strong enough interaction (characterized
by the s-wave scattering length as), there is a transition from a Mott state with one particle
localized at each lattice site to a superfluid of pairs extended over neighboring sites, rather than
to a superfluid of single atoms. This feature is novel, considering the fact that the extended
pairs emerge in the single-species repulsive bosonic system without the presence of any long-
range interaction. For even higher interaction strengths, the n = 1 Mott state becomes unstable
towards a superfluid of pairs that are localized on single sites. Moreover, the n = 2 Mott state
becomes unstable towards pair fluctuations already for very low tunneling amplitudes. Finally,
we consider the regime where interaction effects are important not because of large scattering
lengths but rather because of large site-occupation numbers. In this limit, starting from the
Bogoliubov approach to the homogeneous system, we find a phonon instability at a critical
filling fraction. Above that fraction, the new ground state is a Bose condensate with the particle
density being localized along one spatial direction that is chosen spontaneously.

This paper is organized in the following way: in section 2, we introduce the occupation-
dependent Bose–Hubbard model. In section 3, we start discussing the properties of this model.
Namely, we study the instability of the Mott-insulator phase with respect to simple particle
and hole excitations, leading to the usual single-particle superfluidity. In section 4, we then
investigate the instability of the Mott phase with respect to the excitation of bond-centered
pairs of particles being extended over neighboring lattice sites. We show that this mechanism
will eventually become relevant when the s-wave scattering length is increased and that one
finds a phase transition to a superfluid of extended pairs. In section 5, proceeding to even
stronger interaction, the instability of the Mott phase towards a superfluid of site-centered pairs
is discussed. In this regime, moreover, the Mott insulator at a filling of two particles per site
can disappear completely. Finally, in section 6, we focus on the limit where interaction-induced
orbital effects play an important role because of large filling. We find that, with increasing
superfluid density, the condensate may become dynamically unstable.

2. The Bose–Hubbard model

The Hamiltonian in the presence of a periodic potential with lattice constant a, given by
Vper(Er)= V0[sin2(πx/a)+ sin2(πy/a)+ sin2(π z/a)], reads
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H =

∫
d3r ψ̂†(Er)

[
−

h̄2

2m
∇

2 + Vper(Er)+
g

2
|ψ̂(Er)|2

]
ψ̂(Er), (1)

with bosonic field operators ψ̂ , mass m and interaction strength g = 4π h̄2as/m, where as is
the s-wave scattering length. To derive a Hubbard-type description, the field operators ψ̂(Er)
are expanded in terms of Wannier-like orbitals φi(Er , n̂i)= φ(Er − ERi , n̂i) localized at the lattice
minima ERi , namely ψ̂(Er)=

∑
i b̂iφ(Er − ERi; n̂i)with bosonic annihilation and number operators

b̂i and n̂i = b̂†
i b̂i . Note that the ‘wave function’ φi depends on the number operator n̂i in order to

take into account interaction-induced occupation-dependent broadening. Keeping only on-site
interaction, we arrive at the effective single-band Hamiltonian,

H = −

∑
i j

Jn̂i ,n̂ j b̂
†
i b j +

1

2

∑
i

Un̂i n̂i(n̂i − 1)−
∑

µn̂i , (2)

where

Jn̂i ,n̂ j = −

∫
d3r φ(Er − ERi; n̂i)

[
−

h̄2

2m
∇

2 + Vper(Er)

]
φ(Er − ER j; n̂ j + 1),

Un̂i = g
∫

d3r φ2(Er − Ri; n̂i)φ
2(Er − ERi; n̂i − 1),

(3)

and we have introduced the chemical potential µ to control the particle number. We would like
to mention that in the presence of an optical lattice for high interactions, the pseudo-potential
form of contact interaction can still be used, when a modified scattering length that is different
from the bare scattering length is applied [23]–[26].

