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Abstract

Ultracold quantum gases have nowadays become an invaluable tool in the study of
quantum many-body problems. The high level of experimental control available on
these systems and well established theoretical tools make ultracold quantum gases
ideal platforms for quantum simulations of other systems currently unaccessible
in experiments as well as for studies of fundamental properties of matter in the
quantum degenerate regime.
A key manifestation of quantum degeneracy in samples of ultracold bosonic neutral
atoms is the formation of a Bose-Einstein condensate (BEC), a peculiar state of
matter in which a macroscopic number of atoms occupy the same single-particle
state. Bose-Einstein condensation occurs in extremely rarified gases of bosonic
atoms at temperatures around the nanoKelvin. At such temperatures, the equi-
librium state of all known elements (except for helium) in ordinary conditions of
density and pressure would be the solid phase. To obtain a BEC it is thus nec-
essary to consider very dilute samples with a density of the order of 1014 − 1015

atoms/cm3, around eight orders of magnitude smaller then the density of ordinary
matter. At such densities, the three-body recombination mechanisms responsi-
ble for the formation of molecules, that cluster to form solids, are suppressed.
However, despite the extreme diluteness, two-body interatomic interactions play
a prominent role in determining the physical properties of these systems.
In the temperature and density regimes typical of BECs, the theoretical description
of the system can be greatly simplified by noticing that the low-energy scattering
properties of the real, generally involved, interatomic potential, can be perfectly
reproduced by a simpler pseudo-potential, usually of the form of an isotropic con-
tact repulsion, and described by a single parameter, the s-wave scattering length
[1]. Such parameter can even be tuned, in experiments, via the so-called Feschbach
resonances. Despite its simplicity, this zero-range, isotropic interaction is respon-
sible for an enormous variety of physical effects characterizing atomic BECs [2].
This fact stimulated, over the last twenty years, the research of different possible
types of interactions, that can eventually lead to the formation of new and exotic
phases of matter.
In this quest, the dipole-dipole interaction attracted great attention for different
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reasons. First, there are several experimental techniques to efficiently trap and
cool atoms (or molecules) possessing a strong dipole moment. This led, for exam-
ple, to the experimental realization of BECs of Cr [3], Dy [4] and Er [5], which
have, in the hyperfine state trapped for condensation, a magnetic dipole moment
around ten times larger then the one typical of the particles in a BEC of alkali
atoms. Moreover, being the dipole-dipole interaction anisotropic and long-ranged,
its low-energy scattering properties cannot be described by a simple short-range
isotropic potential. As a consequence, dipolar BECs show unique observable prop-
erties.
The partially attractive nature of the dipole-dipole interaction can make a dipolar
BEC unstable against collapse, similarly to the case of an ordinary (non-dipolar)
BEC with negative scattering length. This happens, in particular, if a sample of
magnetic atoms, polarized along a certain direction by some magnetic field, is not
confined enough along such direction (for example via a harmonic potential). How-
ever, differently from ordinary BECs, where the collapse of the system is followed
by a rapid loss of atoms and the destruction of the condensed phase, in the dipolar
case such instability is followed by the formation of self-bound, (relatively) high
density liquid-like droplets [6]. If the geometry of the confinement potential allows
it, the droplets spontaneously arrange into a regular, periodic configuration, in a
sort of ”droplet crystal”. Moreover, by fine-tuning the interaction parameters, it
is possible to achieve global phase coherence between these droplets. The spatially
modulated, phase coherent system that forms in these conditions is known as su-
persolid, and is a very peculiar state showing simultaneously properties of both
crystals and superfluids.
Ordinary mean-field theory, so successful in describing the vast phenomenology of
ordinary BECs, fails in predicting the existence of the exotic phases of supersolids,
quantum droplets and droplet crystals in a dipolar quantum gas. The state of the
art description of dipolar BECs in such conditions is instead based on quantum
fluctuations, taking into account the local density approximation of the first-order
beyond-mean-field correction of the ground state energy of the system [7]. This
correction, known as the Lee-Huang-Yang correction, results in a repulsive energy
term that balances the mean-field attraction at the relatively high densities that
characterize the collapsing state.
Using state-of-the-art simulation techniques, in this thesis I study the behavior
of a dipolar Bose gas confined in a variety of trapping configurations, considering
ground-state properties, elementary excitations, and the dynamical behavior un-
der several kinds of external perturbations, focusing in particular on the supersolid
phase.
In Chapter 1, I review the basic properties of supersolids, following a historical
perspective, describing the first proposals for supersolidity in solid helium, and
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discussing the current implementations in cold atoms.
In Chapter 2, I review the basic theory of dipolar Bose gases. I also introduce
the fundamental methods used in the thesis, and in particular the linear response
theory, with a particular emphasis on the sum-rule formalism, and the numerical
techniques used to solve the modelling equations.
In Chapter 3, I study the behavior of the dipolar Bose gas in an ideal situation,
namely when the gas is confined in a harmonic trap along the polarization direction
of the dipoles as well as one of the orthogonal directions. Along the unconfined
direction, instead, periodic boundary conditions are set, in order to simulate the
geometry of a ring. I study in particular the evolution of the ground state of the
system from a superfluid, homogeneous along the ring, to the supersolid regime,
and eventually to an array of independent droplets. These phase transitions are
realized by tuning a single interaction parameter, namely the s-wave scattering
length. The superfluid phase is here characterized by the occurrence of a roton
minimum in the energy-momentum dispersion relation. The energy of the ro-
ton, called roton gap, decreases when the s-wave scattering length of the system
is decreased and the dipole-dipole interaction becomes the dominant interaction
mechanism. When the roton minimum touches the zero-energy axis, the superfluid
system is not stable anymore against mechanical collapse. The system thus tend
to form denser clusters of atoms, regularly arranged in an equally-spaced array of
droplets, whose relative distance is fixed by the inverse of the roton momentum.
Such droplets are stabilized by quantum fluctuations, which enters in the energy
functional of the system via the Lee-Huang-Yang correction. I demonstrate that
when the droplets show a finite overlap, the ground state of the system manifests
signatures of supersolid behavior, and in particular

• The occurrence of two Goldstone modes, associated with the two symmetries
spontaneously broken in the supersolid, namely the symmetry for continu-
ous translations, which is broken in favor of a discrete one, and the U(1)
symmetry associated with Bose-Einstein condensation.

• The appearance of non-classical rotational inertia, due to the partially su-
perfluid character of the system.

In Chapter 4, I explore possible manifestations of supersolid behavior in a
fully trapped configuration, namely when the system is confined in an elongated
(cigar-shaped) harmonic trap, with the long axis orthogonal to the polarization
direction. Part of the results obtained in the three-dimensional harmonic trap
have been compared with the first available experiments. The two key signa-
tures of supersolid behavior, namely the occurrence of two Goldstone modes and
non-classical rotational inertia, can be detected, in this case, by studying the low-
energy collective oscillations of the system. A behavior equivalent to the one of
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the two Goldstone modes predicted in the ring trap, can be found in the axial
compressional oscillations of the harmonically trapped system, which bifurcate at
the superfluid-supersolid phase transition. When the system is driven through the
supersolid-independent droplet transition, the lower-energy mode, associated with
phase coherence, tends to disappear, while the higher energy mode, associated with
lattice excitations, tends to assume a constant frequency. This behavior is specular
to the one of the two Goldstone modes in the ring geometry, and is a signal of the
presence of supersolidity in the trapped system. Important experimental confirma-
tions of these predictions have already been found. Instead, a key manifestation of
non-classical inertia in a trapped dipolar supersolid can be found by studying the
rotational oscillation mode known as ”scissors” mode, whose frequency is directly
related to the value of the moment of inertia (similar to the frequency of oscillation
of a torsional pendulum for a classical system). Studying the behavior of the fre-
quency of the scissors mode across the superfluid-supersolid-independent droplets
phase transitions, I demonstrate the actual occurrence of non-classical inertia in a
harmonically trapped dipolar supersolid.
In Chapter 5, I study another key manifestation of superfluidity in a dipolar su-
persolid, namely the occurrence of quantized vortices, which I study in the case of
a dipolar Bose gas trapped in a harmonic trap isotropic in the plane orthogonal
to the polarization direction. I study in particular the size of the vortex core as
function of the interaction parameters, showing that, in the superfluid phase, it
increases as the superfluid-supersolid phase transition is approached. Then, in the
supersolid phase, I show that quantized vortices settle in the interstices between
the density peaks, and their size and even their shape are fixed respectively by the
droplet distance and the shape of the lattice cell. I also study the critical frequency
for the vortex nucleation under a rotating quadrupolar deformation of the trap,
showing that it is related to the frequency of the lower-energy quadrupole mode,
associated with the partial superfluid character of the system. I also study the
competition between the vortex and supersolid lattices, showing that the position
of the vortices is always pinned at the density minima between the density peaks
of the supersolid lattice. Finally, I study the observability of the phenomena dis-
cussed in an expanding system, in which the in-plane confinement is switched off.
Finally, in Chapter 6, I study the behavior of a dipolar Bose gas confined by hard
walls. In particular, I investigate the novel ground-state density distributions,
with special focus on the effects of supersolidity. Differently from the case of har-
monic trapping, in this case, the ground state density shows a strong depletion
in the bulk region and an accumulation of atoms near the walls, well separated
from the bulk, as a consequence of the competition between the attractive and
the repulsive nature of the dipolar force. In a quasi two-dimensional geometry
characterized by cylindrical box trapping, the consequence is that the superfluid
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accumulating along the walls forms spontaneously a ring shape, showing eventually
also supersolidity. For sufficiently large values of the atom density, also the bulk
region can exhibit supersolidity, the resulting geometry reflecting the symmetry of
the confining potential.
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Chapter 1

What is a supersolid?

In this Chapter, I present the basic definition and fundamental properties of the
supersolid phase. Following a historical perspective, I discuss the first proposals
for supersolidity in solid helium, and then discuss the current implementations of
supersolidity in ultracold atomic systems.

1.1 Long range order

A supersolid can be defined as a quantum state of matter showing both the spatial
periodicity that characterizes crystalline solids, and the phase coherence typical
of Bose-Einstein condensed systems. Supersolidity can be found in systems that
spontaneously break both a continuos translational symmetry in favour of a dis-
crete one, developing spatial periodicity, and the gauge symmetry that results
in the phase coherence of a Bose-Einstein condensate. Given the link between
Bose-Einstein condensation and superfluidity, a supersolid can, paradoxically, show
properties of both solids and superfluids.
More rigorously, a supersolid is a system that shows both diagonal and off-diagonal
long range order [8]. In particular, defining the field operators Ψ̂†(r) and Ψ̂(r) that
respectively create and annihilate a particle at position r, the diagonal one-body
density matrix of a supersolid

n(r) = 〈Ψ̂†(r)Ψ̂(r)〉 (1.1)

shows discrete spatial periodicity

n(r) = n(r + T) (1.2)

where T stands for a lattice vector of the crystalline structure, while the off-
diagonal density matrix

n(r, r′) = 〈Ψ̂†(r)Ψ̂(r′)〉 (1.3)
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approaches a finite value at infinite distances

n(r, r′)→ n0 when |r− r′| → ∞ (1.4)

While the diagonal long-range order implied by equation 1.2, characterized by the
spatial periodicity of the one-body density matrix, is a typical feature of crystalline
solids, the off-diagonal long-range order implied by equation 1.4 is a defining fea-
ture of Bose-Einstein condensed systems [2].

1.2 Supersolidity in ”ordinary” quantum crys-

tals

The possible existence of a supersolid phase of matter has been debated for decades.
A seminal paper by Penrose and Onsager [9] ruled out the possibility for a per-
fect crystal to form a Bose-Einstein condensate, since the localization of atoms at
the lattice sites of a crystal is incompatible with the off-diagonal long range order
necessary for Bose-Einstein condensation.
Soon after, Andreev and Lifshitz [10] proposed that supersolidity may manifest
via Bose-Einstein condensation of defects (such as vacancies, or impurities) in a
quantum crystal. More precisely, they developed a theory according to which, at
zero temperature, quantum tunneling decreases the localization of defects, which
thus can travel through the crystal; their state can then be labelled via momentum
k, and their energy-momentum dispersion relation produces an additional ”defec-
ton” branch in the excitation spectrum of the solid. If the defects have bosonic
nature (for example, a vacancy in a crystal of bosonic atoms), the defectons can
condense into the state of zero momentum, forming a Bose-Einstein condensate
embedded in the crystal structure of the system. In the words of the authors, in
these conditions, the ”superfluid crystal” (i.e., the supersolid) can flow without
friction through a capillary under the action of an external force field.
In order to describe this system, Andreev and Lifshitz, in the spirit of Landau’s
theory of superfluidity, developed a two-component model, treating separately the
”normal” (i.e., the crystal) and the ”superfluid” part of the supersolid. A funda-
mental assumption of the model is that one can write the energy and momentum
densities of this system as [11]

E =
1

2
ρSv2

S +
1

2
ρN u̇2 + E0(ρ, s, ε)

j = ρSvS + ρN u̇ (1.5)

where ρN and ρS are, respectively, the normal and superfluid densities of the
system, whose sum gives the total density ρ = ρN+ρS, vS is the superfluid velocity,
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u is the displacement field describing the elastic deformations of the lattice, and
E0(ρ, s, ε) is the internal energy of the system, assumed to be a function of the total
density ρ, the entropy density s, and the elastic stress tensor εij = (∂iuj +∂jui)/2.
Under very general principles, assuming mass, momentum, energy and entropy
conservation, and the presence of some superfluid motion in the system, Andreev
and Lifshitz derived a set of macroscopic equations for the supersolid, from which
they derived a description of the long wavelength excitations of the system in terms
of four acoustic mode. The dispersion relations of these modes can be written as

ωNi (k) = ω0
i (k)

(
1 +

ρS
2ρ

)
, i=1,2,3

ωS4 (k) =

√
ρS
∑
lm

Λlmklkm (1.6)

Here, the superscripts N and S stand, respectively, for the normal (i.e., the crys-
tal) and the superfluid modes of the system; in the first equation of 1.6, ω0

i , for
i = 1, 2, 3, are the dispersion relations of the three acoustic phonons of the crystal
in absence of a superfluid component, and Λlm is proportional to the elastic stress
tensor εlm. Results 1.6 show in particular that the sound modes of the crystal
and the superfluid components are always coupled through the superfluid density
ρS and the elastic stress tensor, and that the speed of sound associated with the
superfluid mode decreases with the square root of ρS.
The first attempts to prove supersolidity in samples of solid helium were based on
the search of a super-flow under a pressure gradient [12, 13], but failed to detect
any superfluid effect.
Another milestone in the theory of supersolidity is due to Leggett [14], who pro-
posed that a key manifestation of the supersolid phase transition in a quantum
crystal would be a sudden drop of the moment of inertia from its ”classical” value
(i.e., the value determined by the mass distribution). Such non-classical rotational
inertia (NCRI) can in principle be measured via the frequency of the oscillations
of a torsional pendulum, after properly taking into account geometrical factors.
More in detail, consider a general many body system of N identical particles of
mass m confined in an annular container in the z = 0 plane of a certain coordinate
system, and let the many-body Hamiltonian be

Ĥ =
N∑
i=1

(
− ~2

2m
∇2
i + U(ri)

)
+

1

2

N∑
i,j=1

V (|ri − rj|) (1.7)

where U(ri) is an external potential describing the effects of the container. If the
annular container is at rest, the many-body ground-state wave function of the
system is required to satisfy the ”single-valuedness boundary condition”, which
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implies that, whenever a particle is brought once around the annulus, leaving
the rest unchanged, the ground-state wave function does not change. Calling
Ψ(θi, ηi), for i = 1, . . . , N , the ground state wave function, depending on an angular
coordinate θi along the ring, and a general transverse coordinate ηi, the single-
valuedness boundary condition reads

Ψ(η1, θ1; η2, θ2; . . . ; ηi, θi; . . . ; ηN , θN) = Ψ(η1, θ1; η2, θ2; . . . ; ηi, θi + 2π; . . . ; ηN , θN)
(1.8)

Now, let us suppose that the ring lies in the z = 0 plane and is put into slow
rotation with angular velocity ω around the z-axis. Once we lead a particle in a
2π circle around the z-axis, the wave function now acquires a phase ∆φ, so that
the single-valuedness boundary condition shall now be written as

Ψ∆φ(η1, θ1; η2, θ2; . . . ; ηi, θi; . . . ; ηN , θN) =

ei∆φΨ(η1, θ1; η2, θ2; . . . ; ηi, θi + 2π; . . . ; ηN , θN) (1.9)

We now define the superfluid fraction of the system at a certain temperature T as
[15]

fs(T ) = 1− lim
ω→0

〈L̂z〉
ω

(1.10)

where L̂z is the projection of the angular momentum along the z-axis, and the
expectation value is calculated in conditions of thermodynamic equilibrium, with
the walls of the container rotating at angular velocity ω. Intuitively, we are defining
the superfluid fraction of the system as the fraction of particles which is not dragged
by any (slow) rotation of the container. Calling now Ψ0 the exact ground-state
wave function of the system, and considering a variational ansatz of the form

Ψtrial = ei
∑

i φ(θi)Ψ0 (1.11)

where φ(θ) satisfies the condition φ(θ + 2π) = φ(θ) + ∆φ, minimizing the expec-
tation value of the Hamiltonian 1.7 with respect to φ(θ), Leggett found an upper
bound for the superfluid fraction of the system at T = 0 which reads

fs(T = 0) ≤
{∫

dθ

ρ(θ)/ρ

}−1

(1.12)

where ρ(θ) is the value of the density averaged over the transverse coordinate, and
ρ is the density averaged over θ. Finally, Leggett shows that a necessary and suffi-
cient condition for this expression to become an equality, is that the Hamiltonian is
invariant under time-reversal and continuous translation, and the ground-state of
the system does not spontaneously break any of these two symmetries. This implies
that, at T = 0, any homogeneous system confined in an annulus, and described by
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a Hamiltonian satisfying both time-reversal and translational symmetries, is fully
superfluid, since expression 1.12 becomes exactly 1. But this also implies that, if a
system spontaneously breaks translational invariance along the annulus, then the
upper bound on this superfluid fraction becomes rigorously smaller then 1.
As said, a consequence of a superfluid fraction smaller then 1 is that the moment
of inertia, measured for example using a torsional pendulum, results to be smaller
then the ”classical” value, that is the value determined by the mass distribution
in the system. Following this idea, in the early 2000, it seemed that supersolid
evidences were found through measurements of NCRI [16, 17, 18, 19, 20], in a fa-
mous series of experiments by Kim and Chan. Unfortunately, the results of these
works were proved to be non-conclusive [21], as the drop in the moment of inertia
observed in the first experiments could well be explained not invoking a finite su-
perfluid fraction, but rather by a change in the elastic properties of the material
due to the lower temperature. Up to now, no final evidence of supersolidity exists
in samples of solid helium, nor in any other ”classical” solid.

