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Abstract

Abstract

Large carnivores are among the most challenging species to conserve in our modern and

crowded world. Having large spatial requirements and living in low density, they generally

require wide and relatively undisturbed areas. In Europe, one of the most anthropized areas

of the planet, these needs must be fulfilled in a complex human-dominated landscape. The

reintroduced brown bear population living in the Central Alps represents one of the most

emblematic examples of a constrained carnivore: despite a steady population increase in the

first few years after reintroduction, the population did not substantially expand its range, nor

has the Alpine-Dinaric metapopulation been reestablished as envisioned.

Although humans have lived in the Alps for centuries, little  is  known about their

impact on the bear population. In other environments humans are known to function as a

“super-predator”  by  changing  habitats,  competing  for  space,  consuming  resources,  and

harvesting, which alters the ecological niche of animals, especially large carnivores. This

dissertation aims to evaluate this phenomenon by assessing the effects of human disturbance

on brown bears in the Alps.

Anthropogenic  disturbance  is  generally  assessed  by  structural  proxies,  such  as

infrastructure  and land  use,  which  overlook  the  impact  of  human  presence.  In  the  first

Chapter, we developed the Cumulative Outdoor activity Index (COI) to derive anthropogenic

disturbance  using  crowdsourced  data  by  Strava  and  validated  it  with  ground  truth

observations derived from a local camera trapping survey. The intensity of COI provided an

effective  measure  of  functional  anthropogenic  disturbance,  and  it  outperformed  all

commonly-used proxies of structural disturbance in predicting bear habitat use. 

When  displacement  is  not  an  option  because  of  habitat  limitations  and  social

mechanisms, bear mobility may clash with human activity. During the moments of lowest

mobility,  such  as  resting  periods,  animals  have  decreased  ability  to  cope  with  risky

situations, and therefore the selection of suitable resting areas is crucial for the long-term

survival  of  individuals.  In the second Chapter, we measured multi-scale response to risk

perception (i.e.,  COI)  and resource proximity using bedding sites  by GPS radio-collared

adult brown bears in the Alps. To map resources across the study area, we developed a GIS-

database combining spatial and non-spatial ecological information to map fruit availability.

We  observed  that  bears  apply  a  security-food  trade-off  strategy,  avoiding  functional

anthropogenic disturbance while in proximity to resources.

In the third Chapter, we explicitly tested the effect of an abrupt interruption of human

mobility  during  COVID-19  lockdown on  bears’ use  of  ecological  corridors.  Using  bear
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occurrences reported to local authorities during the recent COVID-19 outbreak, we observed

that bears used human-dominated areas more frequently, approached more intensively hot

spots for road crossing network, and used areas further from the population core areas more

often  than  previous  years,  suggesting  that  connectivity  increased  with  reduced  human

mobility.

In a comparatively human-free system, for the fourth Chapter we used longitudinal

morphometric data to analyze drivers of changes in body mass as part of an international

collaboration with biologists studying the grizzly bear in the Greater Yellowstone Ecosystem.

Specifically, we analyzed changes in lean body mass and fat  percentage during years of

major ecosystem perturbations. We observed that individual lean body mass during the last

two decades was primarily associated with population density, but not body fat percentage,

showing density-dependent factors.

Our combined findings (Chapters 1-3) showed that brown bears have to adapt their

space  use,  movement,  and  resource  proximity  as  a  result  of  functional  anthropogenic

disturbance.  In  Chapter  4  we  explored  one  effect  of  unconstrained  bear  space  use  on

individuals,  as  manifested  through  density-dependent  effects  on  body  size.  In  the  Alps,

however, we found multiple instances of the human-super predator outcompeting bears so as

to  make  density-dependent  effects  likely  less  significant  as  compared  to  human-caused

mortality. These effects could occur in a variety of socio-ecological contexts across Europe,

jeopardizing the long-term establishment of both newly reintroduced bear populations, as

well  as  spatially  limiting  those  naturally  present  in  the  environment.  In  response  to

disturbance, bears have had to reduce their ecological niche in human-dominated landscapes.

Allowing humans and bears to coexist in the same landscape is a challenging task, but it is

essential for the long-term survival of this newly reintroduced population that are otherwise

at risk of extinction.
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Introduction

Introduction

Large carnivore conservation in the Anthropocene

Human influence on the Earth's ecosystem has now reached the scale and intensity of some

of nature's most powerful forces (Steffen et al., 2011). With the arrival of Europeans in the

Caribbean in 1492, and with the great technological advancement of the following centuries

(i.e.,  initiated  with  the  Industrial  Revolution,  approx.  1760),  humans  have  had  such  a

dramatic impact on the Earth that they have caused significant changes to terrestrial and

marine ecosystems as a result of their use (Lewis and Maslin, 2015). These changes will be

detectable in the geological stratigraphic record for millions of years, prompting scientists to

coin the term "Anthropocene" to refer to a geological epoch dominated by humans (Crutzen

and Stoermer, 2000; Crutzen, 2002). The consequences of the human footprint on the Earth's

ecosystems are numerous, ranging from global-level perturbations such as climate change

(Solomon et al., 2009) and land-use shifts (i.e., habitat loss, degradation, and fragmentation)

(Hoekstra et al., 2005) to more localized changes in species community occupancy (Wang et

al., 2015; Boron et al., 2019) and animal movement and behavior (Tucker et al., 2018). Many

species have already been lost as a result of recent anthropogenic disruptions (defined as the

“sixth mass extinction”), and many more are in danger due to small geographic ranges and

low population  abundance  (Barnosky  et  al.,  2011).  Given their  ecological  requirements,

large-bodied  animals  are  particularly  susceptible  to  human  disturbance  and  competition

among vulnerable  species  (Cardillo  et  al.,  2005),  which puts  them at  risk if  the  current

scenario of human expansion and land-use change is not halted or reversed.

Large  carnivores,  the  large-bodied  members  of  order  Carnivora,  are  considered

among the most challenging species to conserve in our modern and crowded world (Chapron

et al., 2014; Ripple et al. 2014). They require wide, relatively undisturbed areas because of

their large spatial and habitat requirements, low population density, and slow life histories.

They also require a diverse, abundant, and stable prey (or plant) biomass due to their high

energy  requirement  (Carbone  et  al.  1999;  Boitani  &  Powell,  2012).  Because  of  their

ecological niche, large predators play a key role in the Earth's environments, exerting strong

regulatory effects  on many ecosystems (i.e.,  through top-down mechanism;  Suraci  et  al.

2019) and thereby improving the resilience of the ecosystems in which they thrive, both

directly and indirectly (Ripple et al., 2014). Despite their significant ecological role, most

large carnivore species are of conservation concern, and major coexistence issues remain

unsolved globally, mostly because of conflicts with humans, livestock, and game species
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(Ripple et al., 2014). Recently, two alternate scenarios for coexistence between humans and

large carnivores in the contemporary world have been proposed: (i) the “separation model”,

where people and predators are kept apart, with large carnivores persisting in inaccessible

(i.e., fenced) or remote wilderness areas, and (ii) the “coexistence model”, where people and

predators are allowed to share the landscape (Chapron et al., 2014). The first scenario has

long been seen to be the most straightforward to implement, owing to the virtual lack of

human-predator conflicts (“land-sparing”). However, the latter scenario (“land-sharing”) has

recently emerged, aided by both the recovery of some large carnivore species and the global

expansion of human influence, requiring carnivores to coexist in anthropogenic landscapes

(Chapron et al., 2014; Lamb et al., 2020).

In Europe, one of the most anthropized areas of the planet, the persistence of large

carnivores  must  be assured in  a  complex human-dominated landscape (i.e.,  “coexistence

model”)  (Chapron  et  al.,  2014).  Primeval  habitats  are  now  rare  in  the  continent  and

significant human influence on the composition, structure, and functionality of ecosystems

has persisted for millennia. Particularly, recent decades were marked by social, structural,

and  ecosystem  transformations,  which  transformed  Europe's  cultural,  economic,  and

ecological landscape. Increased habitat availability and lower human population density, as

well as favorable human tolerance and policy, have favored the expansion of large carnivores

in particular (Cimatti, et al., 2021). In the Alpine region, such landscape and cultural changes

have been paramount. Traditional pastoral activities and agriculture on less productive and

accessible terrain were abandoned in the last decades (Laiolo et al., 2004; Tasser et al., 2005;

Tattoni et al., 2017), but on the other hand, farming and human land use are being intensified

in the major valleys (Tasser et al.,  2005), while outdoor recreation activity has expanded

throughout the Alps (Schirpke et al., 2018). Territories abandoned by humans have reverted

to natural habitats and served as connecting bridges for re-establishing carnivore species,

while greater competition for space and decreased landscape connectivity have emerged in

regions  with  significant  human development.  Large  carnivore  populations  have  partially

recovered in the last 20 years (Boitani, 2018; Huber, 2018; von Arx, 2020), and given the

scarcity of wilderness areas in comparison to African and North American landscapes, the

recovery is opening up new research opportunities, especially as the “land-sharing” scenario

becomes  more  prevalent  in  the  Alpine  environment  and  across  Europe  (Chapron  et  al.,

2014).

By sharp contrast, human activities are minimal in ‘true' wilderness areas found in

certain areas of the world, where large carnivores can carry out their spatial and ecological

requirements  without  the  need  of  competing  with  humans  (Chapron  et  al.,  2014).  The
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Greater  Yellowstone Ecosystem,  one of  the  world's  largest  and best-preserved temperate

ecosystems,  is  one of  the  best  examples  of  wilderness.  The ecosystem encompasses  the

Yellowstone National Park, a ~9,000 km2 wildlife sanctuary and the world's first National

Park, as well as vast federal lands where human presence and activities are regulated. Seven

large  predators  thrive  in  the  ecosystem,  and  despite  the  influence  of  human  land  use

(particularly outside the National Park), large carnivores and humans are largely separated

(Chapron et  al.,  2014).  Because  of  its  characteristics,  this  ecosystem provides  a  unique

opportunity to study the behavior, movement, habitat use, and life-history traits of animals

living in  a relatively human-free  environment.  Large carnivores  in  Yellowstone National

Park have been the subject of pioneering wildlife research, including radio telemetry and

wildlife tracking. From the early 1960s, the Craighead brothers used radio tracking systems

and satellite monitoring to study the movement of grizzly bears (Craighead et al., 1963) or to

retrieve environmental and physiological data from a hibernating black bear (Craighead et

al., 1971). These studies laid the groundwork for modern telemetry, which has evolved into

one of the main tools for ecologists studying wild animals in their natural habitat (Cagnacci

et al., 2010). In addition, the reintroduction of gray wolves into Yellowstone National Park in

the mid-1990s was arguably one of the most significant wildlife conservation efforts of the

twentieth century (Bangs and Fritts, 1996), both symbolically and environmentally (Smith et

al., 2003), and it sparked research on trophic cascades in large mammal communities (Ripple

and Beschta, 2012). With the current worldwide upheavals brought about by humans, the

Greater  Yellowstone  Ecosystem  is  more  relevant  than  ever  for  ecological  research  on

animals, but in particular large carnivores.

Resource selection, movement, and landscape connectivity in an 
anthropic matrix

A pivotal concept in ecology is the scale at which ecological phenomena should be studied

(Levin, 1998). Systems show different variability on a range of organizational scales (Mayor

et al., 2009), and the decision of the scale at which to study the system is crucial. In habitat

selection studies, for example, behavioural scales (Johnson, 1980) based on observations of

individual  distribution  or  movement  are  widely  used.  The  observational  scale  can  be

arbitrarily chosen depending on the research objective (Levin, 1998; Mayor et al., 2009),

however  to  minimize  the perceptual  bias  with which  a  system is  observed and studied,

different scales might be investigated (Ciarniello et al., 2007), or incorporated (DeCesare, et

al., 2012) in an attempt to reconcile scale dependence when finding patterns of selection and
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avoidance.  Human disturbance,  for  example,  can  influence  the  selection  of  habitats  and

resources in large carnivores (Ciarniello et al., 2007; Sánchez et al., 2013; Zimmermann et

al., 2014), and animals in general (Peters and Otis, 2007; Plante et al., 2020), at different

spatial and temporal scales. Understanding these scale-dependent drivers of selection can

help  synthesizing  patterns  within,  and  across,  populations  (Mayor  et  al.,  2009).  To this

purpose, a multi-scale analysis of the impact of anthropogenic disturbance (i.e., “coexistence

model”;  Chapron  et  al.,  2014)  may  aid  in  determining  the  driver  of  individual  and

population-level selection, as well as the impact of such disturbance on niche formation, and

ultimately fitness.

Despite the necessity of investigating disturbance at multiple ecological scales, it is

important to emphasize on drivers of large-scale selection and avoidance, notably mobility,

in large-bodied mammals. Due to their energetic constraints, large carnivores (i.e., species

with body masses larger than 21.5 kg; Carbone et al., 1999), must travel great distances and

maintain large home ranges in order to locate mobile prey or other adequate food sources,

compensating for energy conversion loss through the food web. Therefore, unconstrained

movement and connectivity in the landscape are crucial to allow large carnivores to carry out

their ecological functions, such as trophic interactions, dispersing, mating, or even disperse

seeds (Boitani & Powell, 2012; Ripple et al., 2014; García-Rodríguez et al., 2021), over large

spaces.  Furthermore,  maintaining  immigration  and  emigration  across  breeding

subpopulations at the metapopulation level, particularly for recovering isolated populations,

prevents  inbreeding,  genetic  drift,  demographic  decline,  and,  in  extreme  circumstances,

extinction (Elmhagen and Angerbjörn, 2001). The free movement of animals is particularly

important in those landscapes where people and predators share the space (Chapron et al.,

2014). Despite emerging scenarios in which carnivores exist in human-dominated landscapes

(Chapron et  al.,  2014;  Lamb et  al.,  2020),  recent  research has  demonstrated that  animal

movement, including large mammals, is constrained or altered as a result of human footprint

around the world (Tucker et al., 2018). In continental Europe, the re-establishment of large

carnivore populations has clashed against major threats, such as geographic (i.e., major roads

and  human  settlements)  and  functional  (i.e.,  human  mobility,  social  acceptance,  or

socioeconomic factors) barriers. With the rapid development of the infrastructure network

over the last few decades, there has been a significant amount of research on the impact of

geographic  barriers  on  animals,  also  prompted  by  the  need  to  reduce  wildlife-vehicle

collisions (i.e., road ecology; Forman et al., 2003; Fahrig and Rytwinski, 2009). Functional

barriers, on the other hand, have just recently been recognized as severe threats to landscape

connectivity.  The  development  of  indicators  of  human  presence  (Nickel  et  al.,  2020;
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Goodbody et al., 2021) and tolerance (Behr et al., 2017; Struebig et al., 2018) toward large

carnivores has only recently gained interest, yet “anthropogenic resistance” in connectivity

evaluation has been rarely implemented (Ghoddousi et al., 2021), particularly with respect to

human mobility. Understanding the full  extent  of  landscape connectivity  in an anthropic

matrix,  net  of  both  geographical  barriers  and  “anthropogenic  resistance”,  would  enable

researchers,  conservationists,  and managers  to  develop increasingly realistic  scenarios  of

“effective  connectivity”  (Robertson  et  al.,  2018;  Van  Moorter  et  al.,  2021)  for  large

carnivores.

The brown bear Ursus arctos

Among terrestrial large carnivores, the brown bear is one of the largest and most widely

distributed members of the order Carnivora. In the Holarctic region, approximately 110,000

mature  individuals  are  distributed  among  44  subpopulations,  some  of  which  are  of

conservation concern (McLellan et al., 2017). Their widespread distribution is a result of

their capacity to thrive in a variety of environments and to consume a range of food sources,

as  well  as  their  large home ranges and solitary social  structure  (McLellan et  al.,  2017).

Ecologically, brown bears are important ecosystem engineers, playing a critical role in the

Earth's environments with their niche construction behavior, such as increasing soil elements

(Tardiff & Stanford, 1998), create microhabitat (Miller, 1990), act as seed dispersers (García-

Rodríguez et al., 2021), or exert a regulatory effect in the food webs (i.e., as omnivores;

Kratina et al., 2012). Due to their ecology, longevity, ability to track resources without being

territorially bound, and reduced natural competition (aside from conspecifics), brown bears

represent a good case study for looking at the effects of anthropogenic disturbance on large

carnivores. Indeed, bears that share the landscape with humans face significant challenges

and must adjust to the presence of the human "super-predator" (Smith et al., 2017) despite

their  distinct  ecological  adaptability.  Historically,  this  coexistence  has  resulted  in  bear

population isolation or even extinction in some regions (Mattson et al., 2002; Chapron et al.,

2014), while more recently, anthropogenic disturbance has been reported to alter the habitat

use (Martin et al., 2010), diet (Kavčič et al., 2015), circadian rhythms (Ordiz et al., 2017),

and life-history traits (Bischof et al., 2017) of bears. Space is a particularly scarce resource in

human-dominated  environments;  as  a  result,  many  aspects  of  bear  ecology  that  are

dependent  on  space  availability, such  as  resource  acquisition,  movement,  and  landscape

connectivity, are compromised.  In an ever-changing world,  understanding the multi-scale

anthropogenic  effects  on  brown  bears  will  be  critical  for  guaranteeing  their  long-term
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coexistence in human-dominated landscapes (i.e., as in an ecological community; Chapron

and López-Bao, 2016), but also ensuring the functionality of terrestrial ecosystems.

Aims and objectives

The aim of this research was to determine the ecological scales at which various forms of

anthropogenic disturbance have an effect on space use, niche construction, movement, and

ultimately  connectivity  in  the  reintroduced  brown  bear  population  living  in  alongside

humans (i.e., “coexistence model”; Chapron et al., 2014). Additionally, as a comparison, we

aimed to determine the density-dependent factors, while controlling for density-independent

factors, affecting individual performance in grizzly bears living in a relatively human-free

landscape (i.e., “separation model”; Chapron et al., 2014). In particular, the main objectives

of  this  Ph.D  thesis  were:  (i)  to  assess  the  effect  of  different  types  of  anthropogenic

disturbance  on  a  reintroduced  brown  bear  population  living  alongside  humans;  (ii)  to

understand  the  ecological  scale  at  which  human-induced  disturbance  affects  the  niche

formation of individual brown bears; (iii) to determine the effects of human activity when

predicting  connectivity  for  bears  on  the  landscape;  (iv)  to  investigate  the  demographic

determinants in a brown bear population that lives in a largely human-free environment.

Objectives (i), (ii), and (iii) were investigated using telemetry and individual data collected

from the brown bear population in Trentino/Central Alps (Huber, 2018), while objective (iv)

was investigated using longitudinal data collected from the grizzly bear population in the

Greater Yellowstone Ecosystem. The Alpine bear population, along with the Pyrenean bear

population, is one of the two reintroduced populations still extant on the European continent

(Huber,  2018).  Brown  bears  are  protected  continent-wide  under  European  legislation

(Habitats  Directive  92/43/EEC),  except  for  the  removal  of  selected  individuals  under

derogation of Article 16(1) (Epstein et al., 2018). Yellowstone brown bears, often known as

grizzly  bears,  can be found in  the  Greater  Yellowstone Ecosystem,  which spans part  of

Idaho, Montana, and Wyoming. Grizzly bears in the contiguous continental United States are

currently  protected  under  the  Endangered  Species  Act  of  1973  (16  U.S.C.  1531),  and

individuals can only be relocated or removed only if it is deemed absolutely necessary. 

The thesis is organized into four chapters with the main goal of examining the overall

effects of anthropogenic disturbance on two brown bear populations on opposite ends of the

human disturbance spectrum. In Chapter I,  we decoupled the effect  of  different types of

anthropogenic disturbances in predicting bear habitat use at the home range level. We did so

by developing the Cumulative Outdoor Activity Index (COI), which uses human mobility
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data to estimate anthropogenic disturbance, and comparing it to commonly used structural

disturbance proxies (i.e., infrastructure and human settlements). In Chapter II, we measured

multi-scale  response  to  risk  perception  (i.e.,  based  on  human  mobility;  COI)  and  food

resource proximity by examining the brown bear selection of home ranges and bed sites

locations.  For  tracking  food  resources  in  the  landscape,  we  developed  a  GIS-database

incorporating spatial and non-spatial ecological information to map fruit availability across

the  study  area.  In  Chapter  III,  we  examined  the  effectiveness  of  previously  predicted

ecological corridors for the Alpine bear population by testing the effect of a sudden reduction

of  human mobility  bear  use  of  ecological  corridors.  For  this  purpose,  we  used spatially

explicit  bear-related  complaints  filed  to  local  authorities  during  the  recent  COVID-19

lockdown (9 March to18 May 2020)  in  Northern Italy. In Chapter IV, we looked at  the

primary factors  that  influence individual  growth and performance in  grizzly bears  in  an

environment  with  relatively  low  anthropogenic  disturbance.  Using  longitudinal

morphometric data spanning more than 40 years, we assessed the density-dependent drivers

of  changes in  body composition over  time,  while  accounting for  external  environmental

factors such as management practices and food resource fluctuations.

Individual-based relational spatial database

In the province of Trento,  brown bears have been continually monitored and genetically

sampled by various authorities since the reintroduction project in the early 2000s. This long-

term monitoring, combined with technological advancements and the desire to minimize data

significance  loss  through  time,  has  prompted  the  development  of  a  comprehensive  and

scientifically valuable dataset. As a result, an individual-based spatial relational database has

been implemented, pooling a large amount of multi-source georeferenced data available in

the  Central  Alps.  The  database  is  the  product  of  years  of  expertise  gained  through  the

EURODEER  network  (https://eurodeer.org/),  which  is  now  a  part  of  the  wider

EUROMAMMALS  project  (http://euromammals.org/).  The  spatial  database  was

implemented using PostgreSQL (PostgreSQL Global Development Group, 2016) with the

PostGIS  extension,  thus  taking  full  advantage  of  the  software's  features,  including  data

integrity, data consistency, storage capacity, reduced data redundancy, long-term storage, and

advanced authorization policy (allowing the sharing with partner institutions) (Urbano and

Cagnacci,  2014).  Additionally,  PostgreSQL's  high  level  of  interoperability  enabled  the

development of a seamless workflow with data analysis software, such as R, (R Core Team,

2020) and GIS applications, such as GRASS (GRASS Development Team, 2018) and QGIS
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(QGIS Development Team, 2019). The spatial database, to date, contains GPS location data

(n≈ 80,000 fixes) and activity data (n≈ 1,700,000) from sensors deployed on 18 bears, as

well as genetics, kinship, damages, VHF radio tracking, sightings, and tracks information

(n≈ 9.000 records) for 152 bears (including the individuals equipped with GPS collars). The

complete database structure, as well as the SQL code used to generate the data repository, is

freely available on GitHub (https://github.com/feurbano/bear_data).

Grizzly bears  have been monitored in  the  Greater  Yellowstone Ecosystem by the

Interagency  Grizzly  Bear  Study  Team  (IGBST)  since  1973.  The  IGBST  is  an

interdisciplinary group of scientists and biologists formed by the Department of the Interior,

with members from the U.S. Geological Survey and various Federal, State, and local bureaus

(van Manen et al., 2020). Since 1975, the IGBST has radio marked 973 individual grizzly

bears in the whole Greater Yellowstone Ecosystem, along with a large set of ancillary data

such as genetics,  activity data,  kinship,  mortality, and morphometrics (van Manen et  al.,

2020),  making  it  one  of  the  world's  best-monitored  bear  populations.  The  database  is

primarily utilized to meet the IGBST's objectives, which include long-term monitoring of the

grizzly  bear  population  in  the  GYE,  as  well  as  the  study  of  bear  habitat  use  and  the

relationship between land management operations and bear population welfare. Nonetheless,

the 50 years long dataset has resulted in a plethora of technical and scientific publications

that contributed significantly to our understanding of brown bears worldwide.
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Chapter 1

Abstract

Humans profoundly affect animal distributions by directly competing for space, not only

transforming, but actively using their habitat. Anthropogenic disturbance is usually measured

via structural proxies such as infrastructure and land use that overlook the impact of human

presence, or functional disturbance. In this study, we propose a methodology unifying two

paradigms, human mobility and animal movement, to fill this gap. We developed a novel

spatially-explicit  index  of  anthropic  disturbance,  the  Cumulative  Outdoor  activity  Index

(COI), and validated it with ground truth observations derived from camera trapping (r =

+0.63, p < 0.001). Building on previous work from Peters et al. (2015, Biol. Cons. 186, 123–

133)  on  a  Critically  Endangered  brown bear  population  in  the  Alps,  we  used  Resource

Selection Analysis to assess the influence of different forms of anthropogenic disturbance on

the  relative  probability  of  habitat  selection.  The  intensity  of  COI  provided  an  effective

measure of functional  anthropogenic disturbance,  and it  outperformed all  alternative and

commonly-used  proxies  of  structural  disturbance  in  predicting  bear  habitat  use.  Our

predictions suggest that brown bear shrinks its ecological niche as a consequence of intense

human use of otherwise suitable habitat.  These constraints may limit  the potential  range

expansion  of  bears  to  establish  a  viable  Alpine-Dinaric  metapopulation.  Conclusive

conservation  and  future  land  use  planning  towards  human-wildlife  coexistence  should

account for the functional presence of humans on the landscape. The proposed COI could

help determine where mitigation measures should be enforced.

Keywords:  Strava;  COI;  Bio-logging;  Human-wildlife  conflict;  Ursus  arctos;  Habitat

selection.
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Introduction

Human impact has become the most relevant determinant of animal species distribution and

persistence,  with the extirpation of populations and extinction of species occurring at  an

unprecedented  rate  (Ceballos  et  al.,  2015).  Alongside  indirect  modification  of  abiotic

conditions  (i.e.,  pollution,  climate  change)  (Pecl  et  al.,  2017),  harvesting  (Ripple  et  al.,

2016), and the introduction of invasive species (Gallardo et al., 2016), humans affect animal

distribution by directly competing for space. Several methods have been applied to assess the

effect  of  habitat  fragmentation,  urbanization  and connectivity  loss  on  animal  population

distribution, occurrence, and space use behavior (Compton et al., 2007; Crooks et al., 2011;

Panzacchi  et  al.,  2016;  Prokopenko et  al.,  2017).  Recently, by using the Global  Human

Footprint Index, Tucker et al. (2018) showed that mammal species moved shorter distances

under high human exposure. These analyses mainly utilized structural (i.e. passive) proxies

of human competition for space based on infrastructure, land use, human accessibility (e.g.,

linear  features  such  as  roads,  land-  and waterways),  and  encroachment  (e.g.,  population

density, nightlights). However, direct competition for space should emerge by functional (i.e.

active) utilization of the aforementioned infrastructures, specifically human mobility.