To estimate the occupation number dependence in a mean-field way, we make a Gaussian
ansatz for the Wannier-like wave functions, φ(Er − ERi; ni)= exp(−(Er − ER)2/d2(ni)), where the
width d(ni) is a variational parameter depending on the particle number ni , and minimize the
Gross–Pitaevskii energy functional. The idea of using the width of the Wannier function as
a variational parameter has also been used in [27]–[29]. Taking into account the full lattice
potential (i.e. not employing a quadratic approximation for the lattice minima) for a given ni ,
this leads to [

d(ni)

d0

]5

exp

[
−π 2 d2(ni)

a2

]
=

d(ni)

d0
+

√
2π

[
V0

ER

]1/4 as

a
(ni − 1). (4)

We have introduced d0/a = [V 0/ER]−1/4/π for the width of φ in the limit V0 � ER, where
ER = π2h̄2/2ma2 denotes the recoil energy. Note that equation (4) has a solution only as long
as

√
V0/ER � d2(ni)/d2

0 . Using the variational result, the tunneling parameter between two
adjacent sites can be approximated by

Jni ,n j

ER
≈

(
π 2

4
− 1

)
V0

ER
exp

[
−

a2

2(d2(ni + 1)+ d2(n j))

]
. (5)

We would like to point out that when calculating the tunneling strength, the Gaussian
approximation generally results in a lower value than the exact calculation; the exact Wannier
orbital has an exponential tail that decays more slowly than a Gaussian. Nevertheless, our simple
approximation provides us with reasonable numerical values and with a suitable model for
the occupation dependence of tunneling in the regime treated here. This allows us to obtain
a qualitative understanding of the physics at work.
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For the number-dependent on-site interaction strength, the variational result gives

Uni

ER
=

√
π

(
V0

ER

)3/4 [
4d2

0

(d2(ni)+ d2(ni − 1))

]3/2
as

a
. (6)

The single-particle tunneling term arising from the non-on-site contributions of the quartic
interaction term in equation (1) is exponentially smaller than J (ni , n j) by approximately a
factor of exp(−π 2

√
V0/ER/4)as/a. Similarly, the pair tunneling term is smaller than J (ni , n j)

by approximately a factor of exp(−π 2
√

V0/ER/2)as/a. Since we are in the limit of V0/ER � 1,
these terms are neglected in equation (2).

3. Insulator to single-particle superfluid transition

Having written down a suitable model Hamiltonian describing the regime of strong interaction,
we now study the transition from the Mott insulator having on average n̄ particles per site to a
superfluid of single particles/holes.

For this purpose, we use a product ansatz
∏

i |8〉i for the many-body state, with the
variational coherent spin-representation state [30, 31],

|8〉i = cos θ |n̄〉i + sin θ sinψ |n̄ + 1〉i + sin θ cosψ |n̄ − 1〉i (7)

at each site i , with occupation number basis states |ni〉i . Here we only take into account states
with one additional particle or hole, which in the Mott phase and close to the transition to
the superfluid, where particle fluctuations are small, is sufficient. Accordingly, the variational
mean-field energy is given by

Ess

N
= −

zHJ

4
sin2 2θ +

[
HU

2
+µ cos 2ψ

]
sin2 θ, (8)

where

HJ = (n̄2 + n̄)Jn̄,n̄ sin 2ψ/2 + (n̄ + 1)Jn̄+1,n̄ sin2ψ + n̄ Jn̄,n̄−1 cos2ψ,

HU = n̄(n̄ − 1)Un̄ cos2 θ + n̄(n̄ + 1)Un̄+1 sin2 θ sin2ψ + (n̄ − 1)(n̄ − 2)Un̄−1 sin2 θ cos2ψ.