1.3 Supersolidity in ultracold atomic gases

A new scenario came up more recently, in particular with the works of Pomeau
and Rica [22] and of Josserand, Pomeau and Rica [23, 11], where the authors show
that systems described by a Gross-Pitaevskii equation with non-local interactions
can undergo a supersolid phase transition. More in detail, the authors consider
systems described by the following equation for the condensate wave-function

i~
∂ψ(r, t)

∂t
=

[
−~2∇2

2m
+ Vext(r) +

∫
dr′U(r− r′)|ψ(r′, t)|2

]
ψ(r, t) (1.13)

where Vext is some external potential, and U(r − r′) is the interaction potential
between two particles at position r and r′. For definiteness and for carrying out
numerical simulations, the authors considered a model of soft-core bosons, i.e. an
interaction potential of the form U(r) = U0 for r < a and U(r) = 0 otherwise,
where a is a certain length. As shown in [22], the long-wavelength fluctuations
on top of a uniform ground-state are characterized by a linear spectrum at small
momenta, and a local minimum, called ”roton”, at a certain finite momentum k0.
Moreover, as the density of the system is increased, the roton energy decreases,
until the roton minimum touches the zero-energy axis. In these conditions, both
in 2 and 3 spatial dimensions, the ground state of the system is not characterized
by a uniform density profile, but rather by a periodic structure (hexagonal in 2D,
and a bcc lattice in 3D), characterized by partially overlapping density peaks, each
containing many atoms, sitting at the lattice sites. This system shows properties
very similar to those predicted for a supersolid by Andreev and Lifshitz, as well
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as by Leggett, for example the presence of an additional sound mode, related to
the superfluid part of the system, beside the phonon modes of the lattice, but also
non-classical rotational inertia (see also later works by the same authors, such as
[24]), and even quantized vortices.
The supersolid state described by Pomeau and Rica is, in many aspects, different
from the one originally predicted by Andreev and Lifshitz. In fact, in this Gross-
Pitaevskii model with non-local interactions, the supersolid behavior arises in a
defect-free lattice: each lattice site is occupied by several atoms, resulting in a
sort of ”droplet crystal”, where each droplet shows a density profile that partially
overlaps with the one of neighbouring droplets. Nonetheless, it manifests all the
properties expected for a ”classical” supersolid, namely

• non-classical rotational inertia;

• four sound modes, instead of three, in a 3-dimensional model;

• quantized vortices.

Interestingly, the authors finally found that this supersolid cannot flow without
friction around an obstacle, as this motion produces a strong plastic deformation
of the lattice, but also the proliferation of vortices and other excitations that fi-
nally lead to dissipation, even at very small velocities [22].
These findings stimulated the research of the supersolid phase of matter in ul-
tracold quantum gases with exotic interactions, such as dipole-blockaded [25] or
”soft-core” Rydberg atoms [26]. The properties of the supersolid phase has been
thoroughly studied both using the Gross-Pitaevskii model [27, 28] and Quantum
Monte Carlo simulations [25], confirming and extending the predictions of [22].
Unfortunately, technical difficulties in obtaining a Bose-Einstein condensate of
Rydberg atoms have prevented, up to now, the experimental implementation of
this possibility.
Supersolid properties have finally been observed in cold atomic systems with spin-
orbit coupling [29], light-mediated interactions in optical cavities [30], and mag-
netic dipole-dipole interactions [31, 32, 33]. The last possibility is particularly
appealing since, differently from the previous two, here the spontaneous breaking
of the translational symmetry is not imposed by some external potential, but de-
termined entirely by the interatomic interactions, as I will show in the rest of this
thesis.
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Chapter 2

Methods

In this Chapter, I review the models and methods used to derive the results pre-
sented in this thesis.
After an introduction on the basic properties of the dipole-dipole interaction, I
review the mean-field description of dipolar Bose gases, explaining how it fails
when compared with recent experiments. I thus introduce the state-of-the-art
description of dipolar Bose-Einstein condensates, based on the first-order beyond-
mean-field correction to the ground-state energy of the system, which for a non-
homogeneous system is introduced in local density approximation.
Then, I review the basics of linear response theory, as used in this thesis, focusing
in particular on the sum-rule approach, very useful for the study of the low-energy
oscillations of general many-body systems.
Finally, I present the numerical methods used to obtain most of the results pre-
sented in the thesis.

2.1 Bose-Einstein condensates of magnetic atoms

2.1.1 Dipole-Dipole interaction

The general form of the interaction potential between two identical electric or
magnetic dipoles at a relative position r is given by [34]

V (r) =
Cdd
4π

(e1 · e2)r2 − 3(e1 · r)(e2 · r)

r5
(2.1)

where Cdd = µ0µ
2 for two magnetic dipoles with magnetic moment µ, µ0 being the

permeability of the vacuum, while Cdd = d2/ε0 for two identical electric dipoles
with electric dipole moment d, ε0 being the vacuum permittivity. In all the cases
studied in this thesis (as well as in most current theoretical and experimental works
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θ r1-r2

Figure 2.1: Anisotropy of the dipole-dipole interaction. According to 2.2, the
dipole-dipole interaction potential between two identical, aligned dipoles depends
on their distance r and on the angle θ between the relative position vector r and
the polarization direction z (panel a); the two aligned dipoles attract each other if
in a head-to-tail configuration (panel b), and repel each other if sitting side-by-side
(panel c).

on this subject), the dipoles are polarized (i.e., aligned along the same axis) by
some external magnetic field; choosing the polarization direction as the z-axis of
our coordinate system, the dipole-dipole interaction potential 2.1 simplifies in

Vdd(r) =
Cdd
4π

1− 3 cos2 θ

r3
(2.2)

where θ is the angle between the vector r joining the two dipoles and the po-
larization direction (see figure 2.1). We can see that the interaction potential
is long-ranged, decaying at large distances as r−3 (differently from the typical
van der Waals interaction potential which at large distances decays as r−6), and
anisotropic, depending on the angle θ between the polarization direction and the
vector r joining the dipoles. In particular, for increasing θ and fixed r, the inter-
action potential varies from a minimum of − Cdd

2πr3
at θ = 0 to a maximum of Cdd

4πr3

at θ = π/2, and it is null at θ0 = arccos(1/
√

3) ' 54.7◦. Taking into account the
periodicity of cos2(θ), this implies that, for |θ| < θ0 or θ0 + π/2 < θ < θ0 + π
the interaction is attractive, otherwise it is repulsive. Hence, two dipoles in free
space tend to ”pile-up” in a head-to-tail configuration in order to reach the lowest
energy configuration, with fundamental consequences on the stability of a dipolar
BEC. A very useful parameter that allows to quantify the strength of the dipolar
interaction is the dipolar length add, defined as

add =
Cddm

12π~2
(2.3)
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This quantity allows to compare the typical strength of electric and magnetic
dipole moments, and will be useful also to compare the relative strength of the
dipole and the contact interaction energies. In table 2.1 (taken from [35]) we can
see typical values of add for different atomic (magnetic) and molecular (electric)
species. We can clearly see that the dipolar length for electric dipoles is much
larger than that of magnetic dipoles, making, in principle, the former the platform
of choice for studying dipolar effects. However, at the time of writing, because
of technical difficulties in experiments, the quantum degenerate regime with polar
molecules has been reached only with fermionic molecules [36], while Bose-Einstein
condensation of magnetic atoms is nowadays a consolidated practice in many lab-
oratories. For this reason, the rest of this thesis will be dedicated to the study of
BECs of magnetic atoms. We will see that, although substantially weaker then the
electric case, the magnetic dipole-dipole interaction affects crucially the physics of
dipolar BECs.

Species Dipole moment add
52Cr 6µB 15a0
164Dy 9.9µB 130a0
166Er 7µB 65.5a0

KRb 0.6D 2× 103a0

Table 2.1: Magnetic and electric dipole moments for different atomic and molecular
species for which the quantum degenerate regime (BEC for 52Cr, 164Dy and 166Er,
which are magnetic bosonic atoms, and a Fermi degenerate gas for KRb, which is
instead fermionic molecule possessing a strong electric dipole moment) has been
achieved. Here, µB is the Bohr magneton, while a0 is the Bohr radius

2.1.2 Mean field theory

The Hamiltonian of a system of bosonic particles can be written, in second quan-
tization, in terms of bosonic field operators Ψ̂ and Ψ̂† as

Ĥ =

∫
drΨ̂†(r)

[
−~2∇2

2m
+ Vext(r)

]
Ψ̂(r)

+

∫ ∫
drdr′Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r) (2.4)

where Vext(r) is an external trapping potential, and V (r − r′) is the interaction
potential between two atoms. This interaction potential is in general difficult to
calculate even in absence of dipole-dipole interaction, especially at small inter-
atomic distances; however, at large distances, it is typically isotropic and decays
according to the van der Waals law r−6. A general result of scattering theory
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[37] states that the low-energy scattering properties of isotropic interatomic po-
tentials decaying, at large distances, as r−n with n > 3, can be fully described by
a zero-range, isotropic pseudo-potential of the form

V (r) = gδ(r) (2.5)

where g = 4π~2a
m

, m is the atomic mass, and a is the s-wave scattering length.
This result comes from the fact that the complete scattering amplitude at low
momenta in the case of fast decaying isotropic potentials becomes isotropic and
energy-independent, and can be fully reproduced, at the level of the Born approx-
imation, by the pseudo-potential 2.5. This description holds as long as the details
of the interatomic interaction at short distances can be neglected, as it happens
in the very dilute samples that form an ordinary BEC. It is thus customary to
describe the interatomic interactions in an ordinary BEC via the contact pseudo-
potential 2.5.
The same approximations are no longer valid if the atoms interact with a general
isotropic potential at short distances, but also with the dipole-dipole potential 2.2
at long distances, the latter being anisotropic and decaying as r−3. Nonetheless, it
has been shown that, in these conditions, at least at the level of the Born approx-
imation, the complete scattering amplitude is fully reproduced by the anisotropic,
long-range pseudo-potential [38]

V (r) = gδ(r) +
Cdd
4π

1− 3 cos2 θ

r3
(2.6)

The use of the pseudo-potential 2.6 has become a standard practice in the descrip-
tion of dipolar BECs, and will be always used throughout this thesis.
Using the pseudo-potential 2.6, the Hamiltonian 2.4 can be thus rewritten as

Ĥ =

∫
drΨ̂†(r)

[
−~2∇2

2m
+ Vext(r)

]
Ψ̂(r) + g

∫
drΨ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

+
Cdd
4π

∫ ∫
drdr′Ψ̂†(r)Ψ̂†(r′)

1− 3 cos2 θ

|r− r′|3
Ψ̂(r′)Ψ̂(r) (2.7)

The equation of motion for the field Ψ̂ is given, in the Heisenberg picture, by

i~
∂Ψ̂(r)

∂t
=
[
Ψ̂(r), Ĥ

]
=

[
−~2∇2

2m
+ Vext(r)

]
Ψ̂(r) + gΨ̂†(r)Ψ̂(r)Ψ̂(r)

+

∫
dr′Vdd(r− r′)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r) (2.8)
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where we have introduced the notation

Vdd(r− r′) =
Cdd
4π

1− 3 cos2(θ)

|r− r′|3
(2.9)

Following the Bogolyubov prescription, we split the field operator Ψ̂ in a classi-
cal field ψ, which describes the atoms in the lowest energy state, assumed to be
macroscopically populated in the BEC phase, and a quantum field δψ̂ describing
(quantum and thermal) fluctuations above the BEC

Ψ̂ = ψ + δψ̂ (2.10)

Inserting this expression in 2.8 and neglecting, at the lowest order of approxima-
tion, all the terms containing δψ̂, we obtain the extended Gross-Pitaevskii equation

i~
∂ψ(r, t)

∂t
=

[
−~2∇2

2m
+ Vext(r) + g|ψ(r, t)|2 +

∫
dr′Vdd(r− r′)|ψ(r′, t)|2

]
ψ(r, t)

(2.11)
which describes the dipolar BEC at the mean field level. The mean-field ground
state of a dipolar BEC can be found by searching for solutions of 2.11 of the form
ψ(r, t) =e−iµt/~ψ0(r), and solving the eigenvalue problem

µψ0 = Ĥ0ψ0

=

[
−~2∇2

2m
+ Vext(r) + g|ψ0(r)|2 +

∫
dr′Vdd(r− r′)|ψ0(r′)|2

]
ψ0(r) (2.12)

for the smallest eigenvalue µ. This can be interpreted as the chemical potential
of the system, and fixes the total number of particles. Neglecting quantum and
thermal fluctuations, we assume that all the atoms occupy the lowest energy state,
in such a way that ψ0 can be normalized according to∫

dr|ψ0(r)|2 = N (2.13)

where N is the total number of atoms. Notice also that the ground-state conden-
sate wave function ψ0 can be also obtained in the context of a density-functional
theory approach by minimizing the mean-field energy functional

E[ψ] =

∫
drψ∗(r)

(
− ~2

2m
∇2 + Vext(r)

)
ψ(r)

+
g

2

∫
dr|ψ(r)|4

+
1

2

∫
drdr′|ψ(r)|2Vdd(r− r′)|ψ(r′)|2 (2.14)
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under the constraints of the normalization condition 2.13.
In order to study small fluctuations on top of a certain ground state solution ψ0,
satisfying equation 2.12, we follow the standard Bogolyubov-de Gennes (BdG)
procedure and expand the classical field ψ(r, t) as

ψ(r, t) = e−iµt/~

{
ψ0(r) +

∞∑
n=1

[
un(r)e−iωnt + v∗n(r)eiωnt

]}
(2.15)

Inserting this expansion in equation 2.11, assuming ψ0 is real (as will be for all
cases of interest for this thesis), and keeping only terms linear in the complex
functions un and vn, we obtain the following BdG equations(

Ĥ0 − µ+ X̂ X̂0

−X̂0 −(Ĥ0 − µ+ X̂0)

)(
un
vn

)
= ~ωn

(
un
vn

)
(2.16)

where Ĥ0 is given in 2.12, and the operator X̂0 is defined by its action on a general
function f as

X̂0f(r) = g|ψ0(r)|2f(r) + ψ0(r)

∫
dr′Vdd(r− r′)ψ0(r′)f(r′) (2.17)

Solving this eigenvalue problem allows to find the eigen-frequencies ωn and eigen-
modes un and vn that characterize the elementary excitations of a dipolar BEC.
In order to ensure that bosonic commutation relations are preserved, the quasi-
particle amplitudes un and vn are normalized according to∫

dr
(
|un(r)|2 − |vn(r)|2

)
| = 1 (2.18)
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Figure 2.2: a) Schematic representation of a system of atomic dipoles, aligned along
the z direction, in a pancake-shaped harmonic trap with short axis parallel to the
polarization direction. b) Stability diagram, taken from [35], for a dipolar BEC of
20000 atoms of 52Cr. The experimental dots are taken from [39] and correspond
to the measured values of the critical scattering length acrit(λ) at which the BEC
collapses for a certain trap aspect ratio. The thin solid line correspond to the
value of acrit(λ) calculated using the mean-field eGPE 2.11, while the thick solid
line corresponds to a variational estimate of the value of acrit(λ) obtained from a
gaussian ansatz (see [35] for details).

The mean-field model has been shown to accurately describe the phase diagram
and the post-collapse expansion dynamics of a dipolar BEC of weakly magnetic
52Cr atoms, for which the dipolar length is add ' 15a0 2.1[39, 40]. In particular,
it has been shown that, confining the dipolar BEC in a pancake-shaped harmonic
trap, with the short axis parallel to the polarization direction, it is possible to
obtain a stable dipolar BEC even at very small values of the scattering length (in
extreme cases, even slightly negative). The critical value of the scattering length
at which the collapse is observed decreases with an increase of the trap aspect ratio
(see figure 2.2 panel b). Intuitively, this can be understood to be a consequence of
the confinement along the polarization direction, that prevents the dipoles from
reaching the attractive head-to-tail configuration(see figure 2.2 panel a). Moreover,
the post collapse expansion dynamics is characterized by a peculiar d-wave shape,
that resembles the anisotropy of the dipolar potential, and is well captured by the
mean-field model after taking into account the effects of three-body losses[40].
However, the mean-field model fails in describing the observed properties of dipolar
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BECs of atoms with a magnetic moment much stronger then the one of 52Cr, as
for example 164Dy and 166Er. In this case, in the mean-field instability region of
the phase diagram, one can observe the formation of peculiar self-bound liquid-like
droplets [6, 41] that can eventually arrange into a regular, periodic configuration,
in a sort of droplet crystal. As will be discussed in depth later, it is possible to fine
tune the system parameters in such a way to establish phase coherence between
the droplets in the droplet crystal, realizing a supersolid, a peculiar state of matter
showing both superfluidity and crystal properties. To describe these aspects, it is
necessary to go beyond a mean-field description of the system, as will be discussed
in the next section.

2.1.3 Beyond mean field: the Lee-Huang-Yang correction

The mean-field eGPE 2.11 has been shown to be accurate in describing the phase
diagram and the post-collapse dynamics of a dipolar BEC of weakly magnetic
atoms of 52Cr[39]. However, it fails in predicting the structures (supersolids, quan-
tum droplets and droplet crystals) observed in the mean-field instability regions
of the phase diagram of BECs of 164Dy and 166Er, which possess a stronger mag-
netic dipole moment. In order to account for these effects, the state-of-the-art
description of dipolar BECs takes into account also the first-order beyond mean
field correction to the ground state energy and chemical potential of the system
[7, 41]. The fundamental idea, based on a similar one proposed for Bose-Bose
mixtures [42], is that, as a dipolar BEC collapses driven by the attractive part of
the dipole-dipole interaction, which produces a negative mean-field energy term,
quantum fluctuations increases producing a positive energy term that eventually
balances the mean-field one resulting in a final stable state. We will first consider
the case of a uniform BEC, and then generalize to the non-uniform case using the
local density approximation.
For a homogeneous dipolar BEC in three spatial dimensions, the first order beyond-
mean-field correction to the ground state energy is given by [43, 44]

E0

V
=

1

2
gn2

[
1 +

128

15
√
π

√
na3F (εdd)

]
(2.19)

where

F (εdd) =
1

2

∫ π

0

dθ sin θ[1 + εdd(3 cos2 θ − 1)]
5
2 (2.20)

Details of the calculations are given in Appendix A. Notice that this correction
introduces a positive shift in the ground-state energy of the system via a term
proportional to n

5
2 , where n = N/V is the density of the system, N being the

total number of atoms and V the volume.
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The simplest way to take into account the beyond-mean-field correction 2.19 for the
description of a non-homogeneous dipolar system is to follow a density-functional-
theory approach, starting from the mean-field energy functional 2.14 and adding
the LHY correction in local density approximation (LDA). The energy functional
becomes

E[ψ] =

∫
drψ∗(r)

(
− ~2

2m
∇2 + Vext(r)

)
ψ(r)

+
g

2

∫
dr|ψ(r)|4

+
1

2

∫
drdr′|ψ(r)|2Vdd(r− r′)|ψ(r′)|2

+
2

5
γ(εdd)

∫
dr|ψ(r)|5 (2.21)

where we have introduced

γ(εdd) =
32

3
√
π
ga

3
2F (εdd) (2.22)

Minimizing this energy functional under the constraint 2.13 leads to the new equa-
tion for the ground-state wave function

µψ =
[
− ~2∇2

2m
+ Vext(r) + g|ψ(r)|2 + γ(εdd)|ψ(r)|3

+

∫
dr′Vdd(r− r′)|ψ(r′)|2

]
ψ(r) (2.23)

Solving this eigenvalue problem for the smallest eigenvalue µ allows to study the
ground state-wave function and density profiles in presence of quantum fluctua-
tions. The dynamics can instead be studied by considering the time-dependent
version of equation 2.23, which reads

i~
∂ψ(r, t)

∂t
=
[
− ~2∇2

2m
+ Vext(r) + g|ψ(r, t)|2 + γ(εdd)|ψ(r, t)|3

+

∫
dr′Vdd(r− r′)|ψ(r′, t)|2

]
ψ(r, t) (2.24)

The BdG equations 2.16 are instead modified replacing Ĥ0 and X̂0 with the oper-
ators Ĥ and X̂ defined as

Ĥ = Ĥ0 + γ(εdd)|ψ0|3

X̂ = X̂0 +
3

2
γ(εdd)|ψ0|3 (2.25)
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where ψ0 is the solution of 2.23.
The beyond-mean-field model, together with the local density approximation, has
been shown to give results compatible with exact quantum Monte Carlo calcula-
tions in the quantum droplet regime [45, 46], but also to describe reasonably well
the phenomenology observed in recent experiments. This comes from the fact that
the LHY correction is dominated by fluctuations with a wavelength much smaller
then the typical droplet size [7], so that the bulk of the positive energy shift due
to quantum fluctuations is well described also cutting off the contribution coming
from long-wavelength modes. This model will thus be used to obtain all the results
presented in the thesis.

