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Abstract: Prognostic Health Management (PHM) is a predictive maintenance strategy, which is based
on Condition Monitoring (CM) data and aims to predict the future states of machinery. The existing
literature reports the PHM at two levels: methodological and applicative. From the methodological
point of view, there are many publications and standards of a PHM system design. From the
applicative point of view, many papers address the improvement of techniques adopted for realizing
PHM tasks without covering the whole process. In these cases, most applications rely on a large
amount of historical data to train models for diagnostic and prognostic purposes. Industries, very
often, are not able to obtain these data. Thus, the most adopted approaches, based on batch and
off-line analysis, cannot be adopted. In this paper, we present a novel framework and architecture
that support the initial application of PHM from the machinery producers’ perspective. The proposed
framework is based on an edge-cloud infrastructure that allows performing streaming analysis at the
edge to reduce the quantity of the data to store in permanent memory, to know the health status of
the machinery at any point in time, and to discover novel and anomalous behaviors. The collection
of the data from multiple machines into a cloud server allows training more accurate diagnostic
and prognostic models using a higher amount of data, whose results will serve to predict the health
status in real-time at the edge. The so-built PHM system would allow industries to monitor and
supervise a machinery network placed in different locations and can thus bring several benefits to
both machinery producers and users. After a brief literature review of signal processing, feature
extraction, diagnostics, and prognostics, including incremental and semi-supervised approaches for
anomaly and novelty detection applied to data streams, a case study is presented. It was conducted
on data collected from a test rig and shows the potential of the proposed framework in terms of the
ability to detect changes in the operating conditions and abrupt faults and storage memory saving.
The outcomes of our work, as well as its major novel aspect, is the design of a framework for a PHM
system based on specific requirements that directly originate from the industrial field, together with
indications on which techniques can be adopted to achieve such goals.

Keywords: Prognostic Health Management (PHM); incremental learning; novelty detection; semi-
supervised learning; edge computing; case study

1. Introduction

Maintenance of complex systems aims to keep a component/system in its nominal
condition and restore that condition after a failure occurs. Until 10 or 20 years ago, the
idea of maintenance as a “necessary evil” and the belief that “nothing can be done to
improve maintenance costs” were common among industries [1]. These ideas represent the
pillar of the run-to-failure strategy, which imposes maintenance interventions only after a
component fails. With time, it became clear that planned maintenance could have led to a
notable reduction of unforeseen shutdowns, improving the productivity, the quality of both
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products and processes, and the safety of industrial environments while reducing the costs
related to maintenance interventions and spare parts supply and management [2]. Due to
those advantages, industries moved towards preventive strategies, whose aim is to find the
optimal time interval between two consecutive interventions. However, this policy may
not allow the exploitation of the whole life of components, which are replaced regardless
of their actual health condition [3]. Thanks to technological advances, Condition-Based
Maintenance (CBM) developed, which is considered a preventive strategy. It relies on
signals collected from machines, such as vibrations, acoustic emissions, current signals,
and others, to monitor the health condition of machinery at any point in time and usually
arrest it when a given signal reaches a pre-defined failure threshold [4], over which the
monitored component is not able to perform its function.

Predictive maintenance (PM) can be considered a natural evolution of CBM. PM not
only detects the health condition of a system but also predicts its health status in the future
and estimates its Remaining Useful Life (RUL). Thus, while CBM uses only the current
condition of the component, predictive maintenance also uses Condition Monitoring (CM)
data trends to make predictions regarding future states and to ensure enough time to
schedule maintenance interventions when most appropriate. The difference between the
two maintenance strategies is shown in Figure 1.

Predictive maintenance is often referred to as Prognostic and Health Management
(PHM). According to this process, raw signals are first transformed into synthetic and
meaningful information (signal processing or feature extraction); then, the relationships
between the collected data and the actual condition are identified (diagnostics); finally, the
end of life of the component/machinery is predicted (prognostics) [5].

In the literature, the problem of the implementation of PHM is addressed at two
levels [6]. The first level deals with the methodology design for defining the characteristic
elements of a PHM system for a specific sector, e.g., aviation, industrial, wind energy,
and others. The second level concerns the architecture design for designing the best data
analytics techniques for specific components and systems, e.g., rolling bearings, gearboxes,
industrial robots, or Hard Disk Drive (HDD). In other words, the first level addresses the
problem of how a complete PHM system can be designed for a specific context, while the
second level addresses the issue of how to transform raw signals into information and
knowledge for supporting the maintenance decision process.?

At the methodology level, a relevant contribution is provided by Li, Verhagen, and
Curran [7–9], who introduced an architecture definition process for PHM applications
based on an ‘RFLP’ method, which consists of the definition of Requirements, Functional,
Logical, and Physical architectures, together with the framework, i.e., a layered structure of
a system for a set of functions in a conceptual view [8]. Although these papers are mainly
focused on the aviation sector, the ‘RFLP’ method for PHM applications can also be applied
to the industrial sector. However, to the best of our knowledge, that method has never been
investigated for the industrial sector. Many existing studies focus on PHM approach design
for specific complex systems, such as industrial robots operating in several industrial
sectors [10] or machine-tools [11], from the user point of view. Thus, existing studies aim
to find the most suitable feature extraction, diagnostic, and prognostic models for a specific
use case. However, very little attention is given to the general methodology design for
machine monitoring and health assessment from the double perspective, including that of
the machine producer.
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Figure 1. (a) Condition-Based Maintenance (Diagnostic) (based on [3]); (b) Predictive Maintenance (Prognostic) (based on [12]). 
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amount of labeled data for the training phase [16] and knowledge of all the operating 
conditions since they strongly affect the degradation trends or the machine’s general 
behavior [17]. 

Thanks to the collaboration with leading producers of automatic and grinding 
machines located in the well-known district of the Emilia Romagna region, it was possible 
to understand the benefits of a PHM methodology and the issues in the implementation 
of the existing PHM architectures. 

Regarding the first point, machine producers could benefit from a PHM 
methodology because the post-selling service represents the differentiation key from their 
competitors for many machine producers. Indeed, machine producers usually adopt 
traditional preventive maintenance models to schedule maintenance interventions for 
their clients. This strategy often implies inspections that result in either an intervention or 
its rescheduling, depending on the actual detected condition. In both cases, maintenance 
inspections represent a waste of resources for machine producers and production losses 
for clients. In addition, the spare parts management results are compromised. Second, 
thanks to the advances in technologies, corrective interventions are often conducted 
through remote maintenance, including the time needed for recognizing the problem 
before guiding the operator to the machine maintenance. Machine producers are 
interested in the fault behaviors of machines operating in different environments. Indeed, 
they can use collected information to improve the machine design phase (i.e., proactive 
maintenance). Thus, a properly designed PHM methodology could (1) avoid inspections 
and support the optimal spare parts management, thanks to the continuous monitoring 
and prognostics; (2) speed up the process of remote maintenance, thanks to the streaming 
anomaly/fault detection; and (3) allow structured data collection for the continuous 
improvement of existing diagnostic and prognostic models. On the other hand, clients 
could (1) always know the health condition of their machines; (2) recognize anomalous 
behaviors as they occur and, if possible, intervene without the involvement of the machine 
producer to reduce the time to repair; (3) benefit from a most robust analysis conducted 
by the machine producer. 

Regarding the second point, there are two main issues. First, machine producers 
constantly design new types of machinery, for which historical data for model training 
are not available; moreover, clients are not always willing to share their data, as they feel 
their market share is threatened by those producers who could decide to enter the same 
market as their own business. In particular, they tend to hide confidential data, such as 

Figure 1. (a) Condition-Based Maintenance (Diagnostic) (based on [3]); (b) Predictive Maintenance (Prognostic) (based
on [12]).

At the architecture level, a relevant number of papers on the application of Machine
Learning (ML) techniques for PHM have been published [12]. In particular, critical com-
ponents, such as bearings, gearboxes, wind turbines, lithium-ion batteries [13,14], and
HDD [15], are tested under different health conditions in order to build accurate models for
fault classification and prognostic. The existing approaches assume to have a high amount
of labeled data for the training phase [16] and knowledge of all the operating conditions
since they strongly affect the degradation trends or the machine’s general behavior [17].

