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Equilibrium quantum many-body systems in the vicinity of phase transitions generically manifest
universality. In contrast, limited knowledge has been gained on possible universal characteristics in
the non-equilibrium evolution of systems in quantum critical phases. Here, we present such a universal
feature in the equilibration dynamics of the Sachdev-Ye-Kitaev (SYK) Hamiltonian—a paradigmatic
system of disordered, all-to-all interacting fermions that has been designed as a phenomenological
description of quantum critical regions. We drive the system far away from equilibrium by performing
a global quench, and track how its ensemble average relaxes to a steady state. Employing state-of-
the-art numerical simulations for the exact evolution, we reveal that the disorder-averaged evolution
of few-body observables, including the quantum Fisher information (QFI) and low-order moments
of local operators, exhibit within numerical resolution a universal equilibration process. Under a
straightforward rescaling, data that correspond to different initial states collapse onto a universal
curve, which can be well approximated by a Gaussian throughout large parts of the evolution. To
reveal the physics behind this process, we formulate a general theoretical framework based on the
Novikov–Furutsu theorem. This framework extracts the disorder-averaged dynamics of a many-body
system as an effective dissipative evolution, and can have applications beyond this work. The
exact non-Markovian evolution of the SYK ensemble is very well captured by Bourret–Markov
approximations, which contrary to common lore become justified thanks to the extreme chaoticity of
the system, and universality is revealed in a spectral analysis of the corresponding Liouvillian. We
expect our findings to shed light on challenging questions for quantum systems far from equilibrium,
such as thermalization and equilibration of closed and disordered quantum many-body systems, and
to stimulate further studies on out-of-equilibrium universality.

I. INTRODUCTION

Whether and how a perturbed system equilibrates have
been fundamental issues of statistical mechanics since the
laying of its foundation. One question that has intrigued
researchers for almost a century is the thermalization of
an isolated quantum system under its unitary evolution [1–
4]. In the last two decades, this process has experienced
a revitalized surge of interest, thanks to experimental
breakthroughs in realizations of synthetic many-body
systems [5–11]. An unprecedented control over system
parameters now enables laboratory investigations using
quantum systems in almost ideal, isolated conditions [12–
26]. On the theory side, a main obstacle for arriving at a
unified understanding of out-of-equilibrium quantum dy-
namics is the absence of a universal principle that would
be as general as the minimization of free energy for equi-
librium phase transitions [27, 28]. Nevertheless, powerful
frameworks have been developed to explain the thermal-
ization of a quantum system, perhaps the most successful
being the eigenstate thermalization hypothesis (ETH) [29–
32]. According to the ETH, for quantum chaotic systems,
particularly for ergodic systems, thermalization and equi-
libration are tantamount, since under quantum chaotic
dynamics a perturbed system equilibrates to a state that
for local observables is indistinguishable from a Gibbs ther-
mal state. A well accepted mechanism for thermalization

∗ These two authors contributed equally.

in an isolated quantum system is that initially localized
information is distributed among the system’s degrees
of freedom, and thus becomes irretrievable through any
local operation at later times. This process, referred to as
scrambling [33, 34], occurs in quantum many-body lattice
models [35–37], conformal field theories [38], and black
holes alike [39, 40], and has been experimentally probed
in different physical systems [41–43].

A central role in bridging the different paradigms of
scrambling and chaotic dynamics has been taken by the
Sachdev-Ye-Kitaev (SYK) model [44–48]. This model,
which consists of purely disordered all-to-all interactions,
was originally designed as a prototype for so-called strange
metals [44, 45, 49, 50], and has been found to be holograph-
ically dual to black holes with two-dimensional anti-de Sit-
ter horizons [45, 47, 51–54]. Like the black holes [40], this
model exhibits fast scrambling dynamics by saturating the
upper bound of the quantum Lyapunov exponent [47, 55].
In this sense, the SYK model is maximally chaotic, which
has spurred much recent theoretical investigations into
its chaotic [56–61] and thermalization properties [62–64].
In addition, proposals for quantum simulating the SYK
model on digital devices [65] and analog systems based on
the solid state [66–68] and ultracold atoms [69, 70] have
been put forward.

Despite the recent progresses in understanding the
dynamics of this paradigmatic model and of quantum
many-body systems in general, it remains an outstanding
challenge to extract universal quantum out-of-equilibrium
behavior [71–78]. For slow near-adiabatic sweeps across
a critical region, the Kibble-Zurek mechanism [79, 80]
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has provided deep insights, including universal scaling
laws [80, 81]. Here, we are interested in violent quenches,
where a significant amount of energy is instantaneously in-
jected into the system. Excepting few situations, such as
non-thermal fixed points [25, 82–87], much less is known
about universality in such far-from-equilibrium situations.

In this paper, we identify a universal equilibration in
quench dynamics of the complex SYK model, revealed
in state-of-the-art numerical calculations and explained
analytically through a master equation. In particular, em-
ploying a highly optimized exact diagonalization method
for systems comprising up to N = 20 complex fermionic
modes, we study how a system initialized in an eigenstate
of some other Hamiltonian equilibrates to a steady state
following a sudden global quench into the SYK model.
For a broad variety of few-body observables, including
multipartite entanglement as given by the quantum Fisher
information (QFI), the disorder-averaged evolution col-
lapses onto a single curve after a simple amplitude rescal-
ing, independent of (generic) initial states. Over vast
stretches of the dynamical evolution, this universal curve
is well approximated by a Gaussian, with a fast decay
on the order of the time-scales of leading-order processes.
Such a universality over the entire evolution goes signif-
icantly beyond what is observed in conventional equili-
brating systems, where universal behavior independent of
initial conditions can only be expected once the system
reaches a fixed point of the dynamics (the final steady
state [3, 4, 32] or a non-thermal fixed point [25, 82–87]).
Thus, our findings may stimulate future investigations in
non-equilibrium quantum many-body dynamics in order
to identify similar universal dynamics in other models.

We substantiate our numerical findings by devising a
Lindblad master equation (ME) that describes the Hamil-
tonian disorder average as an effective nonunitary time
evolution. In this formalism, the unitary but disordered
closed-system dynamics generated by the SYK model
is mapped to one of a clean but dissipative system. A
detailed prescription for Hamiltonian disorder averaging
has been introduced by Kropf et al. based on a matrix
formalism [88–90]. Here, we present an alternative, math-
ematically elegant route to Gaussian disorder averaging
based on the Novikov–Furutsu theorem. In earlier works,
this theorem has been applied in the context of averag-
ing noise with finite correlation times in, for instance,
quantum walks subjected to pure dephasing noise [91, 92],
stochastic Schrödinger equations [93], or proposals for
simulating dissipation via noisy unitary dynamics [94–97].
We exploit that framework by formally promoting the
quenched disorder to noise with infinite correlation time,
permitting a fruitful application to a generic system with
Gaussian disorder. To render the ensuing exact equa-
tions tractable, we employ decorrelation and Markovian
approximations. In contrast to standard lore, which seem-
ingly preempts their use for the infinite correlation time of
quenched disorder [98–104], these approximations capture
the true quantum dynamics well, thanks to the extreme
chaoticity of the SYK model. The resulting master equa-

tion successfully describes the super-exponential aspect of
the equilibration process as well as the equilibrated steady
state. Even more, a spectral analysis of the associated
Liouvillian provides valuable insights into the universal
dynamics of few-body observables. As these results show,
the master equation for the ensemble averaged state ele-
gantly describes complex features of disordered quantum
dynamics, and may thus constitute a powerful tool much
beyond the immediate context of this work.

The rest of this manuscript is organized as follows. In
Sec. II, we elaborate on a global quench protocol, em-
ployed to induce the equilibration dynamics. Then, in
Sec. III, we discuss the universality and super-exponential
decay observed in the disorder ensemble averaged dynam-
ics of QFI. Sec. IV presents the formalism used to obtain
the master equation, and further illustrates that the latter
captures the salient features of the equilibration process.
These sections constitute the main results of our study.
To provide a further in-depth analysis, we extend our
study in Sec. V to the dynamics of operator moments,
and explain the observed universality in the equilibration
process based on a spectral analysis of the Liouvillian. In
Sec. VI, we conclude the key findings of our study, and
emphasize possible extensions and potential applications
of the presented formalism. The main article is comple-
mented by appendices that provide further details on the
model, master equation formalism, as well as additional
numerical results.

II. QUENCH PROTOCOL

We are interested in the disorder-averaged out-of-
equilibrium dynamics generated by the SYKq model for
spinless complex fermions, following the quench protocol
sketched in Fig. 1a. The family of SYKq models is char-
acterized by (q/2)-body random all-to-all interactions,
where q/2 ∈ Z+. In this paper, we present in detail
the dynamics of the SYK4 model, but we stress that the
salient features of this equilibration process are qualita-
tively generic to other values of q [105]. The Hamiltonian
of an instance of the ensemble reads (see App. A for
details) [48, 106]

ĤSYK4
=

1

(2N)
3
2

N∑

i1,i2,j1,j2=1

Ji1i2;j1j2 ĉ
†
i1
ĉ†i2 ĉj1 ĉj2 . (1)

There are N spinless fermionic modes with creation, an-
nihilation, and occupation number operators that satisfy
canonical anticommutation relations and are denoted, re-

spectively, by ĉ†i , ĉi, and n̂i. The interaction strengths
{Ji1i2;j1j2} are complex Gaussian random variables, and
we denote the disorder average over realizations by E[...].