2.2 Linear response theory

In this thesis, I often consider the behavior of a dipolar Bose gas in response to a
small external perturbation. This procedure is a fundamental tool that allows to
study the structure and physical properties of general many-body systems. In fact,
if the perturbation is small enough, the response of the system typically depends
linearly on the strength of the perturbation, a fact that allows the systematic
development of several useful theoretical tools and to compare theory and experi-
ments. In this section, I will sketch the basic tools of linear response theory used
in this thesis, following [2].

2.2.1 Response function and dynamic structure factor

Let us consider a general many-body system described by the Hamiltonian Ĥ, and
let us suppose that, at time t = 0, we switch on the perturbation

Ĥpert(t) = −λĜe−iωteηt − λ∗Ĝ†eiωteηt (2.26)

where λ is the strength of the perturbation, supposed to be small enough to apply
linear response theory, η is a small positive parameter ensuring that the pertur-
bation is zero at t → −∞, and Ĝ is the excitation operator. In general, we want
to study the response of a certain operator F̂ to the perturbation operator Ĝ. In
linear response theory, we write the fluctuation 〈δF̂ †〉 of the operator F̂ induced
by the excitation operator Ĝ as

〈δF̂ †〉 = λe−iωteηtχF̂ †Ĝ(ω) + λ∗eiωteηtχF̂ †Ĝ†(−ω) (2.27)

where the function χ is called dynamic polarizability or response function of the
system. This function depends only on the properties of the system and, once
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known, it determines its linear response to small perturbations. In equilibrium at
a certain temperature T , the linear response function is given by

χF̂ †Ĝ(ω) = −1

~
Q−1

∑
m,n

e−βEm,n

[
〈m|F̂ †|n〉〈n|Ĝ|m〉
ω − ωn,m + iη

− 〈m|Ĝ|n〉〈n|F̂
†|m〉

ω + ωn,m + iη

]
(2.28)

where |n〉 are the excited states of the system with energy En, ωn,m = En−Em

~ are
the transition frequencies, and Q =

∑
n e−βEm is the canonical partition function,

β being linked to the Boltzmann constant by β = 1/kBT .
Let us now specialize to the case F̂ = Ĝ. It is useful to define the dynamic structure
factor relative to the operator F̂ as

SF̂ (ω) = Q−1
∑
m,n

e−β~ωm,n|〈n|F̂ |m〉|2δ(~ω − ~ωm,n) (2.29)

using which the linear response function can be written as

χF̂ (ω) =

∫ ∞
−∞

dω′
[

SF̂ (ω′)

ω − ω′ + iη
− SF̂ †(ω′)

ω + ω′ + iη

]
(2.30)

Using the dynamic structure factor, the imaginary part of the response function
can be written as

ImχF̂ (ω) = π(1− e−β~ω)SF̂ (ω) (2.31)

and, using second order perturbation theory, it can be related to the rate of energy
exchange between the system and the perturbation as

dE

dt
= 2|λ|2ωImχF̂ (ω)

= 2π|λ|2ω(SF̂ (ω)− SF̂ †(−ω)) (2.32)

This relation also shows that the energy exchange rate between the system and
the perturbation is given by two terms: a positive term, proportional to SF̂ (ω),
that gives the energy absorbed by the system, and a negative one proportional to
SF̂ †(−ω) which gives the energy extracted from the system.
At T = 0, the expression for the dynamic structure factor becomes a little simpler.
In fact, at T = 0 the system is supposed to be in its ground state, and hence we
only need to consider matrix elements of F̂ or Ĝ only between the ground state
|0〉 and the excited states |n〉. The expression of the dynamic structure factor is
thus simplified as

SF̂ (ω) =
∑
n

|〈n|F̂ |0〉|2δ(~ω − ~ωn) (2.33)

Notice that, at T = 0, we must have SF̂ (ω < 0) = 0, since at zero temperature
the system is already in its ground state and no energy can be extracted from it.
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2.2.2 Sum rules

In general, it is difficult to calculate either χF̂ or SF̂ (ω) starting from the general
many-body Hamiltonian of the system. However, interesting informations can
be extracted by studying the energy-weighted moments of the dynamic structure
factor.
The p-th order energy-weighted moment of the dynamic structure factor is defined
as

mp(F̂ ) = ~p+1

∫ ∞
−∞

dωωpSF̂ (ω) (2.34)

Such moments are related in an interesting way to the commutators (and anti-
commutators) of the operator F̂ with the Hamiltonian Ĥ and to the energy of the
elementary excitations of the system. They often provide good estimates of the
excitation frequencies related to the excited states of the system, but also universal
relations valid for very general systems.
Let us start with the zero energy-weighted moment of the dynamic structure factor.
It is easy to see that it can be calculated as

m0(F̂ ) = ~2Q−1
∑
m

e−βEm〈m|F̂ F̂ †|m〉

= Tr(F̂ F̂ †)

= 〈F̂ F̂ †〉 (2.35)

from which one easily finds the following sum rules

m0(F̂ ) +m0(F̂ †) = 〈
{
F̂ , F̂ †

}
〉

m0(F̂ )−m0(F̂ †) = 〈
[
F̂ , F̂ †

]
〉 (2.36)

Similarly, the following sum rules are valid for the first energy-weighted moment

m1(F̂ ) +m1(F̂ †) = 〈
[
F̂ †,
[
Ĥ, F̂

]]
〉

m1(F̂ )−m1(F̂ †) = 〈
{
F̂ †,
{
Ĥ, F̂

}}
〉 (2.37)

At T = 0, it is possible to derive rigorous upper bounds on the energy of the modes
excited by the perturbation operator F̂ . In fact, the energy-weighted moments can
be written explicitly as

mp =
∑
n

|〈n|F̂ |0〉|2ωpn (2.38)

from which one easily obtains

mp+1

mp

=

∑
n |〈n|F̂ |0〉|2ωpnωn∑
n |〈n|F̂ |0〉|2ω

p
n

≥ ωmin (2.39)
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where ~ωmin is the energy of the mode with smallest energy excited by F̂ . We
thus have the rigorous upper bound

ωmin ≤
mp+1

mp

(2.40)

These inequalities become equalities in the case in which the response of the system
is exhausted by a single mode only (single-mode approximation).
Similarly to 2.39, it is possible to find the following recursive relation

mp+1

mp

≥ mp

mp−1

(2.41)

from which, for p = 0, one finds the useful relation

m0 ≤
√
m1m−1 (2.42)

The inverse energy-weighted moment m−1 is related to the static response of the
system, and allows to define the static response function as

m−1 =

∫ ∞
−∞

dω
1

ω
SF̂ (ω)

=
∑
n

|〈n|F̂ |0〉|2

ωn

=
1

2
χF̂ (ω = 0) (2.43)

where χF̂ (ω = 0) describes the response of the system to a static perturbation.

2.2.3 Density response

As a concrete example, let us now consider the important case in which the op-
erator F̂ is the density operator in Fourier space. More specifically, the density
operator can be defined as

n̂(r) =
∑
i

δ(r− ri) (2.44)

where the sum is extended to all the particles in the system. The Fourier transform
of this operator is

ρ̂k =

∫
dre−ik·rn̂(r) (2.45)

We now make the choice

F̂ = Ĝ = δρ†k = ρ†k − 〈ρ
†
k〉 (2.46)
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where the average is calculated at equilibrium. The response function and the
dynamic structure factor can thus be written as

χ(k, ω) = −1

~
Q−1

∑
m,n

e−βEm,n

[
|〈m|δρk|m〉|2

ω − ωn,m + iη
− |〈m|δρ

†
k|m〉|2

ω + ωn,m + iη

]
S(k, ω) =

∑
n

|〈n|δρ†k|0〉|
2δ(~ω − ~ωn) (2.47)

We now consider systems at equilibrium at T = 0, where the proofs are easier,
although the results we will find are also valid at finite temperature. Suppose,
moreover, that we have a system symmetric under parity, such that the Fourier
transform of the density operator satisfies

ρ̂k = ρ̂−k = ρ̂†−k = ρ̂†k (2.48)

It is easy then to show that the dynamic structure factor satisfies

S(k, ω) = S(−k, ω) (2.49)

Using these symmetry properties and the sum rules 2.37, we easily find

m1(k) =
1

2
〈
[
δρ̂†k,

[
Ĥ, δρ̂k

]]
〉 (2.50)

If the Hamiltonian can be split in a kinetic term and a velocity-independent po-
tential as Ĥ = T̂ + V̂ , then the density operator commutes with the potential,

while, writing the kinetic energy operator as T̂ =
∑

i
p̂2i
2m

, its commutator with the
density operator is easily evaluated and gives[

T̂ , ρ̂k
]

= −~k · ĵ (2.51)

where we have defined the current density operator as

ĵ =
∑
i

[
p̂ie
−ik·ri + e−ik·rip̂i

]
(2.52)

Using this expression to evaluate the double commutator, one finds the model
independent result

m1 = N
~2k2

2m
(2.53)

which is known as the f-sum rule, and is often used, also in this thesis, to check
the consistency of the calculations. Using the inequality 2.40 with p = 0 and the
f-sum rule, one finds

ωmin(k) =
m1

m0

=
~2k2

2mS(k)
(2.54)
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where we have defined the static structure factor S(k) as

S(k) =
1

N
m0(k) =

1

N

∑
n

|〈n|δρ̂†k|0〉|
2 (2.55)

Relation 2.54 is known as the Feynman relation, and gives the energy-momentum
dispersion relation if the single-mode approximation is fulfilled, i.e. if the density
operator excites only a single mode of the system (otherwise, it provides an upper
bound on such frequency).

2.3 Numerical methods

The results presented in this thesis are mostly based on the numerical solution of
the beyond-mean-field extended Gross-Pitaevskii equation 2.24 or its static coun-
terpart 2.23, as well as solutions of the Bogolyubov-de Gennes (BdG) equations
2.16 with the beyond-mean-field correction 2.25.
In particular, three classes of physical properties of dipolar BECs are considered

• Ground-state properties, which include, for example, density profiles or ground
state expectation values of observables; both of these can be calculated from
the solution ψ of equation 2.23 corresponding to the lowest eigenvalue µ,
which represents the chemical potential of the system for a fixed set of sys-
tem parameters;

• elementary excitations, including excitations spectra or the static and dy-
namic structure factor, which can be studied from solutions of the BdG
equations;

• dynamical properties, including the behavior of the system following realistic
experimental protocols, or under the action of some external perturbation;
these can be studied from solutions of 2.24 for suitable initial conditions.

Analytical solutions of such complex, non-linear integral-differential problems are
extremely difficult to find and can be studied only in very specific cases (see, e.g.,
[47]). Instead, numerical solutions can be found (almost) always with very good
accuracy, and allow in particular to compare predictions of our models with results
of experiments.
Let us take a loser lok at the numerical algorithms used in these thesis.

2.3.1 Ground-state properties

Studying (theoretically, or numerically) ground state properties of a dipolar BEC
means solving equation 2.23 to obtain the solution ψ, which is physically inter-
preted as the condensate ground-state wave function. Knowing ψ, one can evaluate
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observables of interest, such as ground state density profiles ρ(r) = |ψ(r)|2, mo-
mentum distributions |ψ̃k|2 (where ψ̃k is the Fourier transform of ψ), or equilibrium
expectation values of any operator Ô

〈Ô〉 =
〈ψ|Ô|ψ〉
〈ψ|ψ〉

(2.56)

Since we cannot access the exact functional form of ψ(r), we must be content
with calculating numerically its values at the points of a mesh in either real or
momentum space. From now on, it will always be assumed implicitly that ψ(r) is
evaluated at the points of a regular cartesian mesh in real space, while its Fourier
transform ψ̃k is evaluated at the points k of the corresponding reciprocal mesh in
momentum space.
The problem of calculating the solution ψ of equation 2.23 can be formulated
as a constrained minimization problem, exploiting the fact that the ground-state
condensate wave function can be defined as the exact minimizer of the energy
functional 2.21, under the normalization constraint 2.13 that fixes the total number
of atoms (i.e., the L2 norm of ψ). We implement such minimization procedure
iteratively, using a line search method known as gradient descent [48]. The idea is
to start from a guess solution ψ0 and generate a sequence of iterates {ψn}n=0,...∞
that terminates when we are sufficiently confident to have reached a (hopefully
global) minimizer of the functional 2.21 with good accuracy. In particular, a good
stopping criterion consists in fixing a tolerance threshold ε for the norm of the
residual, i.e.

||Ĥψn − µnψn||2 ≤ ε (2.57)

where Ĥ is given by 2.25 and the estimate µn of the chemical potential µ at
iteration n can be calculated from equation 2.23 as

µn =
〈ψn|Ĥ|ψn〉
〈ψn|ψn〉

(2.58)

For the results presented in this thesis, we typically choose a tolerance ε ≤ 10−6.
In deciding how to move from one iterate ψn to the next ψn+1, line search algo-
rithms use information about the functional E[ψ] at ψn, and possibly also from
earlier iterates ψ0, ψ1, . . . ψn−1. The update criterion should be that the energy
functional is smaller in ψn+1 then in ψn. One thus generates a sequence

ψn+1 = ψn + αχn (2.59)

such that E[ψn+1] < E[ψn] < · · · < E[ψ0] until the stopping criterion 2.57 is
satisfied. The update ”direction” χn must thus be chosen to be a descent direction,
i.e. a direction along which the functional E[ψ] decreases. The step-length α
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should instead be (ideally) chosen in such a way that the decrease in the energy
functional E[ψ] from ψn to ψn+1 is, at each iteration step, the maximum possible.
Since this is not an easy task, we instead accepted the compromise to choose the
step length α empirically at the beginning of the iteration procedure.
The gradient descent method consists in choosing the descent direction χn as the
opposite of the gradient of the functional E[ψ] calculated in ψn. In particular, in
our case, the descent direction is (minus) the functional derivative of the energy
functional with respect to ψ∗ evaluated at ψn, i.e.

χn =− δE[ψn]

δψ∗
= (2.60)

−
[
− ~2∇2

2m
+ Vext(r) + g|ψn(r)|2 + γ(εdd)|ψn(r)|3

+

∫
dr′Vdd(r− r′)|ψn(r′)|2

]
ψn(r) (2.61)

The normalization condition 2.13 fixing the L2 norm of ψ should be included in
the iteration procedure by introducing a Lagrange multiplier and minimizing the
corresponding lagrangian functional[48]. In practice, we find much cheaper to
normalize ”by hand” each ψn obtained via the iterative procedure just described,
by fixing

ψ
(1)
n+1 = ψn + αχn

ψn+1 =

√
N∫

dr|ψ(1)
n+1|2(r)

ψ
(1)
n+1 (2.62)

Finally, we employ an acceleration algorithm, known as the heavy ball method
[49, 50], in order to speed up the convergence of the sequence {ψn}n=0,...∞. The
method consists in adding a ”momentum” term into the iterations 2.59, in order
to make larger steps if the descent direction doesn’t change very much, and smaller
steps if it changes a lot. In practice, what one does is just to modify expression
2.59 in

ψn+1 = ψn + αχn + β(ψn − ψn−1) (2.63)

where, again, β is a parameter chosen empirically. We have found that this small
trick can decrease the number of iterations needed to reach convergence even by
orders of magnitude.

2.3.2 Elementary excitations

The elementary excitations of a dipolar BEC on top of a certain ground-state so-
lution can be studied by solving the Bogolyubov-de Gennes equations 2.16, taking
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also into account the beyond-mean-field correction 2.25. The numerical solution
of these equations is computationally demanding in three spatial dimensions (as
will always be the case in this thesis), especially due to the presence of the inte-
gral terms that arise from the non-local character of the dipole-dipole interaction
potential. However, several tricks can be used to make the problem tractable.
We set periodic boundary conditions, since the use of Fourier transforms simplifies
the problem of evaluating non-local terms due to the presence of the dipole-dipole
interaction, and allows to easily jump from a real to a momentum space descrip-
tion of the problem whenever needed.
Having fixed periodic boundary conditions, momentum k is a good quantum num-
ber labelling the elementary excitations of the system, and the Bogolyubov quasi-
particle amplitudes can be factorized, using Bloch theorem [51], as

un(r) = eik·run,k(r)

vn(r) = eik·rvn,k(r) (2.64)

where un,k(r) and vn,k(r) have now the same periodicity of the simulation cell. We
can expand these two functions in plane waves as

un,k(r) =
∑
n,G

uGe
iG·r

vn,k(r) =
∑
n,G

vGe
iG·r (2.65)

where the vectors G are the reciprocal lattice vectors associated with the mesh in
real space.
The same expansion can clearly be done also for the condensate wave function

ψ(r) =
∑
G

ψGe
iG·r (2.66)

Inserting these expressions in the BdG equations 2.16, taking also into account
the correction 2.25, we obtain the eigenvalue problem[

A + B B
−B −A−B

] [
un,k
vn,k

]
= ~ωn,k

[
u,nk
vn,k

]
(2.67)

where the matrices A and B are defined as

AG,G′ =

[
~2(k + G)2

2m
− µ

]
δG,G′ + ŨG−G′

BG,G′ =
∑
G′′

ψG−G′′Ṽk+G′′ψG′′−G′ + C̃G,G′ (2.68)

36



where we have also defined∑
G

ŨGeiG·r = Vext(r) +

∫
dr′Vdd(r− r′)|ψ(r′)2|+ γ(εdd)|ψ(r)|3

∑
G

C̃GeiG·r =
3

2
γ(εdd)|ψ(r)|3 (2.69)

Solving this non-symmetric eigenvalue problem may be computationally very ex-
pensive. Important simplifications may however be obtained with some trick. In
fact, the eigenvalue problem can easily be rewritten as{

A(A + 2B)(un,k + vn,k) = (~ωn,k)2(un,k + vn,k)

A(un,k − vn,k) = (~ωn,k)(un,k + vn,k)
(2.70)

Notice that the first equation in 2.70 defines a (still non-symmetric) eigenvalue
problem of half the size of the original one 2.67, from which the spectrum of the
elementary excitations can be readily calculated. The eigenvectors in this case
correspond to the sum (un,k + vn,k), which can be then be inserted in the second
equation of 2.70. One can finally calculate (un,k − vn,k) by solving a (numerically
simple) linear system, and finally obtain un,k and vn,k by sums and differences.
A final simplification comes from noticing that, if we consider (like we often do)
configurations in which the chemical potential is positive (e.g., because the system
is not self-bound, or if the external potential lifts its value), the matrix A is
symmetric and positive definite, so that we can take its Cholesky factorization [52]

A = LLT (2.71)

where L is a lower triangular matrix and LT is its transpose. Then, the system
2.70 can be rewritten as{

Szn,k = (~ωn,k)2zn,k

LT (un,k − vn,k) = (~ωn,k)zn,k
(2.72)

where S = LT (A + 2B)L is now a symmetric matrix, and zn,k = L−1(un,k + vn,k).
So, the eigenvalue problem defined in the first equation of 2.72 can be solved using
some iterative, high-performance method, such as the Lanczos method [52], while
the successive linear system can be solved by simple substitution. Noticing that
inverting a lower triangular matrix is a computationally cheap task, and so the
real bottleneck of the algorithm becomes the formation of the matrix S by matrix
multiplications (which is, anyway, an operation that can be parallelized). For
the results presented in this thesis, the system of equations 2.72 is solved using
LAPACK routines [53].
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2.3.3 Dynamics

Dynamical properties of the dipolar BEC, as for example the behavior of the
system following realistic experimental protocols, or the response of the system
to various kinds of linear or non-linear perturbations, can be studied by solving
equation 2.24 in time for suitable initial conditions. The approach we use to solve
this non-linear partial integral-differential equation is a simple fourth-order Runge-
Kutta algorithm (RK4) [54].
In order to solve a general first order differential equation in time

dy

dt
= f(y, t)

y(0) = y0, t ∈ [0, T ] (2.73)

where f is some function of y and time t, the general idea it so split the time
interval [0, T ] into N sub-intervals of length dt = T/N , and propagate equation
2.73 one step forward at a time starting from the initial condition y0. The RK4
algorithm evaluates the value of y at time tn+1 into different steps starting from
the previous solution y(tn). In particular, the algorithm is implemented as follows

k1 = dt× f(tn, y(tn));

k2 = dt× f(tn +
1

2
dt, y(tn) +

1

2
k1);

k3 = dt× f(tn +
1

2
dt, y(tn) +

1

2
k2);

k4 = dt× f(tn + dt, yn + k3);

y(tn+1) = y(tn) +
1

6
(k1 + 2k2 + 2k3 + k4) (2.74)

The local error of this algorithm is o(dt5), such that the global error is o(dt4). The
method can be applied to the solution of equation 2.24, by rewriting it as

∂ψ

∂t
= − i

~
Ĥψ (2.75)

where Ĥ is given in 2.25, and setting f = − i
~Ĥ.