Thanks to the collaboration with leading producers of automatic and grinding ma-
chines located in the well-known district of the Emilia Romagna region, it was possible to
understand the benefits of a PHM methodology and the issues in the implementation of
the existing PHM architectures.

Regarding the first point, machine producers could benefit from a PHM methodology
because the post-selling service represents the differentiation key from their competitors for
many machine producers. Indeed, machine producers usually adopt traditional preventive
maintenance models to schedule maintenance interventions for their clients. This strategy
often implies inspections that result in either an intervention or its rescheduling, depending
on the actual detected condition. In both cases, maintenance inspections represent a waste
of resources for machine producers and production losses for clients. In addition, the
spare parts management results are compromised. Second, thanks to the advances in
technologies, corrective interventions are often conducted through remote maintenance,
including the time needed for recognizing the problem before guiding the operator to the
machine maintenance. Machine producers are interested in the fault behaviors of machines
operating in different environments. Indeed, they can use collected information to improve
the machine design phase (i.e., proactive maintenance). Thus, a properly designed PHM
methodology could (1) avoid inspections and support the optimal spare parts management,
thanks to the continuous monitoring and prognostics; (2) speed up the process of remote
maintenance, thanks to the streaming anomaly/fault detection; and (3) allow structured
data collection for the continuous improvement of existing diagnostic and prognostic
models. On the other hand, clients could (1) always know the health condition of their
machines; (2) recognize anomalous behaviors as they occur and, if possible, intervene
without the involvement of the machine producer to reduce the time to repair; (3) benefit
from a most robust analysis conducted by the machine producer.

Regarding the second point, there are two main issues. First, machine producers
constantly design new types of machinery, for which historical data for model training
are not available; moreover, clients are not always willing to share their data, as they
feel their market share is threatened by those producers who could decide to enter the
same market as their own business. In particular, they tend to hide confidential data,
such as the number of pieces produced every day, machinery settings, and the production
process or materials, which often represent the labels (target value) needed for training the
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diagnostic and prognostic models. As a result, the data collected from clients are in most
cases are unlabeled, meaning that they do not record information about environmental
conditions, operating conditions, fault modes (if any), maintenance interventions, or
regulations carried out on the machinery. Second, the amount of data generated by
machinery is difficult to manage. The weight of high-frequency data is in the order of
gigabytes per hour. It is impossible to acquire and store raw signals from all machinery
in a continuous way. Therefore, data are usually collected intermittently, often during
short tests conducted by machine producers in very controlled environments. Thus, data
under fault conditions are trickier to obtain than data under healthy conditions, resulting
in very unbalanced datasets; also, the dataset may not include data for different operating
conditions, resulting in the impossibility to train accurate diagnostic and prognostic models.
Given these issues, the main objective for machine producers is to find a PHM architecture
that (1) can start from scratch, with very little prior knowledge about machinery behavior;
(2) supports the exchange of data between producers and clients, paying attention to
privacy issues; (3) helps to collect the data in a structured way, with labels associated with
each observation, i.e., low-frequency data associated with high-frequency data; (4) provides
an early indication of anomalous and novel behaviors; (5) can learn from experience in
different contexts; (6) performs different functions depending on the specific component
and the whole machinery.

In this paper, a PHM methodology for the industrial field is presented. The methodol-
ogy design consists of the definition of a framework and functional and logical architectures.
First, the stakeholders and their requirements are identified in the machine producers;
then, an edge-cloud-based framework and a novel architecture are introduced to adapt
the existing architectures to the stakeholders’ expectations and the framework. Since
the methodology aims to be a reference for machine producers that want to offer a com-
plete post-selling service to their clients, after customization, it can be applied to every
component and every machine, regardless of the specific sensor data and the specific
industrial sector.

At the methodology level, the main contributions of this paper are the following:

1. The identification of the stakeholders and the definition of their requirements and
expectations. To the best of our knowledge, no existing PHM methodology addresses
machine producers.

2. The definition of an edge-cloud-based PHM framework. This allows the real-time
health assessment of industrial machines and the simultaneous collection of high-
frequency data, low-frequency data, and event-data, from machinery installed in
several clients’ plants.

At the architecture level, the main contributions of this paper are the following:

1. The integration of novelty detection into traditional PHM architectures. This allows
the discovery of unknown or different behaviors of the machines.

2. The distinction between system-level features and component-level features. The
first set of features reveal the machinery operating condition (i.e., the machine setting
parameters implemented by the client during production) and thus are of great
interest for the machine producer to know the possible working conditions and collect
labeled data. The second set of features reveals the health status and the degradation
trend. Thus, it serves for anomaly detection, fault detection, and RUL prediction.

The remainder of the paper is organized as follows. In Section 2, existing PHM
methodologies, frameworks, and architectures are described. Here, techniques used to
perform feature extraction, diagnostics, and prognostics are described, including anomaly
and novelty detection algorithms. In Section 3, a novel framework and architecture for semi-
supervised and partially online PHM applications are introduced. Based on the design
methodology described by Li, Verhagen, and Curran [7–9], stakeholders’ expectations
and requirements are first defined; then, the proposed framework and functional and
logical architectures are presented. Section 4 includes the description of a case study. The
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data were collected from an experimental platform built by the Department of Industrial
Engineering of the University of Bologna. The study aims to demonstrate the benefits
of the proposed framework and architectures, which include storage-saving and novel
condition detection ability. Finally, conclusions, open issues, and the future direction of our
research are presented.

2. PHM: Reference Methodologies, Frameworks, and Architectures

In this section, existing methodologies, frameworks, and architectures for PHM sys-
tems design are briefly reviewed.

From the methodology point of view, in [8] a complete process for the PHM architec-
ture definition is proposed. According to the authors, the first step is the definition of the
stakeholders’ expectations and requirements, which represents the input of the process,
together with constraints. The second step is the framework definition, which is a layered
structure of the system built according to the requirements. It includes the functions, perfor-
mance, operational conditions, and project constraints that will influence the architecture.
Finally, three architectures need to be built: the functional architecture, which is defined
as the set of functions and sub-functions that have to be performed to achieve the desired
system objective; the logical architecture, which is defined as the set of related technical
concepts and principles that represent the logical operation of the system; the physical
architecture, which is defined as the set of physical elements, such as equipment made of
hardware, software, and/or human roles, that can perform the system functions.

Regarding the framework definition, technologies such as Cyber-Physical Systems
(CPS), IIoT, edge computing, and cloud computing are receiving more and more attention
for PHM systems in industries [18]. Indeed, machine producers could take advantage
of these technologies for collecting the data they need, when they need them, from the
machines they want [19]. In literature, there are several examples of PHM frameworks
based on these technologies. The basic idea is to exploit edge computing to perform
the PHM tasks that have to provide real-time feedback while leaving in the cloud the
data storage and batch analysis for more complex and accurate results. In [20,21], a
cloud architecture for PHM is described. It consists of at least two clouds: the first one
is the service provider and includes several PHM units; the second cloud offers expert
service. In this way, the provider offers shared software for PHM, and the client can
create its maintenance applications and methods with the tools provided by the provider;
finally, storage and networking resources are available for implementing the maintenance
solutions. In [22], a framework for Edge Computing-based fault diagnosis of rotating
machinery is proposed, where edge computing is preferred to global or offline approaches
performed in a centralized cloud server because of the following reasons: first, it reduces
the storage and computing resources in the cloud, since it realizes the data computing on
the edge node; second, it avoids unnecessary data transmission, resulting in low latency
fault diagnosis; third, it also allows the simultaneous dynamic control of the machinery.
In [23], a framework including both edge and cloud computing for equipment failure
prediction is proposed. According to this framework, a machine learning prediction model
is built based on historical data in the cloud, which has theoretically unlimited resources;
then, the model is applied to new incoming data streams at the edge, which has fewer
computation resources, to identify possible failures with increased responsiveness. A
similar approach was adopted in [24], where a multi-sensor edge computing architecture
was proposed for wind turbine generators. To the best of our knowledge, no edge-cloud
PHM framework has been designed for facilitating the data exchange and analysis between
a machine producer and a machine user. In this context, the edge-cloud-based framework
should allow reducing the amount of data to transmit and store; also, it should allow hiding
sensitive information to the producer (which corresponds to the maintenance provider).
Indeed, machinery working conditions can be strategic for the production process, and
thus, clients are not willing to share this kind of information with other companies.
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Regarding the architecture’s design, in [7], a functional architecture is defined as an
iterative process that consists of four steps: (1) identification and decomposition of system
functions and a definition of their hierarchy; (2) identification of functional elements
and interfaces; (3) the description of the functional architecture through graphic tools;
(4) verification of the quality and completeness of system functions and validation of
the compliance with stakeholder’s requirements. The system functions defined in that
study are Data Acquisition (DA), Data Processing (DP), Fault Diagnosis Assessment (FDA),
Prognostic Assessment (PA), and Health Management (HM). The DA module has the
capabilities of acquiring data and temporarily storing them for further analysis. The DP
model includes the data manipulation and the data transmission to the next module. In
the FDA module, fault detection, isolation, and identification are performed; further, a
state assessment sub-function is also included, whose results are transmitted to the HM
module for decision making. The PA module consists of the sub-functions of health state
estimation, RUL prediction, and health assessment, whose results will also be sent to the
HM module. Finally, the HM module collects and integrates the information from the
outcomes of FDA and PA modules to provide recommended maintenance advisories to an
external maintenance management system.