As initial states |ψ(0)〉, prepared at time t <
0, we consider for convenience ground states of
the one-dimensional spinful Fermi–Hubbard (FH)

model [107, 108], given by the Hamiltonian ĤFH =
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FIG. 1. Universal super-exponential equilibration dynamics
of the QFI, FQ, under the complex SYK4 Hamiltonian. (a)
Illustration of the quench protocol. Left: Initial states are cho-
sen as ground states of the Fermi–Hubbard (FH) Hamiltonian
for different values of U/J (other generic initial states yield
equivalent results). The black and gray circles respectively
represent occupied and empty fermionic modes. Dashed lines
illustrate hopping of fermions between nearest-neighbor sites.
Right: The system is evolved under the SYK4 Hamiltonian,
where spinless fermions (black circles) can hop to any empty
fermionic mode (light gray circles). The disordered interaction
strengths {Ji1i2;j1j2} are randomly sampled from independent
Gaussian distributions. (b) QFI averaged over 400 disorder

realizations, E [FQ], computed with respect to the operator R̂
defined in Eq. (6). Initial states from darker to lighter shade of
blue are for U/J = 0, 2, 4, 6, 8, and 10. The system equilibrates
fast to the expectation value of the Gibbs infinite temperature
state (dotted black line). (c) Universality in the dynamics is
revealed by rescaling to G (E [FQ]), as given in Eq. (3). Very
good agreement is found to a Gaussian fit, exp

[
−(Jt/τ)2

]
,

with a fast decay constant of τ = 1.52 (dashed red curve).
Data for Q = 8 fermions occupying N = 16 fermionic modes.

−J ∑N/2
`=1

∑
σ=↑,↓

(
ĉ†`,σ ĉ`+1,σ + H.c.

)
+ U

∑N/2
`=1 n̂`,↑n̂`,↓,

with periodic boundary conditions. In the FH model,
physical modes are given by N/2 spatial lattice sites,
` = 1, . . . , N/2, and additional spin degrees of freedom
(represented by the arrows) not present in the SYK model.
As the family of SYKq models consists of zero-dimensional
models (due to site-independent all-to-all interactions),
the mapping of FH modes to the SYK modes is arbitrary.
We choose here {`, ↑} ↔ i = 2` and {`, ↓} ↔ i = 2`− 1.

In our numerics, we employ various choices of the ratio
between onsite interaction and hopping strengths U/J ,
total fermion number 1 ≤ Q ≤ N , and total magnetiza-
tion (we focus mostly on the case of half-filling, Q = N/2,

and zero magnetization, where there are N/4 fermions in
each spin sector). We emphasize that the above choice of
the initial Hamiltonian is only for convenience of prepar-
ing initial states that cover a range of parameters in a
strongly-correlated system. Choosing other generic initial
states does not modify our findings.

Once the system is prepared in the initial state |ψ(0)〉,
we perform a global quench at t = 0 to the SYK4 model
and track the state’s subsequent unitary time evolution
(here and throughout we set ~ = 1)

|ψ(t)〉 = e−iĤSYK4 t |ψ(0)〉 . (2)

We average the time series over multiple disorder re-
alizations in order to filter out the salient, realization-
independent features of the equilibration dynamics. To
test the generality of our findings, we study a variety of
observables, in particular the QFI (see next section) and
higher-order correlators (see Sec. V and App. B) corre-
sponding to the staggered magnetization, as well as other
few-body (4-local) operators and a non-diagonal generator
for the QFI (see App. C).

As a main result of our study, the disorder-averaged
evolution of the considered few-body observables shows
universality under the following rescaling

G (f(t)) =
f(t)− f(t)

f(0)− f(t)
, (3)

where f(t) represents the long-time average of the function
f(t) computed over a time window starting at t0 and with
duration T , i.e.,

f(t) =
1

T

∫ t0+T

t0

f(t)dt. (4)

Unless explicitly stated, we consider Jt0 = 50 and JT =
50 for the exact diagonalization results presented in this
paper.

III. UNIVERSAL SUPER-EXPONENTIAL
EQUILIBRATION DYNAMICS

To illustrate the universal equilibration dynamics, we
present here results for the QFI evolved under the SYK4

Hamiltonian. The QFI is an observable of central rele-
vance in quantum sensing [109–111], which can witness
multipartite entanglement in quantum many-body sys-
tems at zero and finite temperatures [112–116]. Interest-
ingly, like the out-of-time-order correlators [117, 118], this
quantum information theoretic measure can distinguish
a pure eigenstate of an ETH-obeying Hamiltonian from
the corresponding Gibbs thermal state [119].

In the present context of pure states, the QFI with
respect to an observable Ô is simply proportional to its
variance

FQ[Ô](t) = 4
(
〈ψ(t)| Ô2 |ψ(t)〉 − 〈ψ(t)| Ô |ψ(t)〉2

)
. (5)
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In this section, we consider the staggered magnetiza-
tion, which in the FH model is defined as ÔSM =∑N/2
`=1 (−1)`(n̂`↓ − n̂`↑), and which in the SYK model

translates to

R̂ =

N/2∑

i=1

(−1)iκ̂i =

N/2∑

i=1

(−1)i(n̂2i−1 − n̂2i). (6)

The κ̂i denote 2-local operators which we use to construct
the 4-local operators discussed in App. C.

The time evolution of the disorder-averaged QFI,
E [FQ], computed with respect to the operator R̂ is
shown in Fig. 1b. The considered initial states are the
symmetry unbroken ground states of the FH model for
U/J = 0, 2, 4, 6, 8, and 10, respectively (dark to light
shading). These values include a non-interacting initial
system for U/J = 0, as well as strongly interacting sys-
tems at larger values of U/J . As a result, the initial
states are characterized by a varying amount of multipar-
tite entanglement that is witnessed by the QFI. At short
times, the system still retains memory of the initial state.
However, the completely disordered all-to-all interactions
of the SYK model lead to a quick loss of this memory, and
already at a time of about Jt ≈ 4 the QFI equilibrates
to a steady state value that is independent of the initial
state. This rapid equilibration is reminiscent of the fast
scrambling characteristic of the model.

The attained steady state value matches with the one
obtained from the infinite temperature Gibbs state (hori-
zontal dashed black line in Fig. 1b)

ρ̂∞ =
e−βĤ

Z

∣∣∣∣∣
β=0

=
1

D
, (7)

where 1 is the identity operator, Z is the partition func-
tion and D is the Hilbert space dimension determined by
N and Q. This finding suggests that the overlaps between
a generic initial state and energy eigenstates of the SYK4

Hamiltonian are uniformly distributed over the spectrum.
This is substantiated by computing the Kullback–Leibler
divergence, DKL(P (E)‖Q(E)), between the uniform dis-
tribution Q(E) = 1/D and the initial states’ amplitude

distribution P (E) = |〈ψ0|E〉|2 with respect to the energy
basis {|E〉}.1

This equilibration dynamics is universal within numer-
ical precision, as one can expose by rescaling E [FQ] ac-
cording to Eq. (3). The dynamics of the rescaled curves
are shown in Fig. 1c. All the curves collapse through-
out the dynamics, independent of the initial state. In

1 For N = 8 and N = 12 systems, E [DKL] = 0.0997± 0.0154 and
0.0627±0.0028, respectively. This indicates that the initial states
are almost uniformly distributed, and the uniformity of P (E)
improves with increasing N . The quoted values are for the FH
initial state U/J = 10, and are representative of all considered
initial states.

addition, the universal curve can be well approximated
by a Gaussian (red dashed curve in Fig. 1c), with a fast
decay constant of τ = 1.52. Thus, under the Hamiltonian
evolution of the SYK4 model, the disorder-averaged QFI
exhibits universal and super-exponential equilibration dy-
namics.

A Gaussian temporal evolution has also been found for
the survival probability when quantum quench dynamics
are considered under embedded random matrix ensem-
bles [120] as well as a generic disordered interacting spin
model [121]. In these cases, the survival probability ini-
tially decays as a Gaussian, followed by a regime in which
it shows oscillations with a power-law envelope [121]. The
oscillatory behavior is also seen in the evolution of the
spectral form factor of SYK models [57, 63]. Our numerics
illustrate the above features for the survival probability
(see Fig. 11). In contrast to this many-body observable,
for the few-body observables considered in this study, we
find the Gaussian decay followed by a marginal domain
in which an indication of a power-law tail is obtained, but
which appears to diminish with system size (see Fig. 5).