(9)

Minimizing the energy determines θ and ψ . While θ = 0 corresponds to an incompressible
Mott-insulator state with an integer number of particles n̄ per site (found within a finite interval
of the chemical potential µ), the superfluid state is characterized by θ 6= 0 with order parameter
〈bi〉 ∼ sin 2θ . In the superfluid phase, the average particle number per site is characterized by
ψ depending smoothly on the chemical potential. For ψ � π/4, the transition to the superfluid
occurs mainly via the creation of holes, while for ψ near π/2 particle creation is the main
mechanism destroying the Mott phase. In the latter case, the Mott insulator becomes unstable
when the energy cost of creating an additional particle at one site, namely Un+1n(n + 1)/2 −µ,
is overcome by the reduction in energy due to tunneling of that particle, which is of the
order of z(n̄ + 1)Jn̄+1,n̄, with coordination number z = 6 for the cubic lattice. Thus, when Ess

minimizes for non-zero θ , the Mott state becomes unstable with respect to single particle and
hole excitations. For interaction strength as/a = 0.15 and n̄ = 1, this happens at the black lines
(solid or dotted) in the plane spanned by µ/V0 and J0,1/V0 in figure 1.
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Figure 1. Mott-insulator-to-superfluid phase transition for as/a = 0.15. Inside
the region marked by the black solid line and the blue dashed line, the system is
a Mott-insulator with n̄ = 1 particles per site. Leaving this region by crossing
the black solid line, a simple superfluid of single particles (or, equivalently,
holes) is formed (SF). In contrast, crossing the blue dashed line arrives at a
superfluid phase of extended (bond-centered) pairs (ePSF). In technical terms of
our variational approaches, outside the black solid and dotted line, minimizing
the energy (8) gives θ 6= 0, while on the rhs of the blue dashed line, θe 6= 0 is
obtained from minimizing expression (12).

4. Superfluidity of extended (bond-centered) pairs

So far, we have described the usual scenario of the Mott phase becoming unstable with respect to
particle and hole delocalization, as it is also found for non-number-dependent Hubbard coupling
J and U . However, we will now show that—as a consequence of occupation-dependent hopping
and on-site interaction—the Mott insulator with n̄ = 1 can become unstable with respect to the
creation of pairs of particles before the creation of single particles becomes favorable. Consider
a pair excitation with one additional particle at site i and another one at the neighboring site
j , corresponding to the state |P〈i j〉〉 ≡

1
2 b̂†

i b̂†
j |{ni = 1}〉. Such a bond-centered or extended pair

excitation at 〈i j〉 can tunnel coherently to a neighboring bond, say 〈ik〉, with k 6= j being another
neighbor of i . Generally, bonds are considered neighbors if they share a common site. Such a
pair tunneling process occurs in second order with respect to single-particle tunneling via the
virtual site-centered pair state |Pi〉 ≡

1
√

3!
b̂†

i b̂†
i |{ni = 1}〉, which has larger energy. According

to second-order degenerate perturbation theory, the amplitude of the pair tunneling process is
given by Jeff = 6J 2

2,2/(3U3 − 2U2). On the same footing, perturbation theory gives the binding
energy of −2Jeff for the bond-centered pair due to number fluctuations within the pair. For a
cubic lattice of sites, the bond-centered pair excitations live on an exotic lattice of coordination
number z′

= 10, being a generalization of the 2D checkerboard lattice (see the rightmost
drawing in figure 2) to three dimensions. This allows the pair to reduce its energy by 10Jeff

when delocalizing. In contrast, two additional particles, not forming a pair, can reduce their
energy by 2 × 6 × 2J1,2 when delocalizing on the cubic lattice of sites (coordination number
6). Thus, according to perturbation theory, the formation of a bond-centered pair is favorable if
−(10 + 2)Jeff > 24J1,2. For certain scattering lengths as, this condition can be fulfilled, since the
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Figure 2. The left-hand side shows a square lattice of sites (blue squares)
connected by bonds (black lines). The lattice of the bonds of the square lattice,
where bonds sharing a site are connected, is given by the checkerboard lattice
shown on the right-hand side. If a bound pair of two indistinguishable particles
can occupy either a site or a bond of the cubic lattice (the latter means that the
two particles occupy neighboring sites), and if the pair can move (by single-
particle tunneling) from a site to a neighboring bond and vice versa, then the
pairs move on the lattice shown in the central plot. Sites and bonds are denoted by
blue squares and black bullets, respectively. Extending all of the considerations
shown in this figure to the case of a three-dimensional cubic lattice of sites is
straightforward.