From the architecture point of view, there are two common approaches for the PHM
of components and systems, as illustrated in Figure 2. Both start with the data collection.
Then, the first approach suggests performing the DP function, which corresponds with
the extraction of relevant features, revealing different health conditions of the machinery.
These features represent the input for diagnostics that correspond to the FDA function.
The goal is to find the relationship between the extracted features and the health condition
of the equipment. Finally, the PA function corresponds to prognostics, which deal with
the degradation trend modeling for future behavior estimation and Remaining Useful Life
(RUL) prediction of the machinery [4].

1 
 

 
 
2 
 
 
 
 
11 
 

 

Figure 2. Existing functional architectures (application level).

The second approach is similar to the first one. It includes Health Indicator (HI)
construction, the Health Stage (HS) division, and the RUL prediction [25]. The HI is a
monotone function that is extracted from raw signals and reveals the component degrada-



Appl. Sci. 2021, 11, 3380 7 of 28

tion. Then, the approach suggests dividing the component’s life into more HS divisions
corresponding to different severity levels of the failure. Finally, the HI future values are pre-
dicted according to a pre-built degradation model; the RUL is computed as the difference
between the time in which the HI is expected to overcome a pre-fixed Failure Threshold
(FT) and the current time. Thus, as the authors state, the main difference between the two
approaches lies in the variable time. Indeed, in the first approach, the diagnostic deals with
the identification of the fault pattern and severity of machinery at a single time point, in
the second approach, the HS division aims to divide the continuous degradation processes
of machinery into different HSs according to the varying trends of HI in each HS.

In the following sections, techniques and models for performing the DP, FDA, and PA
functions are briefly reviewed. Note that these sections do not aim for a complete review of
the existing literature. Rather, the aim is to describe how the PHM system functions can be
performed, with a particular focus on the needed input of each technique, their strengths,
weaknesses, and use cases.

2.1. Data Processing Function

The DP function aims to process the raw data collected from machinery. This function
is necessary for two reasons. First, raw signals are not able to directly reveal the health
status of machinery. Rather, they present hidden patterns to discover. Second, raw signals
are usually collected at very high frequencies to capture as much information as possible.
However, the high number of observations and collected signals or the high number of
features that result from signal processing strongly affect pattern recognition. Thus, the
DP aim is to map the acquired data from a higher dimension to a lower dimension space,
to provide a synthetic and meaningful representation of raw signals, preserving their
structure and retaining as much information as possible [4].

For this aim, two main activities are usually carried out, namely, signal analysis, or
feature extraction, and dimensionality reduction.

When raw signals are collected at high frequencies, they are first divided into small
segments of a certain length. Then, for each segment, synthetic parameters with a direct
physical meaning, such as the mean, the energy, the maximum peak, and others, are
computed. Signal analysis techniques are performed in the time domain, the frequency
domain, and/or time-frequency domain [26]. Signal processing in the time domain is
easy to implement and requires low computational complexity. However, many critical
components show characteristic frequencies for some fault modes. When the fault is
known, the frequency-domain analysis is preferred, as it easily allows us to identify and
isolate frequency components of interest. For non-stationary signals, whose components
contain rich fault-related information, the time-frequency-domain analysis is not only
mandatory but also provides a more interpretable representation of the signal. In general,
these techniques can be applied separately [25–27].

If raw signals are collected from many sensors, or a high number of features is
extracted from signal processing, dimensionality reduction should be performed to reduce
the number of variables of the dataset. Dimensionality reduction techniques are classified
into feature selection methods and feature learning methods, depending on whether they
change the original feature space [28]. Among feature selection methods, feature ranking
methods, such as the Chisquare and ReliefF [29], and classifiers, such as the Decision
Tree [30], are used for selecting the optimal features from a set of features extracted through
signal analysis techniques. These methods are usually applied to critical components, for
which labeled data under operating and more faulty conditions are available.

Feature learning is projecting the original feature space into a new feature space with
lower dimensionality. Among these methods, a distinction can be made between those
that are applied to a set of features extracted during the signal processing phase, such as
Principal Component Analysis (PCA) [31] and Locality Sensitive Discriminant Analysis
(LSDA) [32], and those that are directly applied to the raw signal, such as methods based
on sparse coding [33], dictionary learning [34], and Deep Learning [35].
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Feature extraction and selection algorithms suffer from three mean issues [36]. First,
they depend on prior knowledge about signal processing techniques and diagnostic exper-
tise; second, they depend on the specific diagnostic task and may be unsuitable for other
tasks; third, the extracted features may not carry the optimal information to classify the
mechanical faults. Thus, the choice of one method over another depends on the component
under analysis and requires deep knowledge of its behavior. Besides, signal analysis and
feature selection techniques are used when it is possible to collect the data corresponding
to a normal condition of the component and the data corresponding to one or more fault
conditions under several operating conditions. In other words, they require the data to
be associated with a label that corresponds to the health status of the machinery and
which guides the search for relevant features. On the contrary, sparse representation of
the signals, together with dictionary learning, can be directly applied to raw signals; also,
they are adaptive methods, as they do not require any expertise from the mechanical point
of view and do not require any target variables [36]. However, both sparse coding and
dictionary learning are computationally expensive and not suitable for online monitoring
of machinery conditions [33].

The DP function also includes the HI extraction. It is a feature that reveals the
degradation process of a certain component or system. While features for the fault diagnosis
correspond to normal and fault conditions, the HI is extracted during the whole life
of the component/system, from a normal condition to the failure occurrence. To be
considered a good HI, it has to respect precise evaluation criteria, such as monotonicity,
failure consistency, trendability, correlation with the RUL, Mean Absolute Error (MAE),
and accuracy [37].

The HI can be extracted directly from raw signals or constructed from features ex-
tracted through the techniques described above. In the first case, the HI can be computed as
the difference between signals under degraded and normal conditions [38]. In the second
case, the HI can be computed simply from previously extracted features through a proper
formula [39], through Genetic Programming (GP) algorithms [37–41], or Deep Learning
models [42,43].

In general, the HI construction strongly depends on the component under analysis [44].
In addition, the health condition’s labels and the value of the Failure Threshold are required.
On the contrary, both Deep Learning models and GP represent a great opportunity for
building HIs that are less dependent on expert knowledge and the availability of labels.
The issues of these models are related to the computational time for training and the input
parameter setting.