IV. DISSIPATIVE ENSEMBLE DYNAMICS

In this section, we present the key results of the open-
system formalism, which we use to understand the main
features observed in the average dynamics of the unitary
ensemble discussed in the previous section. Due to its
generality for treating disorder ensemble averages, this
formalism is of interest also independent of the application
to the present scenario. The derivation presented here
is formally written for time-dependent random processes.
We stress, however, that the resulting evolution equations
apply also in the limit of static processes. The approach
presented here has the advantage of treating quenched
disorder and temporally fluctuating noise on equal footing,
enabling an application to a large variety of settings. The
interested reader may find further details and the explicit
derivation for static processes in App. D.

Our aim is to directly study the dynamics of the en-
semble’s density matrix ρ̃(t) ≡ E [ρ̂(t)] via the ensemble
averaged von Neumann equation (EAVNE), where the
time-evolution of each state ρ̂(t) is generated by a real-
ization of the general Hamiltonian

Ĥ(t) = Ĥ0(t) +
∑

α

Ĥα(t). (8)

Here, Ĥ0(t) is a disorder-free contribution, which in gen-
eral can be time dependent, whereas the terms

Ĥα(t) =
∑

lα

ξ
(α)
lα

(t)ĥ
(α)
lα
, (9)

capture the dynamics due to disorder or noise. The index
α is used to distinguish different subsets of Hermitian

operators ĥ
(α)
lα

, and the operators within a subset are
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labeled by the (multi-)index lα.2 In particular, upon
rewriting the SYK4 Hamiltonian in the generic form of
Eq. (9), we identify three operator subsets, as shown in

Sec. V B. We assume the functions ξ
(α)
lα

(t) to describe a
Gaussian process possessing—without loss of generality—

vanishing cross-correlations, E
[
ξ
(α)
lα

(t)ξ
(β)
lβ

(t′)
]

= 0 for

α 6= β, so that their correlation tensor is given by

F
(α)
lα,kα

(t, t′) ≡ E
[
ξ
(α)
lα

(t)ξ
(α)
kα

(t′)
]
. Formally, the SYK4

model defined in Eq. (1) corresponds to setting Ĥ0(t) = 0

and taking all ξ
(α)
lα

(t) to be time independent, in which

case F
(α)
lα,kα

(t, t′) is constant with respect to time. To keep
the formalism general, we will specialize to this case only
further below.

Consider the EAVNE generated by averaging over mul-
tiple realizations of the Hamiltonian in Eq. (8),

∂tρ̃(t) = −i
[
Ĥ0(t), ρ̃(t)

]
− i
∑

α,lα

[
ĥ
(α)
lα
,E
[
ξ
(α)
lα

(t)ρ̂(t)
]]
.

(10)
To proceed, one needs to handle the correlations

E
[
ξ
(α)
lα

(t)ρ̂(t)
]
. These are non-trivial since the density

matrix is—by virtue of the von Neumann equation—a

functional ρ̂[ξ, t] of the Gaussian processes ξ
(α)
lα

(t). The
simplicity of our framework rests upon use of the Novikov–
Furutsu theorem [122–125], which provides an exact ex-

pression of these correlations in terms of F
(α)
lα,kα

(t, t′) as

E
[
ξ
(α)
lα

(t)ρ̂[ξ, t]
]

=
∑

kα

∫ ∞

0

dt′F
(α)
lα,kα

(t, t′)E

[
δρ̂[ξ, t]

δξ
(α)
kα

(t′)

]
.

(11)
An explicit expression for the functional derivative can
be obtained from the integrated von Neumann equation.
To leading order, it reads

δρ̂[ξ, t]

δξ
(α)
kα

(t′)
' −i

[
ĥ
(α)
kα
, ρ̂[ξ, t′]

]
Θ(t− t′), (12)

where the step-function Θ arises from causality. Substi-
tuting Eqs. (11) and (12) into Eq. (10), we obtain the
evolution equation

∂tρ̃(t)=− i
[
Ĥ0(t), ρ̃(t)

]

−
∑

α,lα,kα

[
ĥ
(α)
lα
,

[
ĥ
(α)
kα
,

∫ t

0

dt′F
(α)
lα,kα

(t, t′)ρ̃(t′)

]]
.

(13)

2 Whilst the distinction via index α is not strictly necessary for
our derivation, it does facilitate translation of our general results
to specific models in which such a distinction may naturally arise.
For example, in a system of spins arranged on a lattice, α = 1
could refer to a disordered external potential and α = 2 to a noisy
drive. For either, the operator label lα would refer to the site
index of the spins.

This evolution equation is not exact, due to our use of
the approximate functional derivative given by Eq. (12).
Such a truncation to first order in 1/~ amounts to the
well-known decorrelation assumption typically made in
the analysis of stochastic evolution equations [126, 127].
The remaining time integral in Eq. (13) is known as a
Bourret integral [128, 129]. While the decorrelation as-
sumption becomes exact in the limit of white noise, for
non-Markovian noise it corresponds to an expansion con-
trolled by the noise correlation time [130]. One may
then wonder what justifies this approximation (see also
Fig. 2) for the present disordered system, which has an
infinite correlation time. The reason lies in the chaoticity
of the SYK4 model: Since each disordered term in the
Hamiltonian maps to an independent noise process, corre-
lations between the density operator and any individual
process are strongly suppressed. Viewed differently, the
decorrelation assumption can be seen as a linear-response
approximation [98, 99], i.e., the response of the state ρ̂ at

time t towards a perturbation with ξ
(α)
lα
ĥ
(α)
lα

at time t1 is
taken into account only to linear order. In the context
of Kubo’s celebrated linear response theory [100], it is
well known that averaging effects due to chaos lead to a
superb success much beyond the regime of applicability
predicted by näıve estimates [98, 101–104]. In the present
context, the observed success of the linear approximation
can be seen as a manifestation of the strong effects of
quantum chaos in the SYK4 model.

The master equation as given by Eq. (13) is still rather
unwieldy, since it is not local in time. We thus perform a
Markov approximation, leading us to a Lindblad master
equation in non-diagonal form [131] governed by a time-
dependent Liouvillian superoperator

L(t)ρ̃(t) = −i
[
Ĥ0(t), ρ̃(t)

]
+
∑

α

D(α)(t)ρ̃(t), (14)

with Hermitian dissipator

D(α)(t)ρ̃(t) =
∑

lα,kα

2f
(α)
lα,kα

(t)

×
(
ĥ
(α)
lα
ρ̃(t)ĥ

(α)
kα
− 1

2

{
ĥ
(α)
kα
ĥ
(α)
lα
, ρ̃(t)

})
,

(15)

in which we have defined

f
(α)
lα,kα

(t) =

∫ t

0

dt′F
(α)
lα,kα

(t, t′). (16)

Equations (14)–(16) form the final evolution equations
of this section. They are valid under a Bourret–Markov
approximation for the generic Hamiltonians of Eq. (8)
with disorder and/or noise contributions. Whilst each
individual disorder realization evolves unitarily, the en-
semble evolves like an open system, with a dynamics that
is approximately generated by the Liouvillian L(t). The
coherent and dissipative processes that constitute L(t) can
be read-off immediately from the system’s Hamiltonian.
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The corresponding dissipation rates are entirely deter-

mined by the disorder statistics F
(α)
lα,kα

(t, t′) via Eq. (16).
Similarly, while each realization preserves the purity of
the initial state, the Hermitian jump operators of the
master equation generate ensemble dynamics that are
purity decreasing [132, 133], and thus drive the ensemble
from a pure to a mixed state. In particular, for the SYK4

model with large enough N , the ensemble equilibrates to
the infinite-temperature state given in Eq. (7) [133, 134].

Besides clarifying the nature of the steady-state, the
Liouvillian dynamics also reproduce the rapid, super-
exponential equilibration of the QFI observed in the
SYK4 quench dynamics of Sec. II: In the above equa-
tions, the case of static disorder is captured by a “noise”

correlation that is constant in time, so that 2f
(α)
lα,kα

(t) =

2tE
[
ξ
(α)
lα
ξ
(α)
kα

]
. Thus, under the Bourret–Markov approx-

imation the SYK4 model (or indeed any SYKq model)
is governed by dissipation rates that grow linearly in
time. Consequently, one can factor the Liouvillian as
L(t) = 2tD, which naturally yields the super-exponential
time-evolution

ρ̃(t) = T e
∫ t
0
dt′2t′Dρ̂(0) = et

2Dρ̂(0), (17)

where T denotes time-ordering.
Figure 2a shows simulations of the QFI evolution gen-

erated by the above master equation. The agreement
with the ED results is striking. We emphasize that no fit
parameter has been used (nor is one available in the above
formalism) to achieve this agreement. The Liouvillian
dynamics also reproduce the universality of the QFI with
respect to different initial states, as shown in Fig. 2b.
A discrepancy at intermediate times can be attributed
to the decorrelation and Markov approximations of the
master equation. These approximations can be expected
to hold especially at early times, as can be seen from a
short-time expansion, and at late times when the system
enters a steady state (a unique steady state is the one
which is reached independent of the precise trajectory, so
correlations to the exact noise process and memory about
previous times can be expected to be negligible). Indeed,
the ME provides excellent agreement at early and late
times, and successfully captures the overall trend of the
dynamics even at intermediate times.