Notice that RK4 is an explicit method, and hence it may become numerically
unstable if the time step is not small enough. In all the simulations that lead to
the results presented in this thesis, we have always checked that the simulation is
stable by ensuring the conservation of the L2 norm of the wave function as well as
the energy of the system.
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2.3.4 Non-local integrals and periodic boundary conditions

Solutions of the extended Gross-Pitaevskii equations 2.24 and 2.23 are complicated
by the presence of the non-local integral term

Φdd(r) =

∫
dr′Vdd(r− r′)|ψ(r′)|2 (2.76)

Especially in three-dimensional calculations, evaluating this integral by numerical
quadrature can be really expensive. However, taking the Fourier transform on
both sides of equation 2.76, we find

Φ̃dd(k) = Ṽdd(k)ρ̃(k) (2.77)

where ρ(r) = |ψ(r)|2 and the tilde denotes Fourier transform. We can see that,
in Fourier space, the convolution integral Φdd is given by a simple multiplication.
Moreover, the Fourier transform of the dipole-dipole interaction can be calculated
analytically, and gives [35] (see also Appendix B)

Vdd(k) =
Cdd
3

(3 cos2 α− 1) (2.78)

where α is the angle between k and the polarization axis z. We use this result to
evaluate Φdd easily in three steps as

1. calculate the Fourier transform ρ̃(k) of the density distribution ρ(r) = |ψ(r)|2;

2. calculate Φ̃dd(k) = Ṽdd(k)ρ̃(k);

3. calculate the inverse Fourier transform of Φ̃dd(k), obtaining finally Φdd(r).

A similar procedure can be used to evaluate the action of the Laplace operator ∇2

on ψ, using the fact that the Fourier transform of ∇2ψ(r) is equal to −k2ψ̃(k).
Numerical evaluation of Fourier transforms can be done very efficiently both on
multi-core CPUs using the FFTW3 package [55], and on GPUs using cuFFT [56].
Although it simplifies the evaluation of non-local integrals and derivatives, the use
of Fourier transforms comes with a price. In fact, the use of Fourier transform
imposes implicitly periodic boundary conditions, that may be un-physical, espe-
cially for a fully trapped system. Moreover, using a long-range potential, periodic
boundary conditions introduce spurious interactions between the simulation cell
and its periodic copies. These difficulties can be solved by employing a simulation
cell large enough not only to accommodate the full spatial region in which the
wave function ψ is significantly different from zero, but also large enough so that
the interaction between the simulation cell and its periodic copies is negligible.
To ensure that these conditions are satisfied, different runs are always performed,
using a larger and larger simulation cell, until we find that a further enlargement of
the simulation cell (for fixed space-step) does not result in an appreciable change
in either density profiles or energies.
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Chapter 3

Supersolidity of a dipolar Bose
gas confined in a ring

In this Chapter, we will use the methods described in the previous chapter to
study the properties of a dipolar Bose gas confined in a ”tubular” geometry, with
the main axis orthogonal to the polarization direction of the dipoles, with periodic
boundary conditions at the edges of the confinement, resembling the geometry of
a ring. We will see that, under these conditions, the system can show supersolid
behavior, and in particular a non-classical rotational inertia and an additional
acoustic mode in the excitation spectrum. We will also study the density response
of the system to external probes, applying the concepts of linear response theory
presented in Chapter 2.

3.1 A roton in the excitation spectrum

The concept of a roton was introduced by Landau [57] in order to explain the
thermodynamic properties of superfluid 4He. In particular, Landau postulated
the existence of two kinds of low energy excitations in superfluid helium, which
show in the energy-momentum dispersion relation ~ω(k): phonons, i.e. gapless
excitations characterized by a linear dispersion relation in the limit k → 0, and
rotons (originally associated with elementary vortices), i.e. gapped excitations
characterized by a parabolic dispersion relation with a local minimum at a finite
momentum. This intuition was later confirmed in neutron scattering experiments
[58]. The presence of a roton in the excitation spectrum has been associated with
the tendency of the system to self-organize in a crystalline structure [59, 60, 22].
A roton minimum can also be found in the excitation spectrum of Bose-Einstein
condensed systems interacting via long-range potentials, for example in the case of
magnetic dipole-dipole interaction [61] or in BECs irradiated by off-resonant laser
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Figure 3.1: Schematic representation of the confining geometry. a) The dipoles are
confined in a ”tubular” confinement orthogonal to the polarization direction (z-
axis), obtained with a harmonic trap in the y-z plane. b) Once periodic boundary
conditions are set along x, the geometry resembles the one of a ring.

light [62]. The existence of the roton in such systems has been confirmed in recent
experiments [63, 64].
As said, we now consider a dipolar BEC confined in a quasi-one-dimensional ”tubu-
lar” geometry, obtained by confining the atoms in the y-z plane through a harmonic
potential, but letting them free in the x direction. The dipoles are supposed to be
aligned along the z axis by some external magnetic field. We consider the case in
which periodic boundary conditions are imposed along the unconfined direction,
in such a way that the resulting geometry is similar to the one of a ring (see fig-
ure 3.1). As shown in [65], the spectrum of the elementary excitations ω(kx) of
a homogeneous dipolar BEC confined in this geometry, and obtained by solving
the Bogolyubov-de Gennes equations 2.16 with the quantum correction 2.25 for
excitations propagating along the x axis, shows in fact a roton minimum at a finite
value of the momentum. The typical shape of ω(kx) is plotted in figure 3.2 panel
(a). We can see that, for each value of εdd, the spectrum is linear and gapless
for kx → 0, implying that long-wavelength fluctuations of the system are acous-
tic phonons. Moreover, for increasing kx, the excitation spectrum continuously
evolves from linear to parabolic, forming first a local maximum (called maxon)
and then a roton minimum, with a roton gap that decreases as the strength of the
dipolar interaction is further increased. For a certain critical value of εdd, the roton
minimum touches the kx axis at the point krot, implying that the homogeneous
BEC becomes unstable.
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Figure 3.2: a) Excitation spectra of a homogeneous dipolar BEC of N = 40000
atoms of 164Dy, confined in a harmonic trap of frequencies ωy = ωz = 2π(100)Hz;
along x, the system is unconfined, but subject to periodic boundary conditions at
x = ±L with L = 12µm. b) For the same trapping geometry, energy of the roton
as function of εdd and of the linear density n = N/L. The black region corresponds
to configurations in which a homogeneous superfluid is not stable, and the ground-
state of the system is either a supersolid, or an array of independent droplets.

The value of the roton energy depends in a non-monotonic way on both the linear
density n = N/L, where N is the total number of atoms and L the length of the
tube, and εdd. For a fixed external trapping in the y-z plane, the stability region
of the roton acquires a characteristic, asymmetric, inverse-bell shape. This implies
that, for a fixed value of εdd, increasing the density starting from small values,
the system first enters the instability region of the roton mode (black region of
figure 3.2 panel (b) ), to come back to the stable region, characterized again by
the occurrence of a roton with a finite excitation energy, at larger values of the
density.

3.2 Spontaneous breaking of translational invari-

ance

In the instability region of the roton mode, mean-field theory predicts that the
system collapses. More specifically, numerical solutions of equation 2.12 are char-
acterized by an un-physical density profile, with all the atoms settling at the same
point of the simulation mesh. However, as previously discussed, in order to prop-
erly describe the dipolar BEC in the mean-field instability region, we need to take
into account also beyond-mean-field effects. In particular, in order to study the
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new ground state of the system, we need to consider numerical solutions of equa-
tion 2.23. As shown in figure 3.3, panels (c)-(d), when the roton mode makes
the homogeneous superfluid unstable, the new ground state of the system is char-
acterized by partially overlapping density peaks, whose relative distance is fixed
by the critical value krot of the momentum at which the roton minimum touches
the kx axis via λ = 2π/krot. The system thus undergoes an equilibrium phase
transition from a homogeneous superfluid to a state in which the density profile
is periodically modulated. This state is called supersolid, and, as we will show in
the next sections, shows properties of both a superfluid and a crystalline system.
Moving away from the superfluid-supersolid phase transition by further increas-
ing the value of εdd, the overlap between the density peaks becomes smaller and
smaller, until each of them becomes an independent droplet (see figure 3.3 pan-
els (e)-(f)). This state is also called independent droplet crystal. Notice that the
density peaks in the supersolid and droplet crystal states are strongly elongated
in the polarization direction (z-axis), as a consequence of the partially attractive
nature of the dipole-dipole interaction.
For the choice of the physical parameters made in this chapter, the superfluid-
supersolid phase transition is observed to be continuous, as expected for a system
breaking translational invariance in one space dimension only [24]. In particular,
the system develops the density modulation smoothly as the transition is crossed
by increasing εdd. This was, however, not completely obvious, since a dipolar
BEC in a ring-like geometry, despite the strong elongation along the x-axis, is
not a purely one dimensional system, as transverse degrees of freedom are not
frozen out due to the long range and anisotropic nature of the dipolar force. The
consequence is that the superfluid-supersolid phase transition may be, in this con-
figuration, either continuous or discontinuous (for example, in the case studied in
[65], the transition was observed to be discontinuous), depending on the linear
density n = N/L, where N is the total number of atoms and L the length of
the simulation cell. In particular, Blakie et al. [66], using a simplified variational
model in reduced dimensions, have found numerical evidences that a continuos
transition characterizes a range of ”intermidiate” densities between two critical
values nlow and nhigh, which depend on the details of the trapping parameters and
the atomic species used, while a discontinuous transition characterizes values of
the density outside this range.
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Figure 3.3: a,c,e) Iso-density contours of the ground state density profiles of a
dipolar BEC of N = 80000 atoms of 164Dy confined by a harmonic potential of fre-
quencies ωy,z = 2π(100)Hz in the y-z plane, and unconfined along the x-direction.
Along x, periodic boundary conditions are set at x = ±24µm. b,c,f) Correspond-
ing density cuts along the x-axis.
Panels (a)-(b),(c)-(d) and (e)-(f) correspond, respectively, to εdd = 1.2 (homoge-
neous superfluid), εdd = 1.39 (supersolid) and 1.5 (independent droplets).

44



3.3 Non-Classical Rotational Inertia
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Figure 3.4: Superfluid fraction ρs/ρ, calculated according to 3.3, for a dipolar
BEC of N = 40000 atoms of 164Dy, confined in a harmonic potential of frequencies
ωy,z = 2π(100)Hz, and free in the x direction, along which periodic boundary
conditions are set at x = ±12µm. The insets show the ground state density
profiles along the x direction for different values of εdd in the superfluid, supersolid
and independent droplet phases.

One of the key manifestations of supersolidity is the appearance of a finite non-
classical rotational inertia (NCRI). Simply speaking, the idea is that, given a
system formed by two components, a superfluid and a non-superfluid one, the
superfluid part is not dragged by any slow rotation of a (supposedly cylindrically
symmetric) confining potential. This implies that any measurement of the moment
of inertia will give a value smaller then the one of a classical system with the same
mass distribution by an amount proportional to the superfluid fraction of the
system. The idea of NCRI was first proposed by Leggett [14, 15] for a system
of N particles confined in a cylindrical annulus, slowly rotating around its axis.
Minimizing the energy functional under the constraint of the single-valuedness of
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the many-body wave function, Leggett found an upper bound for the superfluid
fraction of the system. After ”unrolling” the annulus along the x axis, fixing
periodic boundary conditions, Leggett’s upper bound on the superfluid fraction
reads

ρs
ρ
≤
{∫ L

0

dx∫
dydzρ(x, y, z)

}−1

(3.1)

and is equal to 1 for a homogeneous system, smaller then 1 for a periodically
modulated density distribution, and non-zero as long as there is some overlap
between neighbouring density peaks.
The superfluid fraction associated with NCRI in a supersolid can also be estimated
by starting from a Gross-Pitaevskii model with non-local interactions [24, 23]. In
particular, the superfluid fraction of a system confined in a tubular geometry
like the one considered here can be estimated by calculating the ground state
expectation value of the momentum of the system in a frame (slowly) translating
along the long axis of the tube (x-axis). Notice that, with the use of periodic
boundary conditions, this is equivalent to a rotation of the ring around its axis.
We thus calculate the solution of equation 2.23 with the addition of a momentum
constraint

µψ =

(
Ĥ + i~vx

∂

∂x

)
ψ (3.2)

for a small translational velocity vx, and define the superfluid fraction of the system
as

ρs
ρ

= 1−
〈
P̂
〉

Nmvx
(3.3)

where m is the atomic mass and N the total number of particles. We have checked
that the estimate 3.3 coincides with Leggett’s estimate 3.1 in the geometry con-
sidered here, implying that Leggett’s upper bound on the superfluid fraction, in
this geometry, defines a rigorous equality.
The results for the superfluid fraction in the geometry considered here are shown
in figure 3.4. We can see that the superfluid fraction associated with NCRI is equal
to 1 for small values of εdd, where the ground state of the system is a superfluid
homogeneous along the x-axis. As the system crosses the superfluid-supersolid
phase transition, the superfluid fraction starts to rapidly decrease, and becomes
null in the regime of independent droplets.

3.4 Excitation spectra

Another fundamental signature of supersolid behavior in d space dimensions is the
presence, in the excitation spectrum ω(k), of d + 1 gapless phononic excitations,
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linear in the limit of vanishing momenta. The existence of these excitations can
be be seen as a consequence of Goldstone theorem, which associates one such
excitation mode to each spontaneously broken continuous symmetry. In the case
of a supersolid, the symmetries spontaneously broken are

1. continuous translational invariance in d spatial directions, responsible for the
emergence of a periodic, crystalline structure;

2. the gauge symmetry associated with Bose-Einstein condensation, responsible
for superfluid phenomena.

As discussed in Chapter 1, the presence, in the excitation spectrum of a supersolid,
of an additional gapless phononic excitation was originally proposed by Andreev
and Lifshitz [10], in the context of a two-component model of supersolids in which
a superfluid arising from Bose-Einstein condensation of defects is embedded in the
crystal structure of the system. The more recent model based on a non-local Gross-
Pitaevskii equation, developed Pomeau and Rica [22], also predicts the existence
of the additional acoustic mode in a BEC that spontaneously breaks translational
invariance.
In the case of a dipolar BEC in a ring geometry, in the supersolid phase, solv-
ing the Bogolyubov-de Gennes equations 2.16 with the LHY correction 2.25 for
excitations propagating along the x-axis, we find, as expected, that the two low-
est energy modes are gapless phononic excitations, as shown in figure 3.5 panels
(h)-(i)-(j). Notice that, despite our system being three-dimensional, the continu-
ous translational symmetry is broken along one spatial direction only, resulting in
1 + 1 acoustic modes. Moreover, as expected for a periodic system, the excitation
spectrum itself is also periodic, with a period fixed by the inverse of the lattice
constant, the Brillouin wave vector being equal to the momentum krot at which
the roton minimum touches the zero-energy axis.
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Figure 3.5: a-b) Ground state density profiles along x of a dipolar BEC of 80000
atoms of 164Dy, in the superfluid phase at εdd = 1.2 and 1, 32 (panels a-b), and
in the supersolid phase at εdd = 1.404, 1.435 and 1.466 (panels c-d-e). The atoms
are confined by a transverse harmonic trap of frequencies ωy,z = 2π(100)Hz, and
free in the x-direction, where periodic boundary conditions are set at x = ±24µm.
Panels f to h show the corresponding excitation spectra.

As we increase εdd and the ground-state of the system evolves from a supersolid
to an independent droplet crystal, the excitation spectrum evolves too. In fact, in
the supersolid phase, for a value of εdd close to the critical one for the superfluid-
supersolid phase transition, the speed of sound is very similar in the two channels
(figure 3.5 panel h); increasing εdd, instead, as the superfluid fraction decreases,
the speed of sound associated with the lower energy Goldstone mode decreases too
as the mode itself tends to disappears (figure 3.5 panels h-i-j). The speed of sound
in the higher energy Goldstone mode tends instead to a constant value (figure 3.5
panels i-j). This is one of the key factors that support the interpretation of the
lower energy Goldstone mode as the phase mode predicted in [23], and the higher
energy one as an acoustic phonon of the crystal. Other evidences based on the
study of the density and phase fluctuations associated with each mode (which, in
the context of Bogolyubov theory, can be written respectively as δρ = (u+ v∗)|ψ0|
and δφ = (u − v∗)/|ψ0|) are more difficult to interpret, since the two modes are
always coupled.