Human mobility has exponentially grown in the Western world after WWII (Freund

and Martin, 1993), and globally in the last 3 decades (Susilo et al., 2007). An entire branch

of  human  geography  is  dedicated  to  the  measurement  and  analysis  of  human  mobility

(Barbosa et al., 2018) and has been spurred by the global spread of personal tracking devices

(e.g.,  navigation  systems,  mobile  phones,  GPS  watches).  Human  mobility  big  data  are

analyzed for many applications, from marketing (Wedel and Kannan, 2016), to traffic control

(Herrera et al., 2010), and rescue services (Amin et al., 2012), which target human behavior

and space use. Only a few studies can be found that assess the impact of human mobility on

wildlife,  with the exception of a  wide literature  on traffic  and roadkills  (Trombulak and

Frissell, 2000; Coffin, 2007; Dean et al., 2019). Beyond motorized mobility, human presence

in wild habitats at the fine scale has been assessed using camera traps (Oberosler et al., 2017)

or handheld tracking devices (Moen et al., 2012; Squires et al., 2019).

Recently, a  diversity  of  mobile  device  software  applications  to  track  recreational

outdoor activities, such as hiking, running or cycling, have become increasingly popular. In

particular, the tools provided by Strava (San Francisco, CA, USA) are used worldwide to

track user  movements  and access  a  crowdsourced Global  Heatmap (Strava,  2018a).  The

Global Heatmap is a visualization of the cumulative outdoor activity tracks recorded and

marked as public by users, with monthly updates. Since its establishment as a tracking app,

20



Chapter 1

trajectories have been uploaded at  an exponential  rate, reaching over two billion records

(Strava  Press,  2018a),  making  the  Global  Heatmap  the  world's  largest  freely-viewable

collection of GPS-tracked human outdoor activities of its kind. Strava data (Strava, 2018b)

have been used for urban planning purposes or public health studies (Table S1.1). Despite

this great potential, Strava-derived data have never been integrated into ecological studies.

In this  work we introduce the Cumulative Outdoor activity Index (COI),  a  novel

spatially-explicit index of anthropic disturbance based on the Strava heatmap, and used to

assess  active  competition  for  space  as  opposed  to  structural  indicators  of  anthropic

disturbance (i.e., human settlements and linear features such as trails or roads). Building on

previous work from Peters  et  al.  (2015),  we modeled habitat  selection by a brown bear

population reintroduced in the Eastern Italian Alps (Fig. 1) as a critical case study. Brown

bears were reintroduced in Western Trentino in the early 2000, after the local population had

been functionally extirpated, with the goal to reestablish a Alpine-Dinaric metapopulation

(Duprè et al., 2000; Kaczensky et al., 2012). Despite the steady population increase in the

first period after reintroduction, it did not substantially expand its range, nor was the goal to

reestablish  an  Alpine-Dinaric  metapopulation  met.  As  a  result,  the  Alpine  brown  bear

population remained isolated and was listed as Critically Endangered due to the low number

of mature individuals (< 50, Criteria D1; IUCN, 2001) (Huber, 2018). Conversely, human-

bear conflict emerged (Groff et al., 2019) and several bears died from anthropogenic causes

(Tenan et  al.,  2016).  We hypothesize  that  direct  competition for  space with humans has

limited  the  selection  of  preferred  sites  within  the  home  ranges  of  bears,  more  so  than

environmental restrictions and structural proxies identified in previous studies (Duprè et al.,

2000; Peters et al., 2015). Given that biological processes can be observed and interpreted

differently  at  various  scales  (Ciarniello  et  al.,  2007;  Mateo  Sanchez  et  al.,  2014),  we

considered the relative effect  of  anthropogenic disturbance at  the home range scale (i.e.,

third-order selection; Johnson, 1980).

Materials and methods

Assessing  functional  anthropic  disturbance:  the  Cumulative  Outdoor  activity
Index

In  order  to  assess  the  active  competition  for  space  between  humans  and  wildlife,  we

developed an index measuring the effective use of structural linear features, or any portion of

the habitat,  through outdoor activities.  For this purpose, we visualized and processed the
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Strava  Global  Heatmap  (Strava,  2018a)  at  the  highest  resolution  freely  viewable  online

without registration (i.e. 20 m, or zoom level 13 OpenStreetMap Wiki contributors, 2019).

Strava Global Heatmap structure

The Strava Global Heatmap displays a color gradient of outdoor activity tracks (rides, runs,

water,  and  winter  activities)  recorded  by  users,  where  brighter  tones  (i.e.,  higher  heat)

represent an intense use, i.e. many overlapped activity tracks. Activity tracks are recorded as

‘pixel paths’ connecting consecutive GPS locations (Robb, 2017), so that the count of paths

overlapping in each pixel corresponds to a raw ‘heat’ count. Such counts are then normalized

to the bounded range (0,1) using a Cumulative Distribution Function (CDF), and weighted

with  respect  to  the  neighbor  context  of  intensity  of  use  (i.e.,  the  heat  values  are  not

comparable at a large distance, but are comparable in the proximity- about 50 km diameter at

our zoom level, see below). For more technical details on how the Strava Global Heatmap is

built, see Supporting information S2.

Deriving the Cumulative Outdoor activity Index

We derived the Cumulated Outdoor activity Index using the freely viewable Strava Global

Heatmap.  The  approach  requires  few  parameters  and  it  is  best  achieved  in  a  GIS

environment. The extraction took place as follows: (i) an area of interest (Western portion of

Trento Province,  Fig.  1,  and paragraph ‘Study area’) was displayed in the Strava Global

Heatmap website (Strava, 2018a); (ii) we set the zoom level to 13 (OpenStreetMap Wiki

contributors,  2019),  the  highest  displayable  without  the  need  to  register  with  a  private

account; (iii) we set the Heatmap Colour as “blue” (see below), the desired Activity Type to

“All”, the Heat Opacity to 100%, and we removed all background layers; (iv) we took a

screenshot of the displayed area and saved it as a raster PNG image; (v) we georeferenced

the raster image in a GIS environment using 6 control points. We used the WGS 84/Pseudo-

Mercator Coordinate system (EPSG: 3857), as it was the projected coordinate system used to

build the Global Heatmap (Robb, 2017); (vi) we repeated the procedure as many times as

needed to cover the entire study area, and merged all the georeferenced raster layers; (vii) we

manually removed the activities overlaying ski slopes and water bodies, which were not of

interest for the purpose of this study, using subtracting masks obtained from local geographic

layers (Autonomous Province of Trento, 2019); (viii) we displayed single pixels as a 256-

element color spectrum array (Robb, 2017), so that when the aggregated activities are shown

as “blue”, the array matches perfectly the Blue color spectrum of an RGB color model (0,

255); (ix) we rescaled the value so the index (COI) ranged from 0 to 1.
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Validation of COI through ground truth observations

In order  to  validate  the  COI as  an  honest  proxy of  human use of  wildlife  habitats,  we

compared its  values with human detections obtained via independent  counts recorded on

camera traps. In a subset of our study area (Fig. 1), an extensive, systematic camera trap

survey (n  =  60)  was  conducted  (Oberosler  et  al.,  2017;  see  Supporting  information  for

details), recording both wildlife and human presence along forest roads and trails (30 sites in

each category). Human passages were recorded either as pedestrians/bikers or vehicles (cars,

motorbikes, tractors, and trucks). We considered the former as ground truth observations, and

excluded the latter as not matching the purpose of this study. We tested the validity of the

COI  by  comparing  it  with  ground  truth  observations,  measured  by  the  number  of

‘independent’ human events per site, i.e., sequential detection events separated by an interval

of 1 h. First, we extracted the value of COI associated with each camera trapping site. To

account for spatial imprecision, we drew a 50 m radius buffer around each trapping location

and extracted the 95th percentile COI value within that buffer. We finally tested the statistical

dependence between COI values and number of human detection events using Spearman's

rank correlation coefficient (Spearman's ρ).

A case study: assessing the effect of anthropogenic disturbance on a reintroduced
brown bear population

We applied our proxy for functional human disturbance, measured as cumulated outdoor

activity, to evaluate habitat selection and predict probability of space use in a reintroduced

population in Trentino, Central-Eastern Italian Alps. We used the same third-order Resource

Selection Analysis (RSA) as Peters et al. (2015).

Study area and brown bear population

The study was carried out in the Province of Trento, a 6.200 km2 (Fig. 1) area characterized

by rugged mountainous terrain (from 65 to 3769 m a.s.l.) and covered by forests and prairies

according  to  the  altitudinal  succession.  Valleys  are  largely  human-dominated  (87

inhabitants/km2),  with a developed network of roads and railways (density = 95 km/100

km2). The vast infrastructural system of the Adige basin effectively constitutes a connectivity

barrier for many animal species, dividing the study areas into two sectors (Fig. 1). Between

1999 and 2002, 10 adult bears from Slovenia were released in the Adamello Brenta Nature

Park, Italy (PACOBACE, 2010). The newly established population colonized large parts of

Western Trentino.  In the study period,  the brown bear population estimates (2012–2018)

varied from 29 to 55, as a result of a positive, albeit variable, growth rate since 2002 (Groff

et al., 2019). However, the population is still listed as Critically Endangered due to the small
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number of mature individuals (<50, Criteria D1; IUCN, 2001) (Huber, 2018). The brown

bear is currently protected under European (Habitats Directive 92/43/EEC) and Italian Laws

(L. 157/92), except for the removal of bears considered as dangerous (PACOBACE, 2010).

Movement data

We used the GPS trajectories of animals collared between 2011 and 2019 (8 females,  4

males; Vectronic GPS–GSM collars,  Vectronic Aerospace GmbH, Berlin, Germany) for a

total  of  21  animal/year  as  part  of  monitoring  activities  undertaken  by  the  Autonomous

Province of Trento (PACOBACE, 2010; Supporting information for further information on

trapping and handling). The number of surveyed individuals corresponded to about 25% of

the estimated yearly average of bears in the study period (about 45 bears/year; Groff et al.,

2019). The trajectories were limited to non-hibernating periods and regularized at a 6-hour

fix rate using the functions in the R package adehabitatLT (Calenge, 2006), excluding a-

priori data collected with less frequent schedules.

Environmental layers

First we extracted core environmental covariates based on Peters et al. (2015), using newer

spatial  layers  with higher  resolution and accuracy where possible,  including topographic

variables (altitude, slope), canopy cover, and land use (cultivated lands without orchards).

We used  the  distribution  of  human settlements  and linear  infrastructure  (trails,  unpaved

forest roads, and main paved roads) as proxies for structural human disturbance, as well as a

combined composite layer (Table S5.1). Finally, we used the newly-derived COI as a proxy

of  functional  anthropogenic  disturbance (Table  1).  All  raster  layers  were resampled to  a

spatial resolution of 20 m pixel size (see Supporting information S5) and were rescaled by

min-max normalization to a defined range of 0 and 1.

To create the structural disturbance layers, we generated a raster proximity map based

on Euclidean distance of each cell  to the nearest infrastructure. We then transformed the

maps to exponential decays in the form of

sd = 1 – e -αd (1)

with sd = structural disturbance, α = 0.002 and d = distance (m) to a given linear feature

(Nielsen et al., 2009). This transformation drastically reduced the effect of linear features

beyond a few hundred meters, making large distances essentially irrelevant (e.g. >1500 m).

The resulting values for sd range from 0 (at d = 0) to 1 (for large values of d). Using Eq. (1),

structural disturbance layers were calculated for Distance from Human settlements (DHS),

Distance  from Main  Roads  (DMR),  Distance  from Forest  Roads  (DFR),  Distance  from

Human Trail (DHT), and Distance from Roads and Trails (DRT) (Table S5.1). Furthermore,
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for  both  structural  and  functional  disturbance,  we  computed  derived  spatial  covariates

expressing the ‘density of disturbance’ (cumulated disturbance per spatial unit). Specifically,

we  summed  COI  and  the  values  of  the  raster  layer  combining  all  linear  infrastructure

features (roads and trails), both ranging (0,1), within a 11 × 11 pixel moving window (dCOI,

dRTN: Table S5.1). This accounts for the spatial context around each pixel and potentially

for spatial perception of disturbance by bears (~100 m; Moen et al., 2012). We performed a

correlation analysis (Hinkle et al., 2003; Fig. S5.1) between all variables, thereafter building

a priori models to evaluate the respective contribution of human disturbance metrics to bear

habitat selection, with covariates within the same model having |r| ≤ 0.6 (Peters et al., 2015).

Resource Selection Analysis

We fit a Resource Selection Function (RSF) to estimate the probability of use by bears of

given resource units (Manly et al., 2002). We applied a used/available design and estimated

selection within individual home ranges, i.e. third-order selection scale (Johnson, 1980). We

considered GPS fixes as used locations and calculated individual bear's annual home range

by Kernel Density Estimation (Worton, 1989) using the R package adehabitatHR (Calenge,

2006). We calculated 90% fixed kernel home ranges using href as smoothing parameters

(Worton, 1989). We sampled twice as many available than GPS-based used locations to have

better parameter estimates while maintaining reasonable computational times (Northrup et

al., 2013). We extracted all the environmental covariates described above at each of the used

and available locations.

We evaluated how anthropogenic disturbance influences space use behavior of brown

bears in Western Trentino by testing five alternative hypotheses, corresponding to a set of a-

priori  RSF  models  (“Models  of  Disturbance”,  MD;  Table  1).  Specifically,  a  core

environmental model with slope, TCD and CORINE land cover as predictors (to represent

respectively topography, canopy cover and land use effects) was complemented by one or

more  variables  describing  different  aspects  of  structural  disturbance  (DHS,  DMR,  DFR,

DHT, DRT, dRTN; giving models MD1 to MD4, Table 1). Similarly, we complemented the

core model with the index of functional anthropogenic disturbance dCOI (model MD5, Table

1). We thus fitted each RSF model using a Generalized Linear Mixed Model (GLMM) with a

binomial  error  distribution via  maximum likelihood,  using a  Laplace approximation.  We

included all the covariates as additive fixed terms and individuals as random intercept to

account for autocorrelation (Gillies et al., 2006), as the purpose of this study was to quantify

population-level variations as a response. We performed model selection using the Akaike

Information Criterion (AIC).
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We predicted the relative probability of use based on selection coefficients of the best

fitting model for all pixels in the given area (Fig. 1) using the function  predict() in the R

package raster (Hijmans, 2017). Afterwards, we tested the predictive capability of the RSF

model via 10-fold cross-validation (Boyce et al., 2002), measuring the performance of the

spatially  explicit  predictions  with  the  set  of  random  training  and  test  subsets  using

Spearman's  rank  correlation  coefficient.  We managed,  processed,  and  analyzed  the  data

entirely on the free and open-source software QGIS 3.4.4 (QGIS Development Team, 2019),

GRASS 7.4 (GRASS Development Team, 2018), and R 3.4.3 (R Core Team, 2017) under

Ubuntu 16.04.3 LTS (Canonical Ltd., London, United Kingdom). Results were reported in

tables created with the R package stargazer (Hlavac, 2018).

Results

Validation of COI as an index of functional human disturbance

The  camera  trap  survey  yielded  1262  independent  events  of  humans  both  as

pedestrians/bikers  over  a  period of  30 consecutive days across  the  58 camera traps  that

functioned well. Of these events, 514 were recorded on trails and 748 on unpaved roads. The

median count of people per camera was 21.76 (IQR 2.25 to 33.50, range 0 to 108), while the

median of the extracted COI values per camera was 0.08 (IQR 0.00 to 0.39, range 0 to 0.71).

We found a  positive,  statistically  significant  Pearson correlation between the Cumulated

Outdoor activity Index and the number of human detection events (r = +0.63, p < 0.001; Fig.

S6.1).

Anthropogenic disturbance effect on bear habitat selection

Within their  home range (mean home range size = 259.51  km2,  with IQR 40.50  km2 to

313.43  km2; see Supporting information S7 for details), bears selected for steep areas and

high canopy cover and strongly avoided areas with high density of functional disturbance

according to the newly developed COI (most parsimonious model: MD5, Table 2; bdCOI =

−5.048, p < 0.001). Importantly, the effect size of dCOI was considerably larger than any

other predictor in the candidate models. Still, most predictors indicating habitat disturbance

showed a significant (and often strong) effect in less supported, alternative models. Bears

avoided proximity to human settlements (MD1: bDHS = 2.584, p < 0.001; ΔAIC = 97 with

respect to the best model; Table 2) and areas with high density of structural disturbance,

parameterized in the models by the density of roads and trails (dRTN) (MD4: bdRTN = −2.587,

p < 0.001; ΔAIC = 328 with respect to the best  model; Table 2).  When considering the
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influence of specific linear disturbance (MD3, ΔAIC = 362 with respect to the best model;

Table 2),  the bear showed quite different responses, avoiding areas in proximity to main

roads (bDMR = 0.935, p < 0.001), but selecting for human trails (bDHT = −0.198, p < 0.001).

Interestingly, bears did not seem to either avoid or select forest roads (bDFR = 0.057, p >

0.05). The predictors of the core model maintained similar coefficients in all models (Table

2), with the exception of cultivated lands without orchards (AGR), not significant in some

models and marginally significant in others (Table 2). However, the core model per se was

the least supported by the data than all of Models of Disturbance but MD2 (Generic Linear

Disturbance). The best fitting model (MD5; Table 2) led to robust spatial predictions of the

relative  probability  of  use  by brown bear  in  the  study area (Fig.  2;  average Spearman's

correlation coefficient for the 10-fold cross validation: r = +0.98, p < 0.001).

Discussion

We demonstrated the possibility of using human movement data, as extracted from Strava

Global Heatmap, to quantify functional human disturbance for wildlife over the landscape.

We have provided empirical  evidence that  the cumulated outdoor  activity influenced the

space  use  behavior  of  a  Critically  Endangered  brown  bear  population  (Huber,  2018).

Previously, large carnivores have been shown to fear the human ‘super predator’ (Smith et

al., 2017) so that the spatial pattern of human-derived risk perception (Gaynor et al., 2019)

can  influence  large  carnivore  space  use  (Cristescu  et  al.,  2013;  Ladle  et  al.,  2018)  and

foraging  behavior  (Ordiz  et  al.,  2017).  A  recent  human-carnivore  coexistence  model

(Chapron et  al.,  2014)  put  forward a  community ecology framework where humans are

considered as an integral part of the community (Chapron and López-Bao, 2016). Our results

support and integrate such a view by demonstrating that carnivore space use is not accurately

portrayed when using  disturbance  metrics  that  are  based  solely  on  structural  proxies  of

human  presence  (infrastructure  per  se).  We showed  that  the  functional  use  of  human

structures and presence (i.e. human mobility) provides a more realistic way to address the

interplay between carnivore and human use of space.

Functional  disturbance  outperforms  structural  variables  to  predict  brown bear
habitat selection in Trentino

Peters et al. (2015) showed that bears selected mountainous habitat with forest cover within

the home range, and avoided urban areas and linear features linked to human recreation. In

this work, we integrated those results by demonstrating that bears avoided specific forms of

structural  disturbance,  as  both  density  (MD4;  Table  2)  and  proximity  of  man-made

27



Andrea Corradini - Ecological connectivity in the Alpine anthropic matrix

infrastructures  (MD1,  MD3;  Table  2)  negatively  affected  bear's  space  use.  Human

settlements (e.g. Nellemann et al., 2007; Martin et al., 2010; Peters et al., 2015) and paved

roads (e.g. Gibeau et al., 2002; Whittington et al., 2019) had the strongest negative effect as

single factors (MD1, MD3; Table 2), whereas trails were mildly attractive (MD3; Table 2),

likely because they can be used by animals in moments of low human presence (i.e. night;

Tattoni  et  al.,  2015;  Oberosler  et  al.,  2017;  Ladle  et  al.,  2018).  However,  it  was  the

cumulative use of landscape by people which drove bear habitat selection within their home

ranges (MD5; Table 2). We referred to this effect as functional anthropogenic disturbance,

i.e. actual human presence in the landscape. In a community ecology framework (Chapron

and López-Bao, 2016), in which humans act as ‘super predators’ (Tenan et al., 2016; Smith

et  al.,  2017),  large  carnivores  are  expected  to  avoid  areas  with  human-derived  risk.  If

however  disturbance  occurs  in  an  area  of  reintroduction,  where  a  newly-established

population is still at high risk of local extinction (i.e. Critically Endangered; IUCN, 2001),

carnivores may not be able to avoid such risky areas. Bears in our study have demonstrated a

good spatial perception of human-derived risk (Gaynor et al., 2019) at the home range scale,

scarcely tolerating and thus avoiding large volumes of outdoor non-motorized activities. On

the other side, our findings indicate that brown bear is shrinking its ecological niche locally

as a result of functional anthropogenic disturbance.

From functional disturbance to functional connectivity: landscape fragmentation
from the wildlife's perspective

Metrics of structural disturbance might not be enough to fully understand the implications of

human pervasiveness on animal spatial behavior. Not only do humans consume and change

the environment, but they also compete directly for space and resources. As a result, their

active presence over the landscape could trigger animals' avoidance for suitable spaces (e.g.

niche partitioning; Squires et al., 2019). If species have low plasticity or space is limited,

direct  human competition for space may have serious implications for conservation. Our

application of the community ecology-based human-carnivore coexistence model (Chapron

et  al.,  2014;  Chapron  and  López-Bao,  2016)  by  using  a  novel  metric  of  functional

anthropogenic  disturbance indicates  that  conclusive conservation planning -  especially in

areas with high human density - should necessarily take into account human mobility. Future

applications to other contexts and/or other sensitive large carnivore species (e.g. Amur Tiger,

Kerley et al., 2002; Asiatic leopard, Ngoprasert et al., 2007; Iberian lynx, Fernández et al.,

2003) could further generalize our findings and their implications for carnivore conservation

in a world where human presence is  increasingly pervasive,  and the community ecology

28



Chapter 1

coexistence model will likely be the only viable alternative for their persistence (Chapron

and López-Bao, 2016).

We were  able  to  take  and  demonstrate  these  concepts  into  a  concrete  case  of

conservation concern. The predictive map (Fig. 2) showed the relative probability of brown

bear habitat selection in the area of prime establishment of the reintroduced population. In

general, when compared with Peters et al. (2015; Fig. 2a), areas of high probability of use

seem to be more distributed, yet more fragmented. Indeed, most of the core habitat patches

and linking corridors identified in Peters et al. (2015) correspond in our map to a matrix of

suitable,  but  very  small  fragments.  Our  results  seem  to  confirm  a  certain  level  of

connectivity at the small scale, as previously predicted, but also an important contraction of

large suitable  areas  when we accounted for  functional  human disturbance.  Portions  with

greater probability of presence were found only in the Central-South Western and Central-

Northern sectors of the area,  and along some narrow secondary Alpine valleys,  whereas

extensive human activity and large infrastructures limited the suitability of the main valley

bottoms, including Adige valley (Fig. 2).

In light  of these findings,  the establishment of a long-term, viable Alpine-Dinaric

brown bear metapopulation (Kaczensky et al., 2012) may be difficult to achieve, as potential

expansion eastwards is still severely limited by both structural and functional anthropogenic

disturbance.  As  bears  continue  to  search  for  space  in  this  increasingly  complex  and

expanding matrix of anthropogenic disturbance, long term population viability is at risk. To

facilitate this expansion, specific measures could be adopted to spatially reduce functional

anthropocentric disturbance. Temporal trail/road closure, as well as seasonal restriction of

areas, have shown to lower risk of encounters with humans and improved usage of these

habitats by wildlife while still providing opportunities for human use (Lamb et al., 2018,

Whittington  et  al.,  2019).  On  the  other  hand,  measures  such  as  the  establishment  of

recreational areas, including protected areas, could have an opposite effect to that desired, as

more people would be locally drawn to outdoor activities (e.g. Fredman et al., 2007). The

availability of a reliable, yet easy-to-obtain metric of functional anthropogenic disturbance,

like  the index we developed,  is  paramount for  the effective planning of  such mitigation

measures.
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Tables and figures

Table  1  -  Set  of  a-priori  hypothesis  and  corresponding  models  to  assess  anthropogenic

disturbance on brown bear  habitat  selection at  the  third-order  of  selection (within home

range). Each a-priori model contained a core set of environmental variables (topography,

canopy cover, land use) as predictors and in addition one or more variable(s) for testing

anthropogenic disturbance.

ID Model Expected disturbance Covariates

MD1 Aggregate disturbance
Influence of human settlement 

proximity on selection
Core model + DHS

MD2
Generic linear 

disturbance

Influence of generic linear infrastructure

proximity on selection
Core model + DRT

MD3
Specific linear 

disturbance

Influence of specific linear 

infrastructure proximity on selection

Core model + DMR + 

DFR + DHT

MD4
Density of structural 

disturbance

Influence of infrastructure network 

density on selection
Core model + dRTN

MD5
Density of functional 

disturbance

Influence of human activity density on 

selection
Core model + dCOI
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Table 2 - Output of the set of a-priori models to assess anthropogenic disturbance on brown

bear habitat selection at the third-order of selection (see Table 1 for the set of models). The

estimated coefficient values (b), the 90% Confidence Interval, and the P-values (*p < 0.01)

are reported for each covariate. The models are sorted from left to right based on increasing

AIC scores (reported at the bottom).