Even more, the Liouvillian formalism allows us to study
the origin of the universal dynamics. In Sec. V C, we ana-
lyze how different states and observables decompose over
the eigenspaces of L(t), showing how these distributions
conspire in the presented scenario to select a single time-
scale, universal across different initial states.

As a final remark, the fact that disorder induces de-
phasing between members of an ensemble—and thus leads
to effective open-system evolution equations even in the
absence of a heat bath—is long known; in particular
for special single-body cases such as classical disordered
dipoles and harmonic oscillators [130] or single atoms
coupled to a photon field [135]. Here, our aim was the
derivation of a general framework for quantum many-body
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FIG. 2. Comparison of ED and ME results for the QFI of
the staggered magnetization R̂ in the SYK4 model for N = 8.
ED curves are averaged over 90000 disorder realizations. For
both ME (red, dashed) and ED (green, solid) curves, dark
to light shading corresponds to the different initial states
of Fig. 1. The black (dotted) line shows the analytically
predicted steady-state value of Eq. (22) for the half-filling
sector. (a) For each initial state, the ME simulation reproduces
the dynamics of the exact numerics very well. There is a
discrepancy at intermediate times due to non-Markovian effects
and higher-order correlations, not captured by the approximate
ME (inset). (b) The ME reproduces the collapse to a universal
curve under the rescaling defined in Eq. (3), without any free
fit parameter. The slight spread in the rescaled ED curves is
due to statistical fluctuations, which for the QFI are rather
large at small system sizes, as can be seen from a comparison
with Fig. 1c, which shows QFI dynamics computed via ED for
N = 16.

systems. Such a platform for the evolution of disorder-
averaged density operators has been rigorously developed
previously [90], based on a matrix formalism [88, 89].
Our derivation based on the Novikov–Furutsu theorem is
simpler but nevertheless general, as the assumptions we
made are not fundamental, but rather of practical nature:
The Novikov–Furutsu formalism can be extended to non-
Gaussian stochastic processes [125, 136], the decorrelation
assumption may be lifted in favor of an infinite series of
terms [99, 130], and the Markov approximation is—at
least on a formal level—not necessary in the derivation
of the evolution equations. The present framework has
the additional feature that disorder and noise processes
can be treated on equal footing, within the same master
equation, without any further complications of the for-
malism. That property enables us to tap into the vast
literature employing the Novikov–Furutsu theorem in the
context of noise with finite correlation time (see, e.g.,
Refs. [91, 94–96]).

To summarize this section, the Novikov–Furutsu the-
orem enables us to derive a master equation, for the
ensemble average, that provides a general framework for
disorder-averaged quantum many-body systems. For the
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case of the SYK4 model, it yields a series of analytic
insights into the out-of-equilibrium dynamics, such as
the steady state reached at late times, the approximately
Gaussian decay, and the universal behavior across differ-
ent initial states.
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FIG. 3. Disorder-averaged universal equilibration dynamics
of the kth moment, Mk, of the operator R̂ under the SYK4

Hamiltonian. Data is for Q = 8 fermions occupying N = 16
modes. Left column: Dynamics of M2, M4, and M6 averaged
over 400 disorder realizations, with only a simple normal-
ization Nk as in Eq. (18) for visualization. Right column:
Corresponding dynamics rescaled by the function G given in
Eq. (3). Curves for different initial states (chosen as in Fig. 1)
collapse. The dotted black lines in (a), (c), and (e) mark the
values of the operator moments calculated with respect to the
Gibbs infinite temperature state. The dashed red curves in (b),
(d), and (f) correspond to Gaussian fits, exp

[
−(Jt/τ)2

]
, with

τ = 1.52, 1.42, 1.35, respectively. Similar results for k = 8, 10,
and 12 can be found in Fig. 9.

V. UNIVERSAL EVOLUTION OF OPERATOR
MOMENTS UNDER SYK4

To corroborate the generality of the above findings,
in this section we consider the kth moment, Mk(t) =

〈ψ(t)| Ôk |ψ(t)〉, of the operator Ô = R̂ defined in Eq. (6)
(in App. C, we report analogous results for 4-local opera-
tors and QFI computed with respect to a non-diagonal
operator T̂ , defined in Eqs. (C1) and (C2), respectively).
We start by presenting the corresponding numerical ED
results which, as in the QFI case, display universal behav-
ior in the disorder-averaged time series. Then, we use the
Lindblad ME derived in Eq. (14) to further illuminate the
universal dynamics and the salient features of the exact
evolution. Finally, we present a spectral analysis of the
corresponding Liouvillian, which explains the universality
within the Bourret–Markov approximation.

A. Numerical results from exact diagonalization

With respect to the symmetry unbroken FH ground
states, the expectation values of all the odd moments of
the staggered magnetization operator R̂ are zero. Their
ensemble averaged expectation values continue to show
negligibly small fluctuations around zero during time evo-
lution under the SYK4 Hamiltonian. In contrast, the even
moments exhibit the same super-exponential universal
equilibration behavior as the QFI. This is illustrated in
Fig. 3 for k = 2, 4, and 6 (higher-order moments are pre-
sented in Fig. 9). For visualization purposes, in the left
column the expectation values of the operator moments
are normalized to values ≤ O(1) by an empirical factor

Nk = N( 3k
4 −

1
2 ). (18)

The super-exponential approach to equilibrium is clearly
visible in this data.

As is evident from the right columns of Figs. 3 and 9,
a rescaling using Eq. (4) collapses the even moments
evolved from different initial states onto a single curve.
During most of the evolution, this collapsed curve can
be well approximated by a Gaussian. In the transient
regime, curves corresponding to different initial states
for even k ≥ 4 do show small deviations, an effect that
becomes more prominent for larger N . In other words,
while the universality found for k = 2 is very robust,
for larger k it becomes approximate in an intermediate
time window. Below, we describe this feature in detail by
explaining the universality of the equilibration dynamics
based on a spectral analysis of the Liouvillian. This
finding also suggests that universality is more precise
for few-body operators, as is further corroborated by
comparison with the global many-body observable of the
survival probability, see Fig. 11.

An interesting feature of the different moments is that
their respective curves shift towards earlier times with
increasing order k. That is, the higher the moment order
is, the faster is the equilibration. Accordingly, Gaus-
sian fits to the universal curves for k = 2, 4, 6 yield the
decreasing decay rates τ = 1.52, 1.42, 1.35, respectively,
see Fig. 3. To illustrate this effect further, we show the
rescaled curves for k = 2, 4, ..., 12 in Fig. 10, where it
appears the curves converge with sufficiently high order.
Again, this trend can be explained based on a spectral
analysis of the Liouvillian as a function of moment order
(see Sec. V C and inset of Fig. 10 in App. B for details).

To study the finite-size dependency of the rescaled uni-
versal curves, we consider in Fig. 4 the representative case
k = 2 of the operator moments. We consider the exact evo-
lution for systems consisting of N = 8, 12, 16, and 20 com-
plex fermionic modes, and investigate the dynamics in the
number preserved sector of half filling, for which we em-
ploy a state-of-the-art, highly optimized exact diagonaliza-
tion method. For the largest system size, the Hamiltonian
matrix dimension is D = N !/[(N/2)!(N/2)!] = 184756.
Due to the disorder, no symmetries other than particle
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number conservation can be used, and due to all-to-all
connectivity the matrix is denser than for models with
finite-range interactions. However, thanks to the self-
averaging nature of the model [63], with increasing N
smaller numbers of disorder realizations suffice for satis-
factory convergence [137] (we consider 90000, 2700, 400,
and 50 ensemble members for the above values of N).

With increasing N , faster equilibration as well as an
approach to convergence is observed (see the right inset in
Fig. 4, which highlights the dynamics in the transient time
domain). A similar feature has been seen in the initial
dynamics of other quantities for time evolution under the
SYK [57] and other disordered, chaotic Hamiltonians [138,
139], as well as random matrices [140]. The dependence on
the system size can again be understood from the spectral
analysis of the Liouvillian (see Sec. V C). For smaller
N , the curves show oscillations before equilibrating to
the steady state value. In addition, for N = 8, at large
times the equilibrated curves slowly drift from the steady
state value, with a rate that depends on the considered
initial states. As a consequence, the rescaled curves cross
zero and become negative at intermediate time, which is
in accordance with Eq. (3) (see the left inset in Fig. 4,
which highlights the approach of the curves to the steady
state value). Both the transient oscillations and the drift
can be attributed to finite-size effects, which become less
prominent with increasing N . The oscillations may have
random matrix origin, and are, in fact, also a feature of
the SYK2 model [105]. In contrast, the drift is due to
finite-size induced non-exact uniformity in the distribution
of initial states’ amplitudes over the SYK4 Hamiltonian
spectrum. A similar drift has also been reported in the
dynamics of the purity under Poissonian and Gaussian
Unitary Ensemble random matrices [90]. The drift is
reminiscent of the correlation hole, which appears in the
evolution of survival probability, inverse participation
ratio, and correlation functions [141] of chaotic systems.
Alternatively, the slow drift constitutes the “ramp” of
the dip-ramp found in the dynamics of the spectral form-
factor [57] of SYK and random matrix models. Both
terms describe the same phenomenon, which arises due to
the long-range rigidity in the Hamiltonian spectrum. The
depth of the correlation hole for equal time correlation
functions is known to be suppressed for larger system
size [141]. This, in an another way, substantiates that
the drift seen for N = 8 is a finite size effect for the
observables considered in the present study.

