AssureMO0SS

Please hold on: more time = more patches? Automated
program repair as anytime algorithms

Authors:

Duc Ly Vu, University of Trento (IT)
Ivan Pashchenko, University of Trento (IT)
Fabio Massacci, University of Trento (IT), Vrije Universiteit Amsterdam (NL)

This paper was written within the H2020 AssureMOSS project that received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 952647. This paper
reflects only the author’s view and the Commission is not responsible for any use that may be made of
the information contained therein.

Assurance and certification in secure Multi-

party Open Software and Services (Assure-

MOSS) No single company does master its own na-

tional, in-house software. Software is mostly assem-

AssureM0SS bled from “the internet” and more than half come

from Open Source Software repositories (some in

Europe, most elsewhere). Security & privacy assur-

ance, verification and certification techniques de-

signed for large, slow and controlled updates, must now cope with small,

continuous changes in weeks, happening in sub-components and decided by

third party developers one did not even know they existed. AssureMOSS

proposes to switch from process-based to artefact-based security evaluation

by supporting all phases of the continuous software lifecycle (Design, De-

velop, Deploy, Evaluate and back) and their artefacts (Models, Source code,

Container images, Services). The key idea is to support mechanisms for

lightweigth and scalable screenings applicable automatically to the entire

population of software components by Machine intelligent identification of

security issues, Sound analysis and verification of changes, Business insight

by risk analysis and security evaluation. This approach supports fast-paced

development of better software by a new notion: continuous (re)certification.

The project will generate also benchmark datasets with thousands of vul-

nerabilities. AssureMOSS: Open Source Software: Designed Everywhere,
Secured in Europe. More information at https://assuremoss.eu.

Duc Ly Vu is currently a Ph.D. student at the
University of Trento, Italy. He was an Early Stage
Researcher at the European Network for Cyber-
security project from 2017 to 2019. As part of the
AssureMOSS project, his primary research focuses
on automated program repair and mining source
code repositories. Contact him at ducly.vu@unitn.it.

Ivan Pashchenko (PhD 2019) is a Research
Assistant Professor at the University of Trento,
Italy. He was awarded a silver medal at the
ACM/Microsoft Student Graduate Research Com-
petition at ESEC/FSE. He is UniTrento main contact
in “Continuous analysis and correction of secure
code” work package for the AssureMOSS project.
Contact him at ivan.pashchenko @unitn.it.

Fabio Massacci (Phd 1997) is a professor at the
University of Trento, Italy, and Vrije Universiteit
Amsterdam, The Netherlands. He received the Ten
Years Most Influential Paper award by the IEEE
Requirements Engineering Conference in 2015. He
is the the European Coordinator of the AssureMOSS
project. Contact him at fabio.massacci@ieee.org.

How to cite this paper:

e Vu, D.L. and Pashchenko, I. and Massacci, F. Proceedings
of ACM/IEEE International Conference on Software En-
gineering - Automated Program Repair (APR) workshop
(ICSE-APR 2021). IEEE Press.

License:

o This article is made available with a perpetual, non-
exclusive, non-commercial license to distribute.

o The graphical abstract is an artwork by Anna Formilan.

https://assuremoss.eu

Please hold on: more time = more patches?
Automated program repair as anytime algorithms

Duc-Ly Vu
University of Trento (IT)
ducly.vu@unitn.it

Ivan Pashchenko
University of Trento (IT)
ivan.pashchenko @unitn.it

Abstract—Current evaluations of automatic program repair
(APR) techniques focus on tools’ effectiveness, while little is
known about the practical aspects of using APR tools, such as
how long one should wait for a tool to generate a bug fix. In
this work, we empirically study whether APR tools are any time
algorithms (e.g., the more time they have, the more fixes they
generate, so it makes sense to trade off longer time for better
quality). Our preliminary experiment shows that the amount of
plausible patches, given exponentially greater time, only increases
linearly or not at all.

Index Terms—Automated Program Repair, Anytime Algo-
rithms, Empirical Software Engineering

I. INTRODUCTION

Automated program repair (APR) techniques were designed
to automatically search for (i.e., generate) candidate patches
for software bugs that might be plausible ones (passing all
tests) and then possibly correct ones (actually fixing the bug).
An important class of search-based techniques is that of
anytime algorithms [1] which tries to capture an important
trade-off:

Anytime algorithms give intelligent systems the capability
to trade deliberation time for quality of results. This capability is
essential [when] it is not feasible (computationally) or desirable
(economically) to compute the optimal answer [...].