2.2. Fault Diagnosis Assessment Function

Diagnosis deals with the detection, isolation, and identification of a fault; in other
words, it aims to detect the occurrence of a failure, to find its component and position, and
to determine its pattern and severity. In a PHM system, these goals can be achieved by
identifying the relationship between the information obtained in the measurement and/or
features space and the machine fault pattern in the fault space [5]. As a pattern recognition
problem, diagnostics can be faced by resorting to several Machine Learning algorithms [45].
A broad distinction can be made between supervised methods and unsupervised methods
depending on whether the value (label or class) to predict is considered at the prediction
time. In the context of PHM, the class corresponds to the health condition of the component.
Supervised methods require signals, or features, to be associated with a known health
condition to learn the relationships that best describe observations belonging to the same
class and to classify future unknown observations. Instead, unsupervised methods can
distinguish observations in the data set with no prior knowledge about their belonging
classes, but only based on the structure of the data itself.

In the context of PHM, ML algorithms can perform two main tasks: classification,
for which supervised learning is adopted, and clustering, which is based on unsuper-
vised learning.
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Classification models learn the relationships between the extracted features and the
health status of the component. They provide a model that predicts the component health
status when the health condition is unknown. The development of a classification model is
performed in two steps [46]. In the first step, named training, a considerable amount of
random samples is extracted from the original dataset to build the training set, which is
used for deriving classification rules that match the target class to each observation included
in this set. In the second step, named testing, the remaining instances, which constitute the
testing set, are classified through classification rules generated in the training phase; finally,
the actual target class, that is known, and the class predicted by the model are compared to
assess the accuracy of the prediction. Among the most adopted classifiers for diagnostics,
there are k-Nearest Neighbour (k-NN), Naïve Bayes Classifiers, Artificial Neural Networks
(ANNs) [47], Support Vector Machines (SVMs) [48,49], and Deep Learning models, such as
Deep Belief Networks (DBNs) [35], Deep Boltzmann Machine (DBM) [50], Convolutional
Neural Networks (CNNs), and Recurrent Neural Networks (RNNs) [51].

There is no definite guide to a priori choose one method over another. However, in
many cases, the SVM outperforms the ANN regarding the accuracy and the generalization
capability [48] and requires fewer training observations.

Clustering is an unsupervised learning approach. It can reveal hidden structures in
the data without relying on a target class that guides the algorithm training. In a clustering
task, a set of unlabeled data is grouped into clusters so that observations belonging to the
same cluster are similar between each other and dissimilar to observations belonging to the
remaining clusters. The first distinction separates hard clustering techniques from fuzzy
techniques. In hard clustering, the membership of elements in a cluster is assessed in binary
terms, meaning that an element either belongs to a cluster or not. On the contrary, the
membership of elements in fuzzy clustering is described by a membership function valued
in [0, 1], meaning that elements can belong to more clusters with a certain degree [52].
The most common unsupervised clustering algorithms adopted for fault diagnosis are
Adaptive Resonance Theory (ART) [53], Self-Organizing Maps (SOM) [54], and Affinity
Propagation [55].

Classification is for labeled data, i.e., when each observation is associated with a
categorical target value. On the contrary, clustering is for unlabeled data, i.e., when
observations are not associated with a target value. In both cases, every time a new class,
i.e., a new health or fault condition is discovered, created models need to be trained again.
Even if no labels are needed for unsupervised learning, most clustering algorithms still
require the number of clusters as an input parameter. Thus, both approaches require the
availability of the data related to all fault conditions that can occur.

Recently, to overcome these issues, anomaly detection algorithms and novelty de-
tection algorithms have been investigated in the context of fault diagnosis, especially for
streaming applications.

2.2.1. Anomaly Detection

According to [56], anomaly detection algorithms for streaming applications should
have the following characteristics: (1) they have to identify the state of the current data
point before the next data point is available; (2) they have to learn continuously without
storing the entire data stream; (3) they have to adopt an unsupervised approach; (4) they
have to deal with the concept drift problem, which means having the ability to adapt
model structures if a data point cannot be considered a true anomaly; (5) they have to
identify an anomaly as early as possible; (6) they should minimize false positives and false
negatives. In [57], online data-driven anomaly detection is introduced, named ODDAD
(Online Data-Driven Anomaly Detection). This algorithm adopts a sliding window method
based on the Mahalanobis Distance and on a pre-determined threshold to decide whether
the current data point is anomalous. In [58], a one-class classification model named TEDA
(Typicality and Eccentricity Data Analytics) is introduced, which assumes to have the label
of data related to the normal condition. The algorithm uses the concepts of typicality and
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eccentricity. Typicality is related to the similarity of a particular data sample to an entire
data set in the sense of spatial proximity, while eccentricity reflects how different a data
sample is from the data group. The TEDA algorithm is fully unsupervised and does not
rely on any assumption on data distribution; in addition, it is recursive, fast, and has low
computational complexity. Typicality and eccentricity are calculated and updated as a new
data point arrives by resorting to a distance measure. However, this requires the definition
of a certain threshold to assign the label ‘normal’ or ‘faulty’ to a data point.

2.2.2. Novelty Detection

Novelty detection aims to discover new patterns in the data. Two approaches can be
used to perform the novelty detection task.

The first group includes Evolving Intelligent Systems (EIS), which can handle stream-
ing data and adapt both their structure and parameters depending on the input data. EISs
can be seen as an evolution of the Fuzzy Rule-Based models (FRB), i.e., sets of linguistic
statements in the form IF-THEN, where conditions and consequences are associated with
fuzzy concepts, i.e., linguist terms [59]. Evolving FRB classifiers can classify the data
from scratch. Thus, they can start building the model sample by sample from the first
input data. For the fuzzy partitioning of the input feature space, i.e., the identification of
the antecedent part of the evolving FRB classifier, evolving clustering algorithms can be
used [60]. Evolving clustering algorithms rely on the idea that multiple clusters correspond
to different system modes. As new input data arrive, the system integrates these data into
existing clusters if the data are compatible with the existing model structure and adapts
the local parameters of the corresponding cluster (parameter adaptation); otherwise, the
algorithm creates a new cluster (structure evolving) [61]. In [62], a recursive clustering algo-
rithm incorporating a drift detection method is proposed, in which the clustering updating
process depends not only on the similarity measure but also on the monitoring changes
in the input data flow, which gives the algorithm greater robustness with respect to the
presence of outliers and noise. However, these methods require the membership function
to be determined a priori. In [63], a new way of determining the antecedent part for FRB
has been introduced. The antecedent part is called the AnYa system and is non-parametric.
The membership function is directly extracted from the data and represents their density
and distribution. Hence, the concept of the cluster is replaced by the concept of cloud,
which has no boundaries, could assume any shape, and is not represented by any centers
or prototypes. Therefore, in contrast to traditional clustering methods, in AnYa there is no
need to use a particular kind of distance; local and global density, which can be calculated
recursively as new input arrives, are the only variables affecting the cloud shape and the
point assignment process. Based on AnYa fuzzy systems, an evolving system is proposed
in [64], which can protect from the addition of new clouds based on outliers and allows
removing less active and informative clouds.

The second group of approaches relies on novelty detection and diagnosis models to
discover new scenarios, starting from data related to a healthy condition and some known
fault conditions. In [65], an ensemble-based classifier for novelty detection and an evolving
classifier for diagnosis are separately performed for a different set of features and then
integrated into a unique methodology to discover new patterns in case only data related
to a healthy condition are available. In that work, a measurement labeled as ‘unknown’
can represent an outlier, a new fault, or a new operating condition. Thus, machine user
intervention is required to verify which of the above cases the detected novelty refers
to. In [66], a hybrid approach for multi-modal signal analysis, novelty detection, and
diagnosis, is presented. It aims at detecting and incrementally including newly discovered
scenarios based on time-frequency features. In [67], a new scenario named Initially Labeled
Streaming Environment (ISLE) is defined. It is characterized by an infinite verification
latency, meaning that no labeled data are received after initialization. In this context, the
authors developed a new algorithm, named COMPOSE, which learns drifting concepts
from a streaming and non-stationary environment that provides only unlabeled data after
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initialization. An application to fault diagnosis of COMPOSE is introduced in [68]. Based
on the resulting framework, gradual and abrupt changes are detected; then, a classifier is
updated to include a new class, and a feature set is selected for representing the new class.
However, this framework still requires the classifier to be trained on labeled data.