Wannier broadening with increasing scattering lengths leads to an increase in both J2,2/J1,2 and
U2/U3. In such a situation, the Mott-insulator state becomes unstable with respect to the creation
of bond-centered pairs rather than with respect to the creation of single-particle excitations.
This happens when the delocalization energy −10Jeff overcomes the energy 2(U2 −µ)− 2Jeff

needed for creating a pair excitation. It is interesting to note that an equivalent scenario does
not happen for hole excitations, since hole excitations decrease the occupation number and with
that the tunneling amplitudes.

To evaluate the boundary of the n̄ = 1 Mott-insulator phase within mean-field
approximation, we construct a model for the excited bond-centered pair excitations. When the
number of pairs is small compared to the number of sites, the Hamiltonian for the pairs living
on top of a Mott state with one particle per site can be written as

Hpair = −Jeff

∑
〈L L ′〉

p̂†
L p̂L ′ + 2(U2 −µ− Jeff)

∑
L

n̂ p
L . (10)

Here, L = 〈i, j〉 labels the bonds of the cubic lattice and 〈L L ′
〉 denotes pairs of nearest

neighbors of these bonds as they are described by the 3D checkerboard lattice (cf figure 2).
Moreover, we have defined the bosonic creation and destruction operators for bond-centered pair
excitations p̂†

L and p̂L , with number operator n̂L = p̂†
L p̂L . As a consequence of the diluteness

assumption, we have neglected the interaction between pairs, arising if pairs occupy neighboring
bonds. Since the transition to a pair-superfluid will happen with the creation of a single pair,
this approximation will not influence the phase boundary. The energy of a condensate of bond-
centered pairs can now be estimated in a similar fashion as before by making a product ansatz∏

L |8p〉L of coherent states being a superposition of zero and one pair at each bond,

|8p〉L = cos θe|0〉L + sin θe|1〉L . (11)
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The order parameter of the pair condensate is defined by 〈 p̂L〉 =
1
2 sin(2θe). According to this

ansatz, the variational mean-field energy per site can be written as

Eep

3N
= −

z′ Jeff

4
sin2 2θe + 2(U2 − Jeff −µ) sin2 θe, (12)

where z′
= 10 is the coordination number of the 3D checkerboard lattice. The mean-field

approach gives the same phase boundary for the appearance of a pair condensate with finite
order parameter 〈 p̂L〉 as the perturbation theoretical considerations of the previous paragraph.
The equivalence of both approaches is generally given for an ansatz like (11) that includes only
two states per site.

In figure 1, we plot the results of minimizing Ess, Eep with respect to θ, θe for as/a = 0.15.
The stable Mott region with respect to single particle–hole excitation is given by the interior
of the black solid and dotted lines characterized by θ = 0. On the right-hand side of the blue
dashed line in figure 1, one finds a region where min[E ep]<min[E ss] with θe 6= 0. Thus, here
the system is characterized by 〈pL〉 6= 0 and 〈bi〉 = 0, i.e. the state is a superfluid of extended
pairs (ePSF).

Condensates of extended pairs have also been proposed in the context of dimer models of
reduced dimensions, describing frustrated magnets like SrCu2(BO3)2 [32]. By approximating
triplet excitations as hard-core bosons, the authors of [33] argue that for correlated hopping,
these bosons can condense in pairs. Such pairing processes also bear resemblance to molecular
condensation due to Feshbach resonances in an optical lattice [34].