Coefficients (90% CI)

Model
MD5 MD1 MD4 MD3 core MD2

Slp
2.054***

(1.885, 2.223)
2.394***

(2.228, 2.559)
2.316***

(2.149, 2.482)
2.440***

(2.273, 2.608)
2.626***

(2.463, 2.789)
2.610***

(2.443, 2.776)

TCD
0.831***

(0.759, 0.903)
0.840***

(0.768, 0.912)
0.894***

(0.822, 0.966)
0.924***

(0.843, 1.005)
0.813***

(0.742, 0.884)
0.825***

(0.749, 0.900)

AGR
0.237***

(0.129, 0.345)
0.183***

(0.075, 0.291)
0.028

(-0.077, 0.133)
0.225***

(0.115, 0.336)
-0.078

(-0.181, 0.026)
-0.070

(-0.175, 0.035)

dCOI
-5.048***

(-5.430, -4.667)

DHS
2.584***

(2.364, 2.803)

dRTN
-2.587***

(-2.856, -2.319)

DHT
-0.198***

(-0.286, -0.110)

DFR
0.057

(-0.044, 0.158)

DMR
0.935***

(0.828, 1.042)

DRT
0.530

(-0.608, 1.667)

Constant
-1.699***

(-1.810, -1.589)

-4.438***

(-4.671, -4.204)

-1.879***

(-1.982, -1.776)

-2.771***

(-2.925, -2.617)

-2.083***

(-2.182, -1.985)

-2.099***

(-2.203, -1.995)

Log Likelihood -13,122 -13,171 -13,286 -13,301 -13,421 -13,420
AIC 26,257 26,354 26,585 26,619 26,852 26,853

Note: *p<0.1; **p<0.05; ***p<0.01
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Figure 1 - Digital Terrain Model of the study area. The Adige river watershed divides the

area in two sectors: Western and Eastern Trentino. The brown bear area (vertical hatching) is

represented by a 95% Kernel Density Estimation of all GPS locations. The area of validation

of the Cumulated Outdoor activity Index with ground truth from camera trap observations is

indicated by horizontal hatching.
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Figure 2 - Predicted relative probability of use by brown bears in Western Trentino, based on

third-order  (within  home  range)  resource  selection  coefficients  (MD5:  slope,  tree  cover

density, cultivated without orchards, density of Cumulative Outdoor activity Index). The map

has a resolution of 20 m pixel size.
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Supplementary Material

S1. Literature review on Strava applications

We searched “Strava” as topic in the Web of Science online database. We got 35 results as of

June 7th, 2019. Among these, 5 had nothing to do with the Strava Application. From the

remaining, 26 were articles published in peer-reviewed journals, while 4 were conference

papers. Of these, 16 did not use GPS data and mainly used Strava data regarding a) fitness

performance  (e.g.  running/cycling  speed,  heart  beat,  running/cycling  distance),  b)  social

network  usage  (e.g.  sharing,  demographics,  social  science  studies),  or  c)  emerging

possibilities by crowdsourced data. The remaining 10 used Strava crowdsourced GPS data,

mainly for a) urban planning of cycling ways, b) assess the potential risk of pedestrian and

cyclist exposure to traffic accidents and c) assess the exposure of cyclists to urban pollution.

All studies have used Strava Metro (Strava, 2018b) data, i.e. the service company linked to

Strava app, providing movement data on request. All the articles that used GPS data have

been published from 2016 to 2019.

ID Authors Year Topic

1 Lee, Sener 2019 Public health
2 McArthur, Hong 2019 Urban planning
3 Saha, Alluri, Gan, Wu 2019 Risk of bicycle accident
4 Hochmair, Bardin, Ahmouda 2019 Urban planning
5 Boss, Nelson, Winters, Ferster 2018 Urban planning
6 Conrow, Wentz, Nelson, Pettit 2018 Urban planning
7 Sun, Moshfeghi, Liu 2017 Public health
8 Sanders, Frackelton, Gardner, Schneider, Hintze2017 Urban planning
9 Musakwa, Selaba 2016 Urban planning

10 Jestico, Nelson, Winters 2016 Urban planning

Full reference details

• Boss, D., Nelson, T., Winters, M. and Ferster, C.J., 2018. Using crowdsourced data 
to monitor change in spatial patterns of bicycle ridership. Journal of Transport and 
Health, 9, 226-233.

• Conrow, L., Wentz, E., Nelson, T. and Pettit, C., 2018. Comparing spatial patterns of 
crowdsourced and conventional bicycling datasets. Applied geography, 92, 21-30.

• Hochmair, H.H., Bardin, E. and Ahmouda, A., 2019. Estimating bicycle trip volume 
for Miami-Dade county from Strava tracking data. Journal of Transport Geography, 
75, 58-69.
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• Jestico, B., Nelson, T. and Winters, M., 2016. Mapping ridership using 
crowdsourced cycling data. Journal of transport geography, 52, 90-97.

• Lee, K. and Sener, I.N., 2019. Understanding Potential Exposure of Bicyclists on 
Roadways to Traffic-Related Air Pollution: Findings from El Paso, Texas, Using 
Strava Metro Data. International journal of environmental research and public 
health, 16(3), 371.

• McArthur, D.P. and Hong, J., 2019. Visualising where commuting cyclists travel 
using crowdsourced data. Journal of Transport Geography, 74, 233-241.

• Musakwa, W. and Selala, K.M., 2016. Mapping cycling patterns and trends using 
Strava Metro data in the city of Johannesburg, South Africa. Data in brief, 9, 898-
905.

• Saha, D., Alluri, P., Gan, A. and Wu, W., 2018. Spatial analysis of macro-level 
bicycle crashes using the class of conditional autoregressive models. Accident 
Analysis and Prevention, 118, 166-177.

• Sanders, R.L., Frackelton, A., Gardner, S., Schneider, R. and Hintze, M., 2017. 
Ballpark method for estimating pedestrian and bicyclist exposure in Seattle, 
Washington: Potential option for resource-constrained cities in an age of big data. 
Transportation Research Record, 2605(1), 32-44.

• Strava, 2018b. Strava Metro. Retrieved February, 2019 from metro.strava.com.

• Sun, Y., Moshfeghi, Y. and Liu, Z., 2017. Exploiting crowdsourced geographic 
information and GIS for assessment of air pollution exposure during active travel. 
Journal of Transport and Health, 6, 93-104.

S2. Technical details on Strava Global Heatmap

The Strava application allows to identify the user track with up to 25 activity types, but the

heat rasterization is performed only for four main Activity Types (rides, runs, water, and

winter activities). The heatmaps are a static representation of all cumulative activities based

upon  2  billion  outdoor  activity  tracks  (Strava  Press,  2018b),  several  trillions  of  GPS

locations, and the contribution of tens of millions of active users globally (Robb, 2017). The

Strava Global Heatmap (Strava, 2018a) displays the recorded outdoor activity tracks as a

‘pixel  path’  connecting  consecutive  GPS  locations  (Robb,  2017).  To  this  purpose,  the

recorded vector tracks (i.e., GPS location series) are rasterized at the resolution of the Web

Mercator (EPSG: 3857) tiles at zoom level 16 (OpenStreetMap Wiki contributors, 2019).

This zoom level allows tessellation of the world into 2¹  by 2¹  tiles each consisting of 256⁶ ⁶

by 256 pixels, for a final worldwide resolution of 2.3 m per pixel. Each track is defined as a

succession of  pixel  units  linking consecutive GPS locations,  filtering out  stopovers.  The

resulting average step length of global data is 4 pixels at zoom level 16 (i.e., about 9m). After

the rasterization of vectors into pixel paths, a raw heat count is obtained for each pixel by
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counting all the pixel paths overlapping at that pixel, and normalizing such counts to the

bounded  range  (0,  1)  using  a  Cumulative  Distribution  Function  (CDF).  The  CDF  is

computed for each tile (256 x 256 pixels) using all the neighboring tiles over a 5-tiles radius,

and further smoothing the transitions between groups of tiles with bi-linear interpolation.

The final normalized values are rescaled to a 256 array, thus stored as single bytes, and

visualized as a 256-element color spectrum array (Robb, 2017). This procedure is repeated

for each zoom level. At lower resolutions, the raw counts are aggregated for each tile (i.e.,

four  tiles  become  one  tile  for  each  lower  level  of  zoom-  1/4th  the  resolution)  and  the

normalization is recalculated over a 5-tiles radius moving window at the matching scale. The

resulting heatmaps have therefore an ordinal measurement level which is valid locally, as

they are relative to  the level  of  use of the surrounding space (the 5-tiles radius  moving

window), and the resolution is degraded at every zoom level,  with the lowest level (i.e.,

zoom 0, resolution= 156412 m/pixel) representing the whole world as a single tile.

Literature cited

• OpenStreetMap Wiki contributors, 2019. Zoom levels. OpenStreetMap Wiki. 
Retrieved June, 2019 from wiki.openstreetmap.org/wiki/Zoom_levels.

• Robb, D., 2017. Building the Global Heatmap. Medium Corporation. Retrieved May,
2019 from medium.com/strava-engineering/the-global-heatmap-now-6x-hotter-
23fc01d301de.

• Strava, 2018a. Strava Global Heatmap. Retrieved February, 2019 from 
strava.com/heatmap.

• Strava Press, 2018b. 2018 Year In Sport. Strava. Retrieved May, 2019 from 
blog.strava.com/press/2018-year-in-sport/.

S3.  Camera  trapping  study  used  as  ground  truth  for  the  validation  of  the
Cumulative Outdoor activity Index

Oberosler et al (2017) conducted an extensive camera trap survey over an area of 220 km2 in

the southern portion of Brenta (Fig. 1), in the Province of Trento. Between June and August

2015, 60 camera traps were deployed over a predefined systematic grid of 4 km2 in cell size,

adopting  the  Tropical  Ecology  Assessment  and  Monitoring  (TEAM)  Network  protocol

(TEAM  Network,  2011).  The  camera  traps  were  distributed  across  the  whole  forest

altitudinal gradient (500 - 1900 m a.s.l.) to sample wildlife and humans along forest roads

and trails (30 sites in each category). Camera traps were placed on a suitable site near the

center of each grid cell at an average height of 50 cm and set to take pictures with no delay

between consecutive triggers. The sampling period lasted 30 consecutive days in each site,
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for a total of 1978 camera trapping days and yielded 1514 independent detection events over

58  camera  trap  stations  that  functioned  well.  Humans  were  recorded  either  as

pedestrians/bikers or vehicles (car, motorbike, tractor, and truck). We considered the former

as ground truth observations, and excluded the latter as not matching the purpose of this

study. 

Literature cited

• Oberosler, V., Groff, C., Iemma, A., Pedrini, P. and Rovero, F., 2017. The influence 
of human disturbance on occupancy and activity patterns of mammals in the Italian 
Alps from systematic camera trapping. Mammalian Biology, 87, 50-61.

• TEAM Network, 2011. Terrestrial vertebrate protocol implementation manual, v. 
3.1. – Tropical Ecology, Assessment and Monitoring Network, Conservation 
International, from figshare. com/articles/TEAM_TV_protocol/9730562.

S4. Statement on animal subjects

In  Italy,  the  brown  bear  is  currently  protected  under  European  (Habitats  Directive

92/43/EEC, incorporated in the Italian legislation via D.P.R. 357/97) and Italian Laws (L.

157/92), and included as a strictly protected species in the Bern Convention (1979). Under

derogation of the  aforementioned Habitat  Directive,  approved by the Italian Institute for

Environmental  Protection  and  Research  (ISPRA),  it  is  permitted  to  capture  animals  for

research, public safety, and damage prevention purposes. Within these limits, all trapping

and handling operations of wild brown bears are regulated by the “Interregional action plan

for the conservation of the brown bear in the central-eastern Alps” (PACOBACE, 2010),

approved by Directorial Decree n. 1810 of 5 November 2008 and amended by Directorial

Decree Protocol 0015137 PNM of 30 July 2015.

Literature cited

• PACOBACE, 2010. Piano d’Azione interregionale per la Conservazione dell’Orso 
bruno nelle Alpi centro-orientali. Quaderni di Conservazione della Natura, 33, 
Ministro dell’Ambiente – ISPRA.
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S5. Description and correlation analysis of spatial covariates 

We identified a set of topographic, land use and anthropic disturbance variables as spatial

predictors  initially  selected for  the  RSA (see Material  and  Methods,  Resource  Selection

Analysis). For each covariate the acronym used in the analysis, the description, the original

unit, and the source are reported. All the environmental layers were resampled to a common

origin (WGS 84/Pseudo-Mercator Coordinate systems; EPSG: 3857) and resolution of 20 m.

All  variables  (see  Material  and  Methods,  Environmental  layers)  were  checked  for

collinearity.

Table  S5.1  -  Selected  spatial  covariates  measuring  environmental  features  and  different

forms  of  anthropogenic  disturbance  used  in  the  RSF  models.  The  covariates  above  the

dashed lines are the core environmental variables, while those below are the anthropogenic

disturbance variables. For the full reference details, see Literature cited.

Covariate Description Unit
Original 
Resolution

Source

DTM Digital Terrain Model Meter 2 m    LiDAR 

Slp Slope Radians 2 m    LiDAR 

TCD Tree Cover Density % 20 m    High Resolution layer, Copernicus Programme 

AGR Cultivated (without orchards) Class Polygons    CORINE Land Cover, Copernicus Programme 

DHS Distance from Human Settlements Meter Polygons    CORINE Land Cover, Copernicus Programme

DMR Distance from Main Roads Meter Polygons    Autonomous Province of Trento 

DFR Distance from Forest Roads Meter Polygons    GeoCatalogo PAT 

DHT Distance from Human Trails Meter Polygons    GeoCatalogo PAT

DRT Distance from Roads and Trails Meter Polygons    Autonomous Province of Trento; GeoCatalogo PAT

dRTN density Road and Trail Network Class Polygons    Autonomous Province of Trento; GeoCatalogo PAT

dCOI density COI Index 20 m Proposed
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Figure  S5.1 -  Correlation  matrix  with  the  Pearson correlation coefficients  between each

variable. Positive correlations are displayed in blue, while negative correlations in red. Color

intensity is proportional to the correlation coefficient.

Literature cite

• Autonomous Province of Trento, 2008. LIDAR rilievo 2006/2007/2008. Ufficio 
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• Autonomous Province of Trento, 2019. Spatial information database. Forest and 
Wildlife Service, Autonomous Province of Trento, Italy. Restricted access data.
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Cover programme. European Environment Agency. Retrieved from 
land.copernicus.eu/pan-european/corine-land-cover.

• Langanke, T., Herrmann, D., Ramminger, G., Buzzo, G. and Berndt, F., 2017. 
Copernicus Land Monitoring Service – High Resolution Layer Forest: Product 
Specifications Document. Copernicus team at EEA European Environment Agency.

• GeoCatalogo PAT, 2019. Portale Geocartografico Trentino. Autonomous Province of
Trento, Italy, from siat.provincia.tn.it/geonetwork/srv/eng/catalog.search
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S6.  Correlation  between  the  Cumulated  Outdoor  activity  Index  and  human
detection events obtained via camera traps

Figure S6.1 - Correlation between the newly-derived Cumulative Outdoor activity Index and

number  of human detection events with the camera trapping survey. The regression line

(dashed line with 95% confidence interval) is represented along the raw data (dots).
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S7. Individual bear’s annual home-range

Figure S7.1 -  Individual  bear’s annual  90% fixed kernel  home-range in  the  province of

Trento. The brown bear home ranges are represented by colored polygons. The mean home

range size (animal/year) was 259.51 km2 (IQR 40.50 km2 to 313.43 km2).
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Abstract

Even the largest terrestrial carnivore of mainland Europe,  the brown bear, must  adapt to

human presence; its movement, behavior, and diet are largely influenced by humans. The

analysis of brown bear movement data has shown that bears perceive human-related risk

differently in relation to human activity level, season and time of day, and employ a security-

food trade-off strategy. In a human-dominated landscape, when displacement is not an option

because  of  habitat  limitations  and  social  mechanisms  (such  as  female  philopatry),  bear

mobility may clash with human activity, thus generating conflict and decrease in acceptance.

Brown bears' ability to cope with risky situations is particularly reduced during "biologically

sensitive"  periods  (i.e.  resting,  mating,  or  fattening  up  for  hibernation),  therefore  the

selection of  suitable areas  where to fulfill  these  basic needs is  crucial  for  the  long-term

survival of individuals. In this study, we measured multi-scale response to risk perception

and food resource proximity by examining the selection of home ranges (‘large-scale’) and

bedding  locations  (‘fine-scale’)  of  GPS-tagged  brown  bears  in  a  highly  heterogeneous

human-dominated  landscape.  Resting  locations  were  identified  with  an  ad-hoc  spatio-

temporal cluster analysis, which has been later validated through field investigations. Food

resources were mapped using a GIS-database including spatial and non-spatial ecological

information on fruiting plants in the study area, and risk perception was derived from human

mobility data.  We observed that  brown bears in the Alps apply a security-food trade-off

strategy, balancing their need for food resources against anthropogenic disturbance at various

scales.  In  a  community  ecology  framework,  human  "super-predator"  altered  the  bear's

fundamental and realized niche. While the spatial predictions indicated that suitable areas

exist, we propose that human access be restricted during "biologically sensitive" periods to

ensure the long-term survival of individuals.

Keywords:  Ecological  niche;  Risk  perception;  Anthropogenic  disturbance;  Ursus  arctos;

Strava
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Introduction

As land use by humans increases dramatically around the world (Foley et al., 2005) and

recreational activities spread beyond urban contexts (Knight and Gutzwiller, 1995), spatial

overlap between humans and wildlife has intensified, leaving even less undisturbed areas for

animal use. Competition for space emerges through both potential (i.e. structural) and actual

(i.e. functional) presence of humans in the landscape (Corradini et al., 2021; Nickel et al.,

2020), forcing a growing number of species to make behavioral adaptations to both anthropic

environmental changes (Tuomainen and Candolin, 2011) and direct risk (i.e. human-caused

mortality;  Creel  and  Christianson,  2008).  When  competition  with  humans  for  space  or

resources emerges, animals may respond by displacing into safer and less disturbed habitats

(Martin et al., 2010) or adjusting their activity cycles (Gaynor et al., 2018), or both (Schuette

et al., 2013). Fear of humans can change diel activity patterns in large herbivores (Bonnot et

al., 2019) or reduce feeding time in medium-sized (Suraci et al., 2019) and large carnivores

(Smith et al.,  2017).  Understanding how species respond to anthropogenic disturbance is

becoming central in ecology and conservation (Rutz et al., 2020), yet is hindered by scale‐

dependent  observations  (Levin,  1992).  Disentangling  spatio-temporal  responses  to  risk

perception and competition can provide important insight into animal well-being, species

conservation, and landscape dynamics (Suraci et al., 2019).

Applying a community ecology framework to a human-disturbed region, in which

human  “super  predators”  (Smith  et  al.,  2017)  are  regarded  as  an  integral  part  of  the

ecosystem (Chapron and López-Bao, 2016), large carnivores could coexist with humans only

by modifying their diet, movement, and behavior- echoing a predator-prey response (i.e., risk

effect, Creel and Christianson, 2008). Specific research exploring the spatial requirements

for carnivores during “biologically sensitive” periods (i.e. resting, mating, or fattening up for

hibernation;  sensu Yovovich  et  al.,  2020)  should  provide  a  robust  evaluation  of  risk

perception. For instance, the ability to cope with risky situations is minimal during moments

of lowest mobility (i.e. at rest; Lima et al., 2005), making animals particularly vulnerable to

risk when asleep (Cristescu et al., 2013). Moreover, for certain species, such as hibernators,

enough food intake is essential at  certain times of the year (i.e.  hyperphagia).  A human-

induced landscape of fear can compromise access to these resources (Lodberg-Holm et al.,

2019),  which  may  in  turn  jeopardize  individual  survival  if  disturbance  is  high.

Understanding how species respond to competition and risk (Gaynor et al., 2019) and how

they adapt to human disturbance during these “biologically sensitive” moments is pivotal for

the long-term conservation of carnivores and the whole  ecosystem (Ripple et  al.,  2014).
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Unlike a singular behavioral adaptation, demonstrating a multi-scale fear response in a large

carnivore effectively demonstrates the shrinking of its realized niche, and therefore reduction

in its functional ecological capacity- both as individuals within a population and within a

community.

Despite  the  recent  increase  in  the  Alpine  bear  population  (Groff  et  al.,  2020),

anthropogenic mortality still appears to drive adult survival and population dynamics (Tenan

et al., 2016), making humans function ecologically as a “super-predator” (Smith et al., 2017).

Furthermore, previous work on bears’ behavioral reaction to encounters with humans showed

a prevalent fear of people (Moen et al., 2012), suggesting that individuals perceived human-

derived  risk  and adopted  behavioral  strategies  to  reduce  risk  exposure  (i.e.  antipredator

response; Gaynor et al., 2019). Despite the importance of assessing the risk effect in bears

and large carnivores in general, rarely has a multi-scale approach been applied (Suraci et al.,

2019).  Furthermore,  structural  and  functional  disturbance  components  (Corradini  et  al.,

2021), which in turn affect resource utilization capacity, are rarely disentangled and assessed

to understand how humans impact the species’ niche. It is crucial to consider that the relative

effect of anthropogenic disturbance varies by observation scale (Levin, 1992), meaning that

ecological patterns (e.g. limiting factors) could only emerge at specific scales of inference

(i.e. Ciarniello et al., 2007), leading to deceptive decision-making processes when evaluating

anthropogenic disturbances. A multi-scale, spatio-temporal evaluation of human-derived risk

responses  could  help  assess  the  implications  of  sharing  the  landscape  with  humans  and

understand how to mitigate conflict  to promote species recovery. The Alpine brown-bear

population, listed as Critically Endangered (Huber, 2018), therefore represents an ideal case-

study  to  disentangle  large  carnivore  behavioral  responses  to  multiple  anthropogenic

disturbance and risk factors.

In this study, we assess behavioral responses of bears to risk and resource availability

at two ecologically relevant scales: home range (“large-scale”) and resting locations (“fine-

scale”).  We  focused  on  the  influence  of  anthropogenic  disturbance  during  several

“biologically sensitive” periods, that is, those physiological and behavioral states in which

exposure to human-derived risk could have a particularly negative impact on brown bears.

Using the Alpine bear as a case study, we tested two main hypotheses: (i; “large-scale”)

when selecting for  home ranges,  bears  must  weigh their  need for  resources  against  risk

perception across seasonally variable energetic requirement periods. For this purpose, we

modeled bears’ fear response by resource selection accounting for functional anthropogenic

disturbance (i.e.  COI;  Corradini  et  al,  2020) and resource availability (i.e.  Tattoni  et  al.,

2019)  according  to  the  main  biological  phases  (hypophagia,  mating  season,  and
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hyperphagia).  We predicted that risk perception mainly drives resource selection of bears

throughout the year, forcing individuals to apply a trade-off strategy during “biologically

sensitive” periods (i.e., hypophagia and hyperphagia, two physiologically important stages,

as well as mating) in order to reduce risk exposure while in proximity of resources; (ii; “fine-

scale”) when selecting for resting sites, bears shall select sites in areas with low functional

anthropogenic  disturbance  to  the  detriment  of  resource  proximity. For  this  purpose,  we

modeled  the  individual  selection  of  resting  sites  by  countering  human-derived  risk

perception,  forest  canopy  structure,  and  resource  availability.  We  predicted  that  bears

maximize protection during moments of highest vulnerability (i.e. resting, another important

“biologically sensitive” period) by applying a security-food trade-off strategy (Cristescu et

al., 2013) that avoids functional anthropogenic disturbance and seeks more concealment due

to perception of risk over resource proximity. Such findings would support the assumption

that  bears  living  in  a  human-dominated  environment  would,  as  a  result  of  multi-scale

response  to  risk  perception  and  anthropogenic  disturbance,  compromise  the  selection  of

resources and ultimately reduce their realized niche.

Materials and methods

Study area

The research was conducted in the province of Trento (10.5° E, 45.6° N - 12.0° E, 46.5° N),

a mountainous region in the Central-Eastern Italian Alps (Figure 1). The area covers 6.200

km2 in the Alpine biogeographical region (EEA, 2002) and is characterized by a complex set

of microclimates due to a morphologically diverse landscape (from 65 to 3769 m a.s.l.). The

territory is largely covered by forests and prairies according to the altitudinal succession,

while  valleys  are  largely  human-dominated  (87  inhabitants/km2).  The  Adige  valley,  the

largest and most developed of the region, poses a major threat to ecological connectivity for

many animal species (Figure 1).

The local brown bear population is the result of a reintroduction project in which 10

adult bears from Slovenia were released in the Adamello Brenta Nature Park, Italy, between

1999 and 2002 (PACOBACE, 2010). The population has settled in Western Trentino and is

currently estimated to be around 90 individuals  (Groff et  al.,  2020).  However, despite a

numerical  increase  since  the  first  releases,  the  Alpine  population  is  currently  listed  as

Critically Endangered due to the small number of mature individuals (< 50, Criteria D1;

IUCN, 2001) (Huber, 2018). Brown bears are legally protected under European (Habitats
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Directive 92/43/EEC) and Italian (L. 157/92) laws, except for the removal of bears which are

deemed dangerous (PACOBACE, 2010).

Brown bear movement data

Between 2006 and 2019, 18 adult bears (11 female and 7 male) throughout the study area

were captured and fit with GPS collars (Vectronic Aerospace GmbH, Berlin, Germany) as

part  of  the  monitoring  programme  carried  out  by  the  Autonomous  Province  of  Trento

(PACOBACE, 2010; Supporting Information S1 for animals capture details and protocols).

Bears were tracked on the basis of management needs from one to several years, for a total

of 44 animal/year. GPS collar acquisition intervals varied between individuals, therefore we

used  different  resolutions  (6-hour  and  3-hour  sampling  protocol)  based  on  the  type  of

ecological question we wanted to answer. We used regular time interval trajectories (i.e.,

bursts)  for  each  prediction.  For  the  first  prediction  (“large-scale”),  higher-resolution

movement bursts (those with a sampling protocol equal to a submultiple of 6) were down-

sampled to match the desired sampling protocol. For the second prediction (“small scale”),

we discarded lower-resolution movement bursts (e.g., 6-hour sampling protocol) and down-

sampled higher-resolution movement bursts to have consistent 3-hour intervals. Data quality

assessment was done following the procedure presented by Urbano et al (2014), therefore

only  ‘valid  locations’  were  retained  for  the  analysis.  Specifically,  we  removed  all  the

locations with no, duplicate, or impossible timestamp. Locations in impossible places (for

example, a lake or outside the study area), locations displaying impossible (based on possible

speed) or suspicious (based on “spikes”) movement, and locations with a poor degree of

reliability  (DOP >  10)  were  also  deleted.  Lastly,  we  subsetted  the  trajectories  by  only

considering the non-hibernating period, resulting in a dataset consisting of GPS positions

from April 1st to October 31st.

High-resolution predictor variables

Field measurements are challenging in Alpine environments, therefore we opted for high-

resolution  remote  sensed  data  to  avoid  biases  imposed  by  the  inaccessibility  of  GPS

locations and to render large-scale spatial predictions. Based on our research questions and

knowledge of the ecological context, we extracted meaningful spatial information from a

combination  of  space-,  air-  and  human-borne  sensors  at  the  highest  resolution  available

(Supporting Information S3 for the detailed description of spatial covariates; Table S3.1).

