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A B S T R A C T   

The paper presents a novel and accurate numerical approach to the simulation of two-dimensional, dense snow 
avalanches described as a single-phase, shallow fluids with a Voellmy friction law. 

Unlike the majority of the shallow-flow models present in the literature, using a local coordinate system (one 
axis normal to the bed and the other two lying in the tangent plane), our approach considers a global three- 
dimensional Cartesian coordinate system with an axis opposite to the gravity vector and the other two lying 
in a horizontal plane. The relevant flow equations, accounting for significant bed slope, have been derived in 
conservative form for the 1D and 2D cases. This choice allows overcoming an intrinsic limit of the local approach 
that ceases to be valid in case of vertical walls. 

From a numerical point of view, the model employs a finite volume scheme applied to a regular Cartesian grid 
where the fluxes are evaluated with a well-balanced Godunov method. The source term is computed with an 
implicit operator-splitting technique tailored to deal not only with dynamic conditions but also with stopping 
conditions due to the Coulomb-type term in the Voellmy friction law. Finally, an effective numerical strategy was 
developed to treat static conditions with an inclined free surface. 

Several tests, some with analytical solution and some without, were performed to evaluate the capabilities of 
the proposed approach. Results are satisfactory: all the analytical solutions are accurately reproduced while the 
other tests give reliable results. Finally, no instability arises in any situation. For these reasons, TRENT2D❄ is a 
candidate to become a good model also for practical applications such as hazard mapping and hazard 
assessments.   

1. Introduction 

Since Voellmy's early work (Voellmy, 1955), the mathematical 
modelling of dense snow avalanches is commonly based on a continuum 
fluid approach with non-Newtonian rheology. The shallowness of the 
flow along the normal to the bed and the relevant depth-averaged var
iables are also commonly employed. The flow problem is then described 
by a system of partial differential equations deriving from the mass and 
momentum balance. Models differ essentially in the assumptions con
cerning the velocity profile, the friction law and the normal stress dis
tribution along sections normal to the flow direction (for an overview, 
see e.g., Bartelt et al., 1999; Barbolini et al., 2000; Eglit et al., 2020, and 
references therein). This description is used for modelling not only snow 
avalanches but other geophysical flows such as granular flows over fixed 
bed (e.g., O'Brien et al., 1993; Gray et al., 1999; Pitman and Le, 2005). 
Finally, other aspects, as the effect of the curvature of the bed and the 

frontal and bed entrainment, are subject of active research (e.g., Gri
gorian and Ostroumov, 2020; Issler, 2020; Peruzzetto et al., 2020). 

The pure 1D versions of these models are derived for a constant bed 
slope and they share the same reference system, composed of an axis 
normal to the bed and one parallel to it, and pointing in the flow di
rection. The reason for this choice is that this coordinate system is the 
simplest to describe these flows where the slope of the bed, with respect 
to a horizontal direction, can be large. This approach has also been 
applied to cases in which the bed has small curvatures. In these cases, 
the coordinate system is defined locally and is composed of two axes 
respectively normal and tangent to the bed at each point. This viewpoint 
is commonly called the Local Coordinate System (LCS). Thanks to the 
assumption of small curvature, the equation system obtained in the pure 
1D case can be applied straightforwardly to this more general case. In 2D 
cases, the majority of the high-slope models (both concerning dense 
snow avalanches and other flows) share the LCS approach where one 
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axis is normal to the local bed, while the other two axes lie in the tangent 
plane. The direction of these two axes can be chosen in different ways 
leading to different, but substantially equivalent, coordinate systems 
(see e.g., Iverson and Denlinger, 2001; Bouchut et al., 2003; Mangeney- 
Castelnau et al., 2003; Bouchut and Westdickenberg, 2004, among 
others). 

Even if it is the most natural, at least in the 1D case, the LCS approach 
presents an intrinsic limit emerging when the bed becomes vertical and 
the flow is not aligned with the steepest slope direction (e.g., in case of a 
side wall). In this case, the flow depth cannot be defined along the 
normal direction (this being horizontal) and the related system of 
equations ceases to be valid. Moreover, even when the bed is almost 
vertical and the flow is not directed along the steepest slope direction, 
numerical problems can be expected. The vertical or near-vertical bed 
condition is not something rarely encountered in practical situations: 
bed discontinuities, natural channels or man-made defense structures 
with steep walls are only some cases. Therefore, suitable modelling able 
to deal also with these situations is desirable. 

The goal we set for this work was to derive a numerical approach for 
the description of dense snow avalanches that was accurate in any 
practical situation. As a reference model, we chose the Voellmy-fluid 
approach (Salm, 1993) without longitudinal straining, since it is sim
ple, widely applied and its main features are shared by several other 
models. 

To reach the target, we started from the know-how developed for the 
TRENT2D model (Armanini et al., 2009). For the description of the flow, 
we used a three-dimensional, Cartesian Global Coordinate System 
(GCS), consisting of a vertical ascending axis (i.e. opposite to the gravity 
vector) and two orthogonal axes lying, arbitrarily oriented, in the hor
izontal plane. This viewpoint is commonly employed in Shallow Water 
(SW) models for rivers, where the direction normal to the bed can be 
approximated to the vertical direction, but is rarely used when the bed is 
steep. Some examples of GCS approaches can be found in Vreugdenhil 
(1994); Gerbeau and Perthame (2001); Mangeney et al. (2007) and, 
more recently in Juez et al. (2013), where the authors compared 
numerically the LCS and GCS approaches applied to homogeneous fluid 
flows with pure Coulomb bed shear stresses. Nevertheless, to the best of 
our knowledge, nobody used this approach for snow avalanches. For this 
reason, and the sake of completeness, in this paper, we present the 
complete derivation of the Voellmy-fluid model equations in a GCS for 
the pure 1D case and then we extend the derivation to the 2D case. This 
last system is similar to the classical SW system but with some particular 
elements deriving from the condition of non-negligible bed slope. 
Following Rosatti and Begnudelli (2010), the introduction of the bed 
level as a field variable and the addition of the equation for its time 
invariance allows dealing also with bed discontinuities. 

As for the numerical approach, we used the basic strategy used in 
TRENT2D, namely a finite volume scheme on a regular Cartesian grid 
with fluxes evaluated with a well-balanced Godunov method and an 
implicit operator splitting for the evaluation of the source term. This last 
technique has here been adapted to deal with all the cases involving no- 
motion conditions due to the Coulomb-type term present in the Voellmy 
friction law, namely starting and stopping of the flow and maintenance 
of static conditions with inclined free surface. The quality of the new 
model, called TRENT2D❄ (pronounced TRENT2D snowflake), was 
assessed by comparing the numerical results with some analytical so
lutions and with the results of the RAMMS::AVALANCHE code (Christen 
et al., 2008, 2010). 

The paper is structured as follows. In Section 2, the assumptions of 
the model are reported in detail. In Section 3, the pure 1D depth- 
averaged mass and momentum balance equation system is derived in 
a GCS while the extension to the 2D case is presented in Section 4. The 
numerical method is described in Section 5 while test cases are pre
sented and discussed in Section 6. Conclusions end the paper. 

2. Model assumptions 

As we said in the Introduction, the reference model we use in this 
work is the Voellmy-fluid model without longitudinal straining. For sake 
of completeness, in Section 2.1 we recall the general assumptions that 
will be used in the derivation of the GCS formulation and that are shared 
with many other published models. In Section 2.2 we recall the specific 
assumptions for the Voellmy-fluid model that distinguish this approach 
from other models described in the literature. 

2.1. General assumptions  

1. An avalanche can be treated as a continuous, homogeneous fluid 
whose motion can be described by a suitable system of partial dif
ferential equations deriving from mass and momentum balance 
(Salm, 1993).  

2. The density ρ is constant in time and space (e.g., the dense layer in 
Sampl and Zwinger, 2004).  

3. The flow occurs on a fixed bed with a potentially steep slope with 
respect to a horizontal reference plane. Therefore, the assumption 
that the normal to the bed can be approximated with the vertical 
direction (assumption commonly employed in de Saint-Venant 
equations for rivers) is not valid in this context.  

4. Called ε the ratio between the snow depth (measured in the direction 
normal to the bed) and a characteristic planar dimensions of a snow 
avalanche, field evidences (Butler and Malanson, 1985; Sovilla et al., 
2006) show that ε ≪ 1. This condition, commonly called Shallow 
Flow (SF) condition, allows to neglect all the terms in the momentum 
balances that, by applying a scale analysis, appear to be O(ε). These 
are the inertial terms and the shear stresses in the momentum bal
ance along the normal direction and the transverse shear stresses in 
the momentum balances along two orthogonal direction laying in a 
plane parallel to the plane tangent to the bed (Savage and Hutter, 
1989; Gray et al., 1999; Iverson and Denlinger, 2001). The conse
quences are:  
• the velocity in the normal direction is negligible and any velocity 

vector lies on a plane parallel (or locally tangent) to the bed;  
• the piezometric head p + ρgz is constant along a direction normal 

to the bed, where p is the pressure, g is the modulus of the gravity 
vector g→ and z is an elevation measured in the upward vertical 
direction (opposite to the gravity vector g→) above a reference 
horizontal plane; in other words, the pressure distribution is “hy
drostatic” normally to the bed;  

• the flow can be adequately described by using depth-averaged 
quantities.  

5. The curvature of the bed is negligible. Therefore:  
• the equations derived for the constant slope case can be applied 

locally referring to the tangent plane; 
• the pressure distribution along the local normal to the bed is hy

drostatic, i.e., it is not affected by curvature effects (e.g., Mangeney 
et al., 2007).  

6. Normal and shear stresses on the free surface are negligible (e.g., 
Mangeney et al., 2007). 

2.2. Voellmy-fluid assumptions  

1. The velocity distribution is constant along the direction normal to 

the bed. Therefore, the point velocity U→
′

along the normal direction 
and the depth-averaged velocity U→ have the same norm. We will 
conventionally locate this last vector in the middle of the depth.  

2. According to Bartelt et al. (1999), active-passive longitudinal 
straining has little influence on the flow calculation. Therefore, this 
feature has been neglected compared to the original Voellmy-fluid 
model.  

3. As for the bed shear stress vector, we write it in the following way: 
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τ→0 = − τ0 ŝτ (1)  

where τ0 is the norm of the vector and ̂sτ is a unit vector pointing in 
the opposite direction to the bed shear stress vector. According to the 
Voellmy-fluid approach, we must distinguish the following two 
cases. 

Static case: no additional expression is required for τ→0 since it 
can be computed directly from the momentum balances with null 
velocities. A detailed expression of this vector will be provided in 
Section 3.6 for the 1D case, and in Section 4.2 for the 2D case. The 
static condition occurs up to values of τ0 equal to a Coulomb-type 
threshold value expressed by: 

τc = pbμ (2)  

where pb is the pressure at the bed level and μ is the dimensionless 
Coulomb friction coefficient. 

Dynamic case: in this case τ0 = τv, where 

τv = τc +
ρg
ξ

⃦
⃦
⃦U→
⃦
⃦
⃦

2
(3)  

is the Voellmy friction law in which ξ is a suitable friction coefficient. 
As for the direction, the bed shear stress vector is assumed to be 
aligned and opposite to the depth-averaged velocity vector. There
fore, we can write: 

ŝτ
=

U→
⃦
⃦
⃦U→
⃦
⃦
⃦

(4)   

3. Flow equations in the Global Coordinate System - 1D case 

In this section we derive the flow equations in the GCS for the 1D 
case. In particular, we provide the geometrical framework used to 
describe the flow and the details of the procedure employed in the 
derivation. 

3.1. Geometrical framework 

Let us consider a slice of an avalanche of unit depth that moves down 

an inclined plane as in Fig. 1. According to the model assumptions, this 
flow can be described by using two field variables, namely the flow 
depth h, measured along the normal direction, and the depth-averaged 
velocity U→, conventionally located at the middle of the depth. These 
variables change in time and, spatially, only in the downslope direction. 
Therefore, this flow is a pure 1D flow. 