We would like to point out that triple, quadruple or higher-order excitations do not play
a dominant role. The effective tunneling matrix element of such excitations will be very small
since it appears in third- or higher-order perturbation theory only. Therefore inside an n̄ = 1
phase, triple and higher excitations cannot lower their energy efficiently by delocalization. We
can, thus, exclude a superfluid of triples or higher-order objects. However, there is another
possible and competitive scenario we would like to mention. Instead of exciting a triple or
quadruple, one can create a huge cluster of extra particles, i.e. a big spatial domain with doubly
occupied sites. In this case, within each cluster, the energy of the additional particles (on top
of the n̄ = 1 Mott background) is not lowered by delocalization, but rather by the attractive
interaction between them as it appears in second-order perturbation theory. In the bulk of
such a cluster, this gives a binding energy of −6Jeff per extra particle. In comparison, in the
pair superfluid, each particle can lower its energy by Jeff because of binding and further by
another 5Jeff because of delocalization (i.e. Bose condensation). Accordingly, in leading order,
a superfluid of bond-centered pairs on top of the n̄ = 1 Mott insulator is equally favorable as
a phase separated state with spatial domains hosting a Mott insulator of filling n̄ = 1 or n̄ = 2.
As a consequence, we cannot reliably exclude phase separation by means of simple variational
arguments.

Before moving on, let us briefly discuss another issue. In this paper, we are working in
a situation with the chemical potential fixed rather than the particle number. This approach is
actually quite suitable for the description of experiments with ultracold atoms, provided that
the atoms are trapped by a sufficiently shallow potential. In such a situation, the local density
approximation applies and different regions in the trap correspond to different values of the
chemical potential. However, if the trap is too steep for the local density approximation to be
valid, it might introduce also new physics. Consider the following example. The phase separated
state described in the preceding paragraph might not be favored in the homogeneous system.
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But, because it is energetically very close to the pair superfluid, it can be favored already when
a slight potential difference is introduced, helping to form n̄ = 2 Mott domains in the region
of slightly lower potential energy. Such a scenario can spoil the local density approximation
already for a very weak trapping potential.

5. Superfluidity of local (site-centered) pairs

Now, let us consider a regime that can be achieved if the interaction strength as/a is
increased further. Considering again the n̄ = 1 Mott insulator, for increasing interaction
a site-centered pair excitation, described by |Pi〉, eventually becomes more favorable than the
bond-centered excitations described by |P〈i j〉〉. This happens when the ratio U3/U2 is reduced so
much that the potential energy 3U3 needed to create a pair of particles on the same site equals
the potential energy 2U2 required to create a pair of particles on neighboring sites. Such a
situation is possible as can be derived from equation (4). In the limit of large V0 � ER and as/a
we can write d(n)/d0 ≈ (gni)

1/5 resulting in 3U3 − 2U2 ≈ −0.02U0. If |3U3 − 2U2| becomes
comparable to or smaller than J2,2, a bond-centered pair excitation |P〈i j〉〉 can transform to a
site-centered pair excitation |Pi〉 by a single-particle tunneling process described by the matrix
element Jpair =

√
6J22. In this regime, the pairs occupy the lattice given by both the sites and

the bonds of the cubic lattice (see figure 2, center). By delocalizing on this lattice, a pair can
reduce its kinetic energy by 12Jpair. As long as this energy is bigger than the kinetic energy
reduction 24J1,2 that two non-paired particles can achieve by delocalization, the pair is stable
towards breaking; this is the case for J2,2 >

√
3/2J1,2. Thus, the binding mechanism of the pair

is based solely on the delocalization of its center of mass. At |3U3 − 2U2| ≈ 0 (given e.g. for
as/a ≈ 0.21 when V0/ER ≈ 16), the n̄ = 1 Mott insulator becomes unstable with respect to pair
creation when 12Jpair exceeds 3U3 − 2µ. It is fascinating to observe the emergence of exotic
lattice geometries, as illustrated in figure 2, as a consequence of pair creation.