To scrutinize the universality in more detail, we depict
in Fig. 5a the evolution of G (E [M2]) on logarithmic scales
around the transient domain and at the verge of attain-
ing the steady state (with N = 12 and 10000 disorder
realizations). The curves show universality within the
numerical precision, which until a time of about Jt ≈ 6
corresponds to the thickness of the curves. The vast part
of the corresponding universal curve is well approximated
by a Gaussian, which reaches well into intermediate times
1 . Jt . 10. This super-exponential behavior is followed
by a marginal time domain with an indication of power-

law decay to the steady-state. From Fig. 5a, one sees
that the universality manifests throughout these regimes,
while we cannot make predictions at larger times due to
lacking convergence in disorder averaging. In Fig. 5b, we
show the rescaled curve for N = 12, 16, and 20 to illus-
trate the system size dependence (choosing the initial FH
ground state for U/J = 4 as a representative case). With
increasing system size, the time-interval of the power-law
decay seems to diminish, and the Gaussian appears to
fit the curve for larger times (see inset). Closer to the
steady state, a larger number of realizations is required for
disorder averaging to converge. We further observe that
the noninteracting FH ground state (U/J = 0) requires
a larger sample size for convergence than other initial
states.
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FIG. 4. System-size dependency. Rescaled equilibration
dynamics of the disorder-averaged second moment, G (E [M2]),

of the operator R̂ under the complex SYK4 Hamiltonian for
N = 8, 12, 16, and 20 (green, yellow, blue, and red curves,
averaged over 90000, 2700, 400, and 50 disorder realizations,
respectively). Dark to light shadings of a given color corre-
spond to the different initial states of Fig. 1. Initial state
independence is observed for all N , and the universal curves
equilibrate faster, with an indication of convergence with in-
creasing N to a fastest decay curve (right inset). The small
spread of the curves for a given N at intermediate times (left
inset) is of statistical nature due to finite sample sizes.

B. Numerical results from master equation

In this section, we apply the open-system formalism of
Sec. IV to the SYK4 Hamiltonian. We explicitly show the
form of the jump operators and dissipation rates that were
used for the ME simulations of the QFI presented in Fig. 2
and for the operator moments of the preceding section.
To do so, one simply needs to rewrite the Hamiltonian of
Eq. (1) in the generic form of Eq. (8), and then read off

the jump operators ĥ
(α)
lα

and disorder functions ξ
(α)
lα

that
govern the dissipation rates as follows.

First, since Eq. (1) is a purely disordered Hamiltonian,
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FIG. 5. Universal dynamics, in logarithmic scales. (a)

Rescaled dynamics of M2 of R̂, defined in Eq. (6), for N = 12
with respect to different initial states which are the FH ground
states for U/J = 0, 2, 4, 6, 8, and 10 (light to dark shading).
The curves for U/J = 2, 4, 6, 8 and 10 are averaged over 10000
disorder realizations, respectively. For U/J = 0 an ensemble
of 100000 realizations is used due to slower convergence in
disorder averaging. A significant part of the equilibration
can be well approximated by a Gaussian (gray dashed curve),
followed by a marginal domain of an approximate power-law
behavior. The universality holds throughout these regimes,
and seems to extend to a larger time domain with increasing
disorder sample averaging. (b) Rescaled curve for system
sizes N = 12 (yellow), 16 (blue), 20 (red), for the initial FH
ground state at U/J = 4. With increasing N , the domain
of power-law behavior seems to diminish and the description
by a Gaussian to improve (inset: the dashed, light to dark
gray, curves correspond to Gaussian fits for N = 12, 16 and
20, respectively).

we have Ĥ0 = 0 and the Liouvillian in Eq. (14) generates
purely dissipative dynamics. Second, for the SYK4 Hamil-
tonian, we have the multi-index lα = i1i2; j1j2, and can
identify three Hamiltonian terms Ĥα with jump operators

ĥ
(α)
lα

=





ĉ†i1 ĉ
†
i2
ĉi1 ĉi2 , α = 1

ĉ†i1 ĉ
†
i2
ĉj1 ĉj2 + H.c. , α = 2

iĉ†i1 ĉ
†
i2
ĉj1 ĉj2 + H.c. , α = 3

, (19)

and corresponding time-independent disorder coefficients

ξ
(α)
lα

=





4Ji1i2;i1i2/(2N)3/2 , α = 1

2ReJi1i2;j1j2/(2N)3/2 , α = 2

2ImJi1i2;j1j2/(2N)3/2 , α = 3

. (20)

Explicitly, for α = 1 the multi-indices are l1 = i1i2; i1i2
with i1 > i2, whereas for α = 2, 3 the multi-indices are
lα = i1i2; j1j2 with i1 > i2, j1 > j2 and (i1, i2) 6= (j1, j2).
Finally, we use the above expressions to determine the
dissipation rates of Eq. (15). The relevant time integral

is trivial in this case, and the rates are given by

2f
(α)
lα,kα

(t) = 2tE
[
ξ
(α)
lα
ξ
(α)
kα

]
= 2t

(
16J2/(2N)3δlα,kα

)
,

(21)
for α = 1. Similarly, for α = 2, 3, the dissipation rates
are proportional to 2t[4(J2/2)/(2N)3], and some care
must be taken as there exist pairs of indices lα 6= kα for

which E
[
ξ
(α)
lα
ξ
(α)
kα

]
6= 0 (the origin of these correlations is

explained in App. D).
The main point is that the time-independent disorder

correlations of the SYK4 model—or indeed any SYKq

model given by Eq. (A1)—yield dissipation rates in the
Bourret–Markov ME that grow linearly in time. This
property yields the super-exponential approach to equi-
librium, as already discussed in Sec. IV in the context of
the QFI.

Figure 6 shows a comparison of ME and ED simulations
for moment M2 of operator R̂ defined in Eq. (6). As for
the QFI, the super-exponential approach to equilibrium
is captured, as well as the early and late time dynamics.
We again observe a discrepancy between ED and ME sim-
ulations at intermediate times, a signature of correlation
and memory effects as discussed in Sec. IV. As mentioned
above, the ME curves contain no fit parameters. Recall-
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FIG. 6. Comparison of ED and ME results for M2 of R̂,
with N = 8. Colors and shading of ED (solid) and ME
(dashed) curves are as in Fig. 2. The analytically predicted
steady-state value of Eq. (22) for the half-filling sector is given
by the black dotted line. (a) For each initial state, the ME
simulation reproduces the exact dynamics very well. There
is a discrepancy at intermediate times due to non-Markovian
effects not captured by the ME (inset). (b) The ME reproduces
the collapse to a universal curve under rescaling (4).

ing that the steady state of the general Liouvillian in
Eq. (14) is the infinite temperature ensemble, we deter-
mine the steady-state value of M2 within the half-filling
sector N = 2Q to be

tr
(
R̂2(t)ρ̂∞

)
=

(
N

2
√
N − 1

)2

. (22)
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As Fig. 6 shows, this value agrees perfectly with the steady-
state plateaus of the exact unitary dynamics averaged
over disorder realizations.

C. Analyses of Universality in ME formalism

We now leverage the ME formalism to reveal the origin
of the observed universality. To this end, we numerically
obtain the spectrum and eigenmodes of the SYK4 Liou-
villian superoperator via a matrix representation thereof
(see, e.g., Refs. [142–144] for detailed descriptions of such
a procedure and for spectral properties of Liouvillian
superoperators). As we will see, the population of var-
ious initial states and observables in the corresponding
eigenspaces conspires to produce a universal curve under
the rescaling G defined in Eq. (3).

In general, a superoperator L is not normal, and thus
has distinct left and right eigenmodes. However, as a

result of Ĥ0 = 0, (ĥ
(α)
lα

)† = ĥ
(α)
lα

, and F
(α)
lα,kα

= F
(α)
kα,lα

∈ R,

the Liouvillian of the SYK model L(t) = 2tD is Hermitian
and thus normal. Therefore, the left and right eigenmodes
of D coincide, and one can always form a Hermitian
basis for each eigenspace. We use the index i ≥ 0 to
label these eigenspaces, which in general have a di-fold
degeneracy. The di Hermitian eigenmodes within the ith
eigenspace are denoted as ρ̂i,αi , where αi = 1, . . . , di. The
eigenmodes are orthogonal with respect to the Hilbert–

Schmidt norm tr
(
ρ̂†i,αi ρ̂j,αj

)
= δi,jδαi,αj and thus form a

basis of B(H), the space of linear operators acting on H.
For all (in our case typically degenerate) eigenspaces i,
the corresponding eigenvalue λi is real and negative. So,
we order the eigenspaces according to the magnitude of
their respective eigenvalues as |λ0| < |λ1| < . . . .