2.3. Prognostic Assessment Function

Prognostics concerns the future behavior of a system and aims to anticipate the
occurrence of a failure and predict its Remaining Useful Life (RUL). The RUL is a measure of
the time left before machinery loses its operational ability and serves to avoid undesired or
even catastrophic consequences. Prognostics can be conducted at three levels [69]: existing
failure mode prognostics, future failure mode prognostics, and post-action prognostics.
At the first level, the RUL and its confidence limits are computed for each failure mode
identified in the previous diagnostics step. At the second level, interactions between
different failure modes are considered and models describing such secondary failures are
developed to build the worst-case scenario for the component under analysis. At the third
level, relationships between the developed models and the maintenance actions that have
been/could be undertaken to prevent failures are evaluated.

The degradation process identification and the RUL estimation are carried out by
resorting to three approaches: physics-based, data-driven, and hybrid.

Physics-based approaches build mathematical models that quantitatively describe the
degradation process based on failure mechanisms or first principles of damage. They use
the CM data to identify model parameters and predict future behavior. The fundamental
hypothesis of this approach is the existence of a physical model describing the degradation
evolution. If so, then the future behavior is determined by progressing the degradation
model in the future.

Data-driven approaches only rely on historical data collected by sensors to identify the
degradation evolution and predict the future trend. These approaches build mathematical
models, whose coefficients are estimated and updated based on the training data (previous
usage conditions), that represent the relationships between input variables (the HI) and
the output (the degradation state). The prediction is based on the estimated coefficients
and the mathematical model. Data-driven models for prognostics can be classified into
statistical and stochastic models [70,71], such as the Wiener Process [72] and Markov
models [73], Machine Learning models, such as ANNs [74] and SVM [75], and Deep
Learning models [76].

The main advantage of physic-based approaches lies in the direct physical meaning
of the model output. They outperform data-driven models, since they achieve highly
accurate RUL estimation, especially for long-term predictions [77]. Although data-driven
models are easy and fast to implement, they heavily depend on the availability of a large
amount of robust data. In addition, a huge storage capacity is required, and the correlation
between the extrapolated trend and a specific failure is not guaranteed [78]. The obtained
results from data-driven models are not easy to interpret since they are not related to any
physical phenomena and are usually less precise and more computationally expensive
than physics-based models. On the other hand, physics-based models are hard to build,
especially for complex systems.

Hybrid approaches combine physics-based models and data-driven models, improv-
ing prediction accuracy. Furthermore, hybrid approaches guarantee a reliable prognostic at
both component and system levels. A review on typical hybrid approaches for prognostics
and RUL prediction can be found in [79].

3. The Proposed PHM System

In this section, the stakeholders’ requirements are introduced. Then, the proposed
framework and functional and logical architectures of the PHM system that meet the
stakeholders’ requirements are described.
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3.1. Stakeholders’ Expectations and Requirements Definition

According to [10], the first step for the stakeholders’ expectations and requirements
definition is to identify the stakeholders. In the present study, the stakeholders are the
industrial machine producers. They are interested in the implementation of a PHM method-
ology for machines installed at their clients’ plants since it is an opportunity for offering a
full maintenance service to their clients, for optimizing the spare part-supplying process,
and improving the machine design phase. Besides, machinery users could benefit from a
PHM system since they can reduce maintenance investments and improve productivity
and availability.

Stakeholders requirements, collected through interviews conducted with several
machinery producers operating in the North of Italy, can be summarized as follows:

1. A PHM system should allow the simultaneous monitoring of machines distributed
worldwide. Producers want to gather relevant data from installed equipment to
expand their knowledge about the machinery’s behavior during the actual functioning.
In addition, the remote monitoring of the health conditions of machinery would avoid
inspections; hence, the scheduling of maintenance interventions and the spare parts
management are improved. This requirement implies building a proper infrastructure
for real-time data collection, transfer, and analysis.

2. A PHM system should be able to detect novel behaviors and learn from new incoming
data. Machine producers do not have sufficient data for training ML models because
of the scarce possibility to conduct tests in their plants. The main issue is the lack
of knowledge of all possible working conditions. Besides, many components fail
after years of functioning, making it difficult for the real-time application of pre-built
prognostic models.

3. A PHM system should allow the collection of the data in a more structured way. Even
if machine producers can obtain historical data from their clients, these data are not
easy to process since the label (e.g., health status, implemented setting, and so on) is
hardly available and signals often present uncomprehensive trends. Low-frequency
data, e.g., the setting of the machinery, and event-data, e.g., the tuning made by
operators or the anomalies that occurred during the machine functioning, should be
collected together with high-frequency data. Hence, data are automatically labeled,
and every event affecting the trend of collected data is recorded, speeding up the data
pre-processing step.

4. A PHM system should accomplish various functions based on a specific component,
which means that functions should be performed separately depending on the analy-
sis goal. A complex machine consists of many elements, e.g., suckers, or sub-systems,
e.g., an extruder, for which various analyses may be helpful. For example, an ex-
truder’s screw degrades over time, and the goal is to predict its RUL. Instead, the
detachment of a sucker happens suddenly. Thus, the goal is to detect the anomaly.
Hence, the real-time analysis should consider these two components separately to
understand the problem’s cause and, if possible, let the machine operator intervene
as soon as possible. However, as long as these two components work simultaneously
under the same operating conditions, machine producers are also interested in how
the anomalies or failures affect each other, considering a given working condition.

5. A PHM system should allow the CM data integration with historical data usually
recorded in an external database (e.g., Computerized Maintenance Management
System—CMMS), collecting work orders, spare parts management, and other infor-
mation to develop a whole maintenance program. For machine producers that want
to provide their clients with full-service maintenance, this is extremely important for
internal optimization.

Table 1 shows the elements of the framework and architectures that can address each
requirement. In the following sub-sections, each element will be investigated in detail.
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Table 1. Framework and architecture connections with stakeholders’ requirements.

Stakeholders’ Requirements Framework Functional Architecture Logical Architecture

Remote monitoring of
several machines

Distributed edge devices
connected to a centralized
cloud sever

Feature extraction, fault
detection, diagnosis and
prognosis (edge DP, FDA, PA)

Transmission into the cloud of
features and HIs at defined
instants; event-data into
in real-time

Data collection of
machinery settings

Streaming analysis of
distributed edge devices

Novelty detection (OCR) of
system-level features

Transmission into the cloud of
system-level features with the
associated label

Collection of structured and
labeled data

Real-time computing at the
edge and batch analysis in
the cloud

Fault diagnosis and prognosis
(edge and FDA and PA) of
component-level features

Simultaneous streaming
inference by trained models,
and anomaly and novelty
detection of
component-level features

System-level and
component-level PHM Model training in the cloud

System-level and
component-level feature
extraction (cloud DP)

Streaming extraction of
features selected during the
training phase

Integration of databases Cloud server accessible by
local databases

Fault diagnosis and RUL
prediction (cloud FDA and
edge PA)

Integration of information
collected by the PHM system
into local databases

3.2. The Framework

In this section, a framework to address the stakeholders’ requirements is proposed.
The framework consists of three layers: the edge storage and analytics layer, the cloud
storage and analytics layer, and the knowledge integration layer, as shown in Figure 3.
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The edge storage and analytics layer is a network of unlinked edge nodes installed
close to the machines. Here, data processing (i.e., feature extraction and selection, HI
extraction) and real-time analytics are performed (i.e., operating condition recognition,
anomaly detection, RUL prediction), allowing the continuous monitoring of machines. In
particular, the edge layer provides machine users with information regarding the health
status of the equipment at any point in time. From the machine producers’ point of view,
this level also allows the collection of low-frequency data and event data, addressing the
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first and third requirements. Indeed, the reduced amount of data obtained from streaming
data processing allow producers to monitor several machines. When they need to know
the health condition of a given component, they can access the information extracted at the
edge node during the machine’s functioning (i.e., features and HI values). Here, the current
health condition and the implemented setting, the information related to the occurrence
of anomalous behaviors, setting changes, and activities carried out by the operator on the
machine are temporarily stored. Finally, sensitive information (such as the parameters that
determine the machinery setting) is hidden from the producer since only processed data
are accessible. At this level, there is no information aggregation. Results of data processing
and real-time analytics are shown for each component of the machine so that the machine
user can easily recognize where the anomaly is and intervene when necessary to restore
the correct functioning. On the other side, the machine producer can select the component
of interest. In addition, as the setting is also recorded, the data related to each component
under different operating conditions are separated, i.e., there is a label representing the
implemented setting. This way, the fourth requirement is fulfilled.