We accounted  for  topographical  variability  by  deriving  the  slope  from  LiDAR-

derived Digital Elevation Model. We derived the forest canopy structure as both vertical (i.e.

Canopy Height Model; CHM) and horizontal (i.e. Tree Cover Density; TCD) cover and used
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the monthly Enhanced Vegetation Index (EVI) as a proxy of vegetation productivity. We

derived the fruit  availability (r-berry) of 44 plant species commonly eaten or considered

edible for the brown bears (Table S3.3) based on the GIS approach developed by Tattoni et al

(2019). We included wild fruits in the analysis as they were widespread and readily available

throughout the landscape,  while alternative food sources were ephemeral  and difficult  to

quantify, as their production (e.g. hard mast) and accessibility (e.g. orchards) were hardly

measurable  over large scales.  Lastly, in order  to depict  a  realistic spatial  pattern of  risk

perception (Gaynor et al., 2019), we included human mobility data (i.e. proxy of functional

anthropogenic disturbance) as the density of the newly-derived Cumulated Outdoor activity

Index (dCOI; Corradini et al., 2021). All raster layers had a spatial resolution of 20m and

were  normalized  by  subtracting  the  mean  and  dividing  by  its  standard  deviation.  We

managed,  processed,  and  analyze  spatial  data  through  Free  and  Open-Source  Software

(FOSS), that is R 4.0.0 (R Core Team, 2020), QGIS 3.4.4 (QGIS Development Team, 2019),

and GRASS 7.4 (GRASS Development Team, 2018) under Ubuntu 16.04.3 LTS (Canonical

Ltd., London, United Kingdom).

Space use and resource selection (“large-scale”)

We modeled the selection of home ranges across the population range,  i.e.  second-order

selection scale (Johnson, 1980), via Resource Selection Function (RSF). The 90% Utilization

Distribution (Worton, 1989; Calenge, 2006) derived from GPS locations from at least a 6-

hour sampling protocol was identified as the individual home range. We estimated selection

using a used/available design (Manly et al., 2002) and fit Generalized Linear Mixed Model

(GLMM)  with  a  binomial  error  distribution  via  maximum  likelihood,  using  a  Laplace

approximation. We included spatial covariates as additive fixed terms, sampling five times as

many resource units available as the used GPS-based locations. We included individuals as

random intercepts in the model in order to account for among-individual variability and to

account for unbalanced sample designs and autocorrelation (Gillies et al.,  2006). For the

purpose of the study, we estimated marginal (population-level) responses only. Building on

previous  findings  from  Peters  et  al  (2015)  and  Corradini  et  al  (2021),  we  fit  monthly

ecologically meaningful  models including non-collinear  covariates.  We thus included the

slope (as both linear and quadratic effect) and the density of COI as static variables, while

the EVI and species richness of fruiting plants as dynamic (i.e. time-varying) variables. In

order to understand the relationship between space use and selection of resources based on

human-derived disturbance, we included in the model the interaction between the species

richness of fruiting plants and the density of COI. For each monthly model, we assessed

whether to consider the additive terms alone or together with the interaction effect based on
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the Analysis of variance (ANOVA). We analyzed the seasonal differences by considering the

main physiological/behavioral states of brown bears: (i) hypophagia 1 April - 31 May, (ii)

mating season 1 June - 31 July, and (iii) hyperphagia 1 August- 30 October (Ciucci et al.,

2014).

Resting site selection (“fine-scale”)

Identification of bedding sites

Bedding sites were identified via spatiotemporal clustering of GPS animal locations from a

3-hour sampling protocol. Through functions provided by the R package “recurse” (Bracis et

al.,  2018), we identified hotspots of use (i.e.  clusters) based on ad hoc parameterization.

First, for each GPS location, a circle of 25 m radius was drawn and the number of the other

GPS locations within that circle was counted. Next, we categorized every cluster as ‘bedsite’

when  it  included  locations  for  at  least  9  consecutive  hours  (Figure  S2.1).  We chose  a

detection radius of 25 m to account for GPS measurement error and a time interval larger

than 9 hours to reduce the detection of non-target hotspots (i.e. foraging areas) while having

a consistent  detection even in case of missing values (i.e.  missing values for sites under

dense  canopy  cover).  Then,  we  calculated  the  centroid  for  each  detected  cluster  and

discarded  any  revisits  to  reduce  autocorrelation  problems.  Last,  we  performed  field

validation to assess the ability to detect bedsites based on an ecologically and technologically

meaningful  parameterization  (Supporting  Information  S2  for  specifications  on  field

validation).

Statistical analysis

We considered the selection of resting (bedding) sites as a discrete choice influenced by

movement,  therefore  we  opted  for  a  matched case-control  approach where  each  bedsite

location  is  matched with a  conditional  availability  set.  We applied  a  mixed Conditional

Logistic Regression (CLR) to model individual resource selection, using the mixed-effects

cox model from the R packages “coxme” (Therneau, 2020). Each bedsite (i.e. case), which

represented  a  stratum,  was  paired  with  25  random  points  (i.e.  controls)  generated  by

resampling turning angles and step lengths from the empirical  distribution (Fortin et  al.,

2005) of bear 3-hour step length. We used this resolution to parameterize the available points

in order to obtain fine-scale selection. In order to best approximate their distributions, we

fitted different univariate distributions by maximum likelihood estimation and selected the

best distribution by conducting a Goodness of Fit  test using the R package “fitdistrplus”

(Delignette-Muller & Dutang, 2018). We thus linked individual selection of resting sites to
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available  habitats  by  taking  into  account  environmental  features  and  anthropogenic

disturbance.  We included  slope  (linear  and  quadratic  effect)  as  a  proxy  of  topographic

variability, TCD and CHM as a  proxy of horizontal  and vertical  canopy cover of  forest

respectively, the density of COI as a proxy of functional anthropogenic disturbance, and the

monthly species richness of fruiting plants as a proxy of food resources. We included again

the  interaction  effect  between  resource  selection  and  human-derived  disturbance.  We

excluded EVI because the resolution was too coarse (250 m) for fine-scale analysis. The

selected spatial  covariates were included as  fixed additive terms,  while  individuals  were

treated as random slopes in the model with respect to anthropogenic disturbance to account

for among-individual variability.

We calculated the relative probability of using a given location as a bedsite, based on

selection coefficients from the best fitting model. We discarded the time-varying covariate in

order to derive a static, year-round prediction map. We tested the predictive ability of the

CLR model by 10-fold cross-validation (Boyce et al., 2002), training our model iteratively

on k-1 data sets, validating it on the remaining test set, and testing the model performance of

spatially explicit predictions using Spearman's rank correlation coefficient.

Results

Space use and resource selection (“large-scale”)

We used the 6-hour GPS frequency position from 12 animals (8 females and 4 males) for a

total of 21 animals/year. Due to the lack of variability in species richness of fruiting plants,

we discarded the model for April.  In general,  brown bears selected their home ranges in

high-productivity sites, with steep terrain and high fruit diversity, while avoiding areas with a

high density of functional human disturbance. The vegetation productivity was the predictor

with the largest effect size for all months than any other covariate (bEVI= +0.528 to +0.975, p

<0.001; Table 1). Similarly, bears selected for areas with high species richness of fruiting

plants, except in August, but to a lesser degree than EVI (br-berry= +0.124 to +0.292, p <0.01

to p <0.001; Table 1). On the other hand, bears strongly avoided areas with a high density of

functional  disturbance constantly throughout the year (bdCOI= -0.462 to -0.690,  p <0.001;

Table  1).  Interestingly,  the  carnivore  displayed  specific  responses  during  the  various

physiological  states  when  considering  the  relationship  effect  between  functional  human

disturbance and species richness of the fruiting plants (bdCOI:r-berry= -0.138 to -0.218 when

there is a significant relationship, p <0.05 to p <0.001; Table 1). As shown by the ANOVA,

the  additive  and  interaction  effects  together  led  to  more  parsimonious  models  in  June,
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August, September, and October (Table S5.1), while the interaction effect was not significant

in May and July (Table  1;  Table  S5.1).  Topographical  variability  was also an important

predictor, as bears selected for steep areas (bSlp= +0.276 to +0.564, p <0.001; Table 1), but

avoiding extreme slope values in certain months (bSlp^2= -0.066 to -0.153 when there is a

significant relationship, p <0.05 to p <0.001; Table 1).

Resting site selection (“fine-scale”)

Through the spatiotemporal clustering of GPS bear locations, we were able to classify a total

of 1011 bedsites, of which 557 were selected for analysis because they overlapped in space

(i.e.,  Western  Trentino;  Figure  1)  and  time  (i.e.,  between  May  to  October)  with  the

environmental predictor variables. Bears primarily selected their resting sites in areas with a

low density of functional anthropogenic disturbance (bdCOI= -0.752, p <0.001; Figure 2; Table

2), more so than any other spatial covariate as the effect size of dCOI was the largest of the

candidate model. Bears also selected for resting sites under higher horizontal (bTCD= +0.412,

p <0.001; Figure 2; Table 2) and lower vertical canopy cover (bCHM= -0.308, p <0.001; Figure

2; Table 2). Slope was positively selected as a linear effect (bSlp= +0.241, p <0.01; Figure 2;

Table  2),  but  not  when  included  as  a  quadratic  term (bSlp^2= -0.067,  p  >0.05;  Table  2).

Importantly, the availability of resources did not significantly affect the selection of resting

sites, as shown either as a single factor (br-berry= +0.046, p >0.05; Table 2) or in interaction

with human-derived disturbance (bdCOI:r-berry= -0.016, p >0.05; Table 2). The spatial prediction

(Figure 4) was obtained including only the significant terms, namely Slp, TCD, CHM, and

dCOI (Figure 2) . The k-fold cross-validation showed that the best fitting model provided

consistent  spatial  predictions  of  the  relative  probability  of  resting  site  use  (average

Spearman’s correlation coefficient: r= +0.98, p <0.001).

Discussion

We demonstrated that brown bears in the Alps apply behavioral strategies to reduce human-

derived risk exposure. By analyzing their movement data in combination with time-varying,

high-resolution spatial  information,  we showed that bears avoid functional  anthropogenic

disturbance while selecting areas with higher wild fruit availability and higher vegetation

productivity. Furthermore, bears showed to weigh their need for various resources against

anthropogenic disturbance during the main dietary phases. By analyzing the distribution of

resting sites, we also found that the overall perception of risk has influenced site selection

more  than  available  resources,  supporting  evidence  that  the  predator  applied  a  trade-off

56



Chapter 2

strategy to  reduce  risk  while  accessing  large  scale  resources.  These  results  showed that

humans, as the largest predator and competitor in the ecosystem, played a primary role in

modifying space use, resting patterns, and foraging behavior of the Alpine brown bear. In a

community ecology framework (Chapron and López-Bao, 2016), the ecological niche of the

bear was reduced due both to risk perception (i.e. predation) and habitat competition.

Risk perception drives the selection of space, resource and resting site in Alpine
bears

Previous studies (Preatoni et al., 2005; Peters et al., 2015) have shown that the Alpine bear

has a tendency to avoid proximity to human settlements and infrastructure. Furthermore, we

have recently demonstrated by including human mobility data that functional anthropogenic

disturbance primarily drives selection within the home ranges (Corradini et al., 2021). Our

results complement those findings by showing that bears similarly select their home ranges

in areas with low anthropogenic disturbance while choosing for high vegetation productivity

and steep terrains independently of seasonal behavioral states. Intuitively, since proxies of

disturbance from human infrastructure and land use might be inadequate to represent risk

distribution (Corradini et al., 2021), human mobility provided an ecologically meaningful

‘landscape of fear’ (Gaynor et al., 2019).

The  presence  of  people  in  the  environment  forced  bears  to  balance  access  to

resources  and  mating  opportunities  while  accounting  for  risk.  The  carnivore  selected

locations with a higher richness of fruiting plants in relation to disturbance almost all year

round,  supporting the hypothesis  that  it  applied a  security-food trade-off  strategy (sensu

Cristescu  et  al.,  2013).  During  hyperphagia,  when  highly  caloric  food  is  needed  for

accumulating fat for winter denning, fleshy fruits represent an important food source for

bears  (Ciucci  et  al.,  2014).  Areas  with  higher  fruit  richness  were  selected  because  they

provided  predictable  and  profitable  food  sources,  which  are  especially  important  when

establishing  a  home range.  However,  when anthropogenic  risk  perception  was  high,  the

species richness of available fruits decreased in importance in space use selection. These

findings showed that perceived risk could have negative consequences to fitness through an

increase in risk effects (Creel and Christianson, 2008), as bears reduced the time spent in

food-rich  areas  when  the  functional  anthropogenic  disturbance  was  high  (Figure  2).

Importantly,  brown  bears  were  only  partially  found  to  limit  resource  access  during  the

central  months  of  the  mating  season  (1  June  -  31  July;  Ciucci  et  al.,  2014)  when

anthropogenic risk perception was high (Table 1). This could be because individuals may

need to access resources in the short term to offset the effort of breeding following the peak

of mating season (June). Nonetheless, during the breeding season, areas with a high human

57



Andrea Corradini - Ecological connectivity in the Alpine anthropic matrix

presence  were  always  avoided,  demonstrating  how  anthropogenic  risk  perception  may

influence mating opportunities in this population.

Previous  research  on  bear  activity  patterns  (Oberosler  et  al.,  2017),  assessed  by

systematic camera trapping, showed a tendency to minimize human-derived risk by reducing

daytime  activity.  Although  shifting  activity  can  decrease  the  risk  of  interaction  while

foraging, it increases vulnerability during moments of reduced capacity to detect and cope

with risky situations (i.e. resting). For this reason, bedding site selection is another important

determinant of predation risk perception (i.e. ‘where to sleep’; Lima et al., 2005), as animals

spend most of their lives in this vulnerable behavioral state. In our research, we have shown

that risk aversion primarily influenced the selection by brown bears as individuals selected

sites with reduced human mobility, in steep areas (likely perceived as safer than surrounding

areas; Martin et al., 2010), and with denser canopy cover (which provided more concealment

and possibly thermal comfort; Lima et al., 2005). Alternatively, it was found that proximity

to productive feeding areas was not relevant at rest,  as our findings suggested that bears

maximize individual security over food intake (Cristescu et al., 2013). The predictive map

showed where  bears  were  more  likely  to  rest  in  Western  Trentino  (Figure  4).  The  map

illustrated that large, suitable contiguous areas were to the west, while greater fragmentation

and less  suitability  to  the  east  limited  the  availability  of  resting  sites.  Interestingly, the

portions of the study area with the highest relative probability were found in the South-

Western sector, where few bears are present at the moment (Groff et al., 2020). The intense

human activity  in  the  major  Alpine valleys  greatly  limited the number  of  suitable  sites,

whereas wooded mountain portions could provide shelter areas for bears.

Humans potentially shape bear’s realized and fundamental niche

The  ecological  niche  describes  the  habitat  and  factors  that  locally  determine  the  set  of

conditions required for the persistence of the species (i.e.  the realized Grinnellian niche;

Hirzel and Le Lay, 2008). We recognize that numerous definitions of ecological niche exist

(see review from Pocheville, 2015), as well as the fact that the niche has a very large number

of dimensions (Polechová and Storch, 2008), making exact quantitative measurement nearly

impossible. However, as pointed out by Pocheville (2015, pp. 575): “[...] its multiple [niche]

meanings all revolve around the Darwinian view of ecosystems that are structured by the

struggle for survival”, we decided to embrace this concept and refer to ‘niche’ in the broadest

sense of species persistence.

The spatial variation in predation risk (Gaynor et al., 2019) as depicted by human

mobility data showed that human ‘super-predator’ (Smith et al., 2017) influence bear’s space

use, resource and resting site selection, similar to what one would expect in a community
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ecology framework (Chapron and López-Bao, 2016). Therefore it is ecologically reasonable

to assert that humans alter the bear’s realized niche through interspecific interactions (i.e.

predation and competition; Hutchinson, 1957). As a consequence,  the reduced ecological

function of the brown bear may mean that the ecological effectiveness of such a reintroduced

population  will  have  limited  impact  on  community  dynamics  and structure  in  the  Alps,

thereby mitigating reintroduction programme success. 

Furthermore, the profound changes in the ecosystems created by humans decrease

both  the  availability  and  the  reachability  of  (environmentally)  suitable  ecosystems.  For

instance, even in the complete absence of biotic interactions (i.e. inter- and intraspecific),

certain abiotic determinants (e.g. extreme orography, cemented soils, or structural barriers)

would remain standing and would not allow a species to persist. Humans are the world's

primary ecosystem engineers (Root-Bernstein and Ladle,  2019) and their  ‘footprint’ (e.g.

urbanization,  climate  change;  Boivin  et  al.,  2016)  goes  far  beyond  competition  and

predation.  Anthropogenic  impact  thus  changes  the  multidimensional  space  of  favorable

conditions  of  species  (i.e.  fundamental  niche;  Hutchinson,  1957)  even before  ecological

interactions  are  taken  into  account.  Despite,  strictly  speaking,  fundamental  niches  are

inestimable  (Panzacchi,  et  al.,  2015),  their  approximation  can  still  provide  valuable

information on a species’ potential distribution and its tolerance to external changes. In the

Alpine environment, because such changes have undergone for centuries or even millennia,

we would suggest that humans engineered the ecosystem in such a dramatic way to have

redefined the fundamental niches of species. Additional research, conducted at the proper

scale (Alpine-Dinaric),  may give a more holistic knowledge of humans' influence on the

Alpine ecosystem, and therefore on the brown bear.

Implications on coexistence

The coexistence level between humans and bears in the Alpine region is currently “weak”

(Chapron and López-Bao, 2016), with the latter being ecologically excluded in areas with a

high level of conflict.  Besides, despite the population having increased in the years after

reintroduction (Groff et al., 2020), anthropogenic mortality drives adult survival and hence

population  dynamics  (Tenan  et  al.,  2016).  Without  major  socio-ecological  changes,  the

availability of suitable habitats for bears will inevitably decline in the years to come (e.g.

Steffen et al., 2015). When displacement is not an option because of habitat limitations (i.e.

connectivity)  and  social  mechanisms  (such  as  female  philopatry),  bear  mobility  could

increasingly clash with human activity, thus generating conflict and a decrease in acceptance.

Some authors argued (Tattoni et al., 2017) that the good publicity derived from the presence

of the bear can contribute to develop a positive bond with the local population and help to
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reduce conflicts but this can be only a small piece in a complex mosaic. With the increase of

(ecological) interactions, removal of bears for management and by poaching could increase

(Tenan et al., 2016), reversing the positive population growth and potentially jeopardizing

the long-term survival of the Alpine-Dinaric brown bear meta-population (Kaczensky et al.,

2012).  In  this  context,  understanding risk perception in  wildlife  can allow mitigation of

anthropogenic  risk,  with  benefits  to  long-term animal  fitness.  Using  the  high-resolution

spatial predictions (20 m pixel size), specific measures to limit anthropogenic disturbance

during vulnerable moments (i.e., at rest and during “biologically sensitive” periods) could be

implemented. For example, restricting access to highly sensitive areas during the day (> 0.75

projected probability; Figure 2) and during the final weeks of the fattening season, when

bears  have  the  highest  energy  requirements  (i.e.  October),  could  reduce  the  impact  of

perceived risk. Access rules have been successfully implemented in other socio-ecological

contexts (e.g., Bear Management Areas in Yellowstone National Park, Coleman et al., 2013;

or motorized access controls in Canada, Proctor et  al.,  2020), and they can be reapplied

locally  with the  goal  of  balancing bear  conservation and human recreation.  We want  to

emphasize  that,  despite  the  challenges  of  achieving high levels of  coexistence in certain

landscapes, particularly those that are heavily populated by humans (Chapron and López-

Bao, 2016), timely and spatially-explicit mitigation efforts could still ensure the survival of

brown bears in the Central Alps for decades to come.
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Tables and figures

Figure 1 -  Map of  the  study area and its  location in  the  Italian Alps.  In  light  gray, the

distribution of artificial surfaces (i.e. altered by humans). In black the Adige river, which

separates  the  region  into  two  sectors:  Western  and  Eastern  Trentino.  The  dotted  area

indicates the brown bear population core areas as measured by the 95% Kernel  Density

Estimation of all GPS locations.
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Figure 2 - Monthly plots with the relative change in the predicted probability of use (Δused)

by  bears  at  various  level  of  berry  richness  (r-berry)  relative  to  the  average  value  (i.e.,

reference  level,  which  corresponds  to  0  because  the  explanatory  variable  is  scaled).  A

negative change in the predicted probability of use indicates that  bears are less likely to

select  that  resource  level  than  the  average  value.  The  predicted  probability  of  use  is

estimated  at  three  distinct  levels  of  functional  disturbance  density  (dCOI),  which  are

indicated  by  different  regression  lines.  Only  the  monthly  models  with  a  statistically

significant interaction term (dCOI:r-berry) are reported.
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Figure 3 –  Fitted regression lines  with standard error  showing the empirical  association

between  resting  site  use  and  the  significant  environmental  predictors,  estimated  using

conditional logistic regression. The regression coefficients are derived from the best fitting

model (i.e., with slope, tree cover density, canopy height model, and density of COI).

67



Andrea Corradini - Ecological connectivity in the Alpine anthropic matrix

Figure 4 - Map of the predicted relative probability of use as resting location by brown bears

in Western Trentino. The prediction is based on the estimated coefficient values from the

mixed-effects conditional logistic regression model. As shown in the legend on the left, the

level of predicted probability ranges from 0 (in blue) to 100 (in yellow). The map is in metric

coordinates and has a resolution of 20 m pixel size.

68



Chapter 2

Table 1 - Results of the fitted generalized linear models used to assess brown bear habitat

selection at the second-order of selection for each month of the active season (from May to

October, April was excluded for the lack of variability in species richness of fruiting plants).

For each monthly model,  the explanatory variables, parameter estimates, 90% confidence

intervals, and p-values are reported. At the bottom, the number of observations is reported

(from a total of 21 animals/year).

Table 2 - Results of the fitted mixed-effects conditional logistic regression used to assess

brown  bear  selection  of  resting  sites.  The  explanatory  variables,  parameter  estimates

(conditionally standardized), 90% confidence intervals, and p-values are reported.

Explanatory variable Estimate CI (90%) p value

Slp 0.241 0.093 – 0.388 <0.01
Slp2 -0.067 -0.144 – 0.011 >0.05
TCD 0.412 0.271 – 0.554 <0.001

CHM -0.308 -0.434 – -0.182 <0.001
dCOI -0.752 -1.030 – -0.474 <0.001

r-berry 0.046 -0.097 – 0.188 >0.05
dCOI:r-berry -0.016 -0.226 – 0.194 >0.05
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Supplementary Material

S1. Animal capture details and protocols

In  Italy,  the  brown  bear  is  currently  protected  under  European  (Habitats  Directive

92/43/EEC, incorporated in the Italian legislation via D.P.R. 357/97) and Italian Laws (L.

157/92), and included as a strictly protected species in the Bern Convention (1979). Under

derogation of the  aforementioned Habitat  Directive,  approved by the Italian Institute for

Environmental  Protection  and  Research  (ISPRA),  it  is  permitted  to  capture  animals  for

research, public safety, and damage prevention purposes. Within these limits, all trapping

and handling operations of wild brown bears are regulated by the “Interregional action plan

for the conservation of the brown bear in the central-eastern Alps” (PACOBACE, 2010),

approved by Directorial Decree n. 1810 of 5 November 2008 and amended by Directorial

Decree Protocol 0015137 PNM of 30 July 2015.

Literature cited

• PACOBACE, 2010. Piano d’Azione interregionale per la Conservazione dell’Orso 
bruno nelle Alpi centro-orientali. Quaderni di Conservazione della Natura, 33, 
Ministro dell’Ambiente – ISPRA.

S2. Field validation of remotely identified resting sites

We visited as many clusters as possible between August and October 2018 and carried out

field visits to verify the clustering technique used. We uploaded the centroids of the remotely

identified clusters (Figure S2.1) into a handheld GPS device (Garmin GPS 64s) and visited a

total  of  96 hotspots  over  the  reference period.  At  the  specified locations,  we looked for

terrain depression or small  portions of ground whose substratum may show signs of the

bear’s presence (e.g. Figure S2.2). In either case, we confirmed the presence of a resting site

when 'hard facts' were found on the ground (i.e. hair, scat, or scratches). We found no clear

signs of feeding or mating in the hotspot we visited. We could confirm the presence of a

resting site 88% of the time. We were only able to confirm one ‘bed' every hotspot identified.

However, because we did not take into account the detectability of beds in the field (imposed

by operators, the time of the year, or the substratum), it is reasonable to assume that the

success rate could be higher than 88%. Overall,  the remote detection of resting sites has

proven effective, making the spatiotemporal clustering technique suitable for our research.
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Figure S2.1 - Graphical representation of a cluster. Around each GPS location, a circle of 25

m radius is  drawn and all  the  GPS locations  within that  circle counted.  When a  cluster

contains locations for a period of time greater than 9 hours (as an example, the buffer drawn

around the 6 a.m. location is shown in the figure), the cluster is classified as ‘bedsite’.
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Figure S2.2 - Bear’s resting site. The bed was identified via spatiotemporal clustering of GPS

locations  and  confirmed  by  the  presence  of  bear  signs  (hair,  scat,  or  footprint).  The

aluminum bottle (1L) was placed in the center of the resting site as a reference scale.

S3. Description and correlation analysis of spatial covariates

We identified a set of topographic, resource, and anthropic disturbance variables as spatial

predictors (Table S3.1) for the selection analysis.  The acronym used in the analysis,  the

description,  the  unit,  and  the  source  are  reported  for  each  covariate.  We used  metric

coordinates to facilitate the interpretation of the results, specifically, all the environmental

layers were resampled to a common origin (ETRS89 / LAEA Europe Coordinate systems;

EPSG:  3035)  and  resolution  of  20  m (excluding  the  EVI  at  250  m).  We performed  a

correlation analysis between all  variables and built  models with covariates with |r|  ≤ 0.6

(Hinkle et al, 2003).
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Table  S3.1  -  Selected  spatial  covariates  measuring  topography,  resources,  and  human

disturbance used in the analysis. For the full reference details, see Literature cited.