The more natural coordinate system for this type of flow is the LCS, 
here characterized by an axis ζ normal to the bed and the axis χ parallel 
to the bed and pointing in the downward direction (see Fig. 1). With 
respect to this system, the field variables can be written as: 

U→(χ, h(χ)/2 ,t) = (Uχ(χ, t), 0 ) (5)  

h
→
(χ, 0, t) = (h(χ, t) , 0) (6)  

Therefore, we have two independent (χ and t) and two dependent (Uχ 
and h) variables. The equations that define this flow problem are the 
differential mass balance equation and the differential χ-momentum 
balance equation along the χ direction. Hydrostatic distribution of the 
pressure along ζ and the Voellmy relations for the bed shear stress close 
the problem. 

Let us consider now a GCS composed of a vertical z-axis, with di
rection opposite to the gravity vector g→, and a horizontal x-axis, as in 
Fig. 2. We denote by θ the angle that the inclined plane forms with the x- 
axis while the unit vectors normal and tangential to the plane are: 

n̂ = (sinθ, cosθ) (7)  

t̂ = (cosθ, − sinθ) (8)  

respectively. Even though the flow is purely 1D, in the GCS the field 
variables are vectors of two components that change in both the axes 
directions that generically can be written as: 

U→(x, z, t) = (Ux(x, z, t) ,Uz(x, z, t) )

h
→
(x, z, t) = (hx(x, z, t) , hz(x, z, t) )

Therefore, in this case, we have three independent and four dependent 
variables. Nevertheless, also the number of equations available for 
describing the flow increases accordingly. The following observations 
can be made. 

Fig. 1. Pure 1D flow problem described by using a Local Coordinate System.  
Fig. 2. Geometry of the infinitesimal Control Volume used for the expression of 
the Reynolds theorem in CGS and related field variables. 
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1. The normal depth vector is defined along the the inclined plane. 
Therefore, the z-coordinate is connected to the x-coordinate via the 
bed plane equation: 

z = z0 − xtanθ (9)  

where z0 is the bed elevation evaluated at the origin of the x-axis. A 
similar reasoning can be made considering the depth-averaged ve
locity vector so we can conclude that z is not an independent variable 
of the flow problem.  

2. The SF assumption gives a constraint on the velocity components 
that is similar to the previous relation: 

Uz

Ux
= − tanθ (10)  

Therefore, one velocity component is an explicit function of the other 
component.  

3. Instead of using the avalanche depth h, it is possible to identify, in an 
unequivocal way, the avalanche free-surface position by using the 
vertical depth hv since, as will be shown further on, this quantity 
appears naturally in the derivation of the equations.  

4. As for the velocity, it is possible to introduce the vertical-depth 
averaged velocity vector u→= (ux, uz) (detailed definition will be 
given in Section 3.2) where the components satisfy a relation similar 
to Eq. (10). It is useful to use ux as principal field variable since also 
this quantity appears naturally in the derivation of the equations. 

Thanks to Eq. (9), the total number of independent variables is 
reduced to two (t and x) while, thanks to remarks 3 and 4, also the 
number of dependent variables is reduced to two: the vertical depth hv 
and the x-component of the velocity vector, ux. 

The available equations involving the field variables are one differ
ential mass balance and one differential momentum balance in the x- 
direction. Actually, in the momentum equation, a pressure distribution 
along the vertical direction appears. As will be shown in Section 3.4, this 
distribution can be derived by exploiting the SF condition. 

After all, the pure 1D problem in GCS is characterized by the same 
number and type of equations as in the classical LCS but the equations 
are slightly different. In the following Section, these equations will be 
derived explicitly. 

3.1.1. The infinitesimal Control Volume 
The derivation of the 1D flow equations is commonly obtained by 

depth integration of the two-dimensional (in a vertical plane) Cauchy 
equations (e.g., Savage and Hutter, 1991; Mangeney-Castelnau et al., 
2003, among many). Here we prefer to follow the alternative but 
equivalent path based on the application of the integral mass and mo
mentum balance to a suitable Control Volume (CV). Even if this 
approach is less frequently used in the literature (e.g., Gerbeau and 
Perthame, 2001), we think it is more intuitive since it allows to deal with 
and to understand the physical features in case of bed steps (e.g., Rosatti 
and Fraccarollo, 2006) and it seems to be more suited to the context of 
this work. 

Referring to Fig. 2, the CV is enclosed by a control surface Σc, 
composed of four surfaces of unit width in the direction normal to the x-z 
plane: two vertical sections, spanning from the bed to the mobile free 
surface, located in fixed, generic positions x and x + dx; a fixed surface 
superimposed on the bed and a mobile surface superimposed on the free 
surface (i.e. with the same vertical velocity as the latter) both spanning 
between the two vertical sections. 

Because of the infinitesimal distance between the two vertical sec
tions, all the field variables located at x + dx can be expressed with a 
first-order Taylor expansion starting from x. This implies that all the 
field variables, including the bed surface, change linearly inside the CV. 
In the derivation of the equations, we assume that all these variables are 
positive as x increases. 

3.2. The Reynolds transport theorem applied to the infinitesimal CV 

The Lagrangian variation of a local and instantaneous field variable 
a′(x,z, t) integrated over a System Volume (SV), instantaneously coin
cident with the CV, can be expressed in Eulerian form thanks to the 
Reynolds transport theorem. Since our CV is a mobile one (at least on a 
part of Σc), the generic expression must be employed: 

D
Dt

∫

SV
a′ dV =

d
dt

∫

CV
a′dV

⏞̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅⏞
Term I

+

∮

Σc

a′ υ′
→

⋅n̂
′

dΣc

⏞̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅⏞
Term II

(11)  

where υ′
→

is the local relative velocity (a difference between the material 
velocity of the fluid and the velocity of the surface) and n̂

′

is the 
outward-pointing unit normal vector relevant to each surface element 
dΣc. We can rewrite Term I and Term II accounting for the features of the 
chosen CV and limiting ourselves to O (dx) terms. 

Term I. The term can be written as: 

d
dt

∫ zb(x)+hv(x,t)

zb(x)
a′

(x, z, t)dzdx (12)  

where only the first-order term for the volume and the zeroth-order term 
for a′ must be considered in the integral to obtain an overall O (dx)
expression. Introducing the vertical-depth averaged value of a′: 

a(x, t) =
1

hv(x, t)

∫ zb(x)+hv(x,t)

zb(x)
a′

(x, z, t)dz (13)  

and considering that the time derivative is taken at a fixed position x (so 
the time derivative becomes a partial time derivative) the final expres
sion reduces to: 

d
dt

∫

CV
a′ dV =

∂
∂t
(ahv)dx (14)  

where, unlike previously, we have not indicated explicitly the de
pendencies of the field variables. From now on, we will maintain this 
convention except in cases where an explicit indication is advisable. 

Term II. This term concerns the relative fluxes across the control 
surface. These fluxes are null across the free surface and the bottom 
surface since the respective normal relative velocities are null. The flux 
across the left vertical section located at x, where dΣc = dz, can be 
written as 

Fl(x) =
∫ zb+hv

zb

a′ υ′
→

⋅n̂ ′ dz  

and can be further specified considering that the unit normal vector of 
this section is n̂′

= ( − 1,0) and that the relative velocity coincides with 
the particle velocity because the section is fixed. Therefore, the scalar 

product becomes υ′
→

⋅n̂′
= − u′

x and the resulting flux is: 

Fl(x) = −

∫ zb+hv

zb

a′ u′

x dz (15)  

We can express this flux as a function of vertical-depth averaged quan
tities: 

1
hv

∫ zb+hv

zb

a′ u′

x dz = αaux aux (16)  

where 

ux =
1
hv

∫ zb+hv

zb

u′

x dz (17)  

is the vertical-depth averaged value of u’
x and αaux is a product profile 
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factor, necessary to express the average of the product of two variables 
as a function of the product of the relevant averaged variables. The final 
expression is, therefore: 

Fl(x) = − hv aux αaux (18)  

Along the right vertical section, the unit normal vector is n̂′
= (1,0) and 

therefore the relevant scalar product becomes υ′
→

⋅n̂′
= u′

x while the 
relevant flux is then: 

Fr(x+ dx) =
∫ zb(x+dx,t)+hv(x+dx,t)

zb(x+dx)
a′ u′

x dz  

As any other variable, also the value of this flux can be expressed as a 
first-order Taylor expansion: 

Fr(x+ dx) = Fr(x)+
∂
∂x

Fr(x)dx (19)  

Finally, considering that Fr(x) = − Fl(x), since the relevant normal unit 
vectors are opposite, Term II, sum of Eq. (18) and Eq. (19), becomes: 
∮

Σc

a
′ υ′
→

⋅n̂ ′ dΣc =
∂
∂x

(hv aux αaux )dx (20) 

Considering Eq. (14) and Eq. (20), the final expression of the Rey
nolds theorem is: 

D
Dt

∫

SV
a′ dV =

[
∂
∂t
(ahv)+

∂
∂x

(hv aux αaux )

]

dx (21)  

3.3. Mass balance equation 

The mass balance equation, in Lagrangian form, is: 

D
Dt

∫

SV
ρdV = 0 (22)  

Here we can use Eq. (21) where we set a′ = ρ. Moreover, ρ being con
stant, we get αρux = 1. Finally, dividing the equation by ρdx, we obtain 
the desired equation: 

∂hv

∂t
+

∂
∂x

(uxhv) = 0 (23)  

3.4. Pressure distribution along the z-direction 

We derive now the pressure distribution along the z-direction since 
this distribution plays a key role in the x-direction momentum balance 
equation. 

Let us consider a point P located in (x,z) and let us consider an 
infinitesimal CV of unit width as sketched in Fig. 3, bounded by a surface 
parallel to the bed and passing through P , two vertical sections span
ning from the free surface to the previous surface and distant dx one 
from the other, and finally by the free surface enclosed between the 
vertical surfaces. 

Let us consider the unit vector n̂ normal to the bed and the corre
sponding normal momentum ρu’

n. The Lagrangian expression of the 
normal momentum balance along the normal direction is: 

D
Dt

∫

SV
ρu′

n dV =
∑

i
Fi

n (24)  

where Fn
i represents the normal component of the i-th external force 

acting on the CV. 
Considering that the normal velocity is negligible because of the 

shallow flow assumption, we get that the left-hand side term of the 
previous equation is zero. 

As external forces, there are the gravity force, acting on the mass 
inside the CV, and the surface forces, namely the integral of the stresses 

over each CV surface. Because of the basic assumption provided in 
Section 2.1, the stress on the free-surface is null while, thanks to the SF 
conditions, both the shear stresses and the net resultant of the normal 
stresses along the vertical surfaces are negligible. The normal compo
nents of the remaining forces are: 

The normal component of the gravity force Gn. The gravity force is 
directed in the opposite direction of the ẑ unit vector, and its norm is 
given by ρg times the volume of the CV (trapezoidal-based prism of unit 
height): 

G→= − ρg
1
2

[

(zb + hv − z) +
(

zb + hv +
∂hv

∂x
dx − z

)]

dx ẑ =

−
[
ρg(zb + hv − z)dx + O ((dx)2) ]ẑ  

Considering only the first-order terms, the component Gn becomes: 

Gn = − ρg(zb + hv − z)cosθdx (25) 

The normal component of the thrust on the lower surface Pn. The 
thrust P→ on the lower surface of the CV is given by the integral of the 
pressure distribution. Since this distribution is linear, the thrust is: 

P→=
1
2

[

p+
(

p+
∂p
∂x

dx
)]

dx
cosθ

n̂ =
[ p
cosθ

dx+O
(
(dx)2 )

]
n̂ (26)  

where p is the pressure in P (x, z) and dx/cos θ is the length of the surface 
ds. Considering only the first order term, the component Pn becomes: 

Pn =
p

cosθ
dx (27) 

Using Eqs. (25) and (27), Eq. (24) reduces to: 

0 = Gn +Pn = − ρg(zb + hv − z)cosθdx+
p

cosθ
dx  

After dividing by dx, we can get the pressure relation: 

p = ρg(zb + hv − z)cos2θ  

showing that the distribution increases linearly starting from the free 
surface. At the bed level z = zb and the pressure pb becomes: 

pb = ρghvcos2θ (28)  

Fig. 3. CV used to derive the pressure distribution along the z-direction.  
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3.5. Momentum balance equation in the x-direction 

Let us consider the x-momentum ρu’
x, where u’

x is, generically, the 
local and instantaneous x-velocity. The Lagrangian expression of its 
balance in the x-direction is: 

D
Dt

∫

SV
ρu

′

x dV =
∑

i
Fi

x (29)  

where Fi
x represents the x-component of the i-th external force acting on 

the CV. 
By using Eq. (21), setting a’ = ρu’

x and gathering the constant terms 
ρdx, the left-hand side of the previous equation becomes: 

ρ
(

∂
∂t

hvux +
∂
∂x

αu2
x
u2

xhv

)

dx (30)  

where αu2
x 

is the so-called velocity profile factor evaluated along a ver
tical section and is given by Eq. (16) in which a’ = u1

x . The corre
sponding term in an LCS is unitary since, according to the Voellmy-fluid 
assumptions the velocity distribution is constant along the normal di
rection (Section 2.2). In Appendix A we provide a demonstration that, 
under reasonable assumptions, even αu2

x 
can be assumed to be unitary. 