If the scattering length is increased further, such that 2U2 − 3U3 � J2,2, site-centered pair
excitations |Pi〉 will be created rather than bond-centered ones |P〈i j〉〉. The site-centered pair
excitations can then tunnel from site to site coherently via the occupation of a virtual bond-
centered pair excitation. The corresponding tunneling matrix element reads J ′

eff = 6J 2
2,2/(2U2 −

3U3)= −Jeff. Moreover, the pair has a binding energy of 6J ′

eff (stemming from a small
perturbative admixture of the six neighboring bond-centered pair states). Therefore, a site-
centered pair is more favorable than two single-particle excitations if 3U3 − 12J ′

eff < 2(U2 −

12J1,2). If this condition is fulfilled, the Mott insulator becomes rather unstable towards the
creation of site-centered pair excitations than to the creation of single particles. The instability
occurs when 12J ′

eff reaches 3U3 − 2µ. As before, a mean-field calculation leads to the same
phase boundary. We plot the boundary of the n̄ = 1 Mott phase for as/a = 0.3 in figure 3. The
instability towards the creation of single particles is hardly important. It is predominantly the
creation of single holes or site-centered pairs of particles that destroys the Mott phase.

Note that in the limit of U1 � J0,1, metastable repulsively bound pairs of ultracold bosons
have been observed in optical lattices [35, 36]. Also, two-species mixtures of bosons with inter-
species attraction trapped in an optical lattice have been shown to give rise to superfluidity of
pairs [37]. In the context of dipolar atoms in a two-leg ladder, when no tunneling is present
between the two legs, pair superfluidity arises due to attraction between the dipolar atoms
between the two legs of the ladder [38, 39]. Also, using a state-dependent optical lattice
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Figure 3. Mott-insulator-to-superfluid phase transition for as/a = 0.3. Inside the
region enclosed by the black solid and the blue dashed line, the system is a Mott-
insulator with n̄ = 1 particles per site. Crossing the dashed blue line, one enters a
superfluid of local, site-centered pairs (PSF). Leaving the Mott phase by crossing
the black solid line, a superfluid of single particles (or, equivalently, holes) is
found. The black dashed line is defined as in figure 1.

potential, it is possible to create correlated tunneling of on-site pairs, which in turn gives rise
to superfluidity of local pairs [40, 41]. In the present study, we find that such local pairing can
emerge due to the strong occupation dependence of tunneling and on-site interaction.

After having studied the boundaries of the Mott-insulator phase with one particle per site,
let us have a look at the n̄ = 2 Mott state. In the limit of vanishing tunneling, a Mott state with
two particles localized at each site is favorable for U2 < µ< 3U3 − U2. The upper border of this
interval is given by the potential energy difference of having three and two particles at a site.
This difference can, in fact, become lower than the potential energy difference U2 between
two and one particle per site marking the lower border. This is the case if 3U3 − 2U2 < 0;
then the n̄ = 2 Mott-insulator phase is never stable with respect to the creation of particle–hole
pairs, irrespective of the tunneling strength; it ceases to exist. The disappearance of the n̄ = 2
Mott insulator coincides with site-centered pair excitations becoming more favorable than bond-
centered ones in the limit of vanishing tunneling. Note that the Mott-insulator phases with higher
filling, n̄ > 3, do not disappear for large interaction as/a within the Gaussian approximation.
The reason why these phases do not share the fate of the n̄ = 2 Mott insulator is that the
broadening on the Wannier-like site-wave functions φi in response to adding one particle to
that site becomes less pronounced with increasing occupation: U2/U3 >U3/U4 >U4/U5 > · · ·.
However, one should keep in mind that for strong interaction, sites occupied by three and more
particles suffer strong dissipation due to three-body collisions [42, 43].

One might ask about the nature of the system’s ground state at fixed filling n = 2 and
for 3U3 − 2U2 < 0, when there is no n̄ = 2 Mott phase. At vanishing tunneling, the ground
state is highly degenerate consisting of all Fock-states having occupation ni = 1 on half of the
sites and occupation ni = 3 on the others. Alternatively, one might say that on top of an n̄ = 1
Mott insulator, half of the sites are occupied by additional site-centered pairs. For small but
finite hopping, this degeneracy will be lifted. One can think of three possible scenarios: (i) the
pairs gather in one region in space; this corresponds to a phase segregation between the n̄ = 1
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and the n̄ = 3 Mott phases; (ii) the pairs delocalize to form a superfluid; (iii) the pairs form a
checkerboard-type insulator avoiding pairs on neighboring sites. In order to decide this question,
we write down an effective Hamiltonian for the site-centered pairs,