Covariate Description
Original 

Unit
Source

Slp Slope Radians
LiDAR (Autonomous Province of 

Trento, 2008)

CHM Canopy Height Model Meters
LiDAR (Autonomous Province of 

Trento, 2008)

TCD Tree Cover Density Percentage
Copernicus Programme (Langanke et

al, 2017)

EVI Enhanced Vegetation Index Index MODIS (Vuolo et al, 2012)

r-berry
Monthly species richness of 

fruiting plants
Count Tattoni et al (2019)

dCOI
Density of Cumulated Outdoor

activity Index
Index Corradini et al (2020)

Specifications on LiDAR

Between October 2006 and February 2008, the entire Autonomous Province of Trento was

covered by two airborne LiDAR (Light Detection And Ranging) surveys. The first survey

was conducted over the Adige valley using a TOPOSYS II laser scanner (TOPOSYS GmbH,

Biberach, Germany) installed on a CASA C-212 Aviocar. The laser pulse wavelength and the

pulse repetition frequencies were 0,4-0,8 nm and 100 kHz, respectively, with an average

point density of at least 3.2 points/m² and a vertical error of 15/30 cm. The second survey

was conducted over the rest of the Province using an OPTECH ALTM 3100C laser scanner

(OPTECH,  Toronto,  Canada)  installed  on  a  Partenavia  P.68  aircraft.  The  laser  pulse

wavelength and the pulse repetition frequencies were 1,56 nm and 85 kHz, respectively, with

an  average  point  density  of  at  least  2.4  points/m²  and  a  vertical  error  of  30/60  cm

(Autonomous Province of Trento, 2008). The raw measurements were thus validated, filtered

and processed, and the following products were released: (i) Digital Surface Model (DSM);

(ii)  Digital  Terrain  Model  (DTM);  (iii)  Canopy  Height  Model  (CHM).  The  rasters  are

provided at a resolution of 2 m, therefore for the analysis we have included the aggregated

values (i.e. mean) for both slope and CHM.
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Specifications on EVI

The Enhanced Vegetation Index (EVI), together with the best known Normalized Difference

Vegetation Index (NDVI), is a vegetation index provided by NASA (Didan et al, 2015). It is

an ‘optimize’ quantitative index of greenness which accounts for atmosphere influence and

canopy background signal. EVI is computed as follow:

where

• G is the Gain factor;

• NIR (Near-Infrared Region), Red, and Blue are atmospherically-corrected surface

reflectance;

• C1 and C2 are coefficients of the aerosol resistance term;

• L is the adjustment that addresses non-linear spectral reflectance through canopy.

In the MODIS-EVI algorithm, the coefficients adopted are L=1, C1=6, C2=7.5, and

G=2.5. Compared to the NDVI, the EVI is less sensitive to atmospheric-induced biases (by

accounting  for  the  blue  band)  while  remaining  sensitive  to  canopy  variations  without

saturation in high biomass regions (Huete et al, 2002). Because of the linear relationship

between the red-infrared ratio and the photosynthetically active radiation fraction (Running

et  al.,  2004),  the  Vegetation  Indexes  are  considered  accurate  indicators  for  large  scale

measurement  of  plant  productivity.  EVI  is  retrieved  from  daily,  atmosphere-corrected,

bidirectional surface reflectance derived by MODIS sensors on Terra and Aqua satellites.

MODIS-specific compositing method assurance that low quality pixels are removed and 16-

day composites are produced at a nominal spatial resolution of 250 m. We derived monthly

smoothed EVI time series from the online platform hosted by BOKU Vienna (Vuolo et al,

2012).
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Figure S3.2 - Variation in the Enhanced Vegetation Index on a monthly basis over the study

area.

Species richness of fruiting plants edible for the brown bear

We derived the fruit availability of 44 plant species commonly eaten or considered

edible for the brown bears (Table S3.2) based on the GIS approach developed by Tattoni et al

(2019). The proposed methodology combines spatial and non-spatial ecological information

for the purpose of mapping the fruit availability from vegetation over time. Specifically, the

number of plant species carrying ripened fruits edible for bears were counted (for each forest

type; Odasso, 2002) and monthly specific richness maps were obtained based on species-

specific fruiting time.

Figure S3.4 - Monthly variation of species richness of fruiting plants edible for brown bears.

Table  S3.2  -  Species  considered  edible  for  the  brown  bears  among  those  identified  as

available for Alpine migratory birds (Tattoni et al, 2019).

75



Andrea Corradini - Ecological connectivity in the Alpine anthropic matrix

id Species name Reference

1 Amelanchier ovalis (Ciucci et al, 2014)

2 Berberis vulgaris edible for black bears (Torgersen et al, 2001)

3 Cornus mas (De Barba et al, 2014)

4 Cornus sanguinea (Paralikidis et al, 2010)

5 Cotoneaster nebrodensis edible for humans (Redžić & Ferrier 2014)

6 Crataegus oxyacantha (Ciucci et al, 2014)

7 Empetrum hermaphroditum (Hertel et al, 2016)

8 Frangula alnus (Naves et al, 2006)

9 Fragaria vesca (AA. VV. 2002)

10 Hedera helix (Naves et al, 2006)

11 Juniperus communis (Paralikidis et al, 2010)

12 Juniperus nana (Paralikidis et al, 2010)

13 Lonicera caerulea (Ripple et al, 2014)

14 Prunus avium
(Naves et al, 2006; Paralikidis et al, 2010; Ciucci et 
al, 2014)

15 Prunus mahaleb (Ciucci et al, 2014)

16 Prunus padus (Paralikidis et al, 2010)

17 Prunus spinosa (Naves et al, 2006; Ciucci et al, 2014)

18 Rhamnus catharticus (Ciucci et al, 2014)

19 Rhamnus pumilus possibly consumed (Ciucci et al, 2014)

20 Rhamnus saxatilis possibly consumed (Ciucci et al, 2014)

21 Ribes petraeum edible for humans (Redžić & Ferrier 2014)

22 Rosa arvensis (Ciucci et al, 2014)

23 Rosa canina (Ciucci et al, 2014)

24 Rosa corymbifera (Ciucci et al, 2014)

25 Rosa pendulina (Ciucci et al, 2014)

26 Rosa villosa (Ciucci et al, 2014)

27 Rubus caesius (De Barba et al, 2014)

28 Rubus canescens (Ciucci et al, 2014)

29 Rubus hirtus (Ciucci et al, 2014)

30 Rubus idaeus (De Barba et al, 2014)

31 Rubus ser. (Ciucci et al, 2014)

32 Rubus ulmifolius (Naves et al, 2006; Ciucci et al, 2014)

33 Sambucus nigra edible for black bears (Mosnier et al, 2008)

34 Sambucus racemosa (Fortin et al, 2013)

33 Solanum dulcamara edible for black bears (Torgersen et al, 2001)

36 Sorbus aria (Naves et al, 2006, Ciucci et al, 2014)

76



Chapter 2

37 Sorbus aucuparia
(Naves et al, 2006, Paralikidis et al, 2010, Ciucci et 
al, 2014)

38 Sorbus chamaemespilus possibly consumed (Ciucci et al, 2014)

39 Sorbus torminalis (Naves et al, 2006)

40 Vaccinium gaultherioides (Naves et al, 2006)

41 Vaccinium myrtillus (Hertel et al, 2016)

42 Vaccinium vitis-idaea (Hertel et al, 2016)

43 Viburnum lantana (Naves et al, 2006)

44 Viburnum opulus (Ogurtsov 2018)
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Correlation matrices

Figure  S3.3 -  Correlation  matrix  with  the  Pearson correlation coefficients  between each

variable chosen for the second-order habitat selection. Positive correlations are displayed in

blue, while negative correlations in red.  Color intensity is proportional  to the correlation

coefficient.
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Figure S3.4  -  Correlation matrix  with the  Pearson correlation  coefficients  between each

variable chosen for  the  resting site selection.  Positive correlations are displayed in blue,

while  negative  correlations  in  red.  Color  intensity  is  proportional  to  the  correlation

coefficient.
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S4. Model comparison with ANOVA

Table S6.1 - Intra-monthly comparison of models via analysis of variance (ANOVA). For

each  month,  we  tested  which  combination  of  the  terms  dCOI  and  r-berry  (interaction,

additive, and both together ‘add_inter’) provided the best parsimonious fit of the data.
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Abstract

Recent events related to the measures taken to control the spread of the Coronavirus (SARS-

CoV-2)  reduced  human  mobility  (i.e.  anthropause),  potentially  opening  connectivity

opportunities for wildlife populations. In the Italian Alps, brown bears have recovered after

reintroduction  within  a  complex  anthropogenic  matrix,  but  failed  to  establish  a

metapopulation due to reduced connectivity and human disturbance (i.e. infrastructure, land

use, and human mobility). Previous work from Peters et al. (2015, Biol. Cons. 186, 123-133)

predicted  the  main  corridors  and  suitable  hot  spots  for  road  network  crossing  for  this

population across all major roads and settlement zones, to link most suitable habitats. Bears

used the identified hot spots for road network crossing over the years, but major barriers

such as  main motor  roads were not  overcome,  possibly due to  functional  anthropogenic

disturbance,  specifically human mobility. By analyzing 404 bear occurrences  reported to

local authorities (as bear-related complaints) collected between 2016 and 2020 (March 9 th -

May 18th), hence including the COVID-19 related lockdown, we tested the effect of human

presence on brown bears' use of space and hot spots for road network crossing. Animals

occupied human-dominated spaces and approached hot spots for crossing at a higher rate

during  the  lockdown  than  in  previous  years,  suggesting  that  connectivity  temporarily

increased with reduced human mobility for this population. As a result of their increased use

of hot spots,  bears expanded their use of suitable areas beyond the population core area.

Movement of animals across structural barriers such as roads and human settlements may

therefore occur in absence of active disturbance. We also showed the value of predictive

models to identify hot spots for animal barrier crossing, the knowledge of which is critical

when  implementing  management  solutions  to  enhance  connectivity.  Understanding  the

factors that influence immigration and emigration across metapopulations of large mammals,

particularly carnivores that may compete indirectly with humans for space or directly as

super-predators, is critical to ensure the long-term viability of conservation efforts for their

persistence. We argue that dynamic factors such as human mobility may play a larger role

than previously recognized.

Keywords:  Ursus  arctos;  Anthropause;  Human  mobility;  Connectivity;  Wildlife  road

crossing; Anthropogenic disturbance.
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Introduction

Several studies have shown that permanent human land use, infrastructure and disturbance

affect  mammalian  behaviour  by  limiting  movement  (Tucker  et  al.,  2018),  conditioning

habitat selection (Prokopenko et al., 2017), and shifting activity cycles (Gaynor et al., 2018).

Increasing evidence shows that human presence may induce stronger responses at different

spatio-temporal  scales  than  infrastructural  barriers  (Corradini  et  al.,  2021;  Nickel  et  al.,

2020). However, it has so far proven difficult to disentangle the effects of these two, often

co-occurring, components of human disturbance.

Recently, the lockdown enforced to contain the spread of the Coronavirus (SARS-CoV-

2) revealed the consequences of an abrupt interruption of human mobility on ecosystems (i.e.

“anthropause”, Rutz et al., 2020). Hence, unprecedented insights into how human activities

influence animal behaviour may emerge (Bates et al., 2020; Diffenbaugh et al., 2020; Bates

et al., 2021). Human presence has been completely removed from certain landscapes only

under extreme circumstances (e.g. disease control, radioactive contamination, or mass socio-

geographic shifts). These tragedies inadvertently created the context to study the effects of

such human interventions on natural ecosystems (Bowen et al., 2007; Deryabina et al., 2015;

Navarro and Pereira, 2021). The anthropause may represent one of those.

In  Italy,  one  of  the  countries  first  affected  by  the  SARS-CoV-2,  the  nation-wide

lockdown lasted from March 9th to May 18th 2020, the longest and most stringent enforced in

Europe (based on the Stringency Index; Hale et al., 2021). The lockdown remained strict

until May 3rd (i.e. no outdoor activity was allowed, people were confined at home within a

radius of 200m; mean Stringency Index = 90.78), and mobility was significantly limited until

May 18th (i.e. interregional traveling prohibited, most of the commercial activities closed;

mean Stringency Index = 63.55) (Figure S1). These confinement measures were enforced

through  active  police  control.  People  could  temporarily  access  their  properties  and

belongings, but only when strictly necessary and accompanied by a written justification. In

these  very  tragic  and  unprecedented  circumstances,  wildlife  witnessed  unexpected

‘competitor/predator removal’ and uncommon behaviors have been observed, for example,

an increase of urban or diurnal observations of opportunistic species (Manenti et al., 2020),

although experimental evidence on cryptic species in wilder areas is still lacking.

In the Eastern Italian Alps, a highly anthropized region, a brown bear (Ursus arctos)

population has re-established after reintroduction (Mustoni et al., 2003), but has so far failed

to  spatially  expand  its  range  beyond  the  release  area  and  rejoin  the  Alpine-Dinaric

metapopulation.  The  region  is  characterized  by  dense  human  infrastructure  in  the  low
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valleys,  which  has  been  considered  one  of  the  main  reasons  for  reduced  connectivity

(Kaczensky et al., 2012). Based on habitat selection models, previous work predicted the

most suitable areas and relative main connectivity corridors for bear at the regional scale,

identifying hot spots for road network crossing (Peters et al., 2015). Bears rarely used the

identified hot spots over the years, because major barriers such as heavily trafficked roads

were  not  overcome.  This  can  be  explained  by  the  functional  anthropogenic  disturbance

hypothesis, where human presence and mobility would restrain bear movements more than

infrastructure per se (Corradini et al., 2021).

The unexpected circumstances of COVID-19 prompted us to investigate the effects of

the lockdown on brown bears by analyzing, with a quasi-experimental design (Rutz et al.,

2020), their space use with respect to permanent human infrastructure, while active human

disturbance  was  temporarily  reduced.  We hypothesized  that,  in  a  time  of  low  human

mobility, landscape  permeability  for  bears  would  increase.  We tested  this  hypothesis  by

assessing three predictions:  (i)  bears  used human-dominated spaces  (measured as  human

property damage) more frequently than in the previous years due to lack of human active

disturbance and (ii)  bears approached the connectivity hot  spots previously identified by

Peters et al. (2015), to a significantly higher extent than in the previous year ; (iii) finally, as

a  consequence of  this  increased  use  of  hot  spots  to  overcome human infrastructure,  we

predicted an expansion of bears over use of the suitable range.

Materials and methods

Study area

The study was conducted in the province of Trento, Italy (46°26′44″N, 11°10′23″E), a

rugged mountain region of 6.200 km2 in the Central-Eastern Alps. This Alpine biogeographic

region  also  encompasses  human-dominated  Alpine  valleys  (87  inhabitants/km2)

characterized by a large infrastructural network of roads, railways, forestry roads, and trails,

which make most of the territory accessible to humans. About 500,000 people live in the

province,  with  an  annual  tourist  influx  nearly  ten  times  as  much  (Ispat,  2020).  A bear

population of about 82-93 bears persists in the area (Groff et al.,  2020) as a result  of  a

reintroduction program implemented between 1998 and 2002 (Mustoni et al., 2003). Despite

steady  population  growth  and  a  substantial  increase  in  the  occupied  area  following

reintroduction (Groff et al., 2020), the Alpine bear population remains genetically isolated

and  the  Alpine-Dinaric  metapopulation  is  not  yet  restored  due  to  lack  of  connectivity

(Kaczensky et al., 2012).

85



Andrea Corradini - Ecological connectivity in the Alpine anthropic matrix

Bear occurrence reports and damage events (prediction (i))

To evaluate whether bear use of human-dominated spaces was influenced by human

presence,  we  considered  bear-related  damages  or  occurrences  that  are  typically  very

noticeable and easy to identify (Figure S2). As part of a compensation scheme initiated after

the reintroduction program, people are encouraged to report any damage or observations to

local authorities through an active 24/7 hotline (PACOBACE, 2010). Despite a concerted

effort to mitigate damages over the last 20 years and a steady increase in the prevention

measures put in place (Groff et al., 2020), some properties remain vulnerable to bear attack,

especially on the edges of the population range. For this study, we collected all confirmed

bear occurrences (bear-related damages, sightings, and signs of presence) reported to local

authorities in the province of Trento between 2016 and 2020. Even in 2020, occurrences and

damages could be discovered during permitted activities outside the house (e.g., animal care,

garbage disposal, agricultural activities), then, according to the procedure in place, reported

by telephone and registered after  an inspection by local  authorities  (i.e.  Forestry Corps;

PACOBACE, 2010). For each record we obtained: date, event (i.e. damage, sighting, or sign

of  presence),  target  (only  when  damage  was  reported,  i.e.  beehive,  garbage,  building,

livestock,  orchard,  and  poultry;  Table  S1),  geographic  position  (when  available),  and

location reliability (i.e. 500 m; 500–100 m; 100 m accuracy). For each year (2016–2020), we

only considered events that occurred from March 9 th to May 18th, corresponding to the 2020

lockdown. To test prediction (i), we selected only damage events as a proxy for bear use of

permanent human-dominated spaces (Table S1) and performed a series of tests comparing

the number of complaints that occurred in 2020 against any other year. We did so by fitting a

Generalized Linear Model (GLM) with a Poisson error distribution for every category of

damage,  using  year  as  the  predictive  variable  and  number  of  damages  as  the  response

variable.  We linearly  re-scaled  damage  counts  dividing  by  the  number  of  bears  in  the

population for that year and multiplying by the estimated bear population size in 2020 to

simulate that the population remained constant. For 2016–2019, we used estimates based on

genetic Capture–Mark–Recapture from opportunistic sampling (Groff et al., 2020), and for

2020,  we  used  estimates  based  on  probabilistic  population  growth  projections  (ISPRA–

MUSE, 2021). Specifically, the bear population was estimated at 44 (38-61) individuals in

2016, 53 (46-71) in 2017, 58 (52-72) in 2018, 75 (66-97) in 2019, and 80 (67-95) in 2020.

We also compared the number of bears in the last five years to evaluate whether a significant

increase in abundance was observed. To this end, we used bootstrapping (n = 999 iterations)

to test for population growth while allowing for uncertainty in the estimates. We did so by

randomly sampling the number of bears from a uniform distribution for each year, choosing
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any possible estimate within the confidence interval. Thus, for each iteration, we tested if

there was a significant increase in abundance between 2020 and any other year (2016-2019).

Connectivity model and use of hot spots for road network crossing (prediction (ii)
and (iii))

To evaluate whether bear use of hot spots for road network crossing was influenced

by human presence, we considered a previously developed, spatially explicit  connectivity

model stemming from a resource selection function (Table S2; Peters et al., 2015). Using

GPS data from individual bears and a set of ecologically meaningful, remotely sensed habitat

information, the authors identified patches of high-quality suitable habitat. The movement

corridors were then estimated as the least-cost path between the most suitable habitat patches

within the province of Trento. As a result, the authors identified hot spots for road network

crossings of predicted paths between preferred habitat patches and classified them into three

categories based on local density of crossings (i.e., low -, medium -, and high density; Peters

et  al.,  2015).  To test  prediction  (ii),  we  considered  all  types  of  bear  occurrences  (i.e.

damages,  sightings,  and signs  of  presence)  located outside preferred habitat  patches  and

reported with an accuracy greater than 500 m. We compared bear occurrences recorded in

2019 and 2020 only (March 9th - May 18th), as these were geo-referenced, and referred to

years with likely stable population size. We then measured the euclidean distance between

each observation and the nearest hot spot for road network crossings (true events, 1), and

compared  the  distribution  of  distances  with  that  obtained  for  1,000  random  locations

(random draw, 0), extracted in the concave hull defined by the vertices of the most suitable

areas (Gombin et al., 2020). To this end, we excluded the observations at the margin of the

study area, as hot spots for road network crossing were not estimated beyond Trentino (about

1% points). We then fitted a set of Generalized Linear Models (GLMs) with a binomial error

distribution of the true/random points in dependence on the proximity to all hot spots (with

low -, medium -, and high density of crossings), and to each category of hot spots at a time.

We added the  year  as  a  fixed  term and included an  interaction  term between year  and

proximity to hot spots for road network crossing, in each of the four models. All distances

were  normalized  for  the  analysis  by  subtracting  the  mean and dividing  by  the  standard

deviation of the model-specific proximity to hot spots distribution. We selected the most

parsimonious models using both the Analysis of variance (ANOVA) and the second-order

Akaike  Information  Criterion  (AICc).  Finally, to  test  prediction  (iii),  we  used  the  two-

samples Wilcoxon test to compare the distance from the population core area between bear

occurrences reported in 2019 and 2020. We performed the analyses on open-source software
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QGIS 3.4.4  (QGIS  Development  Team,  2019)  and R 3.4.3  (R Core  Team,  2017)  under

Ubuntu 16.04.3 LTS (Canonical Ltd., London, United Kingdom).

Results

We collected a total of 404 reports of bear occurrence: 64 in 2016, 59 in 2017, 44 in 2018, 64

in 2019, and 173 in 2020 for the reference period March 9th - May 18th (Figure 1; Table S3

for details). The bear population size increased significantly in 2020 compared to 2016 and

2017 (Table 1 and S4), as also indicated by bootstrapping (Figure S3), whereas the increase

was not statistically significant compared to 2019 (Table S4), and with less certainty, to 2018

(Figure S3). We observed a significant increase in reported damage to human properties (i.e.

poultry,  garbage,  building,  and  beehive)  standardized  for  bear  population  size  in  2020

compared to any other year, except for 2016 (Table 1 and S4), supporting prediction (i).

Instead,  despite  being  periodically  inspected,  targets  not  in  close  proximity  to  human

dwellings (i.e., orchard and livestock; Table S1) were not damaged significantly more during

the lockdown than in previous years (2016-2019; Table 1 and S4).

The bear occurrences recorded with high spatial reliability outside preferred habitat

patches were closer than random to hot spots for road network crossing, irrespective of year,

for all four models considering proximity to different categories of hot spots (b All  crossing =

-0.59, p <0.001; bLow density = -1.13, p <0.001; bMedium density = -2.40, p <0.001; bHigh density = -2.24,

p  <0.001;  Table  2  and Figure  3;  Table  S5 and S6).  Further,  the  bear  occurrences  were

significantly more in 2020 than in 2019 in the model considering all categories of hot spots

for road network crossing (114 and 30, respectively; bYear(2020) = +1.33, p <0.001; Table 2 and

Figure 3), supporting prediction (ii). This relation held for the model including observations

in proximity to hot spots of medium density of crossings (bYear(2020) = 2.48, p <0.001; Table 2

and Figure 3), but not for the other models (Table S5). Finally, we found that occurrences in

2020 were reported in areas that were significantly further away from the population core

area than in 2019 (W = 123, p = 0.005; Figure 4), indicating an expansion of bears over their

suitable range, supporting prediction (iii).

Discussion

It  has been previously demonstrated that  bears avoid anthropogenic disturbance over the

landscape,  particularly  human  mobility  (Tattoni  et  al.,  2015;  Corradini  et  al.,  2021).

Interestingly, in  this  paper,  we  show that  during  the  recent  COVID-19 lockdown,  bears
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responded by  using spaces  previously rarely  used,  although of  high value for  access  to

resources, or quality habitats. Our findings support the hypothesis that some species may

respond to human presence and active disturbance, rather than infrastructure barriers per se

(Corradini et al. 2021). Hence, brown bears likely considered humans as a major competitor

temporarily removed from the landscape (Bates et al., 2020; Bates et al., 2021).

Temporal removal of human mobility

Between  March  9th and  May  18th 2020,  bears  have  entered  human-dominated  spaces

significantly more often compared to the same period of the previous years, as indicated by

the increased occurrence of complaints (Figure 1). Importantly, because the number of such

events  was  linearly  rescaled  based  on  bear  abundance,  with  no  significant  variation  in

Trentino in the last two years (Table 1; Figure S3), our findings suggest that this pattern is

unrelated to bear abundance. While these complaints should not be considered unusual per

se,  particularly given the large range of behavioral variations that bears can exhibit  (i.e.,

“personality”; Hertel et al., 2020), the frequency of such events was unprecedented (Figure

1). During the period of the year considered, bears are biologically at a critical stage, with

activity rising (i.e. post-den emergence, Figure S4), but habitat resources in the landscape

still relatively scarce (Humphries et al., 2003). With no sensory stimulation associated with

human activity (Halfwerk and Slabbekoorn, 2015), bears emerged from hibernation to find

undisturbed spaces and availability of otherwise little accessible resources, prompting them

to take advantage of these unexpected opportunities. Importantly, this was not induced by

higher  availability  of  anthropogenic  food,  as  the  presence  of  attractants  close  to  human

settlements (e.g.,  garbage) were lower in 2020 than in previous years (Dolomiti  Energia,

2021), hence excluding potential confounding effects.

Complaints were spatially widespread in the region (Figure 2), indicating that at least

a few individuals approached human-dominated areas during the lockdown. Bears' average

behavioral expression can vary widely between individuals (Hertel et  al., 2020), yet few,

bolder individuals might have been responsible for the majority of the reported complaints in

some years (Groff et al.,  2020). Despite being more prone to cause conflicts,  bold bears

should not be considered ‘unusual’ animals, rather part of the population behavioral variation

and critical  individuals  for  its  expansion in  a human-dominated landscape (Lamb et  al.,

2020).

Disentangling  human  mobility  and  human  infrastructure  effects  on  animal
movement
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When lockdown measures due to COVID-19 pandemic were being enforced, brown bears

demonstrated to approach hot spots linking high-quality areas (Peters et al.,  2015) more,

suggesting  that  connectivity  temporarily  increased  as  human  presence  decreased.  This,

together with the sharp increase of reported bear-related damages regarding settlement areas

(e.g.  poultry  and  garbage)  or  features  normally  protected  by  people  (e.g.  beehive  and

mountain buildings; Table S1), provides further evidence that space use and movement of

bears  are  highly  affected  by  ‘functional  anthropogenic  disturbance'  and  not  by  human

infrastructure  per se (Corradini  et  al.,  2021;  Nickel  et  al.,  2020).  Bears  have adapted to

survive in an anthropic matrix relying on suitable habitat patches through niche partitioning

(Martin et al., 2010; Lamb et al., 2020). In absence of their major competitor (i.e. human

‘super predator’, Smith et al., 2017) bears rapidly adjusted their space use by more evenly

occupying the landscape, in accordance with the species' plasticity.