Our long-term Goal is to understand whether APR tech-
niques are anytime algorithms so that it makes sense to wait
longer to obtain better results. Empirically, Durieux et al. [2]
studied 11 APR tools but only showed that most of the repair
attempts resulted in an error or terminated with a timeout.
By constraining the search space, Qi et al. [3] showed that
the number of patch candidates can vary significantly, which
might impact the number of plausible patches. In this direction,
Martinez and Monperrus [4] showed that an additional time
budget might result in a higher number of plausible patches.
The authors did not investigate how long one needs to wait. To
the best of our knowledge, we do not find a study investigating
the impact of different time budgets.

In this work, we report the answer to the first question:

o RQ: By doubling the time budget of an APR tool, do we

get twice more plausible patches?

We follow the methodology used to evaluate anytime al-
gorithms [5] to compare the number of patches generated
by five open-source APR tools on a set of 5 benchmarks.

This work was partly funded by the European Commission under the grants
n. 952647 (H2020-AssureMOSS) and n.830929 (H2020-CyberSec4Europe).

Fabio Massacci

University of Trento (IT), Vrije Universiteit Amsterdam (NL)

fabio.massacci@ieee.org

TABLE I: Benchmarks

Benchmark Project #Bugs
Defects4] Chart 26
Bears spring-projects-spring-data-commons 15
Bugs.jar Accumulo 88
IntroClassJava smallest 52
QuixBugs 40 projects 40

Our preliminary results show that having exponentially more
time, APR techniques produce only a linear or no increase
in plausible patches and so do not seem to have the trade-off
ability for being anytime algorithms.

II. EXPERIMENTS

For the APR tool selection, we used the RepairThemAll
framework [2] and selected five tools for Java programs
belonging to three repair technique families: generate-and-
validate, semantic-driven, metaprogramming-based. The leg-
end of Figure [2| shows the final set of APR tools.

We selected the five most popular benchmarks having both a
set of buggy programs with known locations of software bugs
and a set of test cases to validate the generated patches. For
each benchmark, we randomly selected a project and extracted
all its bugs. For the QuixBugs benchmark, we selected all
available projects as they contain only one bug per project.
This selection resulted in 221 bugs from 44 projects (Table [I).

To benchmark the APR tools, we give each tool exponen-
tially longer deadlines and count the corresponding cumulative
patches. A generated patch is measured successful if it passes
all the specified test cases for the particular software program.
An anytime algorithm should provide more successful patches
in proportion to the increased amount of available time [5]:

« cach tool takes as same input set of the studied programs
with known bugs and same starting parameters for each
run (i.e., the predefined seed)'}

« we terminate the repair process if a given time budget is
exceeded or the first successful patch is generated;

o after each run, we double the time interval that a tool has
for generating plausible bug fixes.

In our experiments, we used an Ubuntu server with eight
CPU cores and 62 GB RAM. Each trial run of an APR tool
and a buggy program was executed in a separate CPU core.
We use the following time intervals: 1 minute (2°), 2 minutes

I NPEFix was an exception as it does not support such an option.

(21), 4 minutes (22), 16 minutes (2*). When possible, we used
the maxtime option provided by the framework to limit the
execution time. In some cases, we had to kill the repair process
after exceeding the timeout.

III. PRELIMINARY FINDINGS

Figure [T shows the fractions of the total number of patches
generated by the selected APR tools. We observe that within
one minute, the tools fixed 9% of the total number of bugs.
When we doubled the time (e.g., two minutes), the number
of plausible patches increased to 13.6%. This already deviates
from the expected increase in the number of patches: if the
APR tools are anytime algorithms, the expected fraction of
patches after two minutes is 18%. The difference between
the expected fraction of patches and the actually registered
ones increases with time. We observe 19% of bugs fixed after
running the tools for four minutes (36% is expected) and 28%
of bugs fixed after 16 minutes (72% is expected). Hence, we
observe a sub-linear increase in the fraction of patches while
the tool running time increased exponentially.