3.5 Static and dynamic structure factor

Important insights on the excitation spectrum of the supersolid can be obtained by
studying its linear response to a small density perturbation. In experiments, this
procedure is also known as Bragg scattering. The basic idea of Bragg scattering
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is to hit the system of interest with a certain probe (either neutrons in typical
condensed matter applications, or photons in ultracold gases) generating a small
perturbation potential, and then measure the energy and momentum transfer be-
tween sample and probe.
In the case of ultracold gases, scattering of photons generates a perturbation po-
tential which can be written as [2]

ĤBragg = V
(
δρ̂†ke−iωt + δρ̂keiωt

)
. (3.4)

where δρ̂k = ρ̂k− < ρ̂k >, ρ̂k being the Fourier transform of the density operator
at momentum k, and V is the strength of the perturbation. If this is small enough,
informations on the linear response of the system are contained in the dynamic
structure factor, which, as we have seen, at zero temperature is defined as

S(k, ω) =
∑
n

|〈n|δρ̂†k|0〉|
2δ(~ω − ~ωn) (3.5)

where |n〉 is an excited state of the system with energy ~ωn. The dynamic structure
factor allows to calculate the probability that the probe transfers an energy ~ω
and a momentum ~k to the system via the simple relation

P (k, ω) = 2π|V |2S(k, ω) (3.6)

If the elementary excitations of the system are studied in the context of Bogolyubov
theory, the dynamic structure factor can be written as

S(k, ω) =
∑
n

∣∣∣ ∫ dr[u∗n(r) + v∗n(r)]ψ(r)eik·r
∣∣∣2 × δ(ωn − ω) (3.7)

Figure 3.6 shows the same excitation spectra as in figure 3.5, with each mode col-
ored according to its contribution |〈n|δρ̂†k|0〉|2 to the dynamic structure factor.
In the superfluid phase (figure 3.6 panels a and b ), the response of the system
to a density perturbation is maximal at the momentum and energy of the roton.
This behavior becomes more evident as the superfluid-supersolid phase transition
is approached by increasing εdd.
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Figure 3.6: Same excitation spectra as in figure 3.5, with each mode colored ac-
cording to the value of |〈n|δρ̂†k|0〉|2, i.e. the contribution to the dynamic structure
factor.

In the supersolid phase (figure 3.6 panels c and d), different modes show up
in the dynamic structure factor. The system is more sensitive to perturbations
with the momentum of the Brillouin wave vector of the periodic density profile,
which, close to the transition, is fixed by the roton. In these conditions, where
the overlap between density peaks is large and the superfluid fraction is still close
to 1, the stronger density response comes from the lower-energy Goldstone mode
(figure 3.6 panel c); a strong density response is also associated with the parabolic
branch above the two Goldstone modes, especially at large momenta beyond the
first Brillouin zone. The situation is different when we go deeper in the super-
solid regime by increasing εdd (figure 3.6 panels d-e). In these conditions, in fact,
the overlap between the density peaks becomes smaller, as the superfluid fraction
tends to zero. The relative strength of the higher- and lower-energy Goldstone
mode tends to move in favour of the former: as the superfluid fraction decreases,
the response of the lower energy mode decreases, until the mode itself disappears
from the spectrum. Notice also that the contribution to the dynamic structure
factor coming from the parabolic branch above the two Goldstone modes tends to
disappear when the system approaches the independent droplet regime.
Further insight on the excitation spectrum of the supersolid comes from the be-
havior of the static structure factor, in particular near the Brillouin wave vector.
Remind that the static structure factor is defined as

S(k) =
1

N

∑
n

|〈n|δρ̂†k|0〉|
2 (3.8)

where N is the total number of particles.
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Figure 3.7: Static structure factor (blue solid line) of a dipolar BEC of 80000
atoms of 164Dy confined in a tubular geometry with periodic boundary conditions,
obtained with a harmonic trap of frequencies 2π(100)Hz in the y-z plane and setting
periodic boundary conditions along the x-axis at x = ±24µm, in the homogenous
phase at εdd = 1.2. We also report the first Bogolyubov mode (grey dashed line)
and the Feynman relation ω(k) = ~2k2/2S(k) (grey dots), which in this case
coincides exactly.

In the superfluid phase (figure 3.7), the static structure factor is strongly peaked
at the momentum of the roton. In this case, the Feynman relation 2.54 holds
exactly, so that the single-mode approximation is perfectly fulfilled, and a single
branch exhaust the entire density response of the system.
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Figure 3.8: Static structure factor (blue solid line) of a dipolar BEC of 80000
atoms of 164Dy confined in a tubular geometry with periodic boundary conditions,
obtained with a harmonic trap of frequencies 2π(100)Hz in the y-z plane and setting
periodic boundary conditions along the x-axis at x = ±24µm, in the supersolid
phase at εdd = 1.39. We also report the first two Goldstone modes (grey dotted
lines), their contributions to the static structure factor (respectively, green and
orange solid lines), and the Feynman relation ω(k) = ~2k2/2S(k) (black dashed
line). Notice that this coincides with the higher energy Goldstone mode both at
small momenta and close to the Brillouin wave vector.

The scenario is completely different in the supersolid phase (figure 3.8). As
we have already seen, in this case different modes have an appreciable density re-
sponse, as shown in the dynamic structure factor (figure 3.6 panels (b)-(c)). This
can be seen better by looking at the contributions to the static structure factor
from the different branches and at different momenta (figure 3.8). At small mo-
menta, the static structure factor (blue solid line) takes contributions mainly from
the lower energy Goldstone mode (green solid line). Close to the Brillouin wave
vector, instead, this contribution goes to zero, while the contribution from the
higher energy Goldstone mode (orange solid line) tends to diverge and determines
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the static structure factor completely. Beyond the Brillouin zone, other modes
contribute appreciably to the static structure factor. The divergence of the con-
tribution to the static structure factor of the higher energy Goldstone mode is one
of the strongest evidences of its crystal character, and can be rigorously proved
using linear response theory and the sum-rules formalism [67].

3.6 Single-particle excitations

For a homogeneous system, the zero-temperature behavior of the dynamic struc-
ture factor at large momenta becomes sensitive to single-particle excitations only.
In the case of a non-dipolar BEC, in this regime (which occurs above a wave num-
ber of the order of ξ−1, where ξ = ~/

√
2mgn is the healing length) the excitation

spectrum of the system becomes parabolic, being given by the free-particle ex-
pression ω(k) = ~2k2/2m, and the dynamic structure factor is determined by the
momentum distribution ñ(p) according to

S(k, ω) '
∫
dpñ(p)δ

(
ω − (p + ~k)2

2m
+

p2

2m

)
(3.9)

This result is known as impulse approximation [2]. Moreover, the Bogolyubov
quasi-particle amplitudes u and v, solution of the Bogolyubov-de Gennes equa-
tions 2.16, in this regime, become approximately equal to 1 and 0 respectively.
In the case of a dipolar BEC, the distinction between collective and single-particle
excitations becomes less easy, and not clearly relatable to a particular length scale
of the system, especially in the supersolid phase. Following [2], we can identify the
single particle modes by requiring v ' 0. For these modes, given the normalization
condition 2.18, we have ||u|| =

∫
dr|u(r)|2 ' 1. In figure 3.9 panels (a)-(b), we

report the excitation spectrum of a homogeneous dipolar BEC in the ring trap,
colored according to the norm of u. We can see that long-wavelength excitations
have always a collective character, while the roton tend to assume a collective
character only when the roton gap is close to zero (figure 3.9 panel b). Moreover,
we find that the transition from the collective to the single particle character in
the dipolar case occurs at momenta much smaller then the inverse healing length.
In the supersolid phase, the excitation spectrum is more structured, as we have
seen in figure 3.5. In fact, the spectrum is periodic, with a period fixed by the Bril-
louin wave vector, and at low energy is characterized by the occurrence of the two
Goldstone modes, which, as shown in figure 3.9 panels (c)-(d)-(e), have (mainly)
a collective character. Instead, the parabolic branches above the two Goldstone
modes, which as we have seen give important contributions to the dynamic struc-
ture factor especially beyond the first Brillouin zone, have a clear single-particle
character, and reminds the excitation branches of free particles in a periodic lattice.

53



0 0.8 1.2 1.60.4
0

0.2

0.4

0.6

0.8

1

ω
(k
x)
/ω
ho

kx/krot
0 0.8 1.2 1.60.4

kx/krot
0 0.8 1.2 1.60.4

kx/krot
0 0.8 1.2 1.60.4

kx/krot

a) b) c) d) e)

0 1

2

3

4

5

0.8 1.2 1.60.4
kx/krot

||u
||
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Along the free particle branches, the dynamic structure factor is sensitive to
the momentum distribution of the system also in the supersolid phase [68]. First
experimental measurements [69] have shown that, in this regime, the presence
of density modulations in the supersolid phase, as well as the loss of phase co-
herence among the density peaks in the independent droplet regime, produce a
strong suppression of the dynamic structure factor. This suppression is faster in
the experiment compared to the theory, suggesting that out-of-equilibrium phase
dynamics affects the response of the system to external perturbations.

54



Chapter 4

Compressional oscillations and
scissors mode

In the previous chapter, we have studied several aspects related to the supersolid
behavior of a dipolar Bose gas confined in a tubular trap with periodic boundary
conditions, resembling the geometry of a ring. In current experiments, however,
the realization of ring-shaped harmonic traps is not trivial, and of course periodic
boundary conditions cannot be set in the real world. For these reasons, most of the
experimental studies on the supersolid behavior of a dipolar Bose gas have been
done in a three-dimensional, strongly elongated, cigar-shaped harmonic trap, with
the long axis orthogonal to the polarization direction of the dipoles. Nonethless,
evidences of supersolid-like behavior have been observed in this configuration. This
chapter describes such evidences with a particular focus on comparisons between
theory and experiments.

4.1 Ground-state density profiles

Soon after the first proposal of the possible existence of a supersolid phase in a
dipolar BEC confined in a ring geometry [65], evidences of supersolid behavior have
been revealed in three different experiments, respectively in Pisa [31], Innsbruck
[33] and Stuttgart [32] in a dipolar BEC confined in a cigar-shaped harmonic trap.
The typical trapping configuration is shown in figure 4.1, and is characterized by
a strong harmonic confinement along the polarization direction (z-axis) and one
of the orthogonal directions (y-axis). Along the x-axis, since periodic boundary
conditions cannot be set in a real experiment, a weak harmonic confinement is
imposed.
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Figure 4.1: Schematic representation of a dipolar Bose gas confined in a cigar-
shaped harmonic trap. The dipoles are supposed to be aligned along the z-axis by
some external magnetic field. A strong harmonic potential is imposed along both
the polarization direction and one of the orthogonal directions (y-axis), while a
weak harmonic confinement is set along the x-axis.

Also in the case of axial harmonic trapping, the ground-state density profiles
are deeply affected by the value of the parameter εdd. When εdd is small enough,
the density profiles assume, along the three axis, the characteristic shape of an
inverted parabola that defines the Thomas-Fermi regime [2, 47] (figure 4.2 panel
a). For increasing εdd, instead, the ground-state density profile along the x-axis is
characterized by the emergence of equally spaced density peaks, (figure 4.2 panel
b), showing a finite overlap which tends to zero as εdd is increased (figure 4.2
panels c and d). We thus find that, also in the cigar-shaped harmonic trap, we
can distinguish three phases, analogously to what we have seen in the ring trap:
a superfluid phase, characterized by a Thomas-Fermi density profile along the x-
axis, a supersolid phase, characterized by partially overlapping density peaks along
the x-axis, and an independent droplet phase, in which the density peaks are well
separated.
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Figure 4.2: Density profiles along the x-axis of a dipolar BEC of 35000 atoms of
164Dy, confined in a harmonic trap of frequencies ωx,y,z = 2π(18.5, 53, 81)Hz and
different values of εdd. a) Superfluid phase, εdd = 1.32. b) Supersolid phase, εdd =
1.40. c) Supersolid phase, εdd = 1.5. d) Independent droplet phase, εdd = 1.55.

Some care must be taken when using these analogies, in particular for what
concern the ”supersolid” and the ”droplet crystal” phases. In fact, in current ex-
periments it is possible to create supersolid samples with only a few lattice sites
(typically between two and five, and, at the time of writing, always less then
ten), far from the thermodynamic limit in which theories are typically developed.
Experimentally, the supersolid phase in this context is defined as a phase which
spontaneously develops a density modulation along the x-axis, but also keeps global
phase coherence. What experiments have shown, in fact, is that these two features
appears only in a small interval of εdd, identifying the supersolid phase. In the
superfluid (small values of εdd), phase coherence can be detected, but no evidences
of density modulations are present, while the opposite is true in the independent
droplet regime (high values of εdd), with the appearance of localized density peaks
and the loss of global phase coherence. Moreover, the (relatively) high densities
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reached by the density peaks enhance inelastic three-body losses, reducing the
lifetime of the experimentally available samples to (currently) few hundreds of
milliseconds.
The coexistence of density modulations and global phase coherence is only a par-
tially satisfactory definition of a supersolid: we miss, in fact, the two fundamental
signatures of supersolid behavior, namely the appearance of coupled excitation
modes for the superfluid and the lattice, which in the tubular geometry with pe-
riodic boundary conditions shows up in the two Goldstone modes, and evidences
of non-classical rotational inertia. We will now discuss how such evidences can be
found in a trapped configuration.

4.2 Bifurcation of compressional oscillations

As stated previously, one of the fundamental signatures of supersolid behavior is
the appearance of two separate sound modes, associated respectively with a lattice
mode (crystal phonon) and a phase mode (superfluid phonon). Unfortunately, the
supersolid samples confined in cigar-shaped harmonic traps currently available in
experiments are much smaller then the typical inverse wavelength of the system
phonons. This is particularly evident for the crystal phonon, which cannot even
be defined in presence of just two or three lattice sites. However, we can still learn
something on the supersolid properties of this system by looking at the behavior
of its low-energy compressional oscillations [70].
We study the compressional oscillations along the x-axis of our dipolar BEC con-
fined in a cigar-shaped trap, using mainly numerical simulations based on the
solution of equations 2.23 and 2.24. We consider a system formed by 35000 atoms
of 164Dy confined in a harmonic trap of frequencies ωx,y,z = 2π(18.5, 53, 81)Hz. We
excite axial compressional oscillations by first calculating the ground-state config-
uration of the system, solving equation 2.23, in presence of a small perturbation of
the form Ĥpert = −λx̂2, and then evolving the system in real time using equation
2.24 after switching off the perturbation. This is equivalent to slightly compressing
the system along the x-axis and then let it oscillate freely (see figure 4.3 panel a).
We monitor the time-evolution of the second moment 〈x̂2〉 =

∫
drx2|ψ(r, t)|2 of

the in-trap density distribution, whose typical behavior is reported in figure 4.3.
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Figure 4.3: a) Schematics of the excitation procedure of the axial compressional os-
cillation: imposing the perturbation x̂2 is equivalent to a slight compression of the
system along the x-axis. b,c,d) Time dependence of σx = f(t)− f̄(t), where f̄(t) is
the temporal average of the signal f(t) =

√
〈x̂2(t)〉, and 〈x̂2(t)〉 =

∫
drx2|ψ(r, t)|2,

in the superfluid (panel b, εdd = 1.30), supersolid (panel c, εdd = 1.38) and in-
dependent droplet regimes (panel d, εdd = 1.52). Here, ψ(r, t) is the condensate
wave function of a dipolar BEC of 35000 atoms of 164Dy in a harmonic trap of fre-
quencies ωx,y,z = 2π(18.5, 53, 81)Hz, obtained from the solution of equation 2.24,
using as initial condition the ground state of the system in presence of a small
perturbation of the form Ĥpert = −λx̂2.

In the superfluid phase (figure 4.3 panel b), the time-dependence of the observ-
able 〈x̂2〉 is characterized by a simple harmonic oscillation with a clearly identifi-
able frequency. In absence of dipolar interaction, this frequency can be calculated
analytically at the mean-field level, by solving the hydrodynamic equations of su-
perfluids [71], yielding the interaction-independent result ω =

√
5/2ωx, in excellent

agreement with experimental observations [72]. In presence of dipole-dipole inter-
actions, instead, the frequency of this mode is predicted to slowly decrease with εdd
[47] as the mean-field unstable region is approached. This result actually extends
also in the mean-field unstable region of the superfluid phase, where the system
is stabilized by quantum fluctuations. In both these cases, a simple estimate of
the frequency of the axial compressional oscillation can be obtained by a sum-rule
approach, considering the ratio between the energy weighted m1 =

∫
dωωS(x̂2, ω)

and the inverse energy weighted moment m−1 =
∫
dωω−1S(x̂2, ω) of the dynamic

structure factor S(x̂2, ω) =
∑

n |〈n|x̂2|0〉|2δ(ω − ωn) relative to the perturbation
operator x̂2. This ratio provides in fact a rigorous upper bound on the frequency
of the lowest energy mode excited by x̂2 [73] for any system of particles interacting
through a potential depending only on the relative position of the atoms. Consider
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in fact a general many-body hamiltonian of the form

Ĥ =
N∑
i=1

(
P̂ 2
i

2m
+ Vext(r̂i)

)
+
∑
i 6=j

V (r̂i − r̂j) (4.1)

where N is the total number of particles in the system. Considering a perturbation
operator of the form Ĥpert = −λF̂ , with F̂ = x̂2, the sum rules 2.37 allow to
calculate the energy weighted moment m1 as

m1 =
1

2

[
x̂2,
[
Ĥ, x̂2

]]
=

2N~2

m
〈x̂2〉 (4.2)

The inverse energy-weighted moment m−1 is instead related to the static response
function χ via the relation m−1 = 1

2
χ. In turn, the static response function

can be calculated by considering the fluctuation induced on the operator x̂2 by
the perturbation considered via χ = −N

λ
δ〈x̂2〉. Finally, noticing that, in case of

harmonic trapping, the perturbation λx̂2 is equivalent to a shift in the harmonic
confinement along x equal to δωx = − λ

mωx
, we find the following upper bound on

the frequency of the axial compressional oscillation

~2ω2 =
m1

m−1

= −2~2 〈x̂2〉
d〈x̂2〉
dω2

x

(4.3)

Notice that here, 〈x̂2〉 is the equilibrium expectation value of x̂2. As shown in
figure 4.4 (green stars), this estimate matches well the results obtained via real-
time simulations in the superfluid regime.
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Figure 4.4: Frequencies of the axial compressional oscillations as function of εdd,
in the superfluid (red squares), supersolid and independent droplet phases (blue
circles). Green stars represent the sum-rule estimate 4.3.