We demonstrated, using bear occurrence reports as ground-truth observations (Figure

2), that hot spots for road network crossings predicted by the connectivity model for Trentino

brown bear (Peters et al., 2015) corresponded to actual bear use, especially when humans

were  absent.  Additionally,  during  lockdown  bears  also  used  hot  spots  in  otherwise

underutilized portions of the suitable range, beyond the population core area (Figure 4). We

argue that this temporary expansion indicates active human disturbance as a potential cause

for the lack of a functional metapopulation after bear reintroduction. The use of hot spots of

connectivity to reach the Eastern portion of Trentino (Figure 2), in particular, is promising

towards the establishment of an Alpine-Dinaric metapopulation (Kaczensky et  al.,  2012),

posited human disturbance decreases. 

While human presence and activities have long been a part of the Alpine landscape,

long-term coexistence with brown bears may only be achieved by reducing conflicts and

human-caused  mortality  (Chapron  and  López-Bao,  2016;  Lamb  et  al.,  2020),  while

improving connectivity to facilitate the movement of animals in the landscape. In light of our

findings, we suggest that restricting human mobility along predefined bear hot spots for road

network  crossing  (e.g.,  reducing  speed limits),  or  favoring  alternative,  undisturbed links

(e.g., wildlife overpasses) could be effective ways to restore or improve connectivity. This

should be paralleled by specific measures to reduce conflict, such as the protection of human

property  (i.e.,  beehives,  poultry,  or  buildings),  or  anthropogenic  food  (i.e.,  bear-proof

garbage bins) in future areas of expansions.

Understanding and quantifying the drivers that prevent animal metapopulations to be

effective  is  essential  for  long  term  conservation  and  for  the  development  of  effective

policies. We emphasize the importance of considering multiple types of human disturbance
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(sensu Nickel et al., 2020; Corradini et al., 2021) when predicting connectivity for animals

on the landscape, particularly expanding large carnivores and other species that are subject to

human competition or predation. While COVID-19 lockdown was a traumatic experience

linked to a tragedy, our findings suggest that small-scale, pulsing modifications of human

activity  might  be  sufficient  to  notably  increase  bear  connectivity,  thus  providing  an

encouraging  example.  In  conclusion,  we  urge  researchers  and  conservation  planners  to

consider the non-negligible impact of human mobility on animal movement and connectivity

in future studies.
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Tables and figures

Figure  1  -  Recorded  occurrences  (bear-related  complaints  classified  by  damage  type,

sightings, and signs of presence), during the period between March 9th and May 18th (time

interval of the 2020 lockdown), in the years 2016-2020. Bars referring to successive years

are colored in increasingly darker shades of gray. The estimated number of bears per year,

with 95% confidence interval (Groff et al., 2020; ISPRA–MUSE, 2021) is also reported.
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Figure 2 - Recorded bear occurrences (all event types, pentagon for 2020 and triangle for

2019) mapped over the province of Trento, Italy, during the lockdown period of March 9 th to

May 18th.  The predicted most suitable bear habitat (cross-hatching) and relative corridors

(continuous lines) identified by Peters et al.  (2015), as well as all  the hot spots for road

network  crossing  (circle)  and  the  bear  population  core  area  (light  gray),  are  shown for

reference. The continuous gradient shows the total resident human population density for

administrative units (Istat, 2015).
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Figure 3 - Fitted regression lines with 95% confidence bands, estimated via Generalized

Linear Models, of the empirical relationship between bear space use (as bear occurrences,

compared to a random draw) and the proximity to hot spots for road network crossing (all,

low -, medium -, and high density) between 2019 and 2020, in the period March 9th and May

18th. We plotted the relative probability of occurrence with respect to proximity to hot spots

by year, even when not  included in the  best  model,  for  comparison purposes.  Year  was

included in the overall model and for proximity to hot spots for medium density of crossings.
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Figure 4 - Proximity of bear occurrences to brown bear population core area (Figure 2) in

2019 and 2020, reported during the period March 9th - May 18th. Each dot represents a bear

occurrence reported with high spatial reliability (< 500 m accuracy). Above the boxplots:

output of the two-sample Wilcoxon test for the distribution.
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Table 1 - Results from the Generalized Linear Model with a Poisson error distribution fitted

to  the  number  of  bear  damage  complaints,  standardized  for  bear  population  size,in

dependence on the type of complaint and year of occurrence. The p-values for each covariate

indicate if the number of reported damages that occurred between March 9 th and May 18th

(corresponding to 2020 lockdown in Italy) differed between 2020 and the previous years

(2016-2019).

Damage type

Year Livestock Orchard Poultry Garbage Building Beehive No. bears

2016 0.372 - 0.396 - - 0.765 0.001

2017 0.220 0.657 - <0.001 <0.001 <0.001 0.020

2018 0.796 - 0.022 - <0.001 <0.001 0.062

2019 0.469 0.341 0.039 0.001 0.003 <0.001 0.688
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Table 2 - Results of the fitted Generalized Linear Models to assess brown bear proximity to

hot  spots for road network crossing,  at  different  density of crossings,  between 2019 and

2020, in the period March 9th - May 18th. Only the most parsimonious models are reported,

based on model comparison via analysis of variance (ANOVA) and second-order Akaike

Information  Criterion  (AICc)  (further  information  in  Table  S5  and  Table  S6).  For  each

covariate, the estimated coefficient values (b), the 90% confidence interval, and the P-values

scores (*p <0.05; **p <0.01; ***p<0.001) are reported.

Model 1 Model 2 Model 3 Model 4

Year(2020)
1.33 ***

(0.91, 1.74)
2.48 ***

(1.64, 3.33)

Distance to all crossings
-0.59 ***

(-0.79, -0.39)
Distance to low density 
of crossings

-1.13 ***

(-1.58, -0.68)
Distance to medium density 
of crossings

-2.40 ***

(-2.99, -1.80)
Distance to high density 
of crossings

-2.24 ***

(-3.03, -1.45)

Constant
-3.64 ***

(-4.02, -3.27)
-4.54 ***

(-5.04, -4.04)

-6.38 ***

(-7.33, -5.44)

-5.73 ***

(-6.67, -4.79)

Note: *p <0.05; **p <0.01; ***p<0.001
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Supplementary Material

Table S1 - The type of damage caused by bears to each target, as well as the target's relative

proximity to human dwelling.

Target Type of damage reported Proximity to human dwelling

Poultry Fence damage, poultry slaughter High

Garbage
Garbage  pail  damage,  garbage
consumption

High

Building*
Damage to the structure, consumption of
food supplies stored inside the building

Mixed

Beehive
Hive  destruction,  honey  consumption,
queen bee loss

Mixed

Livestock
Damage  to  the  stable,  animal  slaughter
(cattle, pigs, horses, dogs, or goats)

Low

Orchard
Fence  damage,  broken  trees,  fruit
consumption

Low

* Mountain huts, farms, and houses
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Table  S2  -  Selection  coefficients  from the  most  parsimonious  generalized  linear

mixed model with a random intercept describing bear resource selection at the within

home-range scale in the Autonomous Province of Trento, Italy (Peters, et al., 2015).

Covariates β-Coefficient SE p

Elevation (100 m) 0.807 0.029 <0.001

Elevation2 (100 m) -2.82e-04 9.58e-06 <0.001

North (aspect) 0.288 0.037 <0.001

Distance to bike trails (100 m) 0.047 0.003 <0.001

Distance to bike trails2 (100 m) -4.7e-06 2.63e-07 <0.001

Urban -0.232 0.185 >0.05

Mixed 0.154 0.061 <0.05

Cultivated (without orchards) -0.420 0.223 >0.05

Water -0.696 0.246 <0.01

Shrub 0.392 0.056 <0.001

Model intercept -6.225 0.509 <0.001

Source: Peters, et al. (2015), Biol. Cons. 186, 123-133
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Table S3 - Number and type of bear-related complaints reported from March 9 th to May 18th,

in 2019 and 2020. For damages caused by bears, the specific targets are reported.

Damages to

Beehive Garbage Building Livestock Orchard Poultry
Sightings &

signs 

2016 27 0 0 2 0 5 30

2017 4 3 1 2 1 0 48

2018 11 0 1 6 0 2 24

2019 15 1 15 * 9 1 4 19

2020 52 26 39 ** 7 3 13 33

Note: * 5 mountain huts, 8 farms, 2 houses;  ** 32 mountain huts, 7 farms, 3 houses;
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Table S4 - Complete model outputs from Generalized Linear Models with a Poisson error

distribution fitted to the occurrence of bear-related complaints in dependence on the type of

complaint and year of occurrence. The estimated coefficient values (b), the standard error,

and the P-values (*p<0.05; **p<0.01; ***p<0.001) are reported for each covariate. When

estimated coefficients are absent, no records were available for that year.

Damage type

Year Livestock Orchard Poultry Garbage Building Beehive No. bears

2016
-0.560

(0.627)
-

-0.368

(0.434)
- -

-0.059

(0.199)

-0.598 **

(0.188)

2017
-0.847
(0.690)

-0.405
(0.913)

-
-1.649 ***

(0.488)
-2.970 ***

(0.725)
-2.159 ***

(0.431)
-0.412 *
(0.177)

2018
0.134

(0.518)
-

-1.466 *

(0.641)
-

-3.664 ***

(1.013)

-1.243 ***

(0.293)

-0.322

(0.172)

2019
0.357

(0.493)
-1.099
(1.155)

-1.179 *
(0.572)

- 3.258 **
(1.019)

-0.891 **
(0.297)

-1.179 ***
(0.286)

-0.065
(0.161)
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Table S5 - Intra-model comparison via analysis of variance (ANOVA) for each of the fitted

Generalized Linear Models for prediction (ii). For each model evaluating the proximity of

bear occurrences to different types of hot spots for road network crossing, we tested which

combination of terms provided the best parsimonious fit of the data.

Terms Deviance Resid. Dev Pr(>Chi)

All crossings

~ 1 1055.88

Year 48.95 1006.93 <0.001

Distance 37.39 969.53 <0.001

Year:Distance 0.15 969.38 >0.05

Low density 
of crossings

~ 1 361.90

Year 2.76 359.13 >0.05

Distance 30.92 328.21 <0.001

Year:Distance 0.30 327.91 >0.05

Medium density 
of crossings

~ 1 665.10

Year 63.73 601.37 <0.001

Distance 105.62 495.74 <0.001

Year:Distance 0.01 495.73 >0.05

High density 
of crossings

~ 1 312.43

Year 2.13 310.30 >0.05

Distance 55.08 255.22 <0.001

Year:Distance 0.04 255.18 >0.05
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Table S6 - Model selection results for models testing the proximity of bear occurrences to

different  types  of  hot  spots  for  road network crossings,  used to  test  prediction (ii).  The

explanatory variables, degree of freedom, second-order Akaike Information Criterion (AICc)

scores, and delta AICc (ΔAICc) are reported for each model. Models are ranked by AICc

scores for each type of road network crossing.

Model df AICc ΔAIC

All crossings

Distance + Year 3 975.54 0

Distance + Year + Year:Distance 4 977.40 +1.86

Year 2 1010.93 +35.39

Distance 2 1021.21 +45.67

~1 1 1057.88 +82.34

Low density
of crossings

Distance + Year 3 334.23 0

Distance 2 334.85 +0.62

Distance + Year + Year:Distance 4 335.93 +1.70

Year 2 363.14 +28.91

~1 1 363.90 +29.67

Medium density
of crossings

Distance + Year 3 501.76 0

Distance + Year + Year:Distance 4 503.75 +1.99

Distance 2 559.95 +58.19

Year 2 605.37 +103.61

~1 1 667.10 +165.34

High density
of crossings

Distance 2 261.20 0

Distance + Year 3 261.23 +0.03

Distance + Year + Year:Distance 4 263.20 +2.00

Year 2 314.31 +53.11

~1 1 314.43 +53.23
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Figure S1 - Mobility changes in the Province of Trento by locations, based on aggregated

and  anonymized  data  (Google,  2021).  The  baseline  is  the  median  value,  for  the

corresponding day of  the  week,  during the period Jan 3–Feb 6,  2020.  The dashed lines

represent  the  beginning (March 9th)  and the end (May 18th)  of  the  2020 lockdown.  The

difference in movement between the baseline and the lockdown is reported as a percentage

difference.
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Figure S2 - Some examples of bear-related damages and occurrences. Clockwise from top-

left:  Damaged  mountain  hut  door  (L.  Pincigher  -  Archivio  Servizio  Faunistico  PAT),

damaged beehives (R. Bernardi - Archivio Servizio Faunistico PAT), toppled garbage bin

(M.  Zeni  -  Archivio  Servizio  Faunistico  PAT),  and  bear  front  and  rear  footprints  (G.

Rastrelli).
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Figure S3 - A: Bootstrapped regression coefficients (mean ± 1 SD) of the fitted GLM for

testing the increase in abundance between 2020 and any other year (2016-2019). B: P-value

distributions  of  bootstrapped  model's  parameters.  The  dashed  line  marks  the  statistical

significance  level  (p  =  0.05)  and the  boxplot  notch  the  95% confidence  interval  of  the

median. The y-axis is scaled (by square root transformation) to highlight the values near the

reference significance level.
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Figure S4 - Average daily activity pattern of brown bears in the Central Alps. Individual

forward-backwards movement (i.e., +-2G, scaled from 0 to 255) computed using a tri-axial

accelerometer (4 Hz) from Vectronic GPS collars is used to determine the average activity

level. We used activity data of animals collared between 2006 and 2019 (8 females, 4 males),

for a total of 25 animal/year. The dashed lines represent the beginning (March 9 th) and the

end (May 18th) of the 2020 lockdown.
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Abstract

Animal  population  growth  is  influenced  by  density-dependent  factors.  Individual

performance and local density are intrinsically linked through a feedback mechanism that

lead to population-level changes; yet, density-dependent processes are normally examined at

the population level,  making rapid demographic change assessment difficult.  In a rapidly

changing world, it is thus critical to identify and understand such regulatory processes early

on to  gain  a  better  understanding  of  the  evolution  of  life  history  traits  and,  ultimately,

population  persistence  in  the  environment.  This  is  especially  significant  for  long-lived

omnivores, whose persistence is critical to the ecosystem's function, but whose slow life

histories make them susceptible to abrupt changes.  In this study, we investigated whether

density-dependent  factors  drove  changes  in  lean  body  mass  and  fat  percentage,  both

indicators of individual performance, in one of the world's largest terrestrial omnivores, the

grizzly bear. We examined four main hypotheses using longitudinal morphometric data from

418 grizzly bears captured for scientific purposes between 2000 and 2020 in the Greater

Yellowstone Ecosystem. While controlling for external factors such as management practices

and  land  ownership,  individual  lean  body  mass  was  found  to  be  negatively  related  to

population  density,  especially  among  females  and  individuals  in  the  growth  phase.  The

Greater  Yellowstone  Ecosystem  has  been  subjected  to  significant  landscape-level

perturbations  during  the  last  two  decades,  combined  with  steady  local  bear  population

density increase. When controlling for recent high-calorie food perturbations, our findings

revealed that  grizzly bear body fat  levels or accumulation over this time period was not

affected by population density. As opportunistic large omnivores, grizzly bears most likely

modified  their  feeding  tactic  and  morphologically  adapted  in  the  face  of  increased

interference  competition.  In  a  changing  world  where  environmental  perturbations,

particularly  those  caused  by  humans,  are  increasing  in  frequency,  it  will  be  critical  to

disentangle the mechanisms that drive population dynamics, both for species persistence and

for the health of entire ecosystems.

Keywords:  Eco-evolutionary  dynamics;  omnivory;  density-dependence;  ecosystem

perturbations; Greater Yellowstone Ecosystem; Ursus arctos;

112



Chapter 4

Introduction

Body mass and body composition (fat vs. lean mass) are indicators of performance directly

related to fitness of mammals: larger or fatter individuals usually have a higher probability of

survival and a greater capacity to invest energy in reproduction (Stearns, 1992; Stephens, et

al., 2009; Wilder et al., 2016), thus increasing their reproductive success. This particularly

applies  to  long-lived  mammal  species  that  rely  on  energy  accumulation  for  long-term

survival and reproductive strategies (Oftedal, 2000). When population density of long-lived

mammals increases toward maximal levels in a system (i.e., carrying capacity; Stephens et

al.,  2019),  a  sequence  of  changes  in  vital  rates  has  been  postulated  to  occur. First,  the

mortality  rate  of  immature  animals  increases,  followed  by  an  increase  in  age  of  first

reproduction (i.e., primiparous females), a reduction in the reproductive rate of adult females

and, lastly, an increase in the mortality rate of adults (Eberhardt, 2002). In large mammals,

because  females  are  predominantly responsible  for  parental  care,  the  first  vital  rate  that

generally  changes  with  population  density  (i.e.,  juvenile  survival)  is  directly  related  to

maternal body mass (e.g., Gaillard et al., 1997) and body composition (e.g., Robbins et al.,

2012). Alternatively, when population density is high, fertile females may not reproduce due

to  the  high  competition  for  resources  to  be  allocated  to  embryo  development  (i.e.,

insufficient  body  fat  to  sustain  the  pregnancy;  Robbins  et  al.,  2012)  or  offspring  care,

resulting in reproductive suppression (Wolff, 1997). Although female performance can be a

reliable indicator of changing population density, quantifying variations in vital rates of long-

lived  mammalian populations  can take  decades  (Western,  1979),  potentially  limiting  the

ability to detect the emergence of density-dependent effects.

Individual  performance  and  population  density  are  intrinsically  linked  through  a

feedback mechanism: in order to grow larger and thus enhance fitness,  individuals must

acquire proportionally more resources, the availability of which often decreases as density

increases  (i.e.,  intraspecific  competition;  Chesson,  2000).  The  importance  of  density

dependence  in  influencing  demographic  processes  of  populations  is  well  established

(Reznick  et  al.,  2002),  particularly  in  isolated  populations  with  no  immigration  and

emigration  (Hixon  et  al.,  2002).  Density-independent  factors,  such  as  landscape

perturbations or extreme weather, may affect these mechanism by lowering carrying capacity

due to variation in resource availability (Skogland, 1985; Woodworth Jefcoats et al., 2017),‐

which can amplify the impact of high densities on life-history traits (Fowler, 1981). In the

face of competition or perturbations, animals may adopt different behavioral, reproductive,

or  feeding  tactics  to  maintain  high  individual  performance  (Kruuk  and  Parish,  1982;
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Pettorelli  et  al.,  2005;  Taylor  and Norris,  2007;  Fattebert,  et  al.,  2019).  However,  rapid

environmental  changes,  such  as  those  induced  by  humans,  may  create  mismatching

conditions  for  species  that  cannot  adapt  quickly  (Sih  et  al.,  2010).  Long-lived  animals,

because  of  their  slow life  history,  might  not  be  able  to  adapt  fast  enough  to  maintain

individual performance. Climate change, for example, may either directly affect individual

performance in  large  mammals  with increasing  temperature  altering the thermal  balance

(Fuller et al.,  2016; Semenzato et al.,  2021), or indirectly by shifting the spatio-temporal

distribution of resources (Pettorelli et al., 2007). Droughts and shifts in resource waves in

particular can disrupt animals' ability to track resources (Aikens et al., 2020) and directly

affect fat accumulation and thus timing of birth (e.g.,  migratory ungulates; Aikens et al.,

2021).

The adaptive capacity to respond to spatio-temporal environmental changes varies

substantially  among  species.  Clavel  et  al  (2011),  for  example,  observed  that  generalist

species are outperforming and gradually replacing specialist species globally because of their

plasticity in responding to climate and land use change. Omnivory, a common trait among

generalist species, may be a beneficial strategy in a changing environment because it enables

animals to shift their diet when a resource becomes temporarily depleted, allowing recovery

of  the  resource  and  ultimately  stabilizing  the  system  (Kratina  et  al.,  2012).  Whereas

environmental stochasticity affects population density over time (Sæther, 1997), which in

turn  influences  life-history  traits  in  large  mammals,  omnivores,  unlike  specialist  species

(e.g., herbivores; Bårdsen and Tveraa, 2012), may be able to buffer short-term variations in

habitat productivity. For instance, omnivores require smaller home ranges than carnivores

with  comparable  body  size  in  environments  with  low  productivity  (Hirt  et  al.,  2021),

indicating greater capacity per unit area to obtain energy. Although generalist species may

have an evolutionary advantage compared with specialists in responding to changes in the

environment,  they  will  eventually  be  affected  by  increased  population  density  and

competition  for  limited  resources.  This  has  been  observed in  medium-bodied omnivores

whose demographics are influenced by other factors such as group size or territoriality (e.g.

badger, Kruuk and Parish, 1982; kit fox: Dennis and Otten, 2000), but few studies, to our

knowledge, have disentangled the effects of population density and environmental alterations

on individual performance of solitary, non-territorial large-bodied omnivores. By examining

variation in body mass and composition among individuals across a range of local population

densities,  we  can  gain  important  insights  into  the  population  dynamics  of  large-bodied

omnivores. Furthermore, by partitioning body composition, we can evaluate the impact of
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past  conditions,  as  reflected  by  lean  body mass,  and  current  conditions,as  expressed  by

percentage body fat, that individuals were exposed to.

The  Greater  Yellowstone  Ecosystem  (GYE),  which  is  home  to  most  of  North

America's  large  mammal  species,  is  no exception to  environmental  fluctuations.  Despite

being one of the world's largest nearly intact temperate ecosystems, environmental changes

have occurred in recent  decades (Gibson 2007; Gude et  al.,  2007;  Romme et al.,  2016).

Within the large mammal community, the brown bear (Ursus arctos), commonly referred to

as grizzly bear in the interior range of North America, has received particular attention for

over 60 years. They have not been subjected to regulated hunting since 1975, the year of its

listing under the U.S. Endangered Species Act and their diet consist primarily of natural

foods following the closure of municipal garbage dumps in 1968–1979 (Haroldson et al.,

2008; Gunther et al., 2014). One of the world’s largest terrestrial omnivores, grizzly bears

consume food resources across multiple trophic levels depending on availability (Gunther et

al., 2014). Omnivory in grizzly bears is a functional adaptation, allowing them to live in a

broad range of environments (i.e., Holarctic distribution; McLellan et al., 2017) and exploit

variation in the nutritional composition of food sources (Coogan et al., 2018). Besides their

opportunistic feeding strategy, grizzly bears are long-lived (>25 yrs), and are thus exposed to

habitat variability and competition over many years. They are also non-territorial and can

track resources over extensive areas, and have no natural predators except for conspecifics.

An important  aspect  of  their  life history strategy is  the need to acquire sufficient  stored

energy reserves during their active months to support a 3- to 7-month denning period during

hibernation. For reproductive-age females, stored energy must also be adequate to support

pregnancy and lactation while denned (> 20% body fat ; Robbins et al., 2012). Consequently,

grizzly bear body mass varies considerably within their annual cycle, from lows in early to

mid-summer, reflective of lean body mass, to substantial mass gain prior to denning and

onset of hibernation. Additionally, because grizzly bears grow rapidly during their first years

of life and subsequently plateau at a certain age (i.e., growth asymptote; Bartareau et al.,

2011),  age-related changes in body mass are particularly significant during the early life

cycle stage.

The  conservation  status  of  the  Yellowstone  grizzly  bear  population  improved  in

response to concerted management efforts beginning in the early 1980s and was driven by

relatively high survival rates for several decades (Schwartz et al., 2006). Population growth

has slowed since the early 2000s, primarily due to lower rates of immature survival and

lower reproductive transition probability for females in presence of density dependence (van

Manen et al., 2016). However, it remains uncertain to what extent intraspecific competition
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(i.e.,  density-dependent  factors)  influence  individual  performances  such  as  sex-specific

growth  and  body  composition  (van  Manen  et  al.,  2016).  This  is  a  particularly  relevant

question  given  environmental  perturbations  (i.e.,  density-independent  factors)  involving

several high-calorie food sources in recent decades (e.g., Macfarlane et al., 2013; Haroldson

et  al.,  2005).  Using  two  decades  of  body  composition  estimates  (lean  body  mass  and

percentage body fat) for grizzly bears captured in the GYE, we tested research hypotheses

associated with grizzly bear population density variation on individual level performance

(Table 1), while controlling for exposure to environmental changes. We first hypothesized

that variation in lean body mass of grizzly bears across the GYE from 2000 to 2020 was

linked  to  that  of  local  population  density,  particularly  before  bears  reached  their  age-

dependent  asymptotic  body  mass.  Similarly,  we  hypothesized  that,  given  the  bear's

ecological plasticity, body composition (i.e., fat percentage) would decline with greater local

population density, particularly for growing individuals, and would remain constant across

decades characterized by substantial changes in availability of food resources. We tested four

hypotheses by assessing the following predictions: (i) lean body mass of bears is negatively

related to grizzly bear local population density, (ii) lean body mass of growing individuals,

more so than mature individuals, is negatively related to local population density, (iii) body

fat percentage is negatively related to grizzly bear population density, irrespectively of food

resource  variation  through  decades  and  (iv)  this  relationship  is  evident  among  growing

individuals more so than mature individuals. Alternatively, because body fat is essential for

grizzly bear hibernation and, more specifically, for female reproduction and offspring care,

bears  may prioritize  fat  storage over  lean body mass  when allocating energy from food

consumption.  Accordingly,  reduced  access  to  foods,  caused  by  increasing  interference

competition, should primarily result in reduction in lean body mass. We thus predict that

body fat levels among individuals do not decrease as population density increases, but lean

body mass does.

Materials and methods

We tested  our  research  hypotheses  by  examining  factors  that  may  influence  individual

variation in lean body mass and body fat in Yellowstone grizzly bears. We estimated sex-

specific lean body mass growth using von Bertalanffy growth curves. We then examined if

individual variation in lean body mass for two life stages was associated with a spatially

explicit  covariate  of  local  population  density  (H1  and  H2).  Because  of  different  land

ownership  and  management  practices  (Figure  S1),  the  history  of  population  dynamic
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processes varies within the study area: Yellowstone National Park is the core protected area

where grizzly bears have always been present, whereas densities increased in adjacent areas

starting in the 1990s and 2000s and outlying areas of the ecosystem were re-occupied only in

the last decade. Therefore, we controlled for spatial heterogeneity of population dynamic

histories as described under covariates. We used measurements from the beginning of the fat

accumulation phase to the onset of hibernation to estimate the effect of population density

and life stage on body composition, while controlling for decadal variation in food resource

availability from the 2000s to 2010s (H3 and H4).