Figure [2] shows the fraction of patches each tool generated
after a particular time interval. We observe that Nopol fixed
the biggest fraction of bugs: already after the first minute, it
generated patches for 5% of bugs. However, each consecutive
increase of the tool’s time budget reduces the number of newly
generated patches: +2% after running for the second minute,
+2% after four minutes and +1% after running for 16 minutes.
Similarly, jKali generated 2% of patches after running for one
minute and then was able only to double the number of fixes
(5% of bugs) while had 16x more time.

jGenProg and NPEFix fixed a small fraction of bugs after
running for one minute (1% of total bugs). After waiting 4x
time for jGenProg and 16x time for NPEFix, we obtained
additional fixes. However, the number of patches increased
modestly while the tools required a substantially longer time
to generate them (5x patches required 16x time).

DynaMoth demonstrated a somewhat different behavior.
It produced no patches after running for one minute then
generated patches for 2% of bugs after two minutes. The next
doubling of the time interval leads to just one additional bug
fix. After 16 minutes, DynaMoth patched 7% of bugs, which
is the second-best result within the evaluated tools. Even if
we observe a stepped increase in the number of fixes, it still
does not correspond to the exponential growth in the amount
of time required for the tool to produce them.

Summary: We evaluated the automated software repair
tools with different time budgets. We found that by giv-
ing exponentially more time, the number of patches only
increases linearly or not at all. If no quick fix is gener-
ated (within the first four minutes), one is unlikely to be
generated. To conclude this work in progress and really
identify if APR tools are anytime algorithms, we plan to
find the correct patch out from all plausible patches (the
‘better solution’) as plausible patches may not correctly fix
the related bug [10]. Hence, we plan to i) run the APR tools
on a larger dataset and ii) try other more advanced APR

25%

_
=
> 20%
9] l/
=
Q
2
8, 15%
3 /
=
e
=
4 10%
<
=
Ja»

5% |

0% -

20 91 22 21

Time budget (minutes)

Fig. 1: Total generated patches by all APR tools

10%
~~
X jGenProg 6] jKali 6]
: ——+— NPEFix [7]] —— Nopol {§]
ch_) —~A—— DynaMoth [9)] /A
Q
=
2 5%
)
p—
e
=1
w2
=
< 7
—
[a W)
0% -
1 T T
2001 92 21

Time budget (minutes)
Fig. 2: Generated patches by individual APR tool

techniques, iii) analyze when plausible patches are actually
correct patches. Our code and replication data are available
in https://github.com/assuremoss/Automated-Program-Repair/
tree/main/Anytime- Algorithm-2021.

REFERENCES

[1] S. Zilberstein, “Using anytime algorithms in intelligent systems,” Al
magazine, 17(3), 1996.

[2] T. Durieux, et al., “Empirical review of java program repair tools: a
large-scale experiment on 2,141 bugs and 23,551 repair attempts,” in
Proc. of ESEC/FSE’19, 2019.

[31 Y. Qi, et al., “The strength of random search on automated program
repair,” in Proc. of ICSE’14, 2014.

[4] M. Martinez and M. Monperrus, “Ultra-large repair search space with
automatically mined templates: The cardumen mode of astor,” in Proc.
of SBSE’18, 2018.

[5] E. A. Hansen and S. Zilberstein, “Monitoring and control of anytime
algorithms: A dynamic programming approach,” Al magazine, 126(1-2),
2001.

[6] M. Martinez and M. Monperrus, “Astor: A program repair library for
java,” in Proc. of ISSTA’16, 2016.

[7]1 B. Cornu, et al., “Npefix: Automatic runtime repair of null pointer
exceptions in java,” arXiv, 2015.

[8] J. Xuan, et al., “Nopol: Automatic repair of conditional statement bugs
in java programs,” TSE, 43(1), 2016.

[9] T. Durieux and M. Monperrus, “Dynamoth: dynamic code synthesis for
automatic program repair,” in Proc. of AST’16, 2016

[10] Z. Qi, et al., “An analysis of patch plausibility and correctness for
generate-and-validate patch generation systems,” in Proc. of ISSTA’1S,
2015.

https://github.com/assuremoss/Automated-Program-Repair/tree/main/Anytime-Algorithm-2021
https://github.com/assuremoss/Automated-Program-Repair/tree/main/Anytime-Algorithm-2021

	Introduction
	Experiments
	Preliminary findings
	References