At a certain critical value of εdd, the system develops a density modulation
along the x-axis, entering in the supersolid phase (figure 4.2 panel b). The tem-
poral evolution of the observable 〈x̂2〉 is now characterized by the beating of
modes with different frequencies (see figure 4.3 panel c). A simple Fourier anal-
ysis of the signal shows that the main contributions to the beating come from
two modes only. This allows to fit the signal using a double sine function of the
form A1 sin(ω1t + φ1) + A2 sin(ω2t + φ2), and to extract the frequencies ω1 and
ω2 of the two modes as function of εdd. The result of this procedure is shown in
figure 4.4. We can see that the axial compressional oscillation bifurcates into two
modes of different frequency at the superfluid-supersolid phase transition. The
frequency associated with the lower energy mode tends to decrease until vanishing
when moving from the supersolid to the independent droplet regime, while the fre-
quency associated with the higher energy mode tends to increase until it reaches
an approximately constant value. This behavior is specular to the one of the two
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Goldstone modes in the ring geometry, where, as we have seen, the lower energy
mode tends to disappear at supersolid-independent droplet transition, while the
higher energy mode tends to become a phononic mode with a fixed speed of sound.
We are thus led to identify the lower energy mode as a ”phase” mode, associated
with the global phase coherence of the system, that can exist only as long as the
density peaks show some finite overlap and atoms can tunnel between them, while
the higher energy mode, which survives also in the independent droplet regime, is
interpreted as a lattice mode. Notice that, in this regime, the sum-rule estimate
4.3 gives a value in between the two frequencies, implying that the single-mode
approximation is no longer valid.
In the independent droplet phase, the time dependence of 〈x̂2〉 is again character-
ized by a simple harmonic oscillation (figure 4.3 panel d), as only the higher energy
compressional oscillation survives (figure 4.4). The axial mode excited by the per-
turbation operator x̂2 is now just an out-of-phase harmonic oscillation of the two
droplets around their equilibrium positions, without any significant deformation
of their density profile. The frequency of this oscillation can be estimated using
classical arguments, treating the two droplets as classical distributions of dipoles.
More specifically, neglecting the internal structure of the droplets, we can write an
energy functional for the system as

E[n1, n2] = Edd[n1, n2] + Etrap[n1] + Etrap[n2] (4.4)

where n1(r) and n2(r) are the ground-state density profiles of the two droplets
obtained by numerical solutions of equation 2.23, while

Edd[n1, n2] =

∫
dr1dr2Vdd(r1 − r2)n1(r1)n2(r2) (4.5)

is the dipole-dipole interaction energy of the two droplets, and

Etrap[n] =

∫
drVtrap(r)n(r) (4.6)

is the energy term due to the trapping potential. Considering the variation of the
energy functional for a small displacement along the x-axis of the center-of-mass
of the two droplets, one finds that the frequency of the out-of-phase oscillation is
given by [74]

ω = ωx

√
1− 2

Nmω2
x

∫
dr1dr2Vdd(r1 − r2)

∂n1(r1)

∂x1

∂n2(r2)

∂x2

(4.7)

Finally, evaluating this integral numerically for εdd = 1.52, deeply in the indepen-
dent droplet regime (see figures 4.3 and 4.4), we find the value ω = 1.95ωx, very
close to the value ω ' 1.85ωx found by our real-time simulations based on the full
solution of equation 2.24.
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4.2.1 Comparison with experiments

The results presented in the previous section have been compared with experiments
performed in Pisa [70]. The excitation protocol used in the experiments was differ-
ent from the one studied theoretically in the previous section. Moreover, since in-
situ images were not available in that experiment, all observations have been done
on the momentum distribution, and the fundamental time-dependent observable
was the squared average momentum along the x-axis 〈k2

x〉. Nonetheless, evidences
of the bifurcation of compressional oscillations at the superfluid-supersolid phase
transition have been found.
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Figure 4.5: Bifurcation of the axial compressional oscillation as seen in the ex-
periment [70]. Blue squares represents the data relative to the superfluid phase.
Circles represents data relative to the supersolid phase: blue ones are those asso-
ciated with the lattice depth (phase modes), while red ones are those associated
with lattice spacing (crystal modes). The light blue squares and circles are the
theoretical data reported in figure 4.4.

In particular, in the experiments, the initial state of the system was the super-
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fluid phase, from which the supersolid regime is reached by increasing εdd, which,
in the experiment, can be done by changing the scattering length as through a
Feschbach resonance. In the superfluid regime, the axial compressional oscillation
is excited with a controlled amplitude by changing suddenly εdd. The transition to
the supersolid regime is signaled by the appearance of side peaks in the momentum
distribution, reflecting the in-trap lattice spacing. Even an adiabatic crossing of
the transition results in an excitation of the axial compressional oscillation, which
can thus be observed without changing the trapping frequencies. Because of rapid
three-body losses, the observation time has been limited to just a few lattice peri-
ods.
While in the superfluid regime, the theory-experiment agreement is remarkable
(see figure 4.5), in the supersolid regime, the time evolution of 〈k2

x〉 did not show
any beating. However, monitoring two observables directly related to the two
modes found in the theory, namely the position of the side peaks in the momen-
tum distribution (related to the lattice period) and its amplitude (related to the
lattice depth), it has been demonstrated that these two observables oscillate with
different frequencies: the higher frequency one is associated with the lattice spac-
ing, i.e. with the ”crystal” mode; the lower frequency one is instead associated
with the lattice depth, i.e. with the ”phase” mode. The agreement in these regime
is more qualitative. Finally, it has not been possible to explore the independent
droplet regime because of rapid three-body losses caused by a rapid increase of the
density in the peaks.

4.3 Moment of Inertia and scissors modes

As discussed in previous chapters, fundamental properties of supersolids show up
in their rotational behavior, in particular in connection to their partial superfluid
character [14, 15]. Evidences of supersolid behavior in solid helium were in fact
searched through deviations of the moment of inertia of the system, measured
using a torsional pendulum [17], from the rigid body value. Unfortunately, these
experiments were shown to be inconclusive in demonstrating that supersolidity
actually occurs in solid helium [21].
In this section, we apply a similar idea to our dipolar BEC confined in a cigar-
shaped harmonic trap [75]. In this case, the equivalent of a torsional pendulum
experiment can be performed by suddenly rotating the confining harmonic poten-
tial, and studying the successive rotational oscillation. Such oscillation, called the
scissors mode, can be directly related to the superfluid character of the system, as
its frequency is dictated by the value of the moment of inertia.
The scissors mode has been extensively studied in nuclear physics [76, 77, 78],
where it consists of a relative rotational oscillation of protons and neutrons in
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deformed nuclei. It has also been predicted [79] and measured [80] in ordinary
(non-dipolar) BECs confined in anisotropic harmonic potentials, confirming the
irrotational behavior of the velocity field associated with superfluidity.
The frequency of the scissors mode can be estimated once again using a sum-rule
argument, under the single-mode approximation. Consider in particular a rota-
tional oscillation around the polarization axis of the dipoles (z-axis). In this case,
the perturbation operator that excites rotational oscillations around the z-axis is
the projection L̂z of the angular momentum operator along the polarization axis.
An upper bound on the frequency of the scissors mode can then be obtained by
considering the ratio between the energy weighted m1 =

∫
dωωS(L̂z, ω) and the

inverse energy weighted moment m−1 =
∫
dωω−1S(L̂z, ω) of the dynamic struc-

ture factor S(L̂z, ω) =
∑

n |〈n|L̂z|0〉|2δ(ω−ωn) relative to the angular momentum

operator L̂z. The m1 moment can be estimated using the sum-rules 2.37, finding

m1 =
1

2

[
L̂z,
[
Ĥ, L̂z

]]
=
N~2m(ω2

y − ω2
x)

2〈x2 − y2〉
(4.8)

Notice that this result is valid in general for any interaction potential commuting
with L̂z, as is the case of the dipole-dipole interaction for atomic dipoles polarized
along the z-axis. Moreover, in this case, the static response function is equal
to the moment of inertia (per particle) Θ. Hence, the inverse energy weighted
moment m−1 results in m−1 = 1

2
NΘ. Putting these two results together, we find

the following upper bound on the frequency of the scissors mode

ωscissor =

√
m1

m−1

=

√
m(ω2

y − ω2
x)〈x2 − y2〉
Θ

(4.9)

Using equation 4.9, we can extract the value of the moment of inertia Θ of the
system by a direct measurement of the frequency ωscissor of the scissors mode.
We thus perform numerical simulations in which the scissors mode is studied by
solving equation 2.24, using as initial condition the ground state of the system in a
slightly tilted harmonic trap, calculated as usual using equation 2.23. We consider
in particular a dipolar BEC of N = 40000 atoms of 164Dy, confined in a harmonic
trap of frequencies ωx,y,z = 2π(20, 40, 80)Hz, and an initial tilt of 1◦ around the
z-axis. The time-dependent observable of interest is the average value 〈xy〉. An
independent estimate of the frequency of the scissors mode can be obtained again
using equation 4.9, but calculating the moment of inertia Θ independently, using
its definition

Θ = lim
Ω→0

〈L̂z〉
Ω

(4.10)

where the average 〈L̂z〉 is calculated in the stationary state of the system in pres-
ence of the small perturbation Ĥpert = −ΩL̂z (i.e., imposing an angular momentum
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constraint).
The choice of the trapping frequencies is of great importance, since the deformation
of the trap affects the interpretation we give to the observed value of Θ. Consider
in fact an ordinary BEC confined in a harmonic trap, and assume that the velocity
field is fully irrotational. Plugging then the ansatz ~v = α∇(xy) into the hydrody-
namic equations of superfluids, and using α as a variational parameter, one finds
that an upper bound to the moment of inertia is given by [81]

Θirr ≤
〈x2 − y2〉
〈x2 + y2〉

Θrig (4.11)

where Θrig = N〈x2 + y2〉 is the moment of inertia of a rigid body with the
same density distribution as the system. Hence, for a very elongated system with
〈x2〉 � 〈y2〉, the moment of inertia is the same as the one of a rigid body even if the
velocity field is fully irrotational, as in superfluids. Notice also that if 〈x2〉 = 〈y2〉,
i.e. if the system is isotropic in a plane orthogonal to the rotation axis, the irrota-
tional value of the moment of inertia vanishes identically, hence the system does
not react to any small rotational perturbation. In order to spot the irrotational
behavior of the velocity field of the system, and thus find evidences of superfluidity,
it is better to work with moderately deformed traps in the plane orthogonal to the
rotation axis (from which our choice of an aspect ratio ωy/ωx = 2).
The results of our calculations are reported in figure 4.6. The calculated val-
ues of the moment of inertia are reported in panel a, in units of the rigid value
Θrig. Red circles show the results of ground-state calculations based on solutions
of equation 2.23 in presence of an angular momentum constraint, from which we
extract Θ through the definition 4.10. Black squares represent instead the varia-
tional estimate Θirr/Θrig = 〈x2 − y2〉/〈x2 + y2〉. We can see that the transition
between the superfluid and the supersolid phase is characterized by a visible jump
that reflects its first order nature. In the supersolid phase, the ratio Θ/Θrig sig-
nificantly increases as a consequence of the presence of the density peaks which
provides a solid-like contribution to Θ. By further increasing εdd, the moment of
inertia approaches the rigid value, as the system tends to behave as a ”crystal” of
independent droplets.
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Figure 4.6: a) Moment of inertia of a dipolar BEC of N = 40000 atoms of 164Dy,
confined in a harmonic trap of frequencies ωx,y,z = 2π(20, 40, 80)Hz, as function of
εdd. Red circles show the results of the ground-state calculations carried out using
expression 4.10, by solving equation2.23 in presence of the perturbation Ĥpert =

−ΩL̂z, while black squares show the irrotational estimate given by equation 4.11.
b) Frequency of the scissor mode as function of εdd. Black squares correspond to
the sum rule estimate 4.9, inserting the value of the moment of inertia extracted
from 4.10. Red circles correspond to the frequency of the time-dependent signal
〈xy〉 obtained from real-time simulations based on equation 2.24.

Notice that, differently from the superfluid phase, in the supersolid and in-
dependent droplet phases, the moment of inertia calculated using equation 4.10,
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i.e. imposing an angular momentum constrain on the ground-state of the sys-
tem, does not coincide with the irrotational estimate 4.11. This is due to the fact
that the velocity field of the supersolid in proximity of the density peaks behaves
approximately like the rotational field that characterizes rigid rotations (see also
next Chapter). Thus, the velocity field, in this case, is not fully captured by the
simple variational ansatz ∇(xy), which instead describes well the velocity field in
a superfluid. The deviation between the moment of inertia of the supersolid and
the irrotational value is an important signature of the partial superfluid nature of
the supersolid.
The value of the moment of inertia can be used to estimate the frequency of the
scissors mode using the sum-rule estimate 4.9. The result is reported in figure 4.6
panel b (black squares), together with results obtained from the time-dependence
of the signal 〈xy〉, extracted from numerical solutions of equation 2.24 (red circles).
We can see that in this case, the agreement between the two estimates is remark-
able, implying that the single-mode approximation is well satisfied in all the three
regimes. This also implies that an experimental measurement of the scissors mode
frequency would provide a direct estimate of the moment of inertia of the system,
whose eventual deviation from the irrotational value 4.11 would be a proof of the
only partial superfluid character of the system. First experimental investigations
of these aspects have already been performed [82], showing reasonable agreement
with our theoretical predictions.

68



Chapter 5

Quantized vortices

Up to now, we have considered configurations in which the dipolar BEC breaks
translational invariance along one direction only, resulting in a quasi one-dimensional
supersolid or independent droplet crystal. We have also seen that the quasi one-
dimensional setup, despite its simplicity, allows to study the fundamental mani-
festations of supersolidity, and to have the first comparisons between theory and
experiments. We have seen in particular that this configuration allows to find evi-
dences of the existence of the two Goldstone modes predicted for a system in a ring
trap, and to prove superfluid effects, for example the occurrence of a non-classical
rotational inertia.
Another fundamental manifestation of superfluidity in a general many-body system
is the occurrence of quantized vortices, vortex lines characterized by a quantization
of the circulation of the velocity field around the vortex core. This interesting man-
ifestation of superfluidity can be better studied, in our dipolar BEC, considering a
trapping configuration which is isotropic in a plane orthogonal to the polarization
direction.
In this chapter, we will thus consider a dipolar BEC confined in a so-called
”pancake-shaped” harmonic trap, obtained by confining the dipoles along the po-
larization direction (z-axis) with a strong harmonic confinement, while imposing
an isotropic in-plane harmonic trap with ωx = ωy = ω⊥. We will show that this
configuration can host vortices, and will study both their static properties and
their dynamical nucleation mechanism.
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5.1 Ground-state density profiles
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Figure 5.1: In-situ density profiles in the z = 0 plane of a dipolar BEC
of 40000 atoms of 164Dy confined in a harmonic trap of frequencies ωx,y,z =
2π(60, 60, 120)Hz. a) Superfluid phase at εdd = 1.31; b) Superfluid phase at
εdd = 1.393 with a ”red-blood cell” shape, characterized by a density depletion
at the center of the trap, and the maximum density along a ring with a radius
of ' 2µm; c) Supersolid phase at εdd = 1.394; d) Independent droplet phase, at
εdd = 1.5.

We consider configurations in which the dipolar BEC is confined in a harmonic trap
isotropic in the x-y plane, orthogonal to the polarization direction z. Specifically,
we start with a simple setup, namely a system of N = 4 × 104 atoms of 164Dy
confined in a harmonic trap of frequencies ωx,y,z = 2π(60, 60, 120)Hz. The ground-
state density profiles can be obtained from solutions of equation 2.23, and are
shown in figure 5.1. We can see that, as in the quasi one-dimensional case studied
in previous chapters, they are deeply affected by the value of εdd, and allow to
distinguish three phases: a superfluid phase (with our choice of the parameter, for
εdd < 1.393), characterized by symmetry for continuous rotations around the z-axis
(figure 5.1 panels (a)-(b)), a supersolid phase (1.394 ≤ εdd < 1.5), characterized by
partially overlapping density peaks, spontaneously self-arranging in a triangular
lattice (figure 5.1 panel (c)), and an independent droplet crystal (εdd ≥ 1.5), in
which the density peaks are well separated (figure 5.1 panel (d)). Under certain
circumstances, the ground-state density profile in the superfluid phase can exhibit
a biconcave (”red-blood cell”) shape (here, 1.31 < εdd < 1.393, see figure 5.1
panel (b)), characterized by a density depletion at the center of the trap and the
maximum density along a ”ring” in the x-y plane [83].
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5.2 Single vortex line
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Figure 5.2: In presence of a vortex line parallel to the polarization direction (z-axis)
at the center of the trap, in situ density profiles (a,d), phase (b,e) and amplitude
of the velocity field (c,f) in the z = 0 plane for a dipolar BEC of 40000 atoms of
164Dy in a harmonic trap of frequencies ωx,y,z = 2π(60, 60, 120)Hz, in the superfluid
phase (a,b,c) at εdd = 1.31, and the supersolid phase (d,e,f) at εdd = 1.40. The
plots refer to the ground state of the system in presence of an angular momentum
constraint, and are obtained from solutions of equation 2.23 with the addition of
the rotating perturbation Ĥpert = −ΩL̂z for Ω = 2π(15)Hz. The magnitude of
the velocity field (c,f), proportional to the square modulus of the gradient of the
phase of the condensate wave function, is reported in arbitrary units.

The physics of quantized vortices in dipolar BECs has been studied in detail in
absence of the Lee-Huang-Yang correction [84, 85, 86] in the mean-field stable
region of the superfluid phase. Here, we consider instead the mean-field unstable
region of the phase diagram, focusing in particular on the supersolid phase. We
show that the superfluid and supersolid ground-state configurations described in
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the previous section can host a vortex line oriented along the polarization direction
of the dipoles (z-axis), and located at the center of the trap, in presence of a
sufficiently strong angular momentum constrain.
We study ground-state configurations of the system obtained from solutions of
equation 2.23, in presence of the perturbation Ĥpert = −ΩL̂z. These solutions are
characterized by the occurrence of a vortex line at the center of the trap, oriented
along the z-axis (see figure 5.2) for an angular velocity Ω larger then a certain
critical value Ωcrit. This is the angular velocity at which the energy in the rotating
frame is smaller if the system hosts a vortex line [2].
It is particularly interesting to consider the vortex line hosted at the center of
the triangular cell of the supersolid, shown in figure 5.2 panel (d). The size of
the vortex core is in fact comparable with the inter-droplet distance (here, around
2µm), and even the shape of the vortex core, being clearly triangular, reflects the
shape of the lattice cell. This is clearly different from the case of a vortex line
in the superfluid phase (figure 5.2 panel a), where the vortex shows obviously the
usual cylindrical symmetry. Moreover, the velocity field of the system, related to
the phase φ of the condensate wave function by ~v = ~

m
∇φ, is null at the position of

the density peaks in the rotating frame (figure 5.2 panel (f), where we report |∇φ|2,
proportional to the magnitude of the velocity field, and figure 5.3 panel b, where
we report ∇φ), while it is maximum at the vortex core in the center of the trap and
in the valleys between the density peaks. This behavior is radically different from
that of the velocity field in the supersolid phase in absence of a vortex (see figure
5.3 panel (a)), i.e. when the rotational frequency Ω is smaller then the critical
value Ωcrit. In this case, in fact, the droplets rotate around the center of the trap
similarly to a rigid body (i.e., with an approximately rotational velocity field)
[75]. This implies that the nucleation of a vortex line involves only the superfluid
fraction of the supersolid: when the rotation frequency is high enough, in fact, the
system prefers to nucleate a vortex in the valley between the density peaks, while
the lattice, in the rotating frame, remains at rest.
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a) b)

Figure 5.3: Velocity field ~v = ~
m
∇φ, where φ is the phase of the condensate wave

function, in absence (a) and in presence (b) of a vortex line along the z-axis at
the center of the trap, for a dipolar BEC of 40000 atoms of 164Dy confined in a
harmonic trap of frequencies ωx,y,z = 2π(60, 60, 120)Hz, in the supersolid phase at
εdd = 1.394. The plots correspond to the ground state of the system in presence of
an angular momentum constraint, and are obtained from solutions of equation 2.23
with the addition of the rotating perturbation Ĥpert = −ΩL̂z. In panel (a), Ω is
smaller then the critical value Ωcrit at which hosting a vortex becomes energetically
favorable. In panel (b), instead, Ω is larger then Ωcrit. The velocity field in this
case is plotted around the vortex core, but not inside, where the velocity tends to
diverge.