Hpair = −Jeff′
∑
〈i, j〉

c†
i c j −

∑
i

(2µ− 6J ′

eff)n
c
i + (Jeff′ −1)

∑
〈i j〉

nc
i nc

j , (13)

with bosonic pair annihilation and creation operators ĉi , ĉ†
i , and where we assume a hard-

core constraint (ĉ†
i )

2
= 0. The nearest-neighbor repulsion present in the last term, with 1=

2J 2
3,3/(6U4 + U2 − 6U3), stems from super-exchange processes between neighboring pairs. This

model can be mapped to a spin-1/2 XXZ model with the first term corresponding to the XX
coupling and the last one to the Z-coupling. Since (Jeff′ −1)6 Jeff′ is always true, the system
will neither form the checkerboard pattern (iii) (corresponding to an antiferromagnetic state for
the XXZ-magnet) nor show phase segregation (i) [44]. The system forms a superfluid of site
centered pairs (ii).

6. Weakly interacting limit

Finally, we investigate the limit where interaction effects are important, not because of a
large scattering length but because of large site occupation, i.e. as/a � 1, but the mean
number of particles per site n0 � 1. We assume small on-site number fluctuations δn � n0,
i.e.

√
Un0/(n0 Jn0)� 1. In this limit, we can write the modified Hubbard Hamiltonian as

H = −Jn0

∑
i j

b̂†
i [1 +α(δn̂i + δn̂ j)]b j +

Un0

2

∑
i

n̂i(n̂i − 1)[1 +β − 2β(n̂i − 1)] −

∑
µn̂i , (14)

where

β =
3

5

√
π

2

[
V0

ER

]1/4 as

a
, (15)

α =
π 5/2

10
√

2

[
V0

ER

]3/4 as

a
, (16)

Jn0

V0
=

(
π 2

4
− 1

)
exp

[
−
π2

4

√
V0

ER

[
1 −

2
√

2π

5

[
V0

ER

]1/4 as

a
n0

]]
, (17)

and δn̂i, j = n̂i − n0. Here, we would like to point out the similarity of Hamiltonian (14) to the
quantum Ablowitz–Ladik (AL) model for q-deformed bosons [45], given by

HAL = −

∑
i

[
B†

i Bi+1 + B†
i+1 Bi +

1

2γ
ln(1 − Q B†

i Bi)

]
, (18)

where [B i , B†
i ] = exp[ − 2γ Ni ], and Q = 1 − exp[ − 2γ ]. In the limit of γ → 0 and γ Ni � 1,

equation (18) reduces to the occupation-dependent modified Hubbard model equation (14) with
α = γ and Un0 = 0. It is found that in one and higher dimensions, the AL model contains
localized solutions [46, 47]. To investigate this possibility, we first solve equation (14) in the
superfluid limit, where the order parameter reads 〈bi〉 =

√
n0. To look for fluctuations around

the ground state, we first convert the Hamiltonian in equation (14) to momentum space by
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defining bi =
∑

i bk exp(−iEk.Er i), εk = 4
∑

i=1,2,3 sin2(kia/2), and γk = 4
∑

i=1,2,3 cos2(kia/2).
Neglecting correlations arising from the three-body interaction term in equation (14), one arrives
at the Hamiltonian

Hmod = −
n2

0Un0

2
+

∑
k

Jn0εkb†
kbk +

∑
k

[
n0Un0

2
(1 +β − 2β(n0 − 1))−α Jn0n0γk

]
×(2b†

kbk + b†
kb†

−k + bkb−k). (19)

It can be diagonalized via a Bogoliubov transformation, and the excitation spectrum �k of the
superfluid is found to be given by

�2
k = J 2

n0
ε2

k + 2Un0n0

(
1 +β − 2β(n0 − 1)− 2α

Jn0

Un0

γk

)
εk. (20)

In a cubic lattice, as k → 0, one finds�k/Jn0U0 = c|k|a, where c is the phonon velocity given by

c =

√
(1 +β − 2β(n0 − 1))− 2α

Jn0

Un0

γ0. (21)