The cloud storage and analytics layer represents the link between users and producers.
In this layer, relevant information extracted at each edge node through streaming anal-
ysis is stored permanently. This information includes labels on the operating condition,
component-level features, system-level features, Health Indicators, and the RUL of each
component. These data are integrated with historical data to train diagnostic and prognos-
tic models, which will be applied at the edge during machinery functioning for real-time
inference. At this level, which is only accessible by the machine producer, it is possible to
aggregate the information depending on the analysis objective (component-level, system-
level, client-level). In the last case, the producer can use this information for building an
optimal maintenance plan in terms of time and human resources. In other words, this layer
allows addressing the second producer requirement.

Finally, in the knowledge integration and decision-making layer, the PHM system is
integrated with existing offline databases, e.g., CMMS. At this level, information related
to the available resources, their cost, and scheduled maintenance interventions on less
critical components (e.g., preventive maintenance) is integrated with data collected through
the PHM system to have a global vision of maintenance activities and their costs. This
results in optimized scheduling of the maintenance interventions and production, as long
as the spare parts production can be triggered when necessary. Finally, the most critical
components, or activities, can be identified, giving the possibility to better design both the
machine and the maintenance service.

The definition of the physical architecture, i.e., the set technologies for the communica-
tion between layers, is not the main topic of the present paper. However, one can consider
the architecture model presented in [80] and [81] as a possible guideline for the physical
implementation of the proposed framework.

3.3. The Functional Architecture

The functional architecture includes all the activities within the framework that fulfill
the defined requirements of machine producers.

The proposed functional architecture is shown in Figure 4. The functions have the same
objectives as those introduced in [8], i.e., DA, DP, FDA, PA, HM. However, some modifica-
tions based on the previous observations and producers’ requirements are here proposed.

First, the DP function is split into two sub-functions: the system-level feature extraction
and the component-level feature extraction. The former deals with the extraction of system-
level features, which can reveal the machine operating condition. The latter deals with
the extraction of component-level features that can reveal the health condition of the
components. In particular, component-level features can be used for two aims: diagnostics
and prognostics. In the first case, the features allow establishing if a fault condition has
occurred. In the second case, the features are HIs and allow us to predict the RUL of the
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component. These sets of features change from one component to another. Thus, they need
to be selected and computed for each critical component of the machine.

Second, the Operating Condition Recognition (OCR) function is introduced between
the DP function and the FDA. In general, the producer wants to know the machine’s
working condition at any point in time. The operating condition can be known or unknown.
If data collected during the machine functioning under one setting are available, then it
means that the setting is known and the data can be used for diagnostic and prognostic
model training. Thus, the so-built predictive models can be applied to make inferences
on streaming data. Otherwise, if the operating condition is unknown, the collected data
cannot be associated with a specific setting. Hence, existing models cannot predict the
operating condition with high accuracy. However, these data can be assigned to the same
unknown group that corresponds to the same novel situation. Then, the new group can
be used to train the existing models and include the new class. Hence, the OCR function
aims to recognize the setting under which the machinery works at any point in time.
It can be seen as a novelty detection problem. Its output is system-level information that
determines the choice of existing predictive models. Thus, it can also be considered a
function that automatically labels the collected observations as belonging to an existing
class or novel behavior.

Finally, the proposed functional architecture also includes anomaly detection in the
FDA and PA functions. In the first case, an anomalous behavior could correspond to a
sudden or unknown fault, while in the second case, the irregular behavior could mean that
the component started a new HS. Thus, it can be considered as the point for starting the
RUL prediction [82].
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3.4. The Logical Architecture

The definition of logical architecture aims to explain the relationships between func-
tions and the data flows within the framework layers.

The proposed logical architecture is shown in Figure 5. The DA function is performed
continuously at the edge to read, collect, and temporarily store streaming data as the
machine works. Then, when a signal segment of a pre-defined length is stored, the DP
function is activated to extract the system-level features and the component-level features.
The length of the signal segment depends on the task that will be performed, the maximum
accepted latency of the inference, and the data transmission. Therefore, the time instant in
which each sub-function of the DP is activated may be different. The activation of the DP
function implies the extraction of relevant features from raw signal segments; then, the OCR
function is triggered to assign the label “known” or “novel” to the system-level features.
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If the operating condition is known, then the FDA and the PA function are acti-
vated. The FDA aims to recognize abrupt faults (for instance, the detachment of a
sucker). Thus, a model trained in the cloud assigns to the current observation a label
l ∈ (Nominal, Fault1, . . . FaultN) among the (N + 1) known fault classes. At the same
time, the signal batch is eliminated from the storage memory of the edge device; in addition,
in the FDA function, anomaly detection is also performed. It requires the same input as the
classification models (i.e., component-level features). However, it aims to detect unknown
faults, i.e., faults not considered during the training of the models for diagnostics. The PA
function aims to recognize degradations occurring during the machine functioning (for
instance, the wear of a screw). Thus, a pre-built degradation model (which may depend on
the implemented setting) is used to predict the future values of the HIs in order to compute
the RUL of the corresponding component, based on pre-defined Failure Thresholds (FT).
However, the degradation begins after several hours of machine functioning for many com-
ponents; moreover, the computation of the future values of the HI and the RUL prediction
would be expensive from the computational point of view. For these reasons, anomaly
detection is also applied to the HIs to detect the degradation starting time. Thus, the RUL
is computed only when an anomaly is detected.

If the OCR function identifies a novel operating condition for the current observation,
a new cluster is created. In this case, since the setting is novel, neither classification
nor degradation models are available. However, anomaly detection can be applied to
component-level features to detect anomalous behaviors that may represent a symptom of
problems in the corresponding component.

All the above-described activities are conducted at the edge. Now, the extracted
feature vectors and the associated labels assigned by the streaming application of prediction
models are transmitted to the cloud. Here, data related to known conditions (anomalies,
fault classes, and RULs) are stored in a permanent database to help producers to make
decisions about maintenance interventions and the supply of spare parts. Instead, the data
associated with novel conditions are used to re-train diagnostic and prognostic models.
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For this reason, the DA, FDA, and PA functions are also included in the cloud. Here, the
DA function aims to acquire the data in different moments, depending on the data type.
When the condition is known, the detection of a fault or anomaly triggers the transmission
of the predicted fault class and the predicted RUL value to the cloud, so that the producer
can react as soon as possible. When the condition is unknown, or no anomalies or faults
are detected under known conditions, the data transmission occurs at fixed moments, such
as at the end of a shift or during the machine’s set-up. The data transmitted in these cases
are the extracted feature vectors and the associated label (belonging class and RUL).