As for the external forces, due to the choice of the reference system, 
the gravity force has a null component in the x-direction. Nevertheless, 
the action of the gravity is present through the pressure terms both on 
the sides and on the bottom of the CV. The surface forces showing x- 
components, sketched in Fig. 4, are: 

The thrusts on the vertical sections. These thrusts, according to the 
model assumptions, derive from the pressure distribution along the 
vertical sections and are vectors aligned with the x-axis. Since the 
pressure distribution is linear, the left-hand thrust can be written as: 

T→l = ρg
h2

v

2
cos2θ x̂ (31) 

The right-hand thrust T→r has a norm that can be expressed through a 
first-order Taylor expansion of the left-hand side thrust norm, while its 
direction is opposite the x-axis unit vector: 

T→r =

[

ρg
h2

v

2
cos2θ+

∂
∂x

(

ρg
h2

v

2
cos2θ

)

dx
]

( − x̂)

The net thrust in the x-direction becomes: 

Tlx +Trx = −
∂
∂x

(

ρg
h2

v

2
cos2θ

)

dx (32) 

The x-component of the bed normal thrust. The bed normal thrust 
T→b has the direction of the normal to the bed and its norm, to the first 
order of accuracy, is equal to the bed pressure in x times the length ds 
over which the pressure is applied: 

T→b = ρghvcos2θ ds n̂ (33) 

Considering that ds = dx/cos θ and that the Cartesian expression of n̂ 
is given by Eq. (7), then the x-component of the bed thrust becomes: 

Tbx = ρghvcosθsinθ dx (34)  

To express this term in a way that resembles the relevant term in the 
classical SW equations, we introduce the bed slope: 

if = tanθ = −
∂zb

∂x
(35)  

and multiplying and dividing Eq. (34) by cosθ, we can express the x- 
component of the bed thrust term as a function of the bed slope: 

Tbx = − ρghvcos2θ
∂zb

∂x
dx (36) 

The x-component of the bed shear force. The bed shear force is a 
vector parallel to the bed and its norm, to the first order of approxi
mation, is equal to the bed stress τ→0 evaluated in x, times the length ds 
along which the stress is applied. According to Eq. (1), it can be written 
as: 

F→
τ
= τ→0 ds = − τ0 ds ŝτ (37)  

Considering that ds = dx/cos θ, then the x-component of the bed shear 
force becomes: 

Fτ
x =

τ0x

cosθ
dx = − τ0

sτ
x

cosθ
dx (38) 

The final x-direction momentum balance equation can be obtained 
employing Eqs. (30) (with unitary velocity profile factor), (32), (36) and 
(38) in Eq. (29) and dividing the resulting equation by the constant term 
ρdx, thus obtaining: 

∂
∂t
(hvux)+

∂
∂x

(

u2
xhv + gcos2θ

h2
v

2

)

+ ghvcos2θ
∂zb

∂x
= −

τ0

ρ
sτ

x

cosθ
(39)  

3.6. The Voellmy-fluid friction law in GCS 

As for the bed shear stress vector, expressed as in Eq. (1), we have to 
specify the value of τ0 and ̂sτ. According to the assumptions presented in 
Section 2.2, we have to distinguish the following two cases: 

Static case: in this case, the x-component of the bed shear stress τ0x 
can be computed from Eq. (39) with all the velocity-dependent terms 
vanishing and, by using Eq. (38), we obtain: 

τ0x = ρcosθ
[

∂
∂x

(

gcos2θ
h2

v

2

)

+ ghvcos2θ
∂zb

∂x

]

(40)  

As for the z-component, since the bed shear vector is parallel to the bed, 
it can be obtained imposing that the dot product of the shear stress 
vector and the unit normal vector given by Eq. (7) is zero, namely τ→0⋅ 
n̂ = 0. From this, we get: Fig. 4. Forces and stresses distributions on the infinitesimal Control Volume 

used to derive the x-momentum balance equation. 

D. Zugliani and G. Rosatti                                                                                                                                                                                                                    



Cold Regions Science and Technology 190 (2021) 103343

7

τ0z = − τ0x tanθ (41)  

Considering the orthogonality between the x- and z-components of the 
shear stress vector, from the previous equation it is straightforward to 
obtain: 

τ0 =

⃦
⃦
⃦ τ→0

⃦
⃦
⃦ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

τ2
0x + τ2

0z

√

=
|τ0x|

cosθ
(42)  

and, considering the x-component of Eq. (1) and the previous relation, 
we get: 

sτ
x = −

τ0x

τ0
= −

τ0x

|τ0x|
cosθ (43)  

According to Eq. (2) τ0 ≤ τc, where the bed pressure present in this last 
term is evaluated by using Eq. (28), thus obtaining: 

τc = μ ρghvcos2θ (44) 

Dynamic case: the norm of the velocity vector appearing in the 
Voellmy friction law, Eq. (3), is expressed as a function of the vertical- 
depth averaged velocity. Since uz = − ux tan θ, then ‖ u→‖ = |ux|/cosθ. 
The final expression for the Voellmy stress is: 

τ0

ρ =
τv

ρ =
τc

ρ + g
ux

2

ξcos2θ
(45)  

where τc is given by Eq. (44). As for the direction, according to Eq. (4) 
and considering the expression of the velocity norm obtained above, the 
x-component of the unit vector ŝτ becomes: 

sτ
x =

ux

|ux|
cosθ (46)  

3.7. The final system 

The final system is composed by Eqs. (23) and (39) 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂hv

∂t
+

∂
∂x

(hvux) = 0

∂
∂t
(hvux) +

∂
∂x

(

u2
xhv + gcos2θ

h2
v

2

)

+ ghvcos2θ
∂zb

∂x
=

= −
τ0

ρ
sτ

x

cosθ

(47)  

where τ0 and sx
τ are given, respectively, by Eqs. (42) and (43) for the 

static case and by Eqs. (45) and (46) for the dynamic case. 

4. 2D extension 

The derivation of the 2D version of the model is not fully retraced 
but, since it is quite easy to guess the structure of the resulting system, 
we simply extend the 1D set of equations focusing only on some peculiar 
elements. 

As a first step, we have to set the three-dimensional GCS. It is a 
Cartesian orthogonal system (see Fig. 5) that, as in the 1D case, has the z- 
axis opposite to the gravity vector while the x- and y-axis couple is 
arbitrarily oriented in a horizontal plane. 

The second step is to define, in a generic point P of the bed surface, 
the tangent plane with respect to which the equations will be defined. 
Let F(x,y,z) = z − zb(x,y) = 0 a continuous implicit function describing 
the bed surface, then the unit normal vector is given by n̂ = ∇

→F/‖∇→F‖. 
In terms of components, we have: 

(
nx, ny, nz

)
=

(

− ∂zb
∂x , −

∂zb
∂y , 1

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
∂zb
∂x

)2

+

(
∂zb
∂y

)2

+ 1

√ (48) 

It is worth noting that: 

nz = cosθ =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
∂zb
∂x

)2

+

(
∂zb
∂y

)2

+ 1

√ (49)  

where the angle θ is the angle between the normal direction and the 
vertical direction (see again Fig. 5), while the other two components can 
be written as: 

nx = −
∂zb

∂x
nz; ny = −

∂zb

∂y
nz (50)  

We will use this result extensively in a while. 
Assuming, for simplicity's sake, that P is located in (0,0,z0), as in 

Fig. 5, the relevant tangent plane is described by the following 
expression: 

nxx+ nyy+ nzz = nzz0 (51)  

We direct the reader to Appendix B for the derivation of this expression 
together with some features of the plane, such as the fact that the angle θ 
represents the steepest slope angle of the tangent plane. 

Third, we have to define the CV. In this case, it is the volume enclosed 
by four fixed vertical faces, spanning from the bed to the free surface, 
two of them parallel to the x-z plane and dy apart, the other two parallel 
to the y-z plane and dx apart, and by the bed and free surface areas 
limited by said vertical faces. The upper surface moves vertically with 
the same velocity as the free surface. Similarly to the 1D case, because of 
the infinitesimal distance between the couples of vertical sections, all 
the field variables, including the bed elevation, can be expressed with a 
first-order spatial Taylor expansion. Thus, all variables vary linearly 
inside the CV and in particular, in the derivation of the equations, we 
assume that all these variables are positive as x and y increase. 

According to the 1D approach, the system of partial differential 
equations relevant to this CV is composed of the mass balance equation 

Fig. 5. Sketch of the local tangent plane in P , its relevant geometry and the 
Global Reference System used for the 2D flow equations. 
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and the x- and y-momentum balance equations. To obtain this system, 
we need to specify the following terms. 

Bed area of the CV. The bed area of the 2D CV can be represented as 
d A→s = n̂ dAs where n̂ is the normal to the bed and dAs is the bed area (see 
Fig. 6). By construction, the projection of this area on a horizontal plane 
gives a square of sides dxdy. This last area can be represented by the 
vector d A→= ẑ dA where ẑ is the unit vector of the z-axis and dA = dxdy 
= nzdAs. From this last relation and considering Eq. (49), we obtain the 
CV bed area expression: 

dAs =
1

cosθ
dA (52) 

Pressure terms. The approach applied for obtaining the pressure 
distribution along the normal direction and the vertical direction in the 
1D case can be applied also to the 2D case. The result shows that the 1D 
expressions for the bed pressure, Eq. (28), and for the thrust per unit 
width on a vertical section, Eq. (31), are still valid in the 2D case but, this 
time, the term cosθ is given by Eq. (49). Therefore, all the terms con
cerning the pressure in the 2D model, have the same expression as the 
respective terms in the 1D case. 