We can decompose any initial state and observable in
B(H), respectively, as

ρ̂(0) =
∑

i≥0

di∑

αi=1

ci,αi ρ̂i,αi and Ô =
∑

i≥0

di∑

αi=1

oi,αi ρ̂i,αi ,

(23)
with real coefficients ci,αi = tr(ρ̂(0)ρ̂i,αi) and oi,αi =

tr
(
Ôρ̂i,αi

)
. It then follows that any state time-evolved

under the SYK4 dissipator according to Eq. (17) is given
by

ρ̃(t) = et
2Dρ̂(0) =

∑

i≥0

e−t
2|λi|

di∑

αi=1

ci,αi ρ̂i,αi . (24)

Since Liouvillian dynamics are trace preserving, we have
λ0 = 0. Consequently, limt→∞ ρ̃(t) is given in terms of the
eigenmodes corresponding to λ0 [142]. For the Liouvillian
of the SYK4 model, we find λ0 to be non-degenerate,
implying a unique steady-state, in agreement with rather
general conditions [145]. The Liouvillian spectrum {λi}
sets the time-scales of the dynamics of any observable
quantity.

To analyze the universality of operator moments and
the pure-state QFI observed under the rescaling G defined
in Eq. (4), we numerically obtain {λi} and {ρ̂i,αi} from
an exact diagonalization of a matrix representation of
D (see App. D for details). For sufficiently large Jt0,
the long-time average in G is simply the contribution
due to the steady-state eigenmode ρ̂0. With the above
eigendecompositions in hand, we can thus express any
rescaled operator moment as

G
(〈
Ô(t)

〉)
=

∑
i≥1 e

−t2|λi|Ai∑
i≥1Ai

, (25)

where Ai =
∑di
αi=1 ci,αioi,αi is the effective amplitude

within the ith eigenspace. Universality across different
initial states can occur if:

(i) The observable and initial state decompositions
of Eq. (23) intersect in only one and the same
eigenspace i∗ > 0 for all initial states.

(ii) The decompositions intersect in multiple degenerate
eigenspaces, but the ci,αioi,αi are distributed sym-
metrically about 0 in all but one eigenspace i∗ > 0.

In both cases, there exists only one non-zero amplitude
Ai∗ , and Ai = 0 ∀i 6= i∗, such that Eq. (25) reduces to the

same Gaussian curve G
(〈
Ô(t)

〉)
= e−t

2|λi∗ | for all initial
states.

We apply the above criteria to the first four moments
Mk of the staggered magnetization R̂ [see Eq. (6)] in
the SYK4 model. Table I lists the spectrum of D for a
system of N = 8 modes at half filling. The corresponding
distributions of ci,αioi,αi and Ai forM2 are shown in Fig. 7
for different initial FH ground states. Since ci,αioi,αi 6= 0
only for i = 2, universality of type (i) for M2 follows
immediately with i∗ = 2.

In Fig. 8, we display the behavior of moments
M1,M2,M3,M4 for the FH ground state at U/J = 10.
For odd moments, we find Ai = 0 ∀i, making them triv-
ially universal: For M1, only c1,α1o1,α1 6= 0, whilst for
M3 additionally c3,α3o3,α3 6= 0. In either case these terms
are distributed near symmetrically about 0 such that the
effective amplitudes vanish.

In contrast, even moments have non-zero effective am-
plitudes in at least one eigenspace besides that of the
steady state. In analogy to Fig. 8, we have verified
for a range of initial FH ground states, as well as oth-
ers such as the Neel state, that for a given even mo-
ment any non-zero amplitudes Ai always occupy the
same eigenspaces. Concretely, for k ≥ 4, we find the
same two non-zero effective amplitudes A2, A3, yield-
ing an approximately universal super-exponential decay

G[Mk(t)] = (A2e
−t2|λ2| +A3e

−t2|λ3|)/(A2 +A3) for even
integers k ≥ 4.

In summary, we find (i) odd moments vanish for all
t (and are thus trivially universal), (ii) the second mo-
ment exhibits truly universal super-exponential decay as
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is shown in Fig. 7, and (iii) higher-order even moments dis-
play approximate universality. Since the QFI is composed
of M1 and M2, the pure-state QFI is universal under
SYK4 dynamics. As this analysis shows, the Bourret–
Markov ME reproduces the universal features observed
in our exact numerics.

To conclude this section, we study the dependence of the
Liouvillian spectrum on the system size N . We find that
all non-zero eigenvalues decrease as N is increased from
6 to 8. In particular, for λ2—the only timescale entering
M2 (see Fig. 7)—we find, respectively, the values −0.28
and −0.33. This immediately explains the shift to a faster
equilibration time of M2 with increasing N , as observed
previously in Fig. 4. Note that this shift of M2 exhibits
a convergence, i.e., decreases as N is increased. We thus
expect the eigenvalues λi to not decrease indefinitely with
N , but to individually approach some asymptotic value
(for SYKq=2 this behavior can be shown analytically,
but remains to be shown for q ≥ 4 [105]). However, the
enlarged Hilbert-space, inherent to the process of mapping

D to the matrix form ¯̄D, limits our study of the Liouvillian
spectrum to N ≤ 8, thus preventing us from probing this
convergence.

TABLE I. Spectrum of SYK4 Liouvillian, obtained by exact
diagonalization of the matrix representation given in Eq. (D9),
for N = 8 fermionic modes at half filling.

Eigenspace index i Eigenvalue λi Degeneracy di

0 0.000000 1

1 -0.234375 63

2 -0.328125 720

3 -0.351562 4116
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FIG. 7. Distributions of ci,αioi,αi (blue circles) and Ai (red

squares) of Eq. (25) for M2 of R̂, for different initial FH ground
states with U/J = 0, 2, 4 and 8. Horizontal axes indicate the
eigenspace index of Table I. For all initial states, only one
eigenspace i∗ = 2 has non-zero effective amplitude A2, yielding

the universal evolution G[M2(t)] = e−t
2|λ2|.
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FIG. 8. Similar to Fig. 7, but for different moments
M1,M2,M3,M4 of R̂, for the initial FH ground state at
U/J = 10. For the highest moment, occupation of two
eigenspaces can be observed, indicating that universality dete-
riorates in many-body operators.

VI. CONCLUSION AND DISCUSSION

In summary, we have theoretically investigated post
quench equilibration dynamics of a system of randomly in-
teracting fermions described by the complex SYK4 model.
By numerically studying the disorder-averaged exact evo-
lution of a set of local observables and their higher-order
moments, we find that the equilibration process is univer-
sal. The curves illustrating the equilibration of different
initial states overlap throughout the dynamics under a
straightforward rescaling, revealing the independence of
the dynamics on chosen initial states. The equilibrated
steady state, which is the Gibbs infinite temperature
state in the present study, is reached in fast time-scales of
leading-order processes determined by the variance of the
disordered interaction. In addition, the universal equili-
bration curve can be well approximated by a Gaussian
yielding fast super-exponential equilibration dynamics.

In order to achieve an analytical understanding of
the numerical findings, we have formulated a theoretical
framework based on the Novikov–Furutsu theorem. This
framework describes how a disordered quantum many-
body system undergoes an effective dissipative dynamics
due to phase mixing in the ensemble averaged evolution
rather than to interactions with a heat bath [90, 130].
Thanks to the generality of the formulation, its scope
for applications extends beyond the present investiga-
tion. Employing Bourret and Markov approximations, we
obtain a Lindblad master equation that successfully de-
scribes the key features of the observed super-exponential
equilibration dynamics under the SYK4 model. Further-
more, a spectral analysis of the corresponding Liouvillian
superoperator illuminates the exact universality of low-
order moments, representing few-body observables, as well
as an approximate universality of higher-order moments
representing many-body observables.

The Novikov–Furutsu theorem has been used exten-
sively in the literature for the study of systems with noise
of short correlation time [91–93], and equations equivalent
to those derived in Sec. IV have been obtained to second
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order in perturbative noise strength [94–96, 128, 129]. In
the present scenario, where noise correlation times are
formally infinite and where the disordered interactions
provide the dominant (because only) energy scale, there
is at first sight no reason for such perturbative approaches
to hold. Yet, the strong chaoticity of the SYK4 model
leads to a fast decorrelation, making the Bourret–Markov
approximation an excellent description of the exact dy-
namics.

The salient features of the universal curve occur on
sizable absolute scales and very fast time scales, on the
order of the mean interaction strength, and they can be ex-
tracted from the observation of local observables following
a simple global quench. Thus, the discussed effects should
be readily observable in forthcoming laboratory imple-
mentations of the SYK model, for which several proposals
have recently been put forward [37, 65–70]. Moreover,
the mapping to the purely dissipative Lindblad equation
may also open new ways for simulating SYK matter using
engineered open quantum dynamics.