4. Case Study

The case study is conducted on data collected from an experimental platform built in
the Department of Industrial Engineering of the University of Bologna, shown in Figure 6.
The case study wants to show the potential of the proposed PHM architecture for industrial
equipment, in terms of (1) the ability to recognize setting changes with no training for
all possible settings; (2) the ability to detect abrupt faults; (3) the ability to save memory
storage space. In other words, the main goal of the case study is to address the requirements
from industries listed in Section 3.1, in particular those listed in points 2, 3, and 4, by using
the additional functions of the proposed framework listed in Section 3.3.
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The platform is composed of an asynchronous motor, a gearbox made of two pulleys
that exchange the rotation through a belt, two shafts that share the motion thanks to
a couple of gears, an electromagnetic brake. The three-phase electric motor has eight
poles with power equal to 0.13 kW and rotation speed equal to 660 rpm. The motion is
transmitted to the first shaft through the belt running on the pulleys and placed under
tension thanks to a screw-system positioned on the motor’s support. A steel disk is attached
to the second shaft to simulate a load on the centerline using a key and an o-ring. The
braking system consists of an electromagnetic dust brake with adjustable braking torque
in the range of 0–7.5 Nm and a 90 VDC command control fed by a transformer. The
platform contains three accelerometers and a pyrometer. Three Dytran 3093D3 triaxial
accelerometers with IEPE technology are placed on the bearing’s support, next to the
second pulley and the two gearboxes. They have a sampling frequency of 12.8 kHz per axis
and an acceleration range of 500 Gpeak. An OPTRIS CSmicro infrared sensor placed near
the second pulley measures the pulley or the belt’s temperature at a sampling frequency
of 1 kHz. Regarding the data collection system, the acceleration sensors are connected
to a computer through three-channel NI9230 I/O modules with a maximum sampling
rate of 12.8 kS/s for each channel mounted on a four-slot NI 9274 chassis that collects all
the data from the accelerometers before sending them to the computer through a USB
connection. A data acquisition interface is placed in the pyrometer’s cable, and temperature
measurements are collected using the plug-n-play software CompactConnect supplied by
the Optris company.
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The case study consists of two steps. First, few training data are employed to extract
and select relevant features for condition recognition and abrupt fault detection (training).
Then, novelty detection and anomaly detection algorithms are tested on streaming data,
which were collected under two known operating conditions and two unknown operating
conditions, until a sudden fault occurred in the electric motor at the end of the last experi-
ment. Training data consisted of two different operating conditions with different braking
torque values (Table 2).

Table 2. Operating conditions implemented during the collection of the Training Data.

Condition
Distance
between

Pulleys (mm)

Braking Torque
(Nm) Duration (min) Rotation Speed

(rpm)

Setting 1 27.33 0.1 82.8 660
Setting 2 27.33 0.5 184.2 660

The training phase consists of the extraction and selection of the most relevant features
for the specific goal, i.e., condition recognition and fault detection. Thus, each vibration
signal is divided into segments of 1 s, and, the most typical features in the time domain,
i.e., peak, peak-to-peak, mean, RMS, Crest Factor, Skewness, Kurtosis, Shape Factor, and
Impulse Factor, are extracted for each segment,. In total, 81 features are extracted, nine for
each acquired signal. As an example, the nine features extracted from the first signal (axes
x of the first accelerometer) are shown in Figure 7.
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Figure 7. Features extracted from signal 1 in setting 1 (blue) and setting 2 (orange).

Then, the most relevant features were selected according to the aim:

1. For the operating condition recognition (OCR) goal, the mean values of the signals 4,
6, and 8, which correspond to the x and z axes of the second accelerometer and the y
axes of the third accelerometer, respectively, were selected, as they best distinguish
the two settings (Figure 8a).

2. For the fault detection goal, the impulse factor of signal 2 (y axis of the first accelerom-
eter) was selected, as it was independent of the implemented setting (Figure 8b).
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Then, the novelty detection algorithm was trained on extracted features to initialize
the parameters of known conditions. The novelty detection consists of two parts:

1. The anomaly detection algorithm, which determines if a point is normal or anomalous
according to the algorithm developed in [83]

2. The clustering algorithm, which is inspired by the clustering algorithm developed
in [84]. It automatically assigns the current point [58]:

a. To the current cluster if the feature vector does not determine a change in the
system’s state (from normal to anomalous and vice versa).

b. To an existing cluster if the feature vector determines a change in the system’s
state and is considered similar to a known operating condition.

c. To a novel cluster if the feature vector determines a change in the system‘s state
and is far from all existing clusters.

The results of the novelty detection algorithm trained on the first set of features
(for the OCR task) and the second feature (for the abrupt fault detection) are shown in
Figures 9 and 10, respectively.

As expected, for the OCR task, the algorithm creates two clusters. In Figure 9, the
blue dots correspond to the first setting, while the orange dots to the second one. Note that
anomalies, represented by red crosses, that do not determine a system’s state change and are
assigned to the current cluster can be considered measurement errors or anomalous peaks
in the signal. For the fault detection task, only one cluster was created (it is represented by
black dots in Figure 10). Hence, the extracted component-level features are not sensitive to
the setting change and are thus appropriate for the FDA task.

At this point, the extracted feature matrix containing labeled observations belonging
to two different classes is stored. These data can be used to train classification models.
Local parameters of the created clusters are also stored. They are used when the algo-
rithm is executed in streaming to initialize the clusters that correspond to the known
machinery settings.
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Finally, the algorithm is executed in streaming. During the experiment, four settings
were implemented. Setting values are summarized in Table 3. In particular, the first two
settings are the same as those in the previous training phase. At the end of the fourth
experiment, a motor fault occurred.

Table 3. Operating conditions implemented during the Testing phase.

Condition
Distance
between

Pulleys (mm)

Breaking
Torque (Nm) Duration (min) Rotation Speed

(rpm)

Setting 1 27.33 0.1 82.8 660
Setting 2 27.33 0.5 184.2 660
Setting 3 27.54 0.1 77.4 660
Setting 4 27.54 0.328 25.8 660

Table 4 shows results for the OCR task. Points belonging to settings 1 and 2 are
correctly assigned to the initialized clusters. The algorithm detects the second setting
change after 15 s and the third setting change after 10 s. However, the fourth setting is not
detected (Figure 11).
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Table 4. Results of the streaming OCR.

Condition
Setting

Change—Real (Time
Instants)

Setting
Change—Detected

(Time Instants)
Latency (Sec)

Setting 1 - -
Setting 2 4.969 4.984 15
Setting 3 16.022 16.032 10
Setting 4 20.668 - -

Table 5 shows results for the fault detection task. The system breakdown occurred
after 1548 s (25.8 min) from the fourth operating condition starting. The novelty detec-
tion algorithm implemented for the impulse factor (extracted from the y-axis of the first
accelerometer) creates two clusters. The first one is created after 168 s (2.8 min) after the
fourth setting change (yellow dots in Figure 12), while the second cluster is created after
1455 s (24.25 min), which correspond to 90 s (1.5 min) before the system breakdown. If an
alarm was triggered at the second cluster creation time (named Fault (1) in Table 5), the
system breakdown could have been avoided; cluster 2 could have been labeled as faulty,
and classification or regression models could have been trained for future applications.

Table 5. Results of fault detection.

Condition Fault—Real (Time
Instant)

Detected Anomaly
(Time Instant) Latency (Sec)

Normal - - -
Fault (1) - 20.838 -

System Breakdown 22.218 22.123 -90

1 
 

 
 
2 
 
 
 
 
11 
 

 Figure 11. Results of Novelty Detection for the condition recognition.

Besides the performance of the condition recognition and abrupt fault detection, there
is an advantage from the data quantity point of view. Indeed, according to the proposed
architecture, raw signals are stored and transmitted to the cloud only when a new condition
(both operating and fault) is detected. Otherwise, only the extracted feature matrix, together
with the label, is stored. Table 6 shows results in terms of gigabytes saved. The weight of
raw signals is 18.19 Gb. When the operating condition is known, only the features matrix
is stored. Thus, only 5.73 Gb are required. In total, a saving of 68.5% of the storage space is
obtained. Note that the weight is referred to as the MATLAB variables (extension .mat).
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In addition, as the algorithm works on streaming data at the edge, the latency of data
transmission is not to be taken into account.
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Table 6. Memory savings (Gb).

Task Total Raw
Signals (Gb)

Raw Signals
Stored (Gb)

Feature Matrix
Stored (Gb)

Total Storage
Space (Gb)

Setting 1 4.04 - 0.34 0.34
Setting 2 9.63 - 0.56 0.56
Setting 3 3.80 3.80 0.23 4.03
Setting 4 0.72 0.72 0.08 0.8

Total 18.19 4.52 1.21 5.73

Discussion

In the previous section, we proposed a case study to validate two main parts of the pro-
posed framework. In particular, we used streaming novelty detection and anomaly detec-
tion algorithms to perform the OCR and FDA functions. This section summarizes the major
outcomes, which are evaluated concerning the stakeholders’ requirements (Section 3.1).