Velocity norm. To express the Voellmy friction law, the norm of the 
vertical-depth averaged velocity u→=

(
ux, uy, uz

)
is needed. Similarly to 

the 1D case, it is necessary to write an algebraic relation expressing the 
z-component of the velocity as a function of the x- and y- components. It 
can be obtained by exploiting the 2D SF condition according to which 
the velocity vector must lie on a plane parallel to the tangent plane or, 
equivalently, it must be orthogonal to the normal unit vector of the 
plane. Mathematically this becomes: 

u→⋅n̂ = 0 (53)  

From this condition, considering also Eq. (50), the searched z-compo
nent is: 

uz = −
uxnx + uyny

nz
=

∂zb

∂x
ux +

∂zb

∂y
uy (54)  

while the velocity norm becomes: 

‖ u→‖ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

u2
x + u2

y +

(
∂zb

∂x
ux +

∂zb

∂y
uy

)2
√

(55) 

Bed shear stress force. The bed shear stress force acting on the CV is 
the integral of the bed shear stresses over the area dAs. To the first order 
of approximation, it can be written as: 

F→
τ
= τ→0 dAs = − τ0 dAs ŝτ (56)  

Dividing both sides of this expression by dA and using Eq. (52), the x- 
and y- components of this force, as they appear in the x- and the y- 
momentum balance equations, become: 

Fτ
x

dA
=

τ0x

cosθ
= − τ0

sτ
x

cosθ
(57)  

Fτ
y

dA
=

τ0y

cosθ
= − τ0

sτ
y

cosθ
(58)  

4.1. The flow equations 

Considering the expressions derived above, the 2D Partial Differen
tial Equations (PDEs) system can be obtained straightforwardly by 
extending the system (47) to the 2D case: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂hv

∂t
+

∂
∂x

(uxhv) +
∂
∂y
(
uyhv

)
= 0

∂
∂t
(hvux) +

∂
∂x

(

u2
xhv + g

h2
v

2
cos2θ

)

+
∂
∂y
(
uxuyhv

)
+

+ghvcos2θ
∂zb

∂x
= −

τ0

ρ
sτ

x

cosθ

∂
∂t
(
hvuy

)
+

∂
∂x
(
uxuyhv

)
+

∂
∂y

(

u2
yhv + g

h2
v

2
cos2θ

)

+

+ghvcos2θ
∂zb

∂y
= −

τ0

ρ
sτ

y

cosθ

(59) 

It is worth noting that the contributes of the averaged transverse 
shear stresses, namely ∂(hvτyx)/∂y and ∂(hvτxy)/∂x, do not appear 
respectively in the x- and y-momentum equations, because thanks to the 
SF conditions they are negligible compared to the other terms. 

4.2. The 2D Voellmy-fluid friction law in GCS 

The 1D Voellmy-fluid friction law, presented in Section 3.6, must 
also be extended to the 2D case. 

Static case: the horizontal components of the bed shear stress vector 
can be obtained from the x- and y- momentum equations of system (59) 
with all the velocity-dependent terms vanishing. Using Eq. (57) and (58) 
we can get: 

τ0x = ρcosθ
[

∂
∂x

(

g
h2

v

2
cos2θ

)

+ ghvcos2θ
∂zb

∂x

]

(60)  

τ0y = ρcosθ
[

∂
∂y

(

g
h2

v

2
cos2θ

)

+ ghvcos2θ
∂zb

∂y

]

(61)  

As for the z-component, it can be obtained, as done for the velocity 
vector, imposing τ→0⋅n̂ = 0. From this, we get: 

τ0z =
∂zb

∂x
τ0x +

∂zb

∂y
τy0  

Knowing the three components, it is straightforward to obtain the norm 
of the bed shear stress τ0 and, according to Eq. (1) the unit vector 
components sτ

x = − τ0x/τ0; sτ
y = − τ0y/τ0 appearing in the system (59). 

Dynamic case: in this case, the norm of the shear stress vector is 
given by the Voellmy friction law: 

τ0

ρ =
τv

ρ =
τc

ρ + g
‖ u→‖

2

ξ
(62)  

As for the direction, we assume that there is no lag between the bed 
shear stress and the depth-averaged velocity vector. Therefore, we can 
write: 

ŝτ
=

u→

‖ u→‖
(63)  

Fig. 6. Sketch of the CV bed area, its horizontal projection and the rele
vant geometry. 
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5. Numerical approach 

Since the main goal of this work is obtaining a robust modelling tool, 
particular attention has been paid to set up the numerical method. The 
following subsections are devoted to presenting, in a synthetic way, the 
main points of this approach. More details can be found in the papers 
cited inside each Section. As explained in the Introduction, this 
approach resembles the methodology employed in the TRENT2D model 
(Armanini et al., 2009). 

The novel aspect presented here is the effective treatment of static 
conditions enabled by the velocity-independent term of the Voellmy 
friction law. This was achieved by developing a particular algorithm for 
dealing with the source terms of the PDEs (Section 5.4), and with the 
static case with free-surface gradients (Section 5.5). 

5.1. The system of equations and its hyperbolic nature 

In system (59), the bed elevation is not a field variable and therefore, 
the terms involving its spatial derivatives are source terms. In this 
framework, the bed cannot present discontinuities because in these cases 
the spatial derivatives lose their meaning. However, since we want to 
deal with cases in which the bed shows discontinuities, following the 
strategy employed by several authors (see e.g., LeFloch and Thanh, 
2007; Rosatti and Begnudelli, 2010; Parés and Pimentel, 2019), the bed 
level zb is considered a field variable and an additional differential 
equation, namely ∂zb/∂t = 0, is added to the original system of PDEs (59) 
to guarantee that the bed is fixed. As demonstrated below, the homo
geneous part of this “augmented” system is hyperbolic and therefore 
admits discontinuous solutions involving all the variables, including zb. 
However, due to the additional equation, the position and the magni
tude of the bed discontinuity does not change. 

Thanks to this mathematical feature, a suitable numerical scheme 
can treat automatically both bed steps in the flow direction and side bed 
steps. It is worth noting that the resulting system is nonconservative i.e., 
a system in which spatial derivatives of terms involving filed variables 
are multiplied by expressions which, in turn, include field variables. In 
this case, the relations valid across discontinuities of the solutions are 
not the standard Rankine-Hugoniot relations but the Generalized 
Rankine-Hugoniot ones that present one more term compared to the 
standard case (see Rosatti and Zugliani, 2015). 

The augmented system can be written in compact form as: 

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+ Γx
∂zb

∂x
+ Γy

∂zb

∂y
= S (64)  

where 

U =

⎡

⎢
⎢
⎣

hv
uxhv
uyhv
zb

⎤

⎥
⎥
⎦; F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uxhv

u2
xhv + g

h2
v

2
cos2θ

uxuyhv

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uyhv

uxuyhv

u2
yhv + g

h2
v

2
cos2θ

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

are, respectively, the vectors of the conserved variables and conservative 
fluxes in the x- and y-directions, while 

Γx =
[
0ghvcos2θ00

]T
; Γy =

[
00ghvcos2θ0

]T  

represent the vectors of non-conservative terms for the two coordinate 

directions and 

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−
τ0

ρ
sτ

x

cosθ

−
τ0

ρ
sτ

y

cosθ

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(65)  

is the source terms vector. 
The hyperbolic nature of the homogeneous part of the system (64) is 

analysed by considering a plane-wave problem in a given direction (see 
e.g., Toro, 2009, among many). To provide a general expression, we 
consider a generic horizontal reference system (π,ν), where π is the 
longitudinal direction of the plane-wave problem and ν is the trans
versal, normal-to-π direction. With respect to this reference system, the 
problem is described by: 

∂Uπ

∂t
+

∂Fπ

∂π + Γπ
∂zb

∂π = 0 (66)  

where 

Uπ =

⎡

⎢
⎢
⎣

hv
uπhv
uνhv
zb

⎤

⎥
⎥
⎦; Fπ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uπhv

u2
πhv + g

h2
v

2
cos2θ

uπuνhv

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Γπ =

⎡

⎢
⎢
⎣

0
ghvcos2θ

0
0

⎤

⎥
⎥
⎦

The eigenvalues are: 

λ1 = uπ − cosθ
̅̅̅̅̅̅̅
ghv

√
; λ2 = 0

λ3 = uπ ; λ4 = uπ + cosθ
̅̅̅̅̅̅̅
ghv

√ (67)  

while the associated eigenvectors are: 

R1 =

⎡

⎢
⎢
⎢
⎣

1
uπ −

̅̅̅̅̅̅̅
ghv

√
cosθ

uν

0

⎤

⎥
⎥
⎥
⎦
; R2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ghvcos2θ

0

ghvuνcos2θ

u2
π − ghvcos2θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

R3 =

⎡

⎢
⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎥
⎦
; R4 =

⎡

⎢
⎢
⎢
⎣

1
uπ +

̅̅̅̅̅̅̅
ghv

√
cosθ

uν

0

⎤

⎥
⎥
⎥
⎦

Since there is a full set of eigenvalues and associated eigenvectors, 
the PDEs system (64) is hyperbolic. This property allows us to use, as a 
numerical integration strategy, a finite volume method with Godunov 
fluxes as described below. 

5.2. The discretization of the homogeneous equations 

Space is discretized with a regular Cartesian grid composed of square 
cells of area Ai, j = ΔxΔy, whose sides are aligned with the x and y axis. In 
a finite volume framework, according to the MUSCL-Hancock approach 
(for details, see e.g., Toro, 2009, Section 14.4), field variables inside the 
cells are approximated with piecewise linear functions and then they are 
evolved in time for a half time step with a nonconservative method, to 
obtain guess values to be used in the subsequent conservative step (see 
Fig. 7(a)). To avoid spurious oscillations, in the spatial reconstruction a 
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minmod slope limiter (see e.g. Toro, 2009, Section 14.4.3) is used. 
In the conservative step, we integrate the homogeneous part of Eq. 

(64) in time over an interval Δt and in space over cell i, j obtaining: 

Ûi,j = Un
i,j −

Δt
Δx

(
f −i+1/2,j − f+i− 1/2,j

)
−

Δt
Δy

(
g−

i,j+1/2 − g+
i,j− 1/2

)

−
Δt
Δx

[ϒx]
n+1/2
i,j

(
(zb)i+1/2,j − (zb)i− 1/2,j

)

−
Δt
Δy
[
ϒy
]n+1/2

i,j

(
(zb)i,j+1/2 − (zb)i,j− 1/2

)

(68)  

where, with the subscript i, j we indicate a cell-averaged value, 
conventionally assigned to the centre of the i, j cell, while f±i+1/2,j and 
g±

i,j+1/2 are the total fluxes evaluated at time step n + 1/2 on the left 
(minus superscript) and on the right (plus superscript) of a cell bound
ary, along the x and y direction respectively. These total fluxes comprise 
both the discretization of the conservative fluxes F, G and the non- 
conservative ones Γx∂zb/∂x+ Γy∂zb/∂x. It should be noted that in case 
of bed discontinuities, the left and right values are different because of 
the non-conservative fluxes contribute. Finally, Ûi,j represents the evo
lution of the conserved vector without the effect of the source term. 
Therefore, it is an approximated expression of the conserved variable 
vector at time n + 1 that will be corrected in a subsequent step, as 
specified further on. 

The scheme as a whole is second-order accurate both in space and 
time and since it is explicit and the conserved variables are updated 
considering both spatial directions simultaneously, its CFL stability 
condition reads: 

CR = |λ|max
Δt
Δx

≤ 0.5 (69)  

where |λ|max is the maximum modulus of the eigenvalues expressed by 
Eq. (67) evaluated for all cells at time n. In our model, we set CR = 0.45 
and we compute the relevant time step accordingly. 

5.3. The Riemann solver 

In the framework of the finite-volume methods, the Godunov-type 
fluxes are obtained from the solution of plane-wave Riemann Prob
lems (RPs) arising at the interfaces of the cells because of the recon
struction algorithm (see Fig. 7(b)). 

The mathematical expression of a RP, written for ease of notation 
with respect to the (π,ν) system with the origin located on the middle of 
a given cell interface and with the direction π normal to the interface, is: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Uπ

∂t
+

∂Fπ

∂π + Γπ
∂zb

∂π = 0

Uπ(π0) =

{
UπL if π ≤ 0

UπR if π > 0

(70)  

where the initial values UπL and UπR are the left and right reconstructed 
values with respect to the cell interface. The solution to this initial value 

problem is “simple”, in the sense that it is composed only of shocks, 
rarefactions and constant state fields (see Fig. 7(c)). Once the solution is 
obtained, the numerical fluxes to be used in Eq. (68) derive from the flux 
vector of the RP solution evaluated in π = 0. 