We hope our findings will also stimulate further theoreti-
cal investigations to obtain and understand universality in
out-of-equilibrium dynamics of other quantum many-body
systems. A topic of our immediate future investigation
is, e.g., in how far the universality survives in disordered
models without all-to-all connectivity. Further, while we
have considered in this work only the SYK4 model, our
findings hold equally well for other SYKq models [105]. In
the future, it will also be interesting to apply our master
equation approach to other disordered models. In partic-
ular, in models with a clean contribution, Ĥ0 6= 0, where
one can expect a complex interplay between disorder and
clean dynamics, such as the many-body localization tran-
sition [146, 147]. Various mathematical extensions of the
presented master equation framework are also possible,
e.g., to treat non-Gaussian disorder [125, 136]. Finally,
as this framework can naturally include dephasing noise
with arbitrary correlation spectrum, it permits one to esti-
mate the interplay between dissipation due to an external
environment and dephasing due to disorder averaging,
which is central, e.g., for environmental assisted quantum
transport [148–151].
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Appendix A: Details of SYKq model

Here, we present the Hamiltonian of the general SYKq

model of which Eq. (1) is a special case with q = 4. The
SYKq Hamiltonian is governed by disordered all-to-all
q-body interactions, and reads [48, 106]

ĤSYKq =

K
(q/2)!2

N∑

i1,...,iq/2=1
j1,...,jq/2=1

Ji1...iq/2;j1...jq/2 ĉ
†
i1
...ĉ†iq/2 ĉj1 ...ĉjq/2 ,

(A1)

where K =
√

[(q/2)!(q/2− 1)!]/Nq−1 ensures the exten-
sivity of the model. The interaction strengths in Eq. (A1)
are complex Gaussian random variables, i.e., the real
and imaginary parts of {Ji1...iq/2;j1...jq/2} are independent
and normally distributed with variances parameterized
by J ∈ R>0 as

E
[(

Re(Ji1...iq/2;j1...jq/2)
)2]

=

{
J2, if il = jl,∀ l
J2/2, otherwise,

E
[(

Im(Ji1...iq/2;j1...jq/2)
)2]

=

{
0, if il = jl,∀ l
J2/2 otherwise.

(A2)

Furthermore, the interaction strengths satisfy

Ji1...iq/2;j1...jq/2 = J∗j1...jq/2;i1...iq/2 ,

Ji1...iq/2;j1...jq/2 = sgn(P)sgn(P ′)JP{i1...iq/2};P′{j1...jq/2},
(A3)

where P and P ′ perform permutations of the indices, and
sgn(P), sgn(P ′) = ±1 denote the sign of the permuta-
tions. The first equality ensures Hermiticity of the SYKq

Hamiltonian, whereas the second is due to the fermionic
anticommutation relations of the creation and annihila-
tion operators in Eq. (A1).

Appendix B: Higher-order moments

Here, we present additional results for the quench dy-
namics of moments k = 8, 10, 12 (see Fig. 9) of the stag-

gered magnetization R̂ defined in Eq. (6). The rescaled
dynamics (right column) show approximately universal
Gaussian equilibration similar to the other moments k < 8
studied in the main text. However, unlike the case of
k = 2, the universality is not exact for these higher-order
moments, as is explained in detail in Sec. V C. In addi-
tion, the rescaled curves shift towards earlier time with
increasing k, which is evident from the lower insets in
Fig. 10. Further, the rescaled curves seem to converge at
sufficiently large k. In order to explain this characteristic,
we plot the ratio A3/A2 of the effective amplitudes [de-
fined below Eq. (25)] between the occupied eigensectors of
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the Liouvillian (see top inset of Fig. 10). The ratio shows
a monotonic increase and a saturation with respect to k.
Together with the fact that |λ3| > |λ2| (see Table I), this
explains—in accordance with Eq. (25)—the shift of the
rescaled curve to earlier times, as well as its convergence,
with moment order.

Finally, we comment on the lack of exact universality
observed for moments with k > 2: The kth moment of R̂
contains interactions of up to k fermionic modes, and thus
probes increasingly non-local physics for larger values of k.
As a limiting case of a truly global many-body quantity,
we show in Fig. 11 the disorder-averaged survival prob-

ability (or fidelity) E
[
|〈ψ(0)|ψ(t)〉|2

]
. For this quantity,

the curves corresponding to different initial states do not
collapse, which suggests that universality is absent for
highly many-body observables. Finally, we note that the
dynamics of the survival probability, namely an initial
Gaussian decay followed by oscillations at intermediate
times, is in accordance with the well established behavior
of the post-quench dynamics of the survival probability
within random matrix theory [121, 138].
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FIG. 9. Disorder-averaged equilibration dynamics of mo-
ments k = 8, 10, and 12 of the operator R̂ under the SYK4

Hamiltonian for Q = 8 fermions occupying N = 16 modes.
Left column: Dynamics of M8, M10, and M12 averaged over
400 disorder samples. Right column: Corresponding dynam-
ics rescaled by the function G given in Eq. (3). As in the
main text, the dark to light shading of the curves represents
initial FH ground states for U/J = 0, 2, 4, 6, 8, and 10, respec-
tively. The dotted black lines mark the values of the operator
moments calculated with respect to the Gibbs infinite tem-
perature state. The rescaled curves are well approximated
by Gaussian fits, exp

[
−(Jt/τ)2

]
, with τ = 1.32, 1.3, 1.28 for

increasing k, respectively (dashed red curves).

Appendix C: Additional observables

Here, we extend our investigations to other observables
in order to show the generality of our key findings.
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FIG. 10. Rescaled dynamics of the disorder-averaged mo-
ments, G (E [Mk]), of the operator R̂ under the complex SYK4

Hamiltonian for N = 16 modes. For all curves the initial state
is U/J = 10, and the dark to light shading corresponds to
different moment orders k = 2, 4, 6, 8, 10 and 12, respectively.
A shift to earlier times with increasing k is evident, and is
further highlighted by the two lower insets. There is also an
indication of convergence to a fastest decay time with increas-
ing k. This is further studied in the top inset, which shows the
ratio A3/A2 of the effective amplitudes of the kth moments in
accordance with Eq. (25). The monotonic increase, and indi-
cation of saturation, with increasing k shows that the faster
time-scale |λ3| is favored with increasing moment k.
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FIG. 11. Ensemble-averaged survival probability for system
sizes N = 8 (green), 12 (yellow), 16 (blue), and sample sizes
90000, 10000, 400, respectively. Shadings of a given color
represent different initial states, as in Fig. 9. There is a clear
lack of universality with respect to different initial states from
early to late times. The early-time Gaussian decay followed by
oscillations at intermediate times are expected from random
matrix theory [121, 138].

For this, we first consider the following 4-local operators
defined in terms of the κ̂is introduced in Eq. (6),

Ŝ(2j−1,2j) = κ̂2j−1κ̂2j = (n̂4j−2 − n̂4j−3)(n̂4j−1 − n̂4j).
(C1)

The system average of these operators is defined as
Ŝ = 1

(N/4)

∑
j Ŝ(2j−1,2j), where j ∈ {1, 2, ..., N/4}. For

an N = 16 system, we can construct four such 4-
local operators, i.e., S(0,1), Ŝ(2,3), Ŝ(4,5), and Ŝ(6,7). In
Fig. 12, we show the representative evolution of S(0,1)(t) =
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〈ψ(t)|Ŝ(0,1)|ψ(t)〉 as well as of S(t) = 〈ψ(t)|Ŝ|ψ(t)〉. As
in the cases of the QFI and moments of the staggered
magnetization, we recover the super-exponential universal
equilibration dynamics of these 4-local operators.

All the operators considered so far are diagonal with
respect to the Fock-space spanned by the occupation num-
ber basis vectors {|n1, n2, ..., nN 〉}. Here, we additionally
investigate the dynamics of a non-diagonal operator,

T̂ =

N/2∑

i=1

(ĉ†2iĉ2i−1 + H.c.), (C2)

each term of which can be the thought of as a spin-
flip operation at the ith lattice site of the FH model.
In Fig. 13, we present the dynamics of the QFI, F ′Q,
computed with respect to this operator. Similar to all
the previous cases, we again obtain the super-exponential
universal equilibration dynamics of this observable.
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FIG. 12. Universal equilibration dynamics of the 4-local opera-
tors defined in Eq. (C1), averaged over 400 disorder realizations
of the complex SYK4 Hamiltonian for Q = 8 fermions occupy-
ing N = 16 fermionic modes. Dark to light shading represents
different initial states, as in Fig. 9. Again, the rescaled data
(right column) is well fitted by a Gaussian, exp

[
−(Jt/τ)2

]
,

with τ = 1.52.