First, the recognition of the implemented setting would not ideally require data for
training. By using an incremental and unsupervised novelty detection algorithm, it is pos-
sible to start from scratch. Indeed, the first cluster is initialized when the first observation is
available. Thus, the algorithm recursively evaluates if the current point is “similar” to the
previous point or points belonging to other clusters and assigns it accordingly. Otherwise,
a new cluster is created, which will include all the similar observations. Note that the
algorithm can initialize more novel clusters. Assuming that each cluster corresponds to a
setting, the algorithm corresponds to automatic observation labeling. In the described case
study, we initialized two clusters (Cluster 1 and cluster 2), as we were supposed to know
the trend of the features in two operating conditions. By extending the streaming analysis
to the other two unknown operating conditions, we demonstrate that each observation
belonging to a known setting is correctly assigned to the corresponding cluster, a new
cluster is created when the third operating condition occurs, and all observations are then
correctly assigned to this new cluster. The setting change is detected in 10–15 s. Hence,
only 10 or 15 observations will have the wrong label.

The second outcome of the presented case study consists of abrupt and unknown
fault detection through an anomaly detection algorithm. As no other fault classes were
available, no diagnostic model was trained for the real-time inference. However, the
anomaly detection algorithm recognizes an anomalous behavior 95 s before the actual fault.
Although 95 s are not enough in real industrial applications, an alarm would allow the
operator to double-check the machine and eventually stop it. Besides, if the fault would not
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cause the machine arrest, but just quality issues, then the anomaly would be an alarm for
the machine operator, who can intervene for proper tunings. From the producer’s point of
view, the observations labeled as anomalous make it possible to build a diagnostic model
that can recognize the start of a warning Health Stage (Cluster 2) before motor failure [17].

Finally, novelty detection and anomaly detection are not sensitive to point anomalies.
An important aspect in PHM industrial applications is represented by false alarms [85].
The integration of anomaly detection and clustering makes it possible to generate an alarm
only when the current observation is assigned to a distinct cluster of the previous point
instead of when an anomaly is detected. In the OCR function, anomalies are detected more
than 12 times (Figure 11). However, only two anomalies correspond to an actual setting
change. Indeed, the number of times in which a cluster is created is exactly two.

In addition to the performance of the implemented algorithms, there are other aspects
to highlight.

First, the extraction of two different feature sets (system-level features and component-
level features) allows performing two distinct functions of the framework: the OCR and
the FDA. The ability to recognize which setting is implemented (known or unknown) is a
considerable advantage for the machine producer. Indeed, he or she can collect the data
under several operating conditions (that he or she cannot know a priori). Hence, he or
she can train supervised models for diagnostics and prognostics and evaluate how the
specific setting affects the components’ health conditions. In addition, since the machine
setting can be known in real-time, more diagnostic and prognostic models for each setting
can be trained and selected for the real-time inference. In other words, the OCR function
performed at the edge using a novelty detection algorithm allows fulfilling the requirements
2, 3, and 4. In the described case study, manual feature extraction and selection was
conducted, as the investigation of the best kind of feature extraction and selection algorithm
was not the scope of the paper. However, different approaches can be used to improve the
relevance of the features depending on the goal (i.e., Genetic Programming).

Second, the feature extraction and labeling performed at the edge allows the collection
of a larger amount of data. As demonstrated by the case study, 68.5% of the memory
storage is saved by sending to the cloud only “processed” data. Besides, not all data have
to be transferred to the cloud in real-time. Thus, the issues related to the bandwidth and
latency are reduced.

5. Conclusions

In this paper, a novel framework based on an edge-cloud infrastructure and novel
functional and logical architectures for a semi-supervised and partially online PHM appli-
cations to industrial equipment is introduced. It aims to address the requirements collected
from machine producers through several interviews. The motivations behind the paper are
the great interest in PHM systems shown by companies that produce machines for several
industrial sectors, such as packaging and pharmaceutical industries. Major industrial
requirements are related to the difficulties in data collection.

To address these issues, an edge-cloud-based framework is introduced. The idea
is to compute streaming analysis at the edge node installed on users’ machines. Then,
data extracted from edge nodes are sent to the cloud through proper policies, and the
cloud is accessible only by the machine producer. Here, he or she can gather data of better
quality, increasing data availability and reducing their quantity. Indeed, raw signals are
processed at the edge, and only relevant information (features) are transmitted to the cloud.
In addition, the two layers of the infrastructure allow differentiating the information shown
to the client and the producer so that confidential data can be protected.

Given the framework, novel functional and logical architectures are also introduced.
Contrary to existing PHM frameworks in other sectors, the proposed functional architecture
includes the Operating Condition Recognition (OCR) function, which uses a novelty
detection algorithm to discover new settings as new data are available. In addition, the
proposed architecture also includes the feature extraction at two levels: system-level
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features, which feed the OCR function, and component-level features, which feed the Fault
Diagnosis Assessment (FDA) function and the Prognostic Assessment (PA) function, where
models trained on the available data in the cloud are used to make inference on streaming
data. Finally, anomaly detection algorithms are also applied to component-level features to
detect abrupt faults and determine the RUL prediction trigger point.

A case study shows the potential of the proposed functional framework. The study
focuses on the OCR function and abrupt fault detection. Vibration signals are collected
from an experimental platform under two operating conditions. During the training
phase, system-level features and component-level features are extracted and selected.
Then, the system-level features are used as input of the novelty detection algorithm (OCR
function) to obtain local parameters of the clusters corresponding to the known operating
conditions while component-level features are used for the fault diagnosis and detection
(FDA function). Finally, the methodology is implemented for streaming data, collected
under four different operating conditions, two known and two unknown. At the end of
the experiment, an abrupt fault also occurred. Results show the proposed architecture
recognized the setting change in three out of four cases with a maximum latency of 15 s.
In addition, it detected two anomalous behaviors 1380 s and 90 s before the occurrence of
the failure. Finally, as only features are sent to the cloud when the machinery behavior is
known, the space needed for keeping these data in memory was reduced by 68.5%.

Despite the advantages of OCR and abrupt fault detection, there are some limitations
of the proposed methodology.

The first limitation is related to the system-level feature extraction. For the case study,
the data were collected under stable conditions. This means that components such as
gearboxes were not subject to any degradation during data collection. However, when a
gearbox degrades, the vibration level increases. Hence, the values of the extracted features
in a specific operating condition may be different depending on whether degradation
occurs. In other words, with the selected features, the streaming algorithm may detect a
changing behavior of the system and create a new cluster or wrongly assign the current
point to another existing cluster. Hence, future research should be dedicated to the inves-
tigation of the system behavior under different operating conditions while one or more
components are subject to degradation. In particular, future works should aim to construct
system-level features whose values remain in a given range when the system works under
the same operating condition even if its components are degrading. A promising tool to
construct the features that respect this property is represented by Genetic Programming,
which can also be used to find optimal component-level features and HIs from the same
set of features extracted from raw signals [86].

The second limitation is related to real-time edge computing. In the described case
study, 81 features are extracted from the signal in the time domain every second. This
activity requires a computation time of less than 1 sec. Therefore, the latency of the
algorithm is irrelevant. However, when signals need to be transformed in the frequency
or time-frequency domain to reduce the noise or extract more meaningful features for
diagnostics and prognostics (i.e., data pre-processing), the computation time could notably
increase. Further research should address the construction of reliable, light-weight, and
fast algorithms for data denoising and pre-processing.

Finally, the described case study does not consider the application of trained diagnostic
and prognostic models for real-time inference under different operating conditions. Hence,
further research should address the integration of existing models with streaming analysis
for anomaly and novelty detection. Moreover, how a diagnostic or prognostic model, which
was trained on data under a given operating condition, can be modified to make accurate
predictions under other operating conditions should also be investigated to improve the
proposed methodology and address the stakeholders’ requirements.
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