However, since the analytical solution of a RP can be computation
ally expensive, an approximate solution algorithm, called Riemann 
solver, is commonly employed. In our work, we chose the one proposed 
by Zugliani and Rosatti (2016) (extension of the DOT algorithm devel
oped by Dumbser and Toro (2011a, 2011b)). Denoted with Q±

π the total 
flux vector in a generic direction, such that if π = x then Q±

π = f±i− 1/2,j 

while if π = y then Q±
π = g±

i,j+1/2, the expression for the flux vector is: 

Q±
π =

1
2
(QL +QR) −

1
2
(±D) −

1
2

(∫ 1

0
|A (Ψ(s) ) |B(Ψ(s) )

∂Ψ
∂s

ds
)

(71)  

where: 

Ψ(s) = WL + s(WR − WL) (72)  

is the linear path, in the phase space, connecting the left and right RP 
values of the field variables expressed by the vectors: 

WL,R = [ hv uπ uν zb ]
T
L,R; (73)  

QL, R are the conservative left and right RP vector fluxes: 

QL,R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uπhv

u2
π + gcos2θ

h2
v

2

uπuνhv

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

L,R

; (74) 

|A | is evaluated as ℛ|Λ|ℛ− 1 where |Λ| is the diagonal matrix whose 
elements are the absolute values of the eigenvalues, ℛ is the matrix 
whose columns are composed by the eigenvectors and ℛ− 1 is its inverse; 
finally, B = ∂U/∂W is the Jacobian matrix of the conserved variables 
expressed in terms of the primitive ones and D = [0 Tbs 0 0 ]

Twhere 
Tbs expresses the thrust exerted by the fluid on the bed discontinuity (see 
Rosatti and Fraccarollo, 2006) whose value is: 

Tbs = − g
(

hv,k −

⃒
⃒zb,R − zb,L

⃒
⃒

2

)
(
zb,R − zb,L

)

k =

{
L ifzb,L ≤ zb,R

R otherwise

(75)  

This thrust is nothing but the additional term in the Generalized 
Rankine-Hugoniot relations compared to the standard case. Its presence 
inside the Riemann solver allows the treatment of bed discontinuities 
and guarantees that the numerical scheme is well-balanced, namely 
preserves numerical solutions free from spurious effects in situations 
such as the case of fluid at rest with horizontal free-surface or the uni
form flow condition. 

Fig. 7. (a) Piecewise linear reconstruction of the primitive variables inside the cells; (b) Riemann problem arising at the cell interface; (c) possible solution of the 
Riemann problem at the cell interface. 
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5.4. Accounting for the source term 

Accounting for the source term is obtained through the operator 
splitting technique: once the approximated vector of the conserved 
variables Û has been obtained, it can be “corrected” by applying the 
source term S for the given timestep. Mathematically, this operation 
consists of the integration, over the time step Δt, of the following initial 
value problem, consisting of a first-order ordinary differential equations 
system: 
⎧
⎪⎪⎨

⎪⎪⎩

d
dt

Ui,j = Si,j

Ui,j(0) = Ûi,j

(76)  

To avoid a limit in the time steps in addition to the one deriving from the 
Courant condition, Eq. (69), following Armanini et al. (2009), the im
plicit Euler method is used: 

Un+1
i,j = Ûi,j +ΔtSn+1

i,j (77)  

where Un+1
i,j is the searched value of the conserved variable vector at the 

timestep n + 1. 
The first component of the source vector, Eq. (65), is zero. This 

means that the value of the first term of Un+1
i,j , namely (hv)

n+1
i,j , is obtained 

directly from Eq. (68). The second and the third equation of Eq. (77) 
constitute a reduced system: 

̃(
Un+1

i,j

)
=

̃(

Ûi,j

)

+Δt
̃(
Sn+1

i,j

)
(78)  

that expresses nothing but the impulse-momentum theorem divided by 
ρ. 

According to the Voellmy friction law, the source term can be split 

into a known Coulomb part, indicated with 
̃(
Sn+1

i,j

)

μ
, (hv)

n+1
i,j being a 

known value, and into a velocity-dependent part, indicated with 
̃(
Sn+1

i,j

)

ξ
, in which the velocity components at time n + 1 are unknowns. 

The reduced system can be rewritten as: 

̃(
Un+1

i,j

)
− Δt

̃(
Sn+1

i,j

)

ξ
=

̃(

Ûi,j

)

+Δt
̃(
Sn+1

i,j

)

μ
(79)  

where in the left-hand side terms there are unknown velocity compo
nents while in the right-hand side terms there are known values. To 
solve the system, we have to distinguish between the case where the 
flow stops and the case where it doesn't. This can be done in the 
following way:  

1. if 

⃦
⃦
⃦
⃦
⃦

̃(

Ûi,j

)⃦⃦
⃦
⃦
⃦
≤ Δt

⃦
⃦
⃦
⃦
⃦

̃(
Sn+1

i,j

)

μ

⃦
⃦
⃦
⃦
⃦
, where 

⃦
⃦
⃦
⃦
⃦

̃(
Sn+1

i,j

)

μ

⃦
⃦
⃦
⃦
⃦
= τc

ρ

̅̅̅̅̅̅̅̅̅̅̅̅
sτ
x

2+sτ
y

2
√

cosθ and sτ
x 

and sτ
y are estimated using 

̃(

Ûi,j

)

, then the velocity components at 

time n + 1 are identically zero;  

2. if 

⃦
⃦
⃦
⃦
⃦

̃(

Ûi,j

)⃦⃦
⃦
⃦
⃦
> Δt

⃦
⃦
⃦
⃦
⃦

̃(
Sn+1

i,j

)

μ

⃦
⃦
⃦
⃦
⃦
, then Eq. (79) becomes a nonlinear 

system in terms of velocity components at time n + 1, a system that 
can be solved similarly as in Armanini et al. (2009), namely: a) 
reducing the system, by appropriately squaring the equations and by 
adding them, to a single nonlinear equation in which the unknown is 
the velocity norm at time n + 1; b) solving this last equation with a 
Newton-Raphson method; c) computing velocity components by 
using Eq. (79) in which the velocity norm is now known. 

5.5. The static case with free surface gradients 

Thanks to the well-balanced nature of the Riemann solver employed, 
the strategy described above works well for dynamic conditions and 
static conditions associated with horizontal free surfaces. Nevertheless, 
it fails in static cases when the minmod slope limiter produces, across a 
cell interface, a discontinuity in hv such that the corresponding free- 
surface jump is smaller than a threshold value depending on μ (as will 
we shown below). In these cases, the solver gives fluxes that are not 
correctly balanced by the source term and an unphysical movement is 
produced. A solution to this problem can be based on the following 
predictor-corrector procedure: 

Individuation of the critical interfaces. We call a critical interface an 
interface across which there is a non-null free-surface jump and its value 
is lower that a threshold value. This value and the interfaces across 
which this occurs can be individuated in the following way. Let us 
consider the equations of a purely 1D flow in the normal direction π, 
where the static condition of null velocity and the limiting value of the 
bed shear stress norm, namely τc, is introduced. The relevant system 
becomes: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂hv

∂t
= 0

⃒
⃒
⃒
⃒

∂
∂π

(

gcos2θ
h2

v

2

)

+ ghvcos2θ
∂zb

∂π

⃒
⃒
⃒
⃒ = ghvμcos2θ

(80)  

The first equation simply states that the snow depth cannot change in 
time while the second expresses the static condition, namely a balance 
between aligned forcing and resisting actions. Assuming a local constant 
value of θ, the second equation can be conveniently rewritten in non- 
conservative form and, introducing the free-surface elevation η = hv 
+ zb we get: 
⃒
⃒
⃒
⃒
∂η
∂π

⃒
⃒
⃒
⃒ = μ  

This expression gives the upper limiting condition and all the slopes 
lower than μ ensure static conditions. 

The expression able to individuate a critical interface can be written, 
in terms of slopes, as: 
⃒
⃒
⃒
⃒
∂η
∂π

⃒
⃒
⃒
⃒ ≤ μ, ∪ uπ = 0 (81)  

while, in discrete form and in terms of free-surface jumps, as: 
⃒
⃒(zb + hv)R − (zb + hv)L

⃒
⃒ ≤ μΔx∪

(uπ)L = (uπ)R = 0
(82)  

where here L, R indicates the cell-centred values of the cells located on 
the left and the right of the interface respectively. 

Forcing a no-mass flux condition. On the critical interfaces, the 
initial conditions of the RPs are forced in such a way as to guarantee no 
mass flux. This condition, equivalent to an impermeable boundary 
condition for both sides of the interface, can be obtained by splitting the 
RP into two RPs, one relevant to the left side and one relevant to the 
right side of the interface, and imposing a reflective condition in both 
RPs. This condition is defined as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂U
∂t

+
∂F
∂π + Γπ

∂zb

∂π = 0

U(π0) =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

hv

uπhv

zb

⎤

⎥
⎥
⎦ for π ≤ 0 ∪

⎡

⎢
⎢
⎣

hv

− uπhv

zb

⎤

⎥
⎥
⎦ for π > 0

⎫
⎪⎪⎬

⎪⎪⎭

(83)  

where, as usual, the local π-coordinate has its origin at the cell interface 
and its direction is normal to the interface. 
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6. Test cases 

Test cases have been designed to assess the capabilities of the 
TRENT2D❄ numerical model:  

• the ability to correctly deal with vertical walls emerging from the 
flow has been tested with the snow pool test and a straight channel 
test;  

• the accuracy of the overall numerical algorithm has been tested 
under fully dynamic conditions in a 1D channel flow aligned with an 
axis direction;  

• the correct implementation of the numerical scheme in the 2D case 
has been verified considering a straight channel flow sloping in a 
direction rotated with respect to the reference horizontal axes;  

• the algorithm for the accounting of the source term under particular 
conditions have been verified taking into account static cases with 
free surface gradients and several cases of flow stoppage;  

• the ability to cope with submerged bed steps has been analysed with 
a test in which several retarding structures are submerged during the 
flow. 

Flow cases with analytical solutions have been preferred since they 
allow to evaluate quantitatively the absolute or the relative errors of the 
numerical solution compared to the exact one. In the majority of these 
cases the solution is trivial while, for the 1D channel flow, an analytical 
solution has been specially developed. To make the assessment more 
significant, in several cases we have also compared the numerical results 
of the proposed model with the numerical results obtained with a pop
ular commercial code using an LCS and a specific stopping criterion, 
namely RAMMS::AVALANCHE (version 1.7.20) (Christen et al., 2008, 
2010). For more details on this model, we address the reader to the 
model site (RAMMS::AVALANCHE, 2021). For the sake of brevity, in the 
following sections, this model is referred to simply as RAMMS2D. 

6.1. Tests with vertical walls emerging from the flow 

The first test of this group is one of the classical tests used to evaluate 
the C -property, namely the capability of a numerical scheme to keep at 
rest a fluid confined by vertical walls and with a horizontal free surface. 
The second test concerns the flow in a straight 1D channel with constant 
width and vertical sidewalls. In this case, while there is motion in the 
longitudinal direction, the transversal velocity is null and the free sur
face is static and horizontal in the transverse direction. 

6.1.1. Snow pool test 
The test consists of considering the “flow” in a square pool of 19 m 

sides with 10 m vertical walls and flat bottom, filled with a constant 

snow depth of 3 m (see Fig. 8). As Voellmy parameters we have chosen μ 
= 0.1 and ξ = 3000m/s2. The cell size was taken equal to 1 m. 

Since there are no free-surface gradients and the initial velocity is 
null, the solution consists of a constant condition equal to the initial 
condition (i.e. null velocity and constant depth). 

Fig. 9 shows the comparison between the exact solution along the 
central section of the pool (the red dot-dashed plane in Fig. 8) and the 
numerical solution obtained, after t = 5 s, with TRENT2D❄ and with 
RAMMS2D for the free-surface elevation η (top plot) and the norm of the 
velocity (bottom plot). The proposed model correctly maintains the 
initial condition indefinitely while the other model generates a non- 
physical movement of the snow which overtops the side walls. 