The size of the vortex core in the superfluid phase increases rapidly with εdd
(see figure 5.4), as the superfluid-supersolid phase transition is approached [87].
In the non-dipolar case, the size of the vortex core is fixed by the healing length
ξ = ~/

√
2mgn, which is also reported for comparison in figure 5.4 (black dots).

Notice that in the dipolar case, the size of the vortex core is much larger then the
non-dipolar case, making these vortices potentially observable, in experiments,
even in-situ. In the supersolid phase, instead, we can see that the size of the
vortex core remains approximately constant, being determined only by the distance
between the density peaks.
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Figure 5.4: Vortex core size ξ (in units of the scattering length a), defined as
the half width at half maximum of the condensate wave function at the vortex
position, as a function of εdd, both in the non-dipolar (black dotted line) and
dipolar (red squares) case. The values are taken from solutions of equation 2.23 in
presence of the rotating perturbation Ĥpert = −ΩL̂z, for a dipolar BEC of 40000
atoms of 164Dy, in a harmonic trap of frequencies ωx,y,z = 2π(60, 60, 120)Hz, and
Ω = 2π(12.7)Hz.

Another interesting result concerns the angular momentum per particle carried
by the vortex line in the supersolid phase. This can be evaluated by considering the
jump ∆ in the angular momentum per particle at Ω = Ωcrit. In a fully superfluid
system, this value is equal to ~, while in a system which shows only a partially
superfluid character, this value is expected to be smaller. The dependence of ∆
(in units of ~) on εdd is illustrated in figure 5.5 panel (a) (red squares). We can see
that, while in the superfluid regime, the value of ∆/~ is exactly 1, in the supersolid
regime assumes a value smaller then 1, which keeps decreasing until vanishing in
the independent droplet regime. This jump can be compared with an estimate of
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the superfluid fraction based on the moment of inertia:

fNCRI = 1− Θ

Θrig

(5.1)

where Θ is the moment of inertia of the system and Θrig is the rigid body value.
Expression 5.1 coincides exactly with the superfluid fraction in a ring geometry
[14, 15, 24], while gives a reasonable estimate in other geometries.

0.0

0.2

0.4

0.6

0.8

1.0

Δ
/ℏ

0

0.2

0.4

0.6

0.8

1

1-
Θ
/Θ
ri
g

1.325 1.350 1.375 1.400 1.425 1.450 1.475 1.500
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

1.35 1.4 1.45 1.5
0

0.1

0.2

εdd

ω
/ω
x

Independent
droplets

Supersolid

Superfluid

Independent
droplets

Supersolid

Superfluid

1-
Θ
/Θ
ri
g

Ω
cr
it
/ω

Ω/ω

0.2

0.20

0

0.1

0.4

0.6

0.8

1

a)

b)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

0.0

0.2

0.4

0.6

0.8

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

0.0

0.2

0.4

0.6

0.8

1.0

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

0.0

0.2

0.4

0.6

0.8

0.2
0

0.4
0.6
0.8
1

0.2

0

0.4

0.6

0.8

0.2

0

0.4

0.6

0.8

l z
/ℏ

l z
/ℏ

l z
/ℏ

e)

c)

d)

Δ
/ℏ

Figure 5.5: a) Jump ∆ (red squares) in the angular momentum per particle at the
critical rotation frequency Ωcrit at which hosting the vortex becomes energetically
favorable, and fraction of non-classical rotational inertia fNCRI (black circles) as
defined in equation 5.1, as function of εdd. b) Critical rotation frequency Ωcrit

as a function of εdd. c,d,e) Angular momentum per particle as a function of the
rotation frequency Ω for εdd = 1.31 (superfluid), εdd = 1.41 (supersolid) εdd = 1.5
(independent droplets). The values are taken from solutions of equation 2.23 in
presence of the rotating perturbation Ĥpert = −ΩL̂z, for a dipolar BEC of 40000
atoms of 164Dy, in a harmonic trap of frequencies ωx,y,z = 2π(60, 60, 120)Hz.

In figure 5.5 panel (a), we compare ∆ (red squares) and fNCRI (black circles).
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In the superfluid phase, both quantities are equal to 1, since the system is fully
superfluid. In the supersolid phase, instead, the two quantities are smaller then 1,
but slightly different, with, in particular, fNCRI > ∆. Moreover, in the indepen-
dent droplet phase, while ∆ vanishes, fNCRI remains finite, since each droplet is
itself superfluid. On the other hand, ∆ only accounts for the superfluid component
participating to the vortex circulation, providing thus a more accurate estimate of
the superfluid fraction of the system.
The critical frequency Ωcrit at which the nucleation of the vortex is energetically
favorable is also deeply affected by the value of εdd. In references [84, 85, 86] it
is shown that Ωcrit increases with εdd in the mean-field stable region of the su-
perfluid, reaching a maximum at εdd ' 1, and then decreasing as the mean-field
unstable region of the superfluid is approached. As shown in figure 5.5 panel (b),
this result extends also in the mean-field unstable region, where Ωcrit keeps on
decreasing, showing a small jump at the superfluid-supersolid phase transition,
and still decreasing in the supersolid region until the independent droplet phase is
reached. Here, in absence of any overlap between the droplets, the ground state
of the system does not host vortices, even at high values of angular velocity [87].

5.3 Quadrupole instability and vortex nucleation

We have seen in the previous section that the nucleation of a vortex line becomes
energetically favorable in a frame rotating with a frequency higher then a certain
critical frequency Ωcrit. The actual nucleation mechanism of vortices in a rotating
harmonic trap is however non-trivial, and has been extensively studied in non-
dipolar BECs [88, 89, 90, 91]. In this case, in fact, vortex nucleation can be induced
by introducing a quadrupolar rotating deformation of the trap, characterized by a
rotation frequency Ω and deformation parameter

ε =
(ω2

x − ω2
y)

(ω2
x + ω2

y)
(5.2)

Also in this case, there exist a critical frequency ΩNV for the nucleation of a
vortex [92, 93], which turns out be significantly larger then the frequency Ωcrit at
which the nucleation of the vortex is energetically favorable. This is due to the
presence of an energetic barrier [2] for the vortex to enter in the system, due to
the need of creating a density depletion at the vortex position. The nucleation
of a vortex can thus be triggered by a dynamical instability, which can be due to
collective modes acquiring a negative frequency in the rotating frame for a certain
critical value of the rotation frequency Ω. In the case of a rotating quadrupolar
deformation in an ordinary BEC confined in a pancake-shaped trap, this happens
at the resonance frequency ΩNV = ωq/2 [81], where ωq =

√
2ω⊥ is the frequency
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of the quadrupole mode [71]. The dynamical instability of the quadrupole mode
leads to a spontaneous breaking of the cylindrical symmetry of the cloud, creating
the conditions for vortices to be nucleated.
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Figure 5.6: Twice the critical frequency for vortex nucleation via the introduction
of a rotating quadrupolar deformation (red triangles), and frequencies of quadrupo-
lar compressional modes (black squares and blue circles), as function of εdd. While
in the superfluid phase one finds a single mode excited by a sudden quadrupolar
deformation (black squares), in the supersolid phase one finds three modes, two of
which are associated with lattice excitations (blue circles) and one with superfluid
oscillations (black squares), reflecting the presence of three Goldstone modes in
an infinite system. The relation ΩNV = ωq/2, expected for a superfluid (see text),
remains valid also in the supersolid.

The same resonance condition ΩNV = ωq/2 has been shown to work with
vortex nucleation in dipolar BECs, in the mean-field stable region of the phase
diagram [94]. Notice however, that, in the dipolar case, the quadrupole frequency
is not given simply by

√
2ω⊥, but rather depends in a non-trivial manner on the

interaction strength and the trapping parameters [47].
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Figure 5.7: In-situ density profiles (a-d), and corresponding phase of the conden-
sate wave function (e-h), in the z = 0 plane, showing the nucleation of a vortex
in a gas of N = 40000 atoms of 164Dy, in a slightly deformed trap, of frequencies
ωx,y,z = 2π(59.9, 60.1, 120)Hz and εdd = 1.4. a,e) Initial preparation of the gas in
the supersolid ground state. b,f) The system is put in rotation by the adiabatic
introduction of an angular momentum constraint, until the angular velocity of
2π(23)Hz is reached. The system shows a slight quadrupolar deformation in the
z = 0 plane. Several vortices forms at the surface of the system. c,g) The vortices
try to penetrate the lattice through the interstitial regions between the droplets in
order to lower the energy. d,h) A single vortex finally settles at the center of the
trap.

Solving equation 2.24 in a frame rotating with angular velocity Ω, we have
shown that the same resonance condition holds also in the mean-field unstable
region of the superfluid phase, and, quite remarkably, also in the supersolid phase
[87], as shown in figure 5.6. In the supersolid phase, the quadruple oscillation
frequencies can be studied similarly to the axial compressional frequencies studied
in Chapter 4 of this thesis. In particular, we do this by evolving equation 2.24 in
real time, using, as initial condition, the ground state of the system in presence
of a slight quadrupolar deformation of the trap of the form 5.2. We find that
a sudden quadrupolar perturbation in the supersolid phase excites three modes
that can be associated with the three Goldstone modes expected for an infinite,
quasi-2D supersolid [27]: one Goldstone mode associated with the spontaneous
breaking of the U(1) symmetry responsible for superfluidity and two associated
with the spontaneous breaking of translational invariance along two directions.
The results for the quadrupole frequencies are reported in figure 5.6 (black squares
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and blue circles). The frequency of the lower energy mode decreases with an
increase of εdd in the supersolid phase (figure 5.6, black squares), until vanishing
in the independent droplet regime, while the frequencies of the higher two (figure
5.6 blue circles) tend to increase until reaching an approximately constant value.
Comparing the lower frequency with the critical one for vortex nucleation ΩNV ,
obtained by directly evolving equation 2.24 in a frame rotating with frequency Ω
(adding also a slight quadrupolar deformation of the form 5.2 to the trap), we
find that the resonance condition ΩNV = ωq/2 is satisfied (figure 5.6 red triangles)
with good approximation, considering just the lower frequency quadrupole mode.
Moreover, similarly to what happens in the superfluid regime, also in the supersolid
regime the nucleation follows a strong deformation of the cloud, as shown in the
snapshots reported in figure 5.7. Our simulation predicts rather long times (of the
order of 1 second) for the vortex nucleation. However, in real experiments, noise
and thermal effects are expected to trigger the instability on a much faster time
scale. Larger trap deformations also help in speeding up the nucleation process.

5.4 Vortex lattices

If the frequency Ω of the rotating perturbation is high enough, a superfluid can
host many vortex lines, which spontaneously arrange in a triangular lattice in
the x-y plane [95]. We have checked that this is true also for our dipolar BEC
in the whole superfluid regime, both in the mean-field stable region of the phase
diagram as well as in the Lee-Huang-Yang dominated regime, till the supersolid
phase transition. Moreover, as shown in figure 5.8, the larger size of the vortex in
the dipolar case compared to the non-dipolar one, implies that the total number
of vortices hosted by the system in the latter case is smaller then in the former.
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Figure 5.8: Vortex lattice in the superfluid phase, for a non-dipolar (panel a) and
for a dipolar BEC (panel b). Panel (b) refers to a dipolar BEC of 40000 atoms
of 164Dy confined in a harmonic trap of frequencies ωx,y,z = 2π(60, 60, 120)Hz,
rotating around the z-axis at a frequency Ω = 2π(30)Hz. Panel (a) refers to
the same conditions, but switching off both the dipole-dipole interaction and the
Lee-Huang-Yang term in equation 2.23.

In the supersolid phase, it is convenient to consider a system with a larger
number of lattice sites, in order to study the coexistence of the density modulation
of the supersolid and the vortex lattice. For this reason, we consider the same
configuration as in the previous section, but with a larger number of atoms, equal
to 110000. In these conditions, we find that, for εdd = 1.41, the system is in the
supersolid phase, characterized by 7 density peaks arranged in a triangular lattice,
as shown in figure 5.9 panel (a).
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Figure 5.9: In-situ density profiles (a-c) and phase of the condensate wave function
(d-f) in the z = 0 plane, for a dipolar BEC of 110000 atoms of 164Dy in the
supersolid phase at εdd = 1.41, confined in an harmonic trap of frequencies Ωx,y,z =
2π(60, 60, 120)Hz. a,d) Non-rotating gas at Ω = 0 b,e) Ω = 2/3ωx. c,f) Ω = 5/6ωx.

Introducing a rotational perturbation characterized by a large enough value of
the angular velocity, the ground state of the system is characterized by the ap-
pearance of several vortex lines, again parallel to the z-axis. The natural tendency
of the vortices to arrange in a triangular lattice is here hindered by the presence
of the density modulation of the supersolid, which also forms a triangular lattice.
The result is that the position of the vortices is pinned at the density minima of the
supersolid lattice. In figure 5.9 panels (b)-(c), we show the typical density profiles,
obtained from solutions of equation 2.23 in presence of a rotating perturbation
Ĥpert = −ΩL̂z at large Ω. We find that the vortices are pinned at the minima of
the supersolid density modulations, forming, for the chosen value Ω = 2/3ωx, a
honeycomb lattice (figure 5.9 panel (b)). The pinning of vortex lattices in Bose
gases has been already addressed in the non-dipolar case, considering an underly-
ing (square or triangular) rotating optical lattice [96, 97, 98, 99], demonstrating,
experimentally, the transition from the natural vortex lattice to the pinned vor-
tex lattice [100]. However, in our case, the structure of the density modulation
is not imposed by an external potential, but is due to the spontaneous breaking
of translational symmetry, yielding the supersolid phase. The pinned honeycomb
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lattice persists as long as Ω is not too large for the inter-vortex distance to be-
come smaller than the period of the supersolid lattice. By further increasing Ω we
find that the vortices are still hosted in the low density regions surrounding the
droplets, tending to merge in large and highly deformed vortices, as shown in the
panel (c) of figure 5.9 for Ω = 5/6ωx.

5.5 Expansion

The previously reported results considered the possibility of addressing the system
in-situ. Here we briefly discuss the effect of letting the cloud to expand, i.e., after
switching off the trap in the transverse (z = 0) plane, in order to image the system
with a better space resolution. We consider both the single and the many-vortex
case.
Figure 5.10 shows the density profiles of a dipolar supersolid with and without
a vortex line at different times after the removal of the in-plane trap. The ratio
between the peak density and the central density, in the absence of the vortex, is
less than 10 and it further decreases during the expansion, the minimum of the
density remaining of the same order as that of an ordinary superfluid. Thus, with
our choice of parameters, a good imaging system could easily identify the presence
of the vortex in the center of the trap.
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Figure 5.10: In-situ density profiles along the z = 0 plane (a-f), and cuts along the
x-axis (panels (g-i)) of an expanding dipolar supersolid in the absence (a-c) and in
presence (d-f) of a vortex. The initially prepared ground state in presence (d) of
a vortex has been obtained for Ω = 2π(23)Hz. Panel (g) shows the corresponding
density cut along the x-axis. The red (blue) line corresponds to the case with
(without) vortex. Panels (h) and (i) show corresponding cuts along the x-axis.
The other parameters are the same as in figure 5.1. Snapshots are taken at the
initial configuration (a,d,g), and respectively 3 (b,e,h) and 6 ms (c,f,i) after the
in-plane confinement has been switched off.

For the high angular frequency case, when many vortices appear, we consider
the most interesting case, when the vortices form a honeycomb lattice, as in fig-
ure 5.9 panel (b). The expansion at two different times after switching off the
transverse confinement is reported in figure 5.11. In particular, we notice that the
geometry of the two lattices remains unchanged during the expansion, paving the
way for the possible direct observation of the frustration of the vortex lattice.
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Figure 5.11: Expansion of a dipolar supersolid in presence of the vortex lattice
reported in figure 5.9 panel (b). a) Initially prepared state, same as in figure 5.9
panel (b). b,c) In-situ density profiles in the z = 0 plane respectively 3 and 6 ms
after the in-plane confinement has been switched off.
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Chapter 6

Dipolar Bose-Einstein
condensates in a box

In previous chapters, we have considered a dipolar BEC confined either in a trans-
verse harmonic trap, with periodic boundary conditions along the unconfined di-
rection, or a fully trapped system, confined in a harmonic potential along the three
spatial directions. Although harmonic trapping allows the study of relevant prop-
erties of ultracold atomic systems, other important properties, for example sound
propagation or critical behaviors, can be better studied in uniform systems. For
these reasons, Bose-Einstein condensation in box potentials has been an emerging
topic of research in recent years, leading to the realization of uniform BECs in
gases of alkali atoms and first important measurements in both 3D and 2D config-
urations [101, 102, 103, 104, 105, 106, 107, 108]. The natural question which arises
is therefore how a dipolar gas behaves in a box potential, and to what extent its
configurations mimic their thermodynamic counterparts. First theoretical investi-
gations carried out in the deep superfluid phase [109] have pointed out the peculiar
phenomenon of accumulation of the density distribution near the boundary, as a
consequence of the repulsive behavior of the aligned dipoles. This effect is strongly
reduced in presence of transverse harmonic trapping because of the high energetic
cost for dipoles to move away from the center of the trap.
In this chapter, we consider the behavior of a dipolar BEC confined in a box poten-
tial, with a particular focus on the ground-sate density profiles in the mean-field
unstable regime of the phase diagram. We will show that in quasi-two-dimensional
geometries, the accumulation along the border is enhanced in the regimes where
the Lee-Huang-Yang correction is relevant, creating edges well separated from the
bulk. For a relatively small number of atoms, the bulk remains in a low density
superfluid phase, while the edges can show typical supersolid or droplet crystal
structures. Increasing the atom density leads to a supersolid bulk region, while
the edges can be found to be in a high-density superfluid phase. Moreover, we
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will show that the lattice emerging in the bulk has not in general a triangular
(or honeycomb) pattern, as expected for an infinite system [110], but its structure
is dictated by the shape of the confining box potential even for relatively large
systems.