Study area 

The study area consisted of occupied grizzly bear range in the GYE (68,736 km2 in 2018)

and included Yellowstone and Grand Teton National Parks, portions of 5 adjacent national

forests, and state and private lands in Wyoming, Montana, and Idaho. The GYE consists of a

high-elevation plateau surrounded by 14 mountain ranges with elevations greater than 2,130

m, and contains the headwaters of 3 continental-scale rivers. Summers are short and most

average  annual  precipitation  (50.8  cm)  falls  as  snow.  Vegetation  transitions  from  low-

elevation grasslands through conifer forests at mid-elevations, reaching alpine tundra around

2,900 m.

Capture and handling

Grizzly bears were captured during 1975–2020 as part of a long-term monitoring program.

Captures were conducted under U.S. Fish and Wildlife Service Endangered Species Permit

[Section (i) C and D of the grizzly bear 4(d) rule, 50 CFR17.40(b)], with additional permits

from the National  Park  Service,  and  state  wildlife  agencies  of  Wyoming,  Montana,  and

Idaho. Capture and handling conformed to the Animal Welfare Act and to U.S. Government

principles for the use and care of vertebrate animals used in testing, research, and training

(U.S. Geological Survey ACUC no. 2021.1). We captured bears in frontcountry (road access)

and backcountry (no road access) settings to obtain a geographically representative sample

of  the  population.  Specifically,  grizzly  bear  captures  were  conducted  with  the  aim  of

obtaining adequate coverage across the distribution of bears at the time of sampling, as well

as  a  representative  sample  by  age,  sex,  age  class,  and  considering  other  covariates  that

influence demographics. A more detailed description of the sample's geographic distribution

and randomness is described elsewhere (Schwartz et al., 2006).

Morphometric measurements 
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As  part  of  a  suite  of  morphometric  measurements,  we  obtained  body  mass  using  an

electronic scale (Artech Model 20210-2K s-beam load cell, Artech Industries Inc., Riverside,

CA and a 4406 indicator A&D Co., Ltd. Tokyo, Japan) and estimated body fat percentage

with Bioelectrical Impedance Analysis (BIA; Quantum II, RJL Systems, Clinton Township,

MI). We calculated lean body mass (kg) by subtracting body fat mass from total body mass.

We extracted a vestigial, first premolar tooth for age estimation based on cementum annuli,

which was conducted by Matson’s Laboratory (Manhattan, MT) (Matson et al., 1993).

Analysis 

Determining lean body mass and growth

Grizzly bears accumulate fat reserves over the course of the active season (April–November)

in preparation for hibernation, which can cause substantial seasonal influence on body mass.

Consequently,  we  focused  on  lean  body  mass  for  our  analysis  of  growth  because  it  is

seasonally invariant. We tested this assumption by calculating the Kendall rank correlation

coefficient between lean body mass of mature bears and the central months of the active

season (May–October). Mature bears were defined as bears who have reached 95% of their

sex-specific asymptotic lean body mass (as defined by von Bertalanffy growth, see below).

We excluded bears from our analysis that were captured for conflict management purposes,

individuals whose age was not estimated via cementum annuli, measurements from same-

year recaptures, and any values identified as statistical outliers for which we had evidence of

measurement or transcribing errors. We used lean body mass of bears of all ages to estimate

growth,  but  we  excluded  dependent-age  (<2  yrs)  individuals  to  estimate  body  fat  gain.

Because proximity to carcass redistribution sites used for deposition of road-killed ungulates

was positively correlated with lean body mass in some males (see Supporting Information

S2), we also excluded 52 male grizzly bears captured in proximity (<2,000 m) of such sites

from analysis. 

Growth curves  are useful  tools to model  patterns  of  growth as a  function of  age

within and among populations and are commonly used in fisheries science but have also

been applied in a wide range of mammals (e.g., Griffiths and Brook, 2005; Mumby et al.,

2015;  Hilderbrand et  al.,  2018).  There  are different  functions  for  growth curves  and for

grizzly bears the von Bertalanffy growth function was found to be particularly parsimonious

(Bartareau et  al.,  2011).  We estimated body mass  growth in  grizzly bears  by fitting the

following function:

E[W|t] = W∞ (1 – exp–k(t-t0)), (1) 
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where E[W|t] is the expected body mass at age t, W∞ is the asymptotic average maximum

body mass, k is the growth coefficient, and t0 is the hypothetical age at which the average

body  mass  is  zero.  We  performed  the  curve-fitting  procedure  following  the  approach

outlined by Ogle (2016), using the Levenberg-Marquardt nonlinear least-squares algorithm

provided in the R package minpack.lm (Elzhov et al., 2016). Because body size in grizzly

bears is dimorphic, we fitted population-level, sex-specific growth curve using data from

bears born over four decades, from the 1970s through the 2010s. Measurements from same-

year  recaptures  were  excluded  by  randomly  selecting  one  body  composition  estimation

within that year, but body measurements from the same animal collected over several years

were used. Regardless, the majority of the measurements were collected from grizzly bears

that had only been captured once, therefore the sex-specific growth curves were assumed to

be representative of  the  population.  We identified the age at  which 95% of  sex-specific

asymptotic lean body mass was obtained according to the von Bertalanffy growth functions,

and  defined  growth-phase  and  mature  bears  as  those  younger  and  older  than  that  age,

respectively.  We  derived  confidence  intervals  for  the  growth  function  parameters  via

bootstrapping (n = 999 iterations) and estimated the overall goodness-of-fit by measuring the

correlation between observed and expected values. We used the Student's t-test to explore

whether the individual  lean body mass of bears at different  life cycle stages (growth vs.

mature phase) changed during 2000–2009 compared with 2010–2020 before proceeding to

more complex models based on spatio-temporal, heterogeneous drivers.

Covariates

To examine the spatio-temporal relationships with local population density, we used a grizzly

bear density index developed for the GYE by Bjornlie et al., (2014). The basis of that index

was a spatio-temporal population reconstruction using long-term capture and telemetry data,

calculated for 14- × 14-km grid cells (196 km2; approximate annual home-range of female

bears) for 1983–2007, with time series projections from 2008 through 2012. Because there

are no future captures from which to back-cast later years of the density index, this latter

procedure  was  necessary  to  reduce  underestimation  due  to  capture  lag  times  of

approximately 5 years. Previous studies showed that the density index effectively tracked

population density changes through time and space (Appendix S1 in Bjornlie et al., 2014).

We used the same procedures to estimate population density from 1983 through 2015 using

capture and telemetry data, and projecting trends on a cell-by-cell (n = 960) basis for 2015–

2020 using ARIMA(1,1,1) forecasting based on the previous 7 years of density information
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(2008–2014), accounting for drift (d > 0) (Hyndman and Khandakar, 2008). The spatial and

temporal evolution of grizzly bear density over the GYE is shown in Figure S3. Individual

variation from expected sex-specific growth, or body fat percentage, at various life stages

were tested using the derived index, which allowed the assessment of local (not average)

density for each individual at the time of capture.

To account for spatial heterogeneity of population dynamic processes associated with

different land ownership and management, we used three geographic zones (Figure S1) as a

control  variable  in  our  analysis  (Supporting Information S1):  Yellowstone National  Park

(YNP)  where  bears  have  always  been  present  and  at  relatively  high  densities;  the  area

outside of the national park but within the Grizzly Bear Recovery Zone (RZ) where bear

densities increased during the 1990s and 2000s; and the area outside the recovery zone but

within the Demographic Monitoring Area (DMA), most of which was re-occupied over the

last 2 decades (Figure S1). We did not use these zones when evaluating variations in body fat

percentage,  because  the  majority  of  research  captures  in  September  and  October  were

confined to Yellowstone National Park.

We controlled for the decades of 2000–2009 and 2010–2020 in our analysis as a

temporal proxy for changes in the availability of high-calorie foods considered important for

grizzly bears in the Greater Yellowstone Ecosystem (Supporting Information S4). Mature,

cone producing whitebark pine trees (seed of which are a high caloric food source during late

summer  and  fall  for  grizzly  bears  in  the  Ecosystem;  van  Manen  et  al.,  2016),  was

experiencing  extensive  mortality  from  Mountain  pine  beetle  (Dendroctonus  ponderosae)

during the first decade (2000-2009, Macfarlane et al. 2013) and had run its course by the

second decade (2010-2020, Shanahan et al. 2016). Because body fat accumulation is largely

a function of current conditions, whereas lean body mass is a result of past conditions, which

cannot be tracked at the time of capture, we only examined the time-dependent relationship

between food source availability and body fat.

Hypothesis testing

We used Generalized Additive Mixed Models (GAMMs) with a Gaussian error distribution

to test our first two hypotheses (H1 and H2) by simultaneously estimating individual lean

body mass (Lean Mass) while accounting for sex-specific growth, local grizzly bear density

index, life cycle stage, and geographic zones. We used a natural log transformation for age

(Age)  and  fitted  it  with  a  thin  plate  regression  spline  to  match  the  sex-specific  von

Bertalanffy growth curve as accurately as possible. We then added the grizzly bear density

index (Density) and geographic zones (Zones) as fixed terms, and year of capture (Year) as a

random intercept term to account for inter-year variability (ζ). Because the density index
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indicated different changes over time in the three geographic zones (Figure S3), we included

an interaction term (Density x Zones). We also included life cycle stage (Life Stage) as a

fixed term and an interaction term between density and life cycle stage (Density x Life Stage)

to evaluate the local density relationship of growing versus mature bears. We conditionally

standardized (μ = 0, σ = 1) the response variable and all continuous explanatory variables

associated with each sex and checked for multicollinearity (|r|< 0.7, Dormann et al., 2013),

thereafter fitting sex-specific GAMMs using the functions from the R package mgcv (Wood,

2011). We started by fitting the full model as:

Y Lean Mass ~ β0 + β1 log(Age) + β2 Density + β3 Zones + β4 Life Stage +

β5 (Density x Zones) + β6 (Density x Life Stage) + ζ Year + ε
(2)

for females and males separately, then gradually reduced models, including a null  model

(Table S5), and assessed the relative contribution of each predictor using the second-order

Akaike's information criterion (AICc). We used bootstrapping (n = 999 iterations) to derive

confidence intervals and statistical significance for each model parameter.

We used Generalized Linear Models (GLMs) with a Gaussian error distribution to

test hypotheses H3 and H4, by simultaneously estimating body composition (i.e., body fat

percentage; Body Fat) while accounting for daily gain, local grizzly bear density index, life

cycle  stage,  and  decade  of  capture  (i.e.,  2000–2009  and  2010–2020).  We  began  by

determining the month in which the minimum body fat level is reached (i.e., the inflection

point) for each sex to estimate the physiological start of the fattening period. To account for

intra-year  fat  accumulation,  we  added the day  of  the  year  (Julian)  as  a  fixed  term and

included it  in all  models with body fat  as  the response variable.  We added grizzly bear

density index (Density) and life cycle stage (Life Stage) as a fixed term and an interaction

term (Density x Life Stage). Thus, we added the decade of capture (Capture Decade) as a

fixed  term and an  interaction  term with  day of  the  year  (Julian  x  Capture Decade)  for

modelling the annual rate of gain. We again included a random intercept term for year of

capture (Year) to account for inter-year variability (ζ) and conditionally standardized (μ = 0,

σ = 1) the response variable and all continuous explanatory variables associated with each

sex. We fitted the model as:

Y Body Fat ~ β0 + β1 Julian + β2 Capture Decade + β3 Density + β4 Life Stage + 

β5 (Julian x Capture Decade) + β6 (Density x Life Stage) + ζ Year + ε
(3)
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for females and males, using individual estimates of body fat percentage from the beginning

of  the fat  accumulation phase to the  beginning of the  denning season (end of  October).

Finally, we evaluated the relative contribution of each predictor term using the second-order

Akaike's information criterion (AICc). We again used bootstrapping (n = 999 iterations) to

derive  confidence  intervals  and  statistical  significance  for  each  model  parameter.  We

performed all statistical analysis in R 4.0.0 (R Core Team, 2020) under Ubuntu 16.04.3 LTS

(Canonical Ltd., London, United Kingdom).

Results

We compiled  566  (210  females,  356  males)  body  mass  measurements  for  418

individual bears (146 females, 272 males) born between 1978 and 2019 and captured for

research purposes from 2000 through 2020. Monthly lean body mass of mature bears did not

vary over the active season for males (ρ = -0.06, p = 0.61) and for females during June–

October (ρ = 0.11, p = 0.23) (Figure S6); inclusion of May data indicated a slight trend in

monthly estimates  (ρ  = 0.18,  p  = 0.04)  but  sample size  was low (n = 8),  and a  higher

proportion of females with dependent offspring (63%) were captured in this month, which

typically have lower lean body masses than lone females (Hilderbrand et al., 2000).

The von Bertalanffy growth function accurately described the growth pattern of the

Yellowstone grizzly bears, fitting both female (ρfemale = 0.76; W∞ = 94.77 ± 1.43, k = 0.39 ±

0.05,  t0 = -0.44 ± 0.30) and male (ρmale = 0.84;  W∞ = 161.51 ± 3.42,  k = 0.21 ± 0.02,  t0 =

-0.54 ± 0.27) lean body mass data well (Figure 1).  Female grizzly bears grew relatively

faster (k = 0.39 ± 0.05) than males (k = 0.21 ± 0.02), reaching 95% of their asymptotic lean

body mass (90 kg) at seven years of age, whereas males reached 95% of their total lean body

mass (153 kg) at the age of fourteen. When grouping bears by sex and life cycle stage, we

did not observe differences in lean body mass during 2000–2009 compared with 2010–2020

(females: growing phase, p > 0.05; mature phase, p > 0.05; males: growing phase, p > 0.05;

mature phase, p > 0.05) (Figure S7), ruling out simple time-dependent relationships in favor

of more complex spatio-temporal drivers.

Lean body mass was positively related to age in all bears (females: p < 0.01; males: p

<  0.01)  (Table  2),  confirming  the  relationship  predicted  by  the  von  Bertalanffy  growth

function (Figure 1; see Figure S8). Despite its significance as a predictor variable in the full

model, variation in lean body mass could not be explained solely by age (females: ΔAICc =

26.73; males: ΔAICc = 16.80, compared with best-fitting model; Table 3). Instead, female

and  male  lean  body  mass  were  negatively  related  to  grizzly  bear  population  density,
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supporting prediction (i). Compared with models that included only lean body mass as a

function of age, there was strong support for the addition of the density index covariate

(females:  ΔAICc  =  17.49,  males:  ΔAICc  =  16.80;  Table  3)  and  those  models  were

considerably more parsimonious (Table 2). Bear density had a larger effect size than any of

the other predictors in the full model (females: bDensity = -0.39, p < 0.01; males: bDensity = -0.16,

p < 0.01) (Table 2).

Density  showed  significantly  stronger  relationships  with  body  mass  of  growing

individuals than mature individuals, particularly in females (Figure 2A), partially supporting

prediction (ii). When considering the full model, we observed that the effect of density on

lean body mass differed between life cycle stages in females (bDensity:Life Stage(Mature) = 0.32, p <

0.01),  but  not  in  males  (bDensity:Life  Stage(Mature) =  0.10,  p  > 0.05)  (Table  2).  However, model

selection indicated that an interaction term for females (w  = 0.93) and, to a lesser extent,

males (w =  0.14) should be included (Table 3),  implying that male bear growth may be

associated with density as well. We observed an effect size of ~20 kg difference in lean body

mass among growing individuals at high versus low density, corresponding to about 20%

and 12% of female and male asymptotic lean body mass, respectively.

Lean  body  mass  did  not  differ  across  geographic  areas  for  either  sex,  but  was

associated with the grizzly bear density index throughout the GYE. In the full model, there

was no relationship between lean body mass and any of the three geographic areas (females:

bZones(Recovery Zone)  = 0.08, p > 0.05, bZones(Yellowstone NP) = -0.11, p > 0.05; males: bZones(Recovery Zone) =

-0.05, p > 0.05, bZones(Yellowstone NP) = -0.03, p > 0.05) (Table 2) and adding geographic areas

made the model less parsimonious when compared with lean body mass as a function of age

(females: ΔAICc = 0.61, males: ΔAICc = 1.99) (Table 3). The relationship between lean

body mass and density was generally negative in all geographic areas, with the exception of

males in Yellowstone National Park (Figure 2B),  which were larger at higher population

densities (bDensity:Zones(Yellowstone NP) = 0.22, p < 0.05) (Table 2). However, bootstrapping indicated

the latter relationship was only weakly supported (Figure S9.1) and should be interpreted

with caution.

Exploratory analysis indicated June as the physiological start of the fattening season

for  all  bears.  Specifically, females  had  the  lowest  body  fat  percentage  in  both  decades

between May and June (mean = 16.%; Figure 3, top left panel), whereas males continued to

lose body fat after den emergence, reaching their lowest condition in June in both decades

(mean = 18.3%; Figure 3, bottom left panel). Julian date was the main variable associated

with body fat percentage in females (bJulian = 0.41, p < 0.01) and males (bJulian = 0.45, p <

0.01) (Table 2), as evidenced by both model selection (Table 3) and bootstrapping (Figure
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S9.2). According to predictions of the most parsimonious model with only Julian as fixed

term, females gained 15.3 percent body fat throughout the summer to fall active season (June

1st to October 31st, 152 days; Figure 3), while males gained 16.8 percent, with daily body

fat percentage increasing by 0.10 for both females and males.

Female and male body fat percentages were not related to grizzly bear population

density when the full model was considered (females: bDensity = -0.19, p > 0.05; males: bDensity

= 0.08, p > 0.05) (Table 2), nor was this relationship supported by model selection (females:

ΔAICc = 2.49; males: ΔAICc = 2.62, compared with best-fitting model; Table 3), rejecting

prediction (iii) and supporting the alternative hypothesis. However, bootstrapping indicated a

weak negative relationship between density and body fat in females, and to a lesser extent a

positive relationship in males (Figure S9.2), suggesting that the results should be interpreted

with caution in this case as well. Further, population density did not have an age-dependent

effect on individual body fat levels (females: bDensity  :  Life  Stage(Mature)  = 0.07, p > 0.05; males:

bDensity : Life Stage(Mature) = 0.10, p > 0.05) (Table 2), as model selection also suggested (females:

ΔAICc = 6.73; males: ΔAICc = 10.13, compared with best-fitting model; Table 3), rejecting

prediction (iv). However, individual body fat levels did vary by life stage in females (bLife

Stage(Mature) = 0.25,  p < 0.05),  but  not  in  males (bLife  Stage(Mature) =  0.07,  p  > 0.05)  (Table 2).

Although the inclusion of life stage as an explanatory variable for females was not fully

supported by model selection (ΔAICc = 2.02, compared with best-fitting model; Table 3), the

AICc model  weight  (w = 0.19) and bootstrapping (Figure S9.2) indicated that  it  was an

important predictor when modeling body fat percentage. 

Decade  of  capture  did  not  show a  relationship  with  body  fat  percentage.  When

considering the full  model,  we observed that Capture Decade was not affecting body fat

levels (females: bCapture Decade(2010s) = -0.17, p > 0.05; males: bCapture Decade(2010s) = 0.13, p > 0.05)

(Table 2) or gain (females: bJulian:Capture Decade(2010s) = 0.09, p > 0.05; males: bJulian:Capture Decade(2010s) =

0.07, p > 0.05) (Table 2) for bears captured during 2000–2009 compared with 2010–2020

(Figure 3). The inclusion of Capture Decade as a fixed term and an interaction term in the

best model was further ruled out by model selection (Table 3). The bootstrapped estimates

for  the  full  model  were  consistent  (Figure  S9.2),  although  the  proportion  of  variance

explained  by  all  components  (fixed  and  random  terms)  was  relatively  lower  (females:

conditional R2 = 0.41; males: conditional R2 = 0.24) compared with models of lean body

mass.
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Discussion

Using individual data collected over two decades during which substantial changes in local

population density occurred, together with environmental perturbations and changes in food

resources,  we  demonstrated  density-dependence  effects  on  the  body  composition  of  the

Yellowstone grizzly bears.  Although body fat  percentage was not  clearly linked to  local

population density, lean body mass  was found to be negatively associated with areas of

higher  grizzly  bear  density,  especially  for  young  bears,  suggesting  density-dependent

controls on lean body mass. Previous research showed that, particularly in areas with higher

bear  densities,  bear  population  growth  had  slowed  associated  with  increased  juvenile

mortality,  in  which  killings  by  adult  males  likely  played  a  role,  and  decline  in  female

reproductive  rates  (van Manen et  al.,  2016).  Our  results  corroborate  and integrate  those

findings: we suggest that intraspecific competition (i.e., interference competition) potentially

limited  the  ability  of  physically  immature  bears,  particularly  females,  to  compete  for

resources with mature bears.  Specifically, the  increasing competition in  the  GYE,  in  the

context  of  different  local  land  ownership  and  management,  had  a  primary  effect  on

individual body mass. Further, a decline in several high-calorie food sources over the last

two decades was observed (Gibson 2007; Gude et al., 2007; Romme et al., 2016; Supporting

Information S4), yet seasonal fat accumulation rate of grizzly bears remained unaffected,

supporting our alternative hypothesis that bears prioritize fat storage over lean body mass

when allocating energy from food consumption. We therefore suggest that sufficient food

resources  were  available  on  the  landscape  to  accommodate  successful  shifts  in  feeding

tactics in the face of perturbations and competition.  Only for male bears in Yellowstone

National Park we did not find evidence of a negative relationship of lean body mass with

density (Figure 2B), possibly because of the abundant ungulate resources available to bears

in the core area that males tend to dominate when encountered.

Our findings indicate that opportunistic large omnivores such as grizzly bears possess

the behavioral and phenotypic plasticity to shift their feeding tactics in response to changes

in  availability  of  high-quality  foods.  However,  intraspecific  competition  may  limit  the

accessibility to such resources. We offer two possible explanations for this pattern: (i) grizzly

bears maximize their energy intake while optimizing macronutrient consumption of proteins,

carbohydrates, and lipids (Erlenbach et al., 2014; Costello et al., 2016). On a high-protein

diet, bears gain mostly lean body mass, whereas consumption of low-protein foods (i.e., rich

in  lipids  or  carbohydrates)  favors  body  fat  accumulation  (McLellan,  2011).  Bears  do,

however, optimize dietary protein content  while  maintaining a balance of  high-lipid and
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high-carbohydrate foods (Erlenbach et al., 2014). Despite the varied diet of grizzly bears in

the  Greater  Yellowstone  Ecosystem,  much of  their  foraging  is  focused  on  several  high-

protein food resources (Gunther et al., 2014; Schwartz et al., 2014), to the extent that the

population has been characterized as more carnivorous than other North American interior

populations (Jacoby et al., 1999). As grizzly bear densities increased across the GYE since

the 1980s, younger individuals may have experienced increasingly limited access to high-

protein foods because of competition with dominant (i.e., physically mature) bears (Costello

et  al.,  2016),  resulting  in  reduced  lean  body  mass.  Effect  sizes  indicated  biologically

meaningful impacts especially on growing individuals (Figure 2A), with females influenced

proportionally more than males (i.e.,  about  20% and 12% of their  asymptotic lean body

mass, respectively). Individual body fat percentage, on the other hand, remained constant

throughout the same time period, probably because individuals were able to obtain high-lipid

and high-carbohydrate foods despite increased competition; (ii) alternatively, because body

fat is essential for grizzly bear hibernation and, more specifically, for female reproduction

(Robbins et al., 2012) and offspring care, bears prioritize fat storage over lean body mass

when allocating energy, more so than macronutrients, from food consumption. Interestingly,

among females consuming a high-calorie meat diet, mass gain skewed moderately toward

lean body mass in spring, but heavily toward body fat in late summer and fall (Belant et al.

2006), implying that energy allocation is prioritized for reproduction (Robbins et al., 2012).

Further, in systems with super-abundant food, such as coastal Alaska, where individuals have

access to high-calorie salmon, bears achieve very large body sizes (Hilderbrand et al., 1999)

and accumulate substantial fat reserves. On the other hand, in areas with less abundant and

more variable high-calorie foods, bears are generally characterized by smaller body sizes,

but often accumulate body fat in proportions similar to their large relatives (Hilderbrand et

al., 2018). This could suggest that, except for systems overwhelmed with high-calorie food

(i.e., coastal Alaska), bears first allocate excess energy to building up and maintaining an

adequate store of fat, and then use the rest to increase lean body mass to achieve larger body

size. Collectively, evidence suggests the dietary plasticity of grizzly bears allows individuals

to achieve similar body condition (i.e, percent body fat) despite dietary variation that results

in substantial disparities in total lean body mass (Belant et al. 2006, Mangipane et al. 2017,

Hilderbrand et al. 2018). Still, dietary plasticity may be insufficient to compensate for severe

landscape-level reductions in food availability, at which point grizzly bears would likely be

unable to maintain typical body condition, especially in areas where interference competition

reduces foraging efficiency.
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In the core area of the GYE (i.e., the Yellowstone National Park), lean body mass of

males did not depend on density, which may find an explanation in the relation between food

types and dominance. One of the most abundant source of proteins for grizzly bears is wild

ungulates, particularly bison, which occur in higher numbers in the Yellowstone National

Park (Gunther et al., 2014). This widespread accessibility to a high-protein food resource

(both  as  prey  and  carrion)  may  decrease  the  local  competition  for  food  in  males.

Alternatively,  the  dominant  animals  may  induce  dispersal  of  competitors  and  smaller,

presumably younger, individuals outside of Yellowstone core area. This is consistent with the

observation that population density in the core area has stabilized in the recent decade and

population is currently expanding outwards in the GYE (Figure S3; Bjornlie et al., 2014). 