6.1.2. Straight channel test: cross-sectional flow characteristics 
Given a constant slope straight channel with uniform width and 

vertical sidewalls, the test consists of releasing a prism of snow with 
constant height, a given longitudinal length and width equal to the 
width of the channel. Because of the regularity of the flow domain and 
the initial conditions, the resulting flow is a pure 1D and no variation is 
expected in the cross-sectional direction. In this test, we are only 
interested in this last feature, while a more compete dynamical analysis 
in the longitudinal direction is presented in the next Section. 

The channel we considered is 400m long, 198m large, aligned with 
the x-axis, with a constant slope equal to 15◦ and with vertical walls 
10m high. The release area has a horizontal length equal to 180m, a 
normal depth h0 = 1m and its upper border is located 40m downslope 
the upper end of the channel (see Fig. 10). The side walls are considered 
frictionless while, as friction parameters for the bed, we have chosen μ =
0.23 and ξ = 2000m/s2. The flow domain has been discretized with cells 
of side equal to 2m. 

In Fig. 11, the free-surface elevation and the velocity norm along a 
half channel cross section are plotted for TRENT2D❄ and RAMMS2D. 
The proposed model accounts correctly for the vertical walls also in this 
test, while the other model presents variations of the field variables in 
the cross-sectional direction and an unphysical overtopping. Analogous 
results are obtained considering cross sections in different spatial posi
tions and at different times. 

6.2. Straight channel tests: longitudinal flow features 

As can be seen from Fig. 10, the test described in Section 6.1.2 is 
characterized, in the longitudinal direction, by a flow that presents a 
front and a tail whose length increases in time, and a core whose length 
decreases in time. This core shows a depth that is constant in space and 
time, and a velocity norm that is constant in space but variable in time. If 
the initial prism is sufficiently long, the core is subjected to a uniformly 
accelerated flow approaching asymptotically a uniform and permanent 

Fig. 8. Sketch of the snow pool test with its geometry. The red dot-dashed line represents the vertical plan used to visualize the test results in Fig. 9. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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flow condition. As shown below, this problem presents an analytical 
solution. 

6.2.1. Analytical solution for core movement 
The analytical solution for the core movement can be derived 

considering a pure 1D flow, namely system (47), where the uniform flow 
condition ∂/∂x = 0, the positivity of the flow ux > 0 and the bed shear 
stress expression for the dynamic case apply. The resulting system, here 
written referring to a generic longitudinal direction π, is: 
⎧
⎪⎪⎨

⎪⎪⎩

∂hv

∂t
= 0

∂
∂t
(hvuπ) = ghvif cos2θ − ghvμcos2θ − g

uπ
2

ξcos2θ  

where if = − ∂zb/∂π. The first equation, considering the assumption that 
hv does not change in space, states the invariance of the snow vertical 
depth. With this condition, the second equation can be divided by hv and 
can be rewritten as a total derivative, since no space variation remains: 

duπ

d t
= a1 − a2u2

π (84)  

where a1 = gcos2θ(if − μ) and a2 = g/(hvξcos2θ) are two constant whose 

units of measure are (m/s2) and (1/m) respectively. When t → ∞, the 
time derivative is null and the uniform permanent flow is reached: 

u∞
π =

̅̅̅̅̅
a1

a2

√

= cos2θ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
if − μ

)
hv ξ

√

(85)  

By using the previous relation, we can express a2 as a2 = a1/u2
∞ so Eq. 

(84) can be rewritten as: 

dux

d t
= a1

(

1 −
(

uπ

u∞
π

)2
)

(86) 

We can introduce now the characteristic time scale of the motion as: 

ta =
u∞

x

a1
=

1
̅̅̅̅̅̅̅̅̅a1a2

√ =
1
g

̅̅̅̅̅̅̅̅̅̅̅̅
hv ξ

if − μ

√

and the non-dimensional velocity u*
π = uπ/u∞

π and time t* = t/ta. The 
dimensionless form of Eq. (86) is then obtained by dividing the equation 
by a1 and multiplying and dividing the left-hand side term by u∞

π . The 
result is: 

du*
π

d t*
= 1 − u*2

π (87) 

Fig. 9. Results of the snow pool test after t = 5 s in a central section. Top plot: free-surface elevation η = zb + hv and, in grey, the area below the bed surface zb; 
bottom plot: the norm of the velocity vector. 

Fig. 10. Longitudinal section of the straight channel test at two different times. To make the snow profile visible, we plotted η′ = zb + 10hv. The red line is the trace of 
the cross section used in Fig. 11. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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whose solution, considering as initial condition u*
π = 0 at t* = 0, is: 

u*
π(t

*) = tanht*  

This solution shows that the uniform and permanent flow condition is 
reached at infinite times. Nevertheless, for t* = 3, u*

π = 0.995 and 
therefore, this time can be conventionally considered as the time at 
which the uniform permanent flow is reached. 

6.2.2. Straight channel sloping in the y-axis direction 
In this test, the channel direction π is aligned with the y-axis. The 

angles that the bed channel plan forms with the horizontal reference 
axes are αx = 0◦ and αy = 40◦. The angle that the bed normal forms with 
the vertical axis, defined by Eq. (49) and evaluated with Eq. (B.5), is θ =
40◦. The release prism is 324m long in the π-direction, has a width equal 
to the channel width and its normal depth is h0 = 1.5m (to which cor
responds a vertical depth u0

v = 1.958m). As friction parameters, we 
have chosen μ = 0.2 and ξ = 2000m/s2. With this data we obtain ta =

7.98s, u∞
π = 29.36m/s while the velocity norm, evaluated with Eq. (55), 

becomes ‖ u→‖ = 38.32m/s. The cell size used in the simulations was 2m. 
The results of the simulation, obtained with TRENT2D❄, are reported 

in Fig. 12, where the non-dimensional velocity u*
π(t*), the non- 

dimensional vertical depth h*
v(t*) = hv/h0

v , and the respective relative 
errors, defined as: 

Eu(t*) =
[
u*

π(t
*)
]a

−
[
u*

π(t
*)
]n

[
u*

π(t
*)
]a

Eh(t*) =
[
h*

v(t
*)
]a

−
[
h*

v(t
*)
]n

[
h*

v(t
*)
]a

(88)  

where the superscripts a, n stand for analytical and numerical respec
tively, are plotted as a function of the non-dimensional time t*. Errors 
have been evaluated considering four decimal places both for the 
analytical and for the numerical values. The plots show a good agree
ment between the numerical results and the analytical solutions. We 
tested different channel width (ranging from 10 up to 200 m) and no 
difference in the numerical results was observed. The relative errors are 
quite low for the velocity and essentially null for the depth. The reason 
for this latter feature is the fact that the channel walls are aligned with 
one reference axis and therefore the geometrical discretization error of 

the boundaries is null. In these conditions, the numerical scheme can to 
compute exactly the effect of the wall (see Section 6.1.2). 

Fig. 13 shows the results of the simulation obtained with RAMMS2D 
for a channel width of 200 m. In this case, errors are larger than the ones 
reported in Figs. 12 and they become quite large for t* > 3 because of the 
spurious influence of the walls (see again Section 6.1.2) and, for this 
reason, they are not reported. Analogously, the velocity relative errors 
obtained in the initial phase of the motion are not reported because they 
fall outside the plot limits. With lower channel width the spurious in
fluence of the walls becomes relevant for t* < 3. 

The obtained results clearly show the great accuracy of the overall 
numerical scheme proposed in this paper when applied to unsteady 
conditions. 

6.2.3. Straight channel sloping in a direction rotated with respect to the 
axes 

In this test, the channel direction π is rotated with respect to the 
horizontal reference axes. Because of the Cartesian discretization, in this 
case, the channel boundaries are not defined by a straight line but by a 
piecewise constant function. A boundary discretization error is expected 
to progressively affect the numerical solution from the boundaries to the 
middle of the channel. To obtain a centreline section unaffected by this 
phenomenon (at least for a certain time), the width was set equal to 100 
m. 

As for the other geometrical characteristics, the angles that the bed 
channel plane forms with the horizontal reference axes are αx = αy = 20◦

while the angle of the bed normal is θ = 27.24◦. 
The release prism is 458 m long in the π direction, has a width equal 

to the width of the channel, and its normal depth is h0 = 1.5 m (to which 
corresponds a vertical depth h0

v = 1.687 m). The friction parameters 
have been set up like in the previous test. With this data, we obtain ta =

10.56 s, ||u∞
π || = 25.762 m/s and a velocity norm ‖ u→‖ = 28.974 m/s. 

The cell size used in the simulations was 1 m. 
The results of the simulation, obtained with TRENT2D❄, are reported 

in Fig. 14, where the non-dimensional velocity u*
π(t*), the vertical depth 

h*
v(t*) and the respective relative errors are plotted as a function of the 

non-dimensional time t*. Also in this test, the model reproduces well the 
analytical solution with small relative errors up to t* = 1. After this time, 
the influence of the wall discretization affects the solution, and the er
rors increase but remain limited. These results confirm the quality of the 

Fig. 11. Half channel cross section, located at x = 179 m, of the straight channel test at t = 20 s. Top plot: free-surface elevation η = zb + hv and, in grey, the area 
below the bed surface zb; bottom plot: the norm of the velocity vector. 
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overall numerical scheme and the correct implementation of the scheme 
in the 2D case. 

The results obtained with RAMMS2D are similar to the ones plotted 
in Fig. 13 but in this case, the relative errors are larger. For the sake of 
brevity, they have not been reported. 

6.3. The truncated pyramid tests 

The tests presented in this section are primarily designed to validate 
the algorithm for the static case with free-surface gradients (see Section 
5.5). The initial condition for all the tests consists of a truncated snow 
pyramid positioned on a flat horizontal bed, with sides parallel to the 
horizontal reference axes as sketched in Fig. 15. The truncated pyramid 
has a square bottom base with sides 80m long, the height of 5m and the 
steepest slope of the sides is iη = 0.2. The angle θ is identically zero. 

As friction parameters, we chose ξ = 1500 m/s2 while μ varies be
tween tests. The computational domain was discretized with cells of side 
1m. 

Case 1: μ > iη . In this case, the truncated pyramid is in conditions of 
stable equilibrium. For the test, we have set μ = 0.25. Fig. 16(a) shows 

that TRENT2D❄ numerical solution is, as expected, completely steady, 
while RAMMS2D results present a flow that continuously deforms the 
truncated pyramid. 

Case 2: μ = iη . In this case, the truncated pyramid is in conditions of 
limiting equilibrium. For this reason, we can expect that the numerical 
approximation in the slope evaluation could lead to some areas having 
small movements. In this test μ = 0.2. As shown in Fig. 16(b), the pro
posed model shows deformations that are limited to small portions of the 
section near the slope discontinuity located between the top line and the 
side line while, once again, the other model presents continuous de
formations over time. 

Case 3: μ < iη . In this case, the truncated pyramid is not in equi
librium but, because of the flat bed condition, a limited deformation is 
expected before an equilibrium condition is reached, characterized by 
the steepest slope equal to μ or slightly smaller near the front where the 
inertial terms reach larger values during the flow phase. Therefore, this 
test involves both the stopping algorithm and the static case with free 
surface gradients algorithm. In this case, we have set μ = 0.15, Fig. 17 
shows that with TRENT2D❄, the no-motion condition is reached and 
maintained after 10s and it is characterized, as expected, by a section 

Fig. 12. TRENT2D❄ results concerning the straight channel 
test, sloping in the π direction aligned with the y-axis. (a) Non- 
dimensional velocity (top) and the respective relative error 
(bottom) and (b) non-dimensional flow depth (top) and the 
respective relative error (bottom) as a function of the non- 
dimensional time. In all the plots red lines indicate the 
analytical solutions while black dots represent the numerical 
results. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this 
article.)   
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with a decreasing slope from the middle to the front. RAMMS2D shows a 
solution that resembles the one obtained with our model (except in the 
middle) up to the time of 10s. However, differently from our solution, 
after that time the flow goes on endlessly. 