Appendix D: Details of ME derivation

Here, we provide further details on the derivation of
the Lindblad master equation (ME) presented in Sec. IV.

a. Functional derivative.— The functional derivative
presented in Eq. (12) is obtained from the integrated
von Neumann equation of a single Hamiltonian realization,

ρ̂(t) = ρ̂(0)− i
∫ t

0

dt1

[
Ĥ(t1), ρ̂(t1)

]
, (D1)
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FIG. 13. Universal equilibration dynamics of the QFI, F ′Q,
averaged over 2000 disorder realizations of the complex SYK4

Hamiltonian for Q = 6 fermions occupying N = 12 fermionic
modes. (a) QFI (yellow curves) with respect to the operator T̂
defined in Eq. (C2). Dark to light shading represents different
initial states, as in Fig. 9. The dotted black line marks the
QFI calculated with respect to the Gibbs infinite temperature
state. (b) Under rescaling with the function G as defined in
Eq. (3), the data collapse onto a single universal curve, which
is well fitted by a Gaussian, exp

[
−(Jt/τ)2

]
, with τ = 1.58

(dashed red curve).

as

δρ̂[ξ, t]

δξ
(α)
kα

(t′)
=− i

[
ĥ
(α)
kα
, ρ̂(t′)

]
Θ(t− t′)

− i
∫ t

0

dt1

[
Ĥ(t1),

δρ̂[ξ, t1]

δξ
(α)
kα

(t′)

]
Θ(t− t′),

(D2)

in which the step-function Θ arises from causality. The
above recursive expression for the functional derivative
yields a series of nested commutators, which to lowest
order reduces to the first term of Eq. (D2). As men-
tioned in the main text, truncation to this lowest order is
motivated by the fact that the resulting evolution equa-
tion [given by Eq. (13)] is formally equivalent to that
obtained when making the decorrelation assumption in
the study of stochastic evolution equations [126, 127].
This is readily seen in the interaction picture generated
by Ĥ0(t): Integrating the von Neumann equation of an
individual Hamiltonian realization one obtains an integral
self-consistent equation for ρ̂(t). By inserting this back
into itself once, taking the disorder average and finally
differentiating with respect to time, one finds an equa-
tion which reduces to the interaction picture version of
Eq. (13) after performing the decorrelation approximation

E
[
ξ
(α)
lα

(t)ξ
(β)
kβ

(t′)ρ̂(t′)
]
' E

[
ξ
(α)
lα

(t)ξ
(β)
kβ

(t′)
]
ρ̃(t′).

b. Lindblad form.— The final Lindblad master equa-
tion of Eq. (14) is obtained from Eq. (13) by first making
the Markov approximation ρ̃(t′) ' ρ̃(t) and then expand-
ing the double commutator. Simplifying our notation,
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this expansion is

∑

l,k

fl,k(t)(ĥlĥkρ̃− ĥlρ̃ĥk − ĥkρ̃ĥl + ρ̃ĥkĥl), (D3)

which is already reminiscent of a master equation in
standard form. The latter is obtained in a final step
in which we require the correlations to be symmetric
under an exchange of the indices, i.e., fl,k(t) = fk,l(t).
This is trivially fulfilled for static processes such as
those of the SYK model. For continuous processes,
our requirement is equivalent to symmetry in time, i.e.,
E [ξl(t)ξk(t′)] = E [ξl(t

′)ξk(t)]. We can then regroup the
terms of Eq. (D3) as

1

2

∑

l,k

[
fl,k(t)(ĥlĥkρ̃− ĥlρ̃ĥk − ĥkρ̃ĥl + ρ̃ĥkĥl) + l↔ k

]

=
∑

k,l

2fk,l(t)

(
1

2

{
ĥkĥl, ρ̃

}
− ĥlρ̃ĥk

)
.

(D4)

We thus finally obtain the Lindblad master equation in
non-diagonal form, given in the main text by Eqs. (14)–
(15).

c. Cross-correlations of dissipation rates.— Here we
comment on the origin of the cross-correlations for α = 2, 3
which exist in the dissipation rates, defined in Eq. (21),

of the SYK4 model. To rewrite ĤSYK4
in the form of

Eq. (8), we partially order the indices as i1 > i2, j1 > j2
and use the anti-symmetry [see Eq. (A3)] of the SYK
interactions. We then find the three disorder terms given
in Eq. (20). The point is now that for α = 2, 3 correlations

exist between pairs ξ
(α)
lα
, ξ

(α)
kα

if multi-indices lα, kα are
mirror images, i.e., if lα = i1i2; j1j2 and kα = j1j2; i1i2.
This is because ReJi1i2;j1j2 = ReJj1j2;i1i2 and similarly
ImJi1i2;j1j2 = −ImJj1j2;i1i2 , due to Eq. (A3).

d. Limit of time-independent processes.— Here we
explicitly show that the Lindblad ME of Eqs. (14)–(16),
formally derived for Gaussian processes with arbitrary
time-dependence, is valid in the limit of time-independent

(static) processes ξ
(α)
kα

(t)→ ξ
(α)
kα

.

In this limit, the generic Hamiltonian defined in Eq. (8)
and the corresponding ensemble-averaged von Neumann
equation given by Eq. (10) formally remain the same, but
now have time-independent disorder contributions

∂tρ̃(t) = −i
[
Ĥ0(t), ρ̃(t)

]
− i
∑

α,lα

[
ĥ
(α)
lα
,E
[
ξ
(α)
lα
ρ̂(t)

]]
.

(D5)

We now have modified correlations E
[
ξ
(α)
lα
ρ̂(t)

]
, in which

ρ̂(t) is a function (as opposed to a functional) of the

Gaussian distributed random numbers ξ
(α)
lα

(as opposed

to random functions). These correlations may, however,
still be treated via the Novikov–Furutsu theorem, which

simplifies accordingly to [125]

E
[
ξ
(α)
lα
ρ̂(ξ, t)

]
=
∑

kα

F
(α)
lα,kα

E

[
dρ̂(ξ, t)

dξ
(α)
kα

]
, (D6)

where now we have disorder correlations

F
(α)
lα,kα

= E
[
ξ
(α)
lα
ξ
(α)
kα

]
with infinite correlation time.

This static version of the Novikov–Furutsu theorem is
also known as Stein’s lemma [152].

The right-hand-side of Eq. (D6) now contains an ordi-
nary total derivative (as opposed to a functional deriva-
tive), which we again obtain to lowest order from the
integrated von Neumann equation as

dρ̂(ξ, t)

dξ
(α)
kα

' −i
∫ t

0

dt′
[
ĥ
(α)
kα
, ρ̂(t′)

]
. (D7)

Substituting Eqs. (D7) and (D6) into Eq. (D5) then yields

∂tρ̃(t)=− i
[
Ĥ0(t), ρ̃(t)

]

−
∑

α,lα,kα

F
(α)
lα,kα

[
ĥ
(α)
lα
,

[
ĥ
(α)
kα
,

∫ t

0

dt′ρ̃(t′)

]]
.

(D8)

This is exactly the evolution equation that one obtains
by taking the limit of time-independent processes, i.e., of
infinite correlation times in Eq. (13). Taking the Markov
approximation in Eq. (D8) thus yields the Lindblad mas-
ter equation of Eqs. (14)–(16) for time-independent cor-

relations F
(α)
lα,kα

. This shows that starting from time-
dependent noise and then taking the limit of infinite
correlation time is equivalent to working with static noise
all the way. The advantage of the time-dependent formula-
tion used in the main text is that it naturally incorporates
static disorder and temporally fluctuating noise on the
same footing.

e. Matrix representation of Liouvillian superoperator.—
We numerically obtain the spectrum {λi} and eigenmodes
{ρ̂i} of a Liouvillian superoperator L by numerically di-
agonalizing a matrix representation thereof. This rep-

resentation is obtained by mapping L → ¯̄L, with ¯̄L an
operator acting on the duplicated Hilbert space H⊗H
(see for instance Ref. [142]). Under this map, a density
matrix ρ̂ becomes a vector |~ρ〉 ∈ H ⊗ H obtained by
stacking the columns of the matrix representation of ρ̂.
Left and right multiplication with operators transform
as Âρ̂B̂ → B̂ᵀ ⊗ Â |~ρ〉, where B̂ᵀ denotes the transpose

of B̂. For our general Liouvillian [see Eq. (14)], we then
have the matrix representation

¯̄L(t) =− i[1⊗ Ĥ0(t)− (Ĥ0(t))ᵀ ⊗ 1] + ¯̄D,

with ¯̄D =
∑

α

∑

lα,kα

2f
(α)
lα,kα

(t)
[(
ĥ
(α)
kα

)ᵀ
⊗ ĥ(α)lα

− 1

2
1⊗ ĥ(α)kα

ĥ
(α)
lα
− 1

2

(
ĥ
(α)
kα
ĥ
(α)
lα

)ᵀ
⊗ 1

]
.

(D9)

We obtain the matrix representation of the SYK4 Li-

ouvillian ¯̄L(t) = 2t ¯̄D (factoring out 2t as in the main

text) by setting Ĥ0 = 0 and inserting Eqs. (19)–(21) into
Eq. (D9).
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