The age at which females and males reached 95% of the asymptotic lean body mass

coincided  with  their  reproductive  strategies.  Between  the  ages  of  four  and  seven,  all

nulliparous females observed in this study had produced cubs. Conversely, males, although

sexually mature by age four, do not reach their reproductive prime until they reach sufficient

body  mass  to  support  rivalry  and  endurance  competition  for  breeding  opportunities

(Schwartz et al., 2006; Zedrosser et al., 2007). Our results showed that the capital breeding

strategy (Jönsson, 1997; Stephens, et al., 2009) of Yellowstone grizzly bears was maintained

throughout the study period and associated environmental changes (Gibson 2007; Gude et

al., 2007; Romme et al., 2016; Supporting Information S4). Reproductive-age females are

gaining adequate body fat  in the GYE to support  pregnancy and lactation while  denned

(Robbins et al., 2012). Adult male bears instead seem to finance reproduction by allocating

capital, namely fat, prior to hibernation (i.e., previous-year hyperphagia), as they continue to

lose  body  fat  for  several  months  after  den  emergence,  associated  with  the  subsequent

breeding season (Figure 3, bottom left panel). This likely occurs because food sources are

scarce  and  dispersed  in  the  spring,  large-bodied  bears  have  a  limited  intake  rate  and

physiological capacity when subsisting on low-energy plant foods (McLellan, 2011; Costello

et al., 2016), and males travel extensively searching for mates. Males thus use stored energy

reserves  during  spring,  and  start  allocating  energy  once  higher-calorie  foods  become

available  in  summer  and fall.  In  animal  populations  nearing  carrying  capacity  and with

shifting  resources,  phenotypic  correlations  may provide  a  useful  assessment  of  animals’

performance  (Festa-Bianchet  et  al.,  1998).  Patterns  of  fat  accumulation  over  the  active

season did not change from 2000–2009 to 2010–2020 and were consistent with previous

findings (Schwartz et al., 2014). Whereas high population density and resulting interference

competition may contribute to low-protein diets among individuals in their growing phase,

our  analyses  suggest  neither  intraspecific  mechanisms  or  environmental  changes  are
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currently limiting consumption of foods high in lipids or carbohydrates for fat accumulation,

and thus individual performance.

Our  results  do  not  indicate  that  changes  in  body  composition  of  grizzly  bears

occurred over  a two-decade period during,  and following changes in  the relative spatio-

temporal availability of high-quality food sources (Gibson 2007; Gude et al., 2007; Romme

et al., 2016; Supporting Information S4). However, more extreme perturbations may occur in

the  future  that  could  strengthen  density-independent  effects.  For  example,  the  GYE  is

experiencing a profound warming trend that started in the 2000s (Heeter et al., 2021), and

continued warming could increase thermal constraints on energy expenditure of reproductive

females in the future (Rogers et al., 2021). In parallel, exurban development has increased in

the GYE (Gude et al., 2007), and is particularly expected to continue in regions with more

protected  lands  (McDonald  et  al.,  2007).  These  density-independent  effects  could,  in  a

feedback mechanism, gradually limit resource availability, lowering carrying capacity and

reinforce density-dependent effects. So far, grizzly bears seem to have sufficient space to

disperse and hence shift food sources when competition arises. However, the resulting range

expansion has also led to increased conflict  potential  (e.g.,  livestock depredation) on the

periphery of occupied range, where anthropogenic influences on the landscape are greater.

Hence, the ability of the GYE to support an expanding grizzly bear population with high

indices  of  performance  will  depend  on  a  combination  of  the  following  factors:  (i)  the

plasticity in the use of trophic resources; (ii) the availability of natural, high-quality foods;

and (iii) the possibility for the population to spatially expand, thus decreasing interference

competition.  Although  we  recorded  a  marked  plasticity  among  GYE  grizzly  bears  to

maintain body condition across environmental gradients and during, and following a period

with  declines  in  several  high-quality  foods,  density-dependent  effects  may  increasingly

affect  accessibility  to  resources,  for  example  due  to  limits  to  population  expansion  or

resource-poor landscapes. Furthermore, as the grizzly population grows, individual dispersal

(which  is  critical  for  the  population's  long-term  survival)  may  increase  conflicts  and

consequently  individual  mortality,  particularly  in  more  human-dominated  environments.

Local monitoring seems to support this, since demography appears to be primarily driven by

intraspecific  factors  within  the  core  area,  whereas  anthropogenic  factors  (i.e.,  mortality)

seem to primarily affect demography on the periphery of the population (van Manen, et al.,

2020).  The  ability  to  recognize  demographic  changes  and  whether  they  are  driven  by

density-dependent or density-independent effects, allows for informed and timely decision-

making for species of conservation concern (Mccarthy and Possingham, 2007).
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By  studying  one  of  the  world's  largest  terrestrial  omnivores,  we  showed  that

generalist species (i.e., euryphagous) have the ability to modify feeding tactics in response to

density-dependent  factors  while  accounting  for  density-independent  perturbations.

Generalists  have  an  evolutionary  advantage  in  environments  with  fluctuating  nutrients

because they can maintain loose links with numerous food sources (Pimm, 1982; Kratina et

al.,  2012)  by  optimizing  their  foraging  while  exhibiting  multi-food  source  functional

responses  (Morozov and Petrovskii,  2013).  Because  of  their  ability  to  buffer  short-term

changes  in  habitat  production,  density-independent  perturbations  are  unlikely  to  have  a

strong direct effect as in specialists. Individual performance of large-bodied omnivores (as

well as medium-bodied omnivores; Kruuk and Parish, 1982; Dennis and Otten, 2000) is,

however, influenced by increased population density and competition for limited resources.

Omnivores without territorial boundaries could track and acquire high-quality food sources

based  on  local  availability  (either  in  terms  of  calories  or  macronutrients),  resulting  in

individuals competing in areas with higher availability of food but, as a result, higher local

population density. Life-stage, sex, and species-specific social mechanisms, such as female

philopatry and dominance, could play a role too in resource acquisition in high density area

for  large  omnivores.  In  contrast  to  specialist  species,  however,  these  mechanisms  will

predominantly drive individual  performance when local  density is high,  and will  be less

relevant when food resources fluctuate. Only in extreme landscape-level reductions in food

availability may plasticity be insufficient to compensate for these changes, at which point

individuals are likely to be unable to maintain typical body condition, particularly in areas

where interference competition reduces foraging efficiency.

The  behavioral  adaptations  in  tactics  of  omnivores  to  landscape-wise  resource

availability, together with changes in life-history traits as a result of interference competition,

are considered to be the conditions necessary for omnivory to be stabilizing (Kratina et al.,

2012). Furthermore, guilds of large omnivores generally exhibit a variety of other niche and

phenotype features,  such as  ecosystem engineering  or  niche  construction  behaviors,  that

provide  critical  ecosystem  functions  (Root-Bernstein  and  Ladle,  2019).  Through  eco-

evolutionary  feedback,  the  functional  role  of  large  omnivores  in  their  environment  is

dynamically  linked  to  the  evolution  of  their  function  (Post  and  Palkovacs,  2009).  For

instance, the relative abundance of plants and prey can influence an animal's feeding strategy

(i.e., from herbivory to carnivory), whereas higher habitat productivity generally promotes

omnivory, particularly of higher trophic levels (Chubaty et al., 2014). On the other hand,

because  omnivory  is  a  pattern  of  phenotypic  expression  determined  by  environmental

conditions  rather  than  a  fixed  strategy  (Chubaty  et  al.,  2014),  competition  for  scarce
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resources  results  in  evolutionary-regulated  intraspecific  adaptations,  which  drive  eco-

evolutionary feedbacks even further.

There is growing concern about  ecosystems reaching tipping points as a result  of

landscape-level  disruptions, with potentially destabilizing effects on populations or entire

communities (Dakos et al., 2019). In the short term, the presence of large and long-lived

omnivores  may  help  offset  the  consequences  of  such  landscape-level  perturbations.

However, if  perturbations persist  and more extreme and abrupt  events such as wildfires,

severe  heatwaves,  or  rapid  land  use  changes  significantly  reduce  habitat  productivity,

environmental  pressure  may  promote  evolutionary  shifts  in  feeding  strategy  within  the

community (from generalist to specialist; Chubaty et al., 2014), resulting in a temporary loss

of resilience. Omnivores require a diverse and productive ecosystem to flourish, just as the

ecosystem requires the existence of omnivores to fully function. In a rapidly changing world,

it will be critical to understand these eco-evolutionary feedbacks in order to assess the state

of the ecosystem, not only for omnivores, but for all species.
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Tables and figures

Figure 1 - Sex-specific von Bertalanffy growth curves fitted to lean body mass (kg) and age

(year) data of grizzly bears from research captures in the Greater Yellowstone Ecosystem

during 2000–2020. Each symbol (blue diamond for females, red circle for males) represents

an individual lean body mass measurement (146 females, 272 males) collected between 2000

and 2020.  The solid  lines  (blue for females,  red for males)  indicate  the  von Bertalanffy

growth function fitted to the data, whereas corresponding shaded areas represent the 95%

confidence intervals estimated via bootstrapping (n = 999 iterations). The sex-specific von

Bertalanffy growth equations are shown for reference (right bottom).
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Figure 2 - A: Fitted regression lines with 95% confidence bands, estimated via Generalized

Additive Mixed Models, of the empirical relationship between lean body mass, grizzly bear

density index, and life cycle stage (growing vs. mature individuals, shown in yellow and

purple,  respectively)  based  on  research  captures  of  female  grizzly  bears  in  the  Greater

Yellowstone Ecosystem during 2000–2020. We defined mature female bears from the age of

7. Each symbol (circle for growing individuals, cross for mature individuals) represents an

individual measurement of lean body mass. The regression coefficients are derived from the

full model (Table 2).  B: Fitted regression lines with 95% confidence bands, estimated via
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Generalized Additive Mixed Model, of the empirical relationship between lean body mass,

grizzly bear density index, and geographic areas based on research captures of male grizzly

bears in the Greater Yellowstone Ecosystem during 2000–2020. Each symbol (square for

Demographic  Monitoring  Area,  triangle  for  Recovery  Zone,  and  plus  for  Yellowstone

National  Park)  represents  an individual  measurement  of  lean body mass.  The regression

coefficients are derived from the full  model (Table 2).  The visualization is  based on the

visreg package in R (Breheny and Burchett, 2017).
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Figure 4 - LEFT: Boxplots of percent body fat from May to October of independent-age (≥2

yrs) grizzly bears captured in the Greater Yellowstone Ecosystem over two decades (2000–

2009 and 2010–2020). RIGHT: Fitted regression lines and 95% confidence bands for the

empirical relationship between percent body fat and Julian day over two decades, from June

(physiological start of the fattening season) to October (beginning of the denning season).

Each symbol (purple circle for 2000–2009, dark yellow triangle for 2010–2020) represents

an individual measurement of body fat percentage. On top plots, the horizontal dashed line

marks the 20% threshold required for females to support reproduction (Robbins et al., 2012).

We divided predictions into capture decades (which were not included in the best model, as

indicated  by  the  model  selection)  to  show  how  body  mass  and  composition  remained

consistent across time.
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Table  1-  Hypotheses  and  predictions  tested  in  the  study  on  population-scale  drivers  of

individual grizzly bear body mass and composition, together with the ecological principles

that led to their formulation.

ECOLOGICAL 
PRINCIPLE 

HYPOTHESIS PREDICTION SUPPORTED

DENSITY-DEPENDENT 
EFFECTS INFLUENCE 
INDIVIDUAL BODY 
MASS IN LARGE 
MAMMALS 

H1

Individual grizzly bear 
lean body mass declines 
as population density 
increases

(i) Lean body mass of 
bears is negatively 
related to grizzly bear 
population density

Yes

DENSITY-DEPENDENT 
EFFECTS ARE 
STRONGER FOR 
GROWING THAN 
MATURE INDIVIDUALS 
IN MAMMALS 

H2
Population density has an
age-dependent effect on 
lean body mass 

(ii) Lean body mass of 
growing individuals, 
more so than mature 
individuals, is negatively
related to population 
density

Only for
females

BODY COMPOSITION 
OF OMNIVORES IS 
AFFECTED BY 
DENSITY-DEPENDENT 
EFFECTS

H3

Individual grizzly bear 
body fat level decrease as
population density 
increases and remains 
constant across decades 
characterized by different
resource availability

(iii) Body fat percentage 
is negatively related to 
grizzly bear population 
density, irrespectively of 
food resource variation 
across decades 

No

DENSITY AFFECT 
BODY COMPOSITION 
OF GROWING 
INDIVIDUALS MORE 
THAN MATURE 
INDIVIDUALS

H4
Population density has an
age-dependent effect on 
individual body fat levels

(iv) Body fat percentage 
of growing individuals, 
more so than mature 
individuals, is negatively
related to population 
density

No
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Table  2  -  Results  of  fitted  full  GAMMs  of  lean  body  mass  and  GLMMs  of  body  fat

percentage of female and male grizzly bears in the Greater Yellowstone Ecosystem, 2000–

2020.  For  each  sex-specific  model,  the  response  and  explanatory  variables,  parameter

estimates (conditionally standardized), 95% confidence intervals for the estimates, and p-

values are reported. The Demographic Monitoring Area, Growing Phase, and 2000s (2000-

2009)  are  the  reference  categories  for  the  categorical  variables  Zones,  Life  Stage,  and

Capture Decade, respectively.
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Table 3 - Model selection results for models of lean body mass and body fat percentage of

female  and  male  grizzly  bears  in  the  Greater  Yellowstone  Ecosystem,  2000–2020.  The

response and explanatory variables, deviance, second-order Akaike's Information Criterion

(AICc) scores, delta AICc (ΔAICc), and AICc model weight (w) are reported for each model.

Models are ranked by AICc scores and weight for each response variable and sex.
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Supplementary Material

S1. Landscape zoning within the Greater Yellowstone Ecosystem

Yellowstone  National  Park  is  8,991  km2 and  represents  the  core  of  the  grizzly  bear

distribution in the ecosystem. Visitor access is regulated and over 90% of the national park is

managed as wilderness. The U.S. Fish and Wildlife Grizzly Bear Recovery Zone is an area

with 98.5% federal land ownership that is centered on Yellowstone National Park and within

which specific grizzly bear habitat protections are in place (U.S. Fish and Wildlife Service,

1993). The portion of the Recovery Zone outside Yellowstone National Park is managed for

multiple use, primarily by the U.S. Forest Service. Finally, the boundary encompassing the

largest extent is the Demographic Monitoring Area (49,931 km2), which represents the area

defined as suitable grizzly bear habitat plus narrow areas along valley bottoms bounded by

suitable habitat that could act as potential mortality sinks (Interagency Grizzly Bear Study

Team, 2013). The Demographic Monitoring Area defines the extent of the area of population

monitoring for which demographic criteria are evaluated annually (U.S. Fish and Wildlife

Service, 2013).
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Figure S1 - The primary areas for management regimes and landscape characteristics in the

Greater Yellowstone Ecosystem. The Demographic Monitoring Area, delineated in purple, is

the area where the bear population is monitored and demographic criteria are assessed on an

annual basis. The Grizzly Bear Recovery Zone (as designated by the U.S. Fish and Wildlife

Service), delineated in turquoise, is the area within the Demographic Monitoring Area where

strict grizzly bear habitat protections are in effect. The Yellowstone National Park, delineated

in yellow, is a federally protected area that includes the core of grizzly bear distribution

within the Recovery Zone. 
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S2.  Grizzly  bear  lean  body  mass  in  relationship  to  carcass  redistribution  sites
proximity 

Road-killed  ungulates  are  collected  and  transported  to  carcass  redistribution  sites  in

Yellowstone  and  Grand  Teton  National  Parks  and  grizzly  bears  have  access  to  these

temporary, highly concentrated trophic sources. Adult male grizzlies have been observed to

dominate these highly caloric and predictable food sources. In order to rule out any potential

confounding effects, we investigated whether lean body mass (in kilograms) was correlated

with  the  proximity  (in  meters)  of  carcass  redistribution  sites.  Firstly,  we  collected

information on 13 carcass redistribution sites, including the spatial distribution and usage,

between Yellowstone and Grand Teton National Parks. Then, we obtained the residual value

from the mode fit of each data point using sex-specific von Bertalanffy growth curves (as

described in the manuscript). Next, using a 250m moving threshold, we divided the dataset

iteratively  between  grizzly  bears  captured  within  and  grizzly  bears  captured  outside  a

threshold distance of an active carcass redistribution site (from 250m to 5,000m). Last, we

performed Student's t-tests for each threshold to see if there was a statistically-significant

difference in lean body mass between the two groups' means. To minimize autocorrelation,

we randomly selected one data  point  per individual  grizzly bear (some bears have been

captured  multiple  times  in  their  lifetime).  We repeated  the  procedure  1000  times  and

calculated mean and 95% confidence interval for statistical significance. Our results suggest

that male grizzly bears trapped within 1,500 meters from an active carcass redistribution site

were significantly larger than those trapped further away, as shown in Figure S2, whereas we

did not find any significant difference in weight for females. For our morphometric study, we

discarded all males captured within 2,000 meters of an active carcass redistribution site due

to a clear departure from significance at that threshold (Figure S2).
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Figure S2 - Statistical threshold for confounding relationship between lean body mass (in kg)

and carcass redistribution site proximity (in meters). For each distance, the t-test p-value for

the difference in lean body mass between the two groups' means (grizzly captured within and

outside a given distance of an active carcass redistribution site) is reported.
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S3. Temporal change in bear density in the Greater Yellowstone Ecosystem

Figure S3 - Changes in bear density index in the three different geographic zones from 1990

to 2020. The grizzly bear population density was calculated on a pixel-by-pixel basis (196

km2 square grid) for the entire Greater Yellowstone Ecosystem using the method described

by Bjornlie et al. (2014).
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S4. Temporal changes in high-calorie food availability

Changes in high-calorie food availability throughout time

The available food resources for the Yellowstone grizzly bear population have changed in

recent  years.  We used the decade of capture (2000–2009 and 2010–2020) as a temporal

proxy of resource distribution in the Greater Yellowstone Ecosystem to track such temporal

changes. Ungulate resources (primarily elk and bison) increased after cessation of ungulate

reduction programs of  the  1960s.  However, elk populations declined with the  gray wolf

reintroductions in 1995. Cutthroat trout, a valuable food for grizzly bears residing near the

tributary streams to Yellowstone Lake (Reinhart and Mattson, 1990), increased after limits

were imposed on take in the 1960 and through the late 1990s. However, predation by non-

native  lake  trout  (Salvelinus  namaycush),  whirling  disease  (Myxoblus  cerebralis),  and

prolonged  droughts  (Koel  et  al.  2003;  2005)  have  caused  major  declines  in  subsequent

decades. The cutthroat trout population is estimated to be <10% of historical numbers (Koel

et al., 2005) and biomass of cutthroat trout consumed by grizzly bears and American black

bears (Ursus americanus) in this region declined by 70% and 95%, respectively, between

1997 and 2007 (Fortin et al., 2013). Finally, whitebark pine was impacted by expansive fires

in 1988 and subsequent fires. Starting in the early 2000s, whitebark pine also experienced

widespread tree mortality because of mountain pine beetle (Dendroctonus ponderosae) and

white pine blister rust (Cronartium ribicola), with mountain pine beetle having caused the

greatest  mortality  (Gibson  2007;  Shanahan  et  al.,  2016).  In  the  Greater  Yellowstone

Ecosystem, food availability was higher in the first decade of capture (2000-2009) than in

the second decade (2010-2020), particularly with whitebark pine declining significantly in

the latter ten years.
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S5. Estimated parameters and significance levels computed with bootstrapping

Table S5 - The set of parameters in each model (from full to null, including reduced models)

that was used to determine the relative contribution of each predictor via model selection for

prediction (i-ii; Lean body mass) and (iii-iv; Body fat percentage).
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S6. Lean body mass of mature bears throughout the active season

Figure S6 - Mean lean body mass (in kg) and 95% confidence intervals of bears that have

reached 95% of their maximum weight (female: ≥7 years old, male: ≥14 years old), from

May to October. The dashed lines (blue for females, red for male) represent the overall mean.
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S7. Overall difference in lean body mass between life cycle stage

Figure S7 - Boxplots of lean body mass (in kg) in female and male grizzly bears at each life

cycle stage (growth and mature phase) and throughout two capture decades (2000–2009 and

2010–2019).  In  each  panel,  the  t-test  p-values  are  displayed  to  highlight  the  statistical

difference between groups.
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S8. Visualization of the regression models 

Figure S8 - Fitted regression line (with 95% confidence bands) of the empirical relationship

between lean body mass and grizzly bear density index estimated via generalized additive

mixed model. The regression coefficients are derived from the full model. The visualization

is based on the visreg package in R (Breheny and Burchett, 2017).
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S9. Estimated parameters and significance levels computed with bootstrapping

Figure S9.1 - A: Bootstrapped regression coefficients (mean ± 1 SD) of the fitted full model

performed  for  post  hoc  analysis.  Geographic  areas  were  included  in  the  full  model  for

predictions (i) and (ii) to control for local land ownership and management. The dotted line

marks the zero. B: P-value distributions of bootstrapped model's parameters for predictions

(i) to (iii). The dashed line marks the statistical significance level (p = 0.05) and the boxplot

notch  the  95% confidence  interval  of  the  median.  The  y-axis  is  scaled  (by  square  root

transformation) to highlight the values near the reference significance level.
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Figure S9.2 – A: Bootstrapped regression coefficients (mean ± 1 SD) of the fitted full model

for predictions (iv) to (vi). B: P-value distributions of bootstrapped model's parameters for

predictions (iv) to (vi). The dashed line marks the statistical significance level (p = 0.05) and

the boxplot notch the 95% confidence interval of the median. The y-axis is scaled (by square

root transformation) to highlight the values near the reference significance level.
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General conclusion

We demonstrated  that  bears  in  the  Alps,  one  of  the  world's  most  anthropized  mountain

regions,  can  coexist  with  humans  by  adapting  their  space  use,  movement,  food  source

proximity, resting behavior, and energy expenditure. As humans are ecologically analogous

to "super-predators" (Smith et al., 2017), the resulting interspecific competition has resulted

in  a  modification  of  the  fundamental  and  realized  ecological  niche  for  the  brown bear,

similar  to  the  dynamics  occurring  in  ecological  communities  (Chapron  and  Lopez-Bao,

2016).  Additionally,  human  presence  had  a  detrimental  influence  on  bear  mobility  and

landscape connectivity, preventing individuals from dispersing across the Eastern Alps and

eventually establishing an Alpine-Dinaric metapopulation.  Bears were only able to move

across the landscape when human mobility was temporarily restricted (associated with the

recent COVID-19 lockdown), and they did so by using previously identified but seldom used

hot  spots  for  road  network crossing.  These findings showed that,  despite  the  ecological

constraints  imposed  by  humans,  bears  exhibited  remarkable  plasticity  in  responding  to

human-induced disturbance and presence on a daily basis, as well as adapting their mobility

as conditions improved (and competition for space decreased).

This research has also resulted in the development of one of the first  large-scale

indexes of human cumulated outdoor activity, which is based on the world's largest freely

viewable collection of GPS-tracked human outdoor activities (Strava, 2018). The COI, we

suggest, was a first step toward the envisioned integrated science of movement (Miller et al.,

2019)  and  an  effort  in  converging  research  on  animal  movement  ecology  and  human

mobility  science.  Researchers  have  praised  the  newly-developed  index  for  its  ease  of

development and utilization and its ability to provide spatially explicit  information about

human presence in the landscape. Given the prevalence of recreational activities worldwide

and the widespread availability of personal tracking devices, we believe that the COI may be

implemented in all environments where it is assumed that the human effect on animals, and

ecosystems in general, is not negligible.

The  Alpine  brown  bear  population  is  frequently  cited  as  a  success  story  in

conservation since it  was rescued from biological  extinction (just  three  non-reproductive

animals remained) through an outstanding concerted management effort. Over the span of

two decades, the population has grown from the initial 10 released individuals to over 90,

more than double the estimated minimum viable population (MVP) (Groff  et  al.,  2020).

Despite this impressive recovery, the population has not expanded significantly beyond the

initial release range, owing to human-induced competition for space and barriers (Kaczensky
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et al., 2012; Peters et al., 2015). The predictive maps based on models fitted to brown bear

movement data indicated that regions of high human activity (as expressed by the COI) were

equally avoided when forecasting suitable areas for resting (Figure 3, Chapter 2) and within

the home range  (Figure 2, Chapter 1). In these areas of low probability of use, the active

presence of humans in the landscape created ‘non-physical’ (i.e., psychological) barriers that

animals  struggled  to  overcome  over  the  years,  in  addition  to  physical  barriers.  Only  a

temporary reduction in human mobility as a result  of restrictions imposed to contain the

COVID-19 outbreak showed that animals, if undisturbed, were able to cross these areas more

often and overcome those barriers. Furthermore, those occurrences were largely reported in

areas which both predictive maps indicate as unsuitable for bears. Human-dominated spaces,

notwithstanding their unsuitability for bears, would have to be overcome in order to achieve

long-term population expansion. Increased human competitive abilities (sensu Chapron and

Lopez-Bao,  2016), together with a decline in acceptance of bears among local  residents,

could undermine the encouraging conservation results achieved thus far. Our research, in

keeping with the hard work done thus far by institutions, examined the status quo, identified

current key challenges, and proposed ameliorating actions. We were particularly interested in

gathering evidence  that  could be utilized  to  improve future  conservation efforts  through

active adaptive management (McCarthy and Possingham, 2007).  Our findings serve as a

foundation  for  the  creation  of  more  comprehensive  socio-ecological  models,  as  new

challenges to coexistence occur as a direct result of early success and population expansion.

In  a  diametrically  opposed  ecological  system,  that  of  the  Greater  Yellowstone

Ecosystem,  the  grizzly  bear  population  has  grown  and  expanded  largely  unaffected  by

humans for decades, especially without the burden of space competition that anthropogenic

landscapes impose. High-calorie food sources, on the other hand, have declined as a result of

environmental perturbations and species composition changes induced by humans. Despite

these limitations, grizzly bears have demonstrated remarkable resilience by adapting their

feeding  tactics  in  response  to  increased  population  density,  while  also  changes  in  food

availability and accessibility occurred. This allowed grizzly bears to retain relatively high

levels  of  individual  performance  despite  density-dependent  constraints.  This  was  an

important  result  compared  to  previous  findings  in  the  Alps,  where  we  found  multiple

instances of the human-super predator outcompeting bears so as to make density-dependent

effects  likely  less  significant  as  compared  to  human-caused  mortality.  However,  as  the

grizzly bear population inhabiting the Greater Yellowstone Ecosystem (i.e., “land-sparing”)

expands beyond the ecosystem's boundaries (i.e., “land-sharing”), unprecedented challenges

and  new  human-bear  conflicts  akin  to  those  in  Europe  will  emerge.  The  Yellowstone
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National Park has served as a world-class model of conservation for decades, but as large

carnivores expand beyond the area of protection, new conservation models will be required,

and the European experience (Chapron et al., 2012) could help inform decision-making in

the years ahead. Allowing people and bears to coexist in the same landscape is a challenging

task that will necessitate each adapting to the other's presence; this effort will be critical, now

more than ever, for the long-term survival of bears as well as the ecosystems in which they

thrive.
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