The truncated pyramid tests assesses the capability of TRENT2D❄ to 
deal correctly with the static case with free surface gradients and with 
the complete stopping of a flow on a horizontal flat bed. Moreover, no 
numerical instability arises in the centre of the pyramid as it happens in 
all the simulations performed with RAMMS2D. 

6.4. Tests with stopping on an inclined flat bed 

This set of test cases is mainly intended for the assessment of the 
stopping algorithm presented in Section 5.4. Nevertheless, as high
lighted in Case 3 of the truncated pyramid test, also the algorithm for the 
static case with free-surface gradients is involved since, once the flow 
has stopped, the no-motion condition must be maintained. To minimize 
the possible effects related to the curvature of the bed surface (negli
gible, according to the basic assumptions), the slope changes quite 
smoothly. In particular, the terrain is composed of four different planes 

with zero slope in the y-direction and constant slope in the x-direction. 
The steepest slope decreases by 1◦ passing from one plane to another, 
starting from a slope of 15◦ in the upper plane. The longitudinal bed 
section of this system and the release prism are sketched in Fig. 18. The 
total horizontal length of the system is 1200m, the horizontal lengths of 
the planes, starting from the uppermost one, are 400m, 24m, 24m and 
752m respectively while the horizontal length of the release prism is Ld 
= 180m. 

Two different tests with this bed configuration have been considered: 
a flow in a straight 1D channel with direction aligned with the steepest- 
slope direction and a completely unconfined, fully 2D flow. In both 
cases, the μ parameter was chosen in such a way as to cause the 
avalanche to stop mainly in the lower plane. As already highlighted in 
the Case 3 of the truncated pyramid test, thanks to the algorithm present 
in the TRENT2D❄ model, once an avalanche stops at a given time, it no 
longer moves even if the numerical simulation continues. This does not 
occur in RAMMS2D, where the flow either does not stop or stops and 
then moves again. To overcome this drawback, RAMMS2D implements 
the following stopping criterion in the numerical algorithm: when the 
ratio of the global momentum of the snow at the n-th time-step divided 

Fig. 13. RAMMS2D results concerning the straight channel 
test sloping in the π direction aligned with the y-axis. (a) Non- 
dimensional velocity (top) and the respective relative error 
(bottom) and (b) non-dimensional flow depth (top) and the 
respective relative error (bottom) as a function of the non- 
dimensional time. In all the plots red lines indicate the 
analytical solutions while black dots represent the numerical 
results. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this 
article.)   

D. Zugliani and G. Rosatti                                                                                                                                                                                                                    



Cold Regions Science and Technology 190 (2021) 103343

17

by the maximum momentum achieved during the simulation up to that 
time is lower than a threshold defined by the user, then the simulation 
ends regardless of the speeds still present. Mathematically, the mo
mentum ratio can be expressed as: 

KR(n) =
∑

i,jhn
i,j

⃒
⃒Ui,j

⃒
⃒n

max
(∑

i,jht
i,j

⃒
⃒Ui,j

⃒
⃒t ; t = 1,…, n

) (89)  

where the sum is over all the cells. No clear justification for this criterion 
is available, but the manual recommends threshold values in the range 
1% ≤ KR ≤ 10%. It is worth noting that this stopping criterion is 
equivalent to introducing one more parameter in the Voellmy friction 
law. 

The stopping of an avalanche can be characterized by identifying the 
runout distance, the shape of the front (in plan and section) and the time 
when the front (or most of the avalanche) stops. For the two tests 
described above, no analytical solution is available and therefore, only 
the comparison between the two models can be analysed. Because of the 
different stopping algorithms employed, as reference stopping time we 
used the time when the front stops definitively in the lower plane, 
indicated with the symbol tstop, for the TRENT2D❄ results while we used 
the simulation ending time, indicate with the symbol tend, for the 
RAMMS2D results. This last quantity depends on the threshold value 
chosen for KR. 

Fig. 14. TRENT2D❄ results concerning the straight channel 
test sloping in the π direction rotated with respect to the axes. 
(a) Non-dimensional velocity (top) and the respective relative 
error (bottom) and (b) non-dimensional flow depth (top) and 
the respective relative error (bottom) as a function of the non- 
dimensional time. In all the plots red lines indicate the 
analytical solutions while black dots represent the numerical 
results. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this 
article.)   

Fig. 15. Geometric characterization of the truncated snow pyramid at rest. The 
red dot-dashed rectangle indicates the section where the simulation results are 
analysed and plotted in Figs. 16 and 17. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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6.4.1. Straight channel with decreasing slope bed 
In this test, the channel direction π is aligned with the x-direction and 

the bed slope decreases in the flow direction as described previously. 
The release prism has a width equal to the channel width (198m) and its 
normal depth is h0 = 1m (to which corresponds a vertical depth h0

v =

1.035m). Friction parameters are: μ = 0.23, (to which corresponds an 
equilibrium free-surface slope angle equal to 12.95◦), and ξ = 2000m/ 
s2. The flow domain has been discretized with cells of side equal to 2m. 

In Fig. 19, the trend of the normal depth and the velocity vector norm 
obtained with TRENT2D❄ and with RAMMS2D is plotted, for a longi
tudinal section, as a function of the horizontal distance from the 
beginning of the channel. Reference stopping times are tstop = 108s and 
tend = 87s, 97s, 175s corresponding to values of KR equal to 10%, 5% 
and 1% respectively. 

The shape of the avalanche and the velocity distributions in the tail 
differs significantly from one simulation to the other because they are 
evaluated at different times. 

In the lower plane, the shape of the TRENT2D❄ section is similar to 
the sections obtained with RAMMS2D with KR = 5% and KR = 10% but, 
in these cases, significant velocities are still present in the snow. On the 
contrary, velocities are almost null in the RAMMS2D results with KR =

1% as in the TRENT2D❄ results but in this case, the shape of the section 
is quite different and wiggles in the velocities appear. 

The details of the fronts at the reference stopping times are plotted in 
Fig. 20 and the corresponding runout distances Rd are listed in Table 1 
for all the simulations. Results show that the differences between the 
two models in terms of runout distances are limited but, considering the 
shape of the front and mainly the residual velocities, the differences in 

terms of impact pressures are more significant. Finally, while for 
TRENT2D❄ the runout distance and the stopping time are quantities 
that, given a flow geometry and given initial conditions, depend only on 
μ and ξ, in RAMMS2D these quantities depend, as expected, not only on 
the Voellmy parameters but also on the KR parameter. For this test case, 
the KR parameter that produces results that come closest to the proposed 
model is 5% (the default value for the model). Nevertheless, this last 
result is not general, as will appear in the following test. 

6.4.2. Unconfined flow over decreasing slope bed 
In this test the release prism is located in the same position as in the 

previous case, is 50m wide in the y-axis direction and its normal depth is 
h0 = 3m (to which corresponds a vertical depth h0

v = 3.106m). Friction 
parameters are: μ = 0.225 (to which corresponds an equilibrium free- 
surface slope angle equal to 12.68◦), and ξ = 2500m/s2. As previ
ously, the cell size is 2m. 

In Fig. 21, the trend of the normal depth obtained with TRENT2D❄ 

and RAMMS2D is plotted as a function of the horizontal distance from 
the beginning of the channel for a middle longitudinal section. In 
Table 2, the corresponding runout distances are listed. Unlike the pre
vious test, the case with KR = 1% is missing because, with this value, the 
flow does not stop within the end of the lower plane and therefore has 
not been reported. Reference stopping times are tstop = 134s and tend =

86 s, 94s corresponding to values of KR equal to 10%, 5% respectively. 
In this test, the differences between the results of the two models are 

more marked than in the previous test: 

Fig. 16. Normal depth of a half mid-section of the truncated pyramid test; (a) case with μ = 0.25 > iη; (b) case with μ = 0.20 = iη. In all the plots, TRENT2D❄ outputs 
are drawn with solid lines while RAMMS2D outputs are drawn with dashed lines. 
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• the runout distance obtained with our model is larger and differs by 
24 m and 38 m from the distances obtained with the other model 
with different KR values;  

• significant differences can be noticed in the shape of the deposits in 
the front and the tail of the middle longitudinal section (Fig. 21);  

• the solution obtained with KR = 5% does not give a matching in the 
runout distance between the two models, as happened in the previ
ous test (Fig. 21);  

• the maximum planimetric extension reached by the snow depth 
during the whole simulation obtained with the proposed model 
(Fig. 22) shows two side expansion near the last change of slope that 
is absent in the results of RAMMS2D;  

• while the velocity norms obtained with our model are null in the 
lower plane area, the results of the other model present large areas 
near the front with velocity norms up to 2m/s (Fig. 22). 

The reason for these differences can be partially justified considering 

that the times at which the solutions are considered are different. In the 
TRENT2D❄ case, the pile of snow in the lower plane begin to stop 
around t = 120s while the front and the tail keep on moving. The front 
stops completely at tstop while the snow of the tail is still moving. This 
explains the snow accumulation in the back of the lower plane pile 
(410m ≤ x ≤ 470m in Fig. 21) and the lateral expansions. This 
behaviour is not present in the RAMMS2D simulations because, in these 
cases, at the actual simulation ending times the front pile is not steady 
and significant velocities are still present. This explains why the front is 
not completely developed and the snow in the back of the lower plane 
pile does not accumulate. 

Lacking a reference solution, we can only state that compared to the 
results obtained with RAMMS2D, the TRENT2D❄ results seem more 
reasonable in terms of velocity distribution at the reference time and less 
uncertain since, once again, they depend only on the Voellmy friction 
parameters. 

6.5. Flow with submersible retarding structures 

This test is designed to assess the ability of TRENT2D❄ to cope with 
bed steps that can be submerged during the flow. It consists of releasing 
a prism of snow over a decreasing slope bed as in the test presented in 
Section 6.4.2 but this time a series of retarding structures have been 
inserted in the upper plane near the first decrease of slope (see Fig. 23). 
The shape, distribution and height of these structures have been chosen 
in such a way as to induce a rather complex avalanche dynamics in 
which all possible flow conditions over bed steps occur. Efficiency to 
reduce the runout distance was not considered. 

Results concerning the vertical heights are reported in Fig. 24 for two 
different times while in Fig. 25 zooms of these results near the central 
retarding structure are plotted together with the related velocity vector 

Fig. 17. Normal depth (top) and velocity (bottom) of a half mid-section of the truncated pyramid test with μ = 0.15 < iη. In all the plots, TRENT2D❄ outputs are 
drawn with solid lines while RAMMS2D outputs are drawn with dashed lines. 

Fig. 18. Longitudinal section and geometrical characteristics of the bed surface 
and the release prism used in the tests with stopping on an inclined flat bed. 
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fields. The first time is relative to when the avalanche front impacts on 
the first row of structures generating inclined shocks increasing the 
vertical heights and reducing the velocities in front of the structures; the 
second time is relative to when the flow has overtopped both rows of 
structures. 

Since an analytical solution is not available, we can only notice that 
from a numeric point of view the flow is symmetric, does not present 
instabilities and the distributions of heights and velocity vectors are 
completely reasonable. From a physical point of view, we are not able to 
assess the reliability of the results in comparison with the reality, but this 
topic is actually outside the scope of the paper. In any case, the effect of 
the retarding structures can be appreciated by comparing the map of the 
vertical height obtained in the test presented in the previous section 
with the results of the present test at the same time t = 134s (namely the 
tstop of the previous test). As can be noticed in Fig. 26, the runout dis
tance, evaluated after full stop, is decreased by about 50m, the 
maximum width is increased by about 20m and the snow pile is more 
developed around the last slope change. 

Fig. 19. Normal depth (top) and velocity norm (bottom) along a longitudinal section of the straight channel with decreasing slope bed test at the stopping reference 
times (see text for their definitions). The green arrows indicate the points where the slope of the bed changes. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 20. Details of the flow depth h near the front of the avalanche for the decreasing slope bed test at the stopping reference times obtained with TRENT2D❄ and 
RAMMS2D for different values of KR. 