In figure 4, we plot the phonon velocity c as a function of the filling fraction n0 for as/a = 0.01.
We find that initially, for increasing n0, the phonon velocity increases. But for higher n0,
the phonon velocity starts decreasing due to the attractive effect of the occupation-dependent
tunneling term, until the phonon velocity becomes imaginary for a critical n0. This results
in a dynamical instability of the superfluid when we are within the limit (as/a)n0 < 1. This
instability occurs due to the attractive effect of the occupation-dependent tunneling, which can
overcome the decreased repulsive on-site interaction depending on the number of particles per
site n0. To understand the effect of this instability, we first make a transition from the discrete
Hubbard model to a continuous model applicable for ka � 1 with a continuous field φ(r),

Hcont = −

∫
d3r φ∗(r)∇2φ(r)+

U

2

∫
Veff(r − r ′)|φ(r)|2|φ(r ′)|2. (22)

Here, the distance is expressed with respect to the lattice constant a, and the effective interaction
potential is given by Veff(r − r ′)= F−1[1 +β −β(n0 − 1)− 2α(Jn0/Un0)γk], where F−1 stands
for the inverse Fourier transformation. Using a Gaussian ansatz along one direction, say x , and
uniform in the other directions, φ(r)= 1/π 1/4d1/2

s exp(−x2/2d2
s ), the energy functional for the

self-trapped state reads

Esol = 1/d2
s +

Un0

Jn0

√
2π

(
1 +β − 2β(n0 − 1)−α

2Jn0

U0
(5 + exp(−2/d2

s ))

) /
ds.

When n0 exceeds a critical density, Esol is minimized for a finite ds � 1. Thus, the
homogeneous superfluid becomes dynamically unstable towards a state that is localized only
in one direction, forming a 2D slab.

7. Conclusion and outlook

In this paper, we have predicted various effects resulting from interaction-induced band mixing
in systems of ultracold bosonic atoms in optical lattice potentials. We have derived the
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Figure 4. Phonon velocity c as a function of the superfluid occupation number
n0. We find that after a critical occupation number, the phonon velocity becomes
imaginary, denoting a dynamical instability. The fixed parameters are as/a =

0.01 and V0/ER = 10.

modified bosonic Hubbard model (2) having occupation-number-dependent parameters. This
model comprises an effective interaction-induced broadening of the Wannier-like single-particle
orbitals and, thus, captures also the situation when the s-wave scattering length becomes
comparable to the lattice spacing, as/a → 1. Using this model, we find that for scattering
lengths as ∼ 0.15a and lattice depths V0 ∼ 12ER, the n̄ = 1 Mott-insulator state can become
unstable towards a superfluid that consists of bond-centered pair excitations. This scenario is
novel, considering the fact that the extended pairs emerge due to the occupation dependence
of both the tunneling strength and the on-site interaction. For even higher interaction, the
nature of the superfluid pair excitations (destroying the insulator) changes. The pairs can now
occupy both the bonds on the lattice (i.e. two neighboring sites) and its sites; in that way,
an exotic lattice geometry, as shown in the central plot of figure 2, emerges. Increasing the
interaction further, eventually the pairs stay only on the sites of the lattice. In this regime of
high interaction strength, the n̄ = 2 Mott state gets completely destroyed by the site-centered
pair fluctuations. We have also looked into the regime where interaction-induced Wannier
broadening arises from large filling n̄ � 1 at small scattering lengths, as � a. In this limit,
we found that the superfluid becomes dynamically unstable due to the attractive nature of the
occupation-dependent tunneling. The system then transforms from a uniform superfluid state to
an asymmetric state that is localized in one direction and extended in the other two directions.

In future studies, we would like to study the role of dissipation in these systems. Also, a
more accurate determination of the number dependence of the Hubbard parameters Jni ,n j and
Uni will be required for a quantitative description of the effects described here. Finally, it would
also be worth studying in detail the role of a trapping potential, as it is present in experiments.
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