Table 1 
Runout distance Rd for the straight channel with decreasing slope bed test 
evaluated at the stopping reference times (tref) for the TRENT2D❄ and 
RAMMS2D models.   

TRENT2D❄ RAMMS2D 

KR – 10% 5% 1% 
tref (s) 108 87 97 175 
Rd (m) 651 641 651 657  
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7. Conclusions 

The goal of the work presented in this paper was to develop a new 
mathematical and numerical approach, able to accurately simulate two- 
dimensional, dense snow avalanches described as a single-phase, 
shallow fluid with a Voellmy friction law. The novelties we introduced 
consist of the use of the flow equations written in a global coordinate 
system and the development of specific algorithms for the treatment of 
the effects of the velocity-independent term in the Voellmy friction law, 

namely the stopping of a flow and the maintenance of steady conditions 
with inclined free surfaces. Added to the use of a well-balanced, finite 
volume numerical approach, already employed by the authors in debris- 
flow modelling, these novelties allow the resulting numerical model to 
deal with almost all the situations that an avalanche may encounter: 
flows bounded by vertical and emerging walls, any sort of steady con
ditions, flow stops and submerged bed steps. 

The results of the tests performed, specially developed to assess the 
model capabilities, confirm that the objective has been achieved:  

• no spurious movement is generated starting from steady conditions 
with both horizontal and inclined free surfaces;  

• uniform accelerating flows are well reproduced in comparison with 
the analytical solution in any direction of the space;  

• the stopping point of a flow depends only on the values of the friction 
parameters;  

• instabilities appeared neither in any of the simulations performed 
nor in other test cases not reported in this paper. 

Fig. 21. Normal depth as a function of the horizontal distance from the beginning of the channel for a middle longitudinal section of the unconfined flow over 
decreasing slope bed test at the stopping reference times (see text for their definitions). The green vertical lines indicate the points where the slope of the bed changes. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Runout distance Rd for the unconfined flow over decreasing bed slope test 
evaluated at the reference time (tref) for the TRENT2D❄ and RAMMS2D models.   

TRENT2D❄ RAMMS2D 

KR – 10% 5% 
tref (s) 134 86 94 
Rd (m) 766 728 744  

Fig. 22. Maximum planimetric extension reached by the snow 
depth during the whole simulation (outer lines) and maps of 
the velocity vector norm evaluated at tref obtained with the 
TRENT2D❄ and RAMMS2D simulations of the unconfined flow 
over decreasing slope bed test. The green rectangle represents 
the release zone, while green lines are located where the bed 
slope changes. Only velocities associated with a normal flow 
depth greater than 0.01m are plotted. (For interpretation of 
the references to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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The achieved accuracy of the numerical scheme is important for, at 
least, the following three reasons: (a) it makes the calibration of the 
proposed model less uncertain compared to other models since the 
actual number of parameters is equal to the number of parameters ex
pected theoretically; (b) possible differences in the model results 
compared to laboratory or field data can be charged primarily to limits 
of the employed physical model and not to the numerical limits; (c) a 
more accurate numerical model means more reliable hazard maps and 
hazard assessments, provided that the Voellmy fluid model is the right 
avalanche description. 

What we have proposed in this paper must be seen as a first, prom
ising step towards the development of an effective tool for practical 
applications. Our future work will focus on making improvements to 
many aspects, some of which are more easily accomplished while others 
require more effort. A first improvement regards the ease of use of the 
model. Here we can exploit the capabilities of the WEEZARD system 
(Rosatti et al., 2018) that, thanks to its modular structure, allows one to 
include different types of models in a single web-service, GIS environ
ment (available at http://tool.weezard.eu). In this way, a multi-purpose, 
multi-risk analysis tool for mountain regions can be easily obtained. 

Fig. 23. Top view of the bed configuration used for the submersible retarding structures test. The green box indicates the release prism while triangles represent the 
retarding structures, the red ones are 3m high, the cyan ones are 1m high. Longitudinal section without structures as in Fig. 18. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 24. Vertical height maps for the submersible retarding structures test at two different times.  
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Another feature, quite easy to get, concerns the use of an unstructured 
grid. The employed numerical strategy adapts without any particular 
problem to this kind of domain discretization. However, developing a 
reliable and easy-to-use grid generator is not quite as easy. 

Some other improvements may regard more specifically the mathe
matical model. Besides the classical Voellmy relation, other friction laws 
present in the literature (see the cited papers in the Introduction) can be 
employed in the model. From a numerical point of view, this means that 

Fig. 25. Detail of the vertical height and velocity vector maps near the central retarding structure for the submersible retarding structures test at two different times.  

Fig. 26. Maps of vertical height distributions after full stop obtained (top) without retarding structures and (bottom) with retarding structures.  
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the algorithm used to retrieve the primitive variables from the conserved 
ones must be adequately (and perhaps easily) adapted. Other aspects 
may concern the relaxation of some hypotheses, as the small curvature, 
the hydrostatic assumption and the incompressibility condition, or the 
introduction of a suitable description of the entrainment process. Last 
but not least, model validation against experimental data is desirable. 

All of these points are challenging and need to be resolved to arrive at 
accurate avalanche modelling. 
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Appendix A. Estimate of the velocity profile factor αu2
x 

In the present Appendix, we provide a demonstration that, under reasonable conditions, the corrective coefficient αu2
x 

can be assumed unitary. 
Let us consider an instantaneous 1D flow as in Fig. A.27. To simplify the notation, in the following we do not indicate the time dependency of the 

variables. Let us place the origin of the LCS in such a way that the ζ-axis intersects the free surface at the same point where the vertical section, in 
which we want to evaluate the corrective coefficient α2

ux, intersects the free surface. According to the Voellmy-fluid assumptions (see Section 2.2), the 
distribution of the velocity parallel to the bed can be written in the following way: 

U(χ) = U0f (χ)

where f(χ) is a given nondimensional function describing the longitudinal variability of the velocity. We then assume that this function is linear, 
spanning from the unitary value in the origin of the χ-axis, to the null value at a distance that is a multiple of the flow depth h. Therefore, the dis
tribution becomes: 

U(χ) = U0

(
1 −

χ
nh

)

Fig. A.27. Scheme for the evaluation of the corrective coefficient along the vertical direction.  

Introducing the variable z′ = z − zb, then χ = (hv − z′) sin θ. Considering that h = hv cos θ and assuming θ = const in the χ-interval [0,hv sin θ], then 
the x-component of the velocity along the z′-coordinate becomes: 

D. Zugliani and G. Rosatti                                                                                                                                                                                                                    



Cold Regions Science and Technology 190 (2021) 103343

25

u
′

x(z
′

) = U(χ)cosθ = U0

(

1 −
(

1 −
z′

hv

)
1
n

sinθ
cosθ

)

cosθ 

The relevant depth-averaged velocity becomes: 

ux =
1
hv

∫ hv

0
U0

(

1 −
(

1 −
z′

hv

)
1
n

sinθ
cosθ

)

cosθdz
′

= U0
1
2n

(2ncosθ − sinθ)

while the depth-averaged value of 
(
u’

x
)2 becomes: 

u2
x =

1
hv

∫ hv

0
U2

0

(

1 −

(

1 −
z
hv

)
1
n

sinθ
cosθ

)2

cos2θdz′

= U2
0
1 + 3n2 − cos2θ + 3n2cos2θ − 3nsin2θ

6n2  

and finally, the velocity distribution factor becomes: 

αu2
x
(θ, n) =

u2
x

(ux)
2 =

2
3

3n2cos2θ − cos2θ − 3nsin2θ + 3n2 + 1
(sinθ − 2ncosθ)2 

In Fig. A.28, we plotted the value of the previous function for n = 2,5,10,100 and 0 ≤ θ ≤ 90◦. The grey area in the diagram, spanning from 25◦ to 
60◦, represents what is commonly referred to as the range of slopes within which avalanches are triggered.

Fig. A.28. Plot of αu2
x 

as a function of the bed slope for different values of the parameter n.  

The following consideration can be done:  

• For a smooth variation of the velocity profile, condition represented by the curve with n = 100, the coefficient can be considered unitary for all the 
slopes except for 90◦, where the step condition can be applied.  

• For sharp variations, condition represented by the curves with n = 2, 5, the coefficient is almost unitary up to values of θ = 60◦, where the values of 
1.1944 and 1.0146 are reached respectively. Therefore, for sharp variations occurring in the stopping zone, the coefficient is essentially unitary 
while can become greater that one in case of sharp variations on a steep slope. This last condition could affect the speed of the avalanche front, but 
we think that this factor is negligible compared to the uncertainty of knowledge of the other parameters affecting the front speed. 

In conclusion, we believe that this analysis strongly supports, even if it does not unequivocally prove it, the fact that the value for α2
ux is negligibly 

different from one in every practical situation. 

Appendix B. Definition and characteristics of the tangent plane to a surface in a point 

Given a bed surface as defined in Section 4 and its normal unit vector as defined in Eq. (48), in this section we derive and analyse the tangent plane 
T to the surface in the point where the surface intersects the z-axis, namely P 0 = (0,0, z0). However, results can be easily extended to any point of the 
bed surface. 

Given a generic point P = (x, y, z), the vector joining this point to the reference point can be expressed as T→ = P − P 0 = (x, y, z − z0). This vector 
lies on the tangent plane if and only if it is orthogonal to n̂, namely T→⋅n̂ = 0. The relevant Cartesian expression reads: 

nxx+ nyy+ nzz = z0nz (B.1)   
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Fig. B.29. Sketch of plane T with relevant characteristics.  

The intersection of T with the x − z plane 

z = −
nx

nz
x+ z0 (B.2)  

defines the straight line a of Fig. B.29 whose slope, by using Eq. (50) and introducing the angle αx between a and the x-axis, can be expressed as: 

−
nx

nz
=

∂zb

∂x
= tanαx (B.3) 

Analogously, we define the straight line b as the intersection of T with the y − z plane and, denoting by αy the angle between b and the y-axis, its 
slope becomes: 

−
ny

nz
=

∂zb

∂y
= tanαy (B.4) 

With Eqs. (B.3) and (B.4), the quantity cosθ defined in Eq. (49) can be expressed as: 

cosθ =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (tanαx)
2
+
(
tanαy

)2
√ (B.5)  

Fig. B.30. Points and vectors used in the determination of the maximum slope of T .  

The steepest slope of the plane can be obtained as follows. Let us consider the straight line c (Fig. B.29) deriving from the intersection of the plane 
T with the x − y plane: 

y = −
nx

ny
x+

nz

ny
z0 (B.6)  

Let 

P c(x) =
(

x, −
nx

ny
x+

nz

ny
z0, 0

)
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be a point lying on c, then we can define the following vectors:  

1. T→c(x) = P c − P 0: a vector lying on T ;  
2. T→0(x) = P c − (0,0, 0): a vector lying on the plane x − y. 
The cosine and the tangent of the angle ψ between the two vectors are: 

cosψ =

⃦
⃦
⃦T→c

⃦
⃦
⃦

⃦
⃦
⃦T→h

⃦
⃦
⃦
; tanψ =

z0⃦
⃦
⃦T→h

⃦
⃦
⃦

(B.7) 

The steepest slope of T is obtained when tanψ reaches its maximum value. Considering the previous equation, this condition becomes: 

d
dx

⃦
⃦
⃦T→h

⃦
⃦
⃦ = 0 (B.8) 

The solution gives: 

xmin = −
nxnz

n2
x + n2

y
z0 (B.9)  

that is the x-coordinate of point P min
c (see Fig. B.30). Introducing this last expression into the first element of Eq. (B.7), we obtain the cosine of the 

maximum value of the slope 

cosψ =
1
nz

= cosθ (B.10) 

This result shows that the angle corresponding to the maximum slope of T is equal to the angle that the normal vector forms with the z- axis. 
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