6.1 A closed wave guide

We first consider a quasi-one-dimensional configuration, similar to the one consid-
ered in Chapter 3 of this thesis. However, instead of imposing periodic boundary
conditions along the unconfined direction, we ”close” the tubular confinement with
a hard wall potential at the borders of the simulation cell along the x-axis, real-
izing, instead of a ring, a closed wave-guide. More specifically, we determine,
solving equation 2.23, the ground-state density profiles of N = 40000 atoms of
164Dy confined in a trapping potential of the form

Vext =
1

2
m(ω2

yy
2 + ω2

zz
2) + Vbox(x, L) (6.1)

with ωy,z = 2π(100)Hz, Vbox(x, L) = V0 for |x| ≥ L and 0 otherwise, V0 = 100ωz
and L = 12µm. Typical density profiles for different values of εdd are reported in
figure 6.1 panels (a), (b) and (c). In the figure we also report the density profiles
calculated in a quasi-one-dimensional configuration, imposing periodic boundary
conditions at x = ±L (panels (d), (e), (f) ) as well as the corresponding excitation
spectra (insets (g), (h)) calculated in the uniform phase by solving the Bogolyubov-
de Gennes (BdG) equations 2.16 with the beyond-mean-field correction 2.25. The
configurations reported in figure 6.1 panel (d) and (e) correspond to a uniform
superfluid characterized by a pronounced roton minimum, precursor of the insta-
bility to a periodically modulated density (supersolid phase) for larger values of
εdd (panel f). In presence of the box, atoms accumulate close to the walls even for
small values of εdd (weakly interacting dipolar case, panels a, d and inset g), when
the excitation spectrum of the uniform phase does not show a roton minimum.
Due to the long range and anisotropic nature of the dipolar force, even in this case
the density profile deeply differs from the results holding for a one dimensional
BEC interacting with a short range potential. In the latter case the density pro-
file, near a hard wall located at x = 0, is fixed by the healing length ξ =

√
~/2mgn

according to n(x) = tanh2(x/
√

2ξ) where n is the bulk density away from the edge
of the box [2]. The concept of healing length is not easily applicable to the case of
a dipolar gas, whose different behavior is due to the long-range nature of the force,
the repulsive effect felt by the aligned dipoles, which tend to accumulate near the
border, the presence, for large values of εdd, of rotonic oscillations and, of course,
the emergence of spontaneous density modulations characterizing the supersolid
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Figure 6.1: Ground state integrated density profiles n(x) =
∫
dydz|Ψ(x, y, z)|2 of

N = 40000 atoms of 164Dy in a transverse harmonic confinement of frequencies
ωy = ωz = 2π(100)Hz, confined by a box potential of height V0 = 100ωz at
positions x = ±12µm (panels a,b,c) or with periodic boundary conditions at x =
±12µm (panels d,e,f). Insets g and h show the excitation spectrum calculated by
solving the Bogolyubov-de Gennes equations for the configurations of panels d,e.
The profiles reported in panels a,d (respectively, b,e and c,f) are calculated by
fixing εdd = 1.32 (respectively, 1.39 and 1.46)
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and the independent droplet phases. The emergence of the rotonic oscillations is
reminiscent of a similar effect characterizing the density profile in the vicinity of
a quantized vortex [84]. This effect, originally theoretically investigated for quan-
tized vortices in superfluid helium, is a direct consequence of the presence of the
roton in the excitation spectrum [111, 112, 113].

6.2 Edge supersolidity

We now consider the case of a quasi 2-dimensional dipolar BEC, obtained by im-
posing a harmonic confinement only in the polarization direction (z-axis). We will
consider solutions of equation 2.23, in presence of an external trapping potential
which, beside being harmonic along the z-axis, will have the shape of a box in
the x-y plane. In the absence of confinement in the transverse direction, theory
predicts that for a certain value of the density and of εdd, a phase transition be-
tween a uniform superfluid and a supersolid occurs. In the thermodynamic limit,
the supersolid lattice is predicted to be triangular or honeycomb [110]. The occur-
rence of such lattice symmetry has been also predicted for the case of transverse,
radially symmetric, harmonic trapping [87, 75]. Very recently, the possible exis-
tence of other exotic configurations in harmonic traps has been proposed [114, 115].
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Figure 6.2: Ground state integrated density profiles n(x, y) =
∫
dz|Ψ(x, y, z)|2 for

a gas of 105 atoms of 164Dy confined in the polarization direction by a harmonic
potential of frequency ωz = 2π(100)Hz, and by a box potential in the x-y plane,
with the shape of a square of side L = 16µm. The value of εdd for panels a), b)
and c) is, respectively, 1.32, 1.404 and 1.467. The height of the box is fixed to
V0 = 100ωz.
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We first consider the more common case of a square box. This case was consid-
ered in [109] in the mean-field stable superfluid phase, in absence of beyond-mean-
field effects. Here, we instead consider also regimes where the mean field approach
would yield instability and the Lee-Huang-Yang correction allows for the emer-
gence of the supersolid and independent droplet phases. More specifically, we
determine, solving equation 2.23, the ground-state density profiles of N = 100000
atoms of 164Dy confined in a trapping potential of the form

Vext =
1

2
m(ω2

zz
2) + Vbox(x, y, L) (6.2)

with ωz = 2π(100)Hz, Vbox(x, y, L) = V0 for |x|, |y| ≥ L and 0 otherwise, V0 =
100ωz and L = 16µm. Typical density profiles for different values of εdd are re-
ported in figure 6.2, and reveal the same mechanism of accumulation of density
near the boundary already discussed for the quasi-one-dimensional case. In par-
ticular, the vertices of the square box become points of strong accumulation of
dipoles, causing density modulations along the sides of the square, even for small
values of εdd (see figure 6.2 panel a), when the system is in the superfluid phase.
The behavior of the density along each edge of the square configuration shares
interesting analogies with the behavior exhibited by a quasi one-dimensional gas
confined by a box potential studied in the previous section. However, as we have
seen, the presence of rotonic oscillations caused by the presence of vertices makes
the identification of the superfluid-supersolid phase transition a rather involved
task. For these reason, in order to avoid the accumulation effect caused by the
presence of vertices, we now consider a box potential with a circular shape, ob-
tained by confining the atoms in an external potential of the form

Vext =
1

2
m(ω2

zz
2) + Vcirc(x, y, L) (6.3)

with ωz = 2π(100)Hz, Vbox(x, y, L) = V0 for
√
x2 + y2 ≥ R and 0 otherwise,

V0 = 100ωz and R = 10.185µm. Similar configurations have been already exper-
imentally realized to trap alkali atoms [104, 105, 106]. Once again, as shown in
figure 6.3, most of the atoms accumulate at the edge of the confining potential,
forming a quasi-one-dimensional ring structure well separated from the atoms in
the bulk. For small values of εdd both the edge and the bulk remain in a uniform
superfluid phase (figure 6.3 panel a), while increasing εdd (i.e. increasing the effect
of the dipolar force), the edge region undergoes a phase transition to the supersolid
phase (figure 6.3 panel b), where the density peaks near the boundary of the box
exhibit a finite overlap, ensuring global phase coherence. The overlap between the
density peaks disappears for even larger values of εdd, the system forming a sort
of one dimensional ring crystal (figure 6.3 panel c).
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Figure 6.3: Ground state integrated density profiles n(x, y) =
∫
dz|Ψ(x, y, z)|2 for

a gas of 105 atoms of 164Dy confined in the polarization direction by a harmonic
potential of frequency ωz = 2π(100)Hz, and by a box potential in the x-y plane,
with the shape of a circle of radius R = 10.185µm. The value of εdd for panels a),
b) and c) is, respectively, 1.32, 1.404 and 1.467. The height of the box is fixed to
V0 = 100ωz.

The emergent edge ring geometry allows to estimate the superfluid density
along the edge in terms of the Leggett variational expression [14, 15, 24]. To this
purpose we write the ground-state density in cylindrical coordinates ρ(r, θ, z), so
that the Leggett’s estimate for the superfluid density can be written as

nS
n

=
2π

n

(∫
dθ∫

drdzρ(r, θ, z)

)−1

(6.4)

where the integration over the radial coordinate is performed only in the edge
region, identified by the density minima that appears both at the border of the
box (where the density goes to zero), and at the interface between the edge and
the bulk. As already discussed in Chapter 3, the estimate 6.4 for the superfluid
density coincides with the result obtained by letting the walls of the container to
rotate slowly around the z-axis.
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Figure 6.4: Estimate of the superfluid fraction of the edge region as function
of εdd, based on Leggett’s variational formula 6.4 (blue squares), applied to the
configuration described in figure 6.3. Red circles represent the ratio between the
number of atoms that settle on the edge and the total number of atoms in the
system.

The estimate 6.4, reported in figure 6.4 (blue squares), reveals a critical de-
pendence on εdd, emphasizing the emergence of a phase transition between the
superfluid and the supersolid phase at εdd = 1.4 and a transition between the su-
persolid and the crystal phase, characterized by the vanishing of nS, at εdd = 1.55.
These values are very close to the critical values calculated for one dimensional
tubular configurations imposing periodic boundary conditions [65], after taking
into account that in the edge configuration discussed here the number of atoms
occupying the ring increases with εdd, as shown in the same figure (red circles).
Such an increase is actually particularly important in the supersolid phase as a
consequence of the reduced value of the chemical potential, which favors the accu-
mulation of dipoles on the density peaks, where the inter-atomic dipolar interaction
is mainly attractive. The novel configuration emerging in the box of circular shape
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discussed above is particularly attractive because in this case the boundary does
not depend on the azimuthal coordinate and takes the form of a ring, where the
dipolar particles form a one-dimensional structure, well separated from the atoms
in the bulk. This provides the interesting possibility of exploring superfluid and
supersolid features in uniform one dimensional like configurations with periodic
boundary conditions, without the need of actually implementing a ring trap.

6.3 Bulk supersolidity
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Figure 6.5: Integrated density profiles n(x, y) =
∫
dz|Ψ(x, y, z)|2 for a gas of 2×106

atoms of 164Dy confined in the polarization direction by a harmonic potential of
frequency ωz = 2π(100)Hz, and by a box potential in the x-y plane, with the shape
of a triangle of side L = 58.58µm (panel a), a square of side L = 45.84µm (panel
b), a pentagon of side L = 38.33µm (panel c), an hexagon of side L = 33.82µm
(panel d), and a circle of radius R = 21.75µm (panel e). The value of εdd = 1.36
is the same for all the configurations, which also have the same area.

The configurations discussed so far do not reveal the emergence of supersolid ef-
fects in the bulk region, because of the small value of the bulk density caused
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by the accumulation of dipoles near the boundary. In order to observe the bulk
supersolidity one consequently needs to increase significantly the atom density, in
such a way that the density in the central region remains large enough to ensure
the appearance of a crystal quantum phase. In figure 6.5, we have considered
configurations containing N = 2 × 106 atoms of 164Dy confined by a box poten-
tial in the transverse direction, with the shape of regular polygons (panels a-d) or
circular (panel e), all with the same area (and hence the same number of atoms
per unit surface). For the same value of εdd = 1.36, these configurations exhibit
a supersolid structure in the bulk, characterized by the typical overlap between
neighbouring density peaks, well separated from the edge region by a density dip.
Despite the number of atoms and system size considered, resulting in a large num-
ber of droplets (' 60), the symmetry of the supersolid lattice reflects the one
of the confining potential, implying that surface effects hinder the possibility of
reaching the thermodynamic limit, where the lattice is expected to be triangu-
lar or honeycomb [110]. This can be qualitatively understood as a consequence
of the long-range nature of the dipolar force and the formation of the edge. In
fact, since the dipoles are in a mainly repulsive configuration, they tend to expand
towards the edge, where they acquire a density profile with the same shape of
the confining potential; the droplets that form in the bulk also tend to repel each
other, but their expansion is stopped by the repulsion of the edge, so that they are
forced to arrange in lines parallel to the sides of the edge. This behavior is sup-
pressed in an infinite system or in a harmonic trap, where the expansion of the gas
is energetically unfavorable. It is worth noticing that the supersolid and crystal
structures at the edge of the boundary, which are well visible in the configurations
of figures 6.3 and 6.2, have disappeared in figure 6.5 as a consequence of the high
density acquired by the system near the boundary, caused by the large value of
N. As pointed out in [66], the density dependence of the critical value of the in-
teraction parameter εdd, which separates the superfluid from the supersolid phase,
actually exhibits a characteristic non monotonic dependence, as discussed in this
thesis in Chapter 3 and as shown in figure 3.2 panel (b). This implies that, for a
properly fixed value of εdd, if one increases the density starting from small values,
the system undergoes first a phase transition from the superfluid to the supersolid
(and eventually to the independent droplet) phase characterized by typical density
oscillations, to come back again to the uniform superfluid phase at larger densi-
ties. Notice that this effect can also be observed with a smaller number of atoms,
by confining them in properly designed box potentials of smaller dimension. In
fact, such density, although relatively high (' 1015cm−3 for the edge configura-
tions shown in figure 6.5), is still compatible with the usual stability conditions
imposed by three-body recombination, suggesting the possibility of observing this
effect in actual experiments. We have finally checked that the results presented
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in this chapter do not qualitatively change for different choices of the parameters.
In particular we have considered different values of the transverse confinement in
the interval 2π(50)Hz < ωy,z < 2π(150)Hz, as well as different system sizes and
number of atoms. The actual choice of ωy,z can however affect the value of the
density in the central region, the critical value of εdd for the superfluid-supersolid
phase transition, as well as the number of droplets which form in the supersolid
phase, their relative distance being sensitive to the value of ωz [61].

94



Conclusions

In this thesis, we have studied theoretically some relevant properties of Bose-
Einstein condensates of magnetic atoms, pointing out novel features occurring
both in the ground-state and in the dynamics of these systems. Some of our re-
sults have already been confirmed by recent experiments.
We have first considered the case of a dipolar Bose gas confined in a ring ge-
ometry, obtained numerically by confining the system in a transverse harmonic
confinement with periodic boundary conditions along the unconfined direction.
The excitation spectrum and the ground-state density profiles are deeply affected
by the interaction parameters, that can be tuned in current experiments. When
the strength of the contact repulsion is comparable with that of the (partially
attractive) dipolar interaction, the ground state of the system is a uniform su-
perfluid, whose excitation spectrum is characterized by the occurrence of a roton
minimum. The softening of the roton mode, that can be obtained by reducing the
strength of the contact repulsion, thus increasing the relative weight of the dipo-
lar interaction, triggers a phase transition towards a supersolid state which, while
keeping superfluid properties, spontaneously breaks the symmetry for continuous
spatial translations in favour of a discrete one, showing thus a periodic modulation
in its density profile. This state shows, paradoxically, properties of both solids and
superfluids. We have demonstrated that this system shows the two fundamental
hallmarks of supersolidity, namely a non-classical rotational inertia due to a finite
superfluid fraction, and an additional Goldstone mode in its excitation spectrum.
We have also studied the linear response of the system to density perturbations,
studying the contribution of the various excitation modes of the system to observ-
able quantities such as the static and the dynamic structure factor.
We have then considered the case of a dipolar BEC confined in a cigar-shaped har-
monic trap, with the main axis orthogonal to the polarization direction, focusing
of configurations relevant for current experiments. We have shown that also this
trapping configuration allows to study the superfluid-supersolid phase transition,
and that the two hallmarks of supersolid behavior manifests in the harmonically
trapped system in the behavior of its collective oscillations. In particular, we have
shown that non-classical inertia can be studied via the frequency of the scissors
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mode, while the presence of the two Goldstone modes manifests in a bifurcation
of the compressional oscillations of the system.
We have then considered another fundamental manifestation of superfluidity in a
dipolar supersolid, namely the possibility for the system to host quantized vortices.
We have shown a trapped dipolar supersolid in an in-plane isotropic harmonic trap,
can host vortex lines in the interstitial regions between the density peaks of the
supersolid. The size and the shape of the vortex core is completely determined by
the presence of the surrounding density peaks, and the angular momentum carried
by the vortex line is affected by the only partial superfluid character of the system.
Moreover, we have shown that vortex lattices are characterized by a pinning of the
vortex position at the density dips of the supersolid, and that all these features
are readily observable in expansion experiments.
Finally, we have considered the behavior of a dipolar Bose gas in a box potential.
While in the case of an ordinary (non-dipolar) BEC, such trapping configuration
allows the realization of a uniform system, and thus paves the way to the study
of the properties of these systems in the thermodynamic limit, in the case of a
dipolar gas, we show that the long range and anisotropic nature of the dipolar
force produce a strong depletion of atoms from the center of the trap. The atomic
dipoles tend to accumulate near the borders of the box potential, allowing the
realization of peculiar edge supersolid configurations. For a very high number of
atoms, we show that also the system bulk can show supersolidity, but the resulting
geometry reflects the one of the boundary instead of assuming the shape expected
in the thermodynamic limit.
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Appendix A

Details on the calculation of the
Lee-Huang-Yang correction

Here, we give a brief overview on how the Lee-Huang-Yang first order beyond mean
field correction to the ground state energy can be calculated for a homogeneous
system of magnetic bosonic atoms in the Bose-Condensed phase.
Consider the general case of a weakly interacting Bose gas of atoms interacting
via a general pseudo-potential V (r), whose Fourier transform is Vk. In the case of
a uniform system (Vext = 0), a good quantum number is the wave number k, and
the field operators Ψ̂ and Ψ̂† can be expanded as

Ψ̂(r) =
∑
k

âke−ik·r

Ψ̂†(r) =
∑
k

â†keik·r

(A.1)

where â†k and âk are respectively a creation and a destruction operators for an
excitation with momentum ~k. Inserting this expansion in the hamiltonian 2.4,
one obtains

Ĥ =
∑
k

~2k2

2m
â†kâk +

1

2V

∑
k,p,q

Vqâ
†
k+qâ

†
p−qâpâk (A.2)

where V is the total volume occupied by the gas. In order to calculate the ground
state energy of the system, following for example [2, 116], we introduce the Bo-
golyubov approximation and substitute the ground state (zero momentum) cre-

97



ation and destruction operators by c-numbers, according to

â0 →
√
N0 (A.3)

â†0 →
√
N0 (A.4)

where N0 is the number of particles in the condensate, supposed to be much
larger then one. Then, we separate, in the Hamiltonian A.2, the various terms
that contains powers of N0 and keep only terms which are, at least, linear in N0,
obtaining

Ĥ =
∑
k

(
~2k2

2m
+
N0(V0 + Vk)

V

)
â†kâk +

1

2
N2

0V0 +
N0

2V

∑′

k

Vk(â†kâ
†
−k + âkâ−k)

(A.5)
where the prime symbol means that the term with k = 0 is excluded from the
sum. Writing the total number of atoms as

N = N0 +
∑′

k

â†kâk (A.6)

and introducing the Bogolyubov transformation

âk = ukα̂k − vkα̂†−k (A.7)

one obtains a diagonal Hamiltonian if the functions uk and vk are given by

uk, vk =
1

2

[
~2k2
2m

+ NVk
V

εk
± 1

]
(A.8)

where

εk =

√
~2k2

2m

[
~2k2

2m
+ 2nVk

]
(A.9)

is the spectrum of the elementary excitations of the system, and n = N/V is
the density. Requiring the operators α̂k and α̂†k to satisfy bosonic commutation
relations impose the following normalization condition on uk and vk

|uk|2 − |vk|2 = 1 (A.10)

The final diagonal hamiltonian is then given by

Ĥ =
1

2V
N2V0 +

1

2

∑′

k

(
Ek −

~2k2

2m
− NVk

V

)
+
∑′

k

Ekα̂
†
kα̂k (A.11)
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The ground state energy of the system can then be calculated from A.11 neglect-
ing the last term, which account for the energy contribution coming from the
elementary excitations. Thus, we find

E0

V
=

1

2V
N2V0 +

1

2

∑′

k

(
εk −

~2k2

2m
− NVk

V

)
(A.12)

The first term of this expression correspond to the mean-field ground-state energy
of the system, so that the second term accounts for the first order beyond mean
field correction. To give an estimate of this correction, it is now necessary to
consider a definite model for the inter-atomic interaction potential V (r). Using,
for example, the contact pseudo-potential 2.5, we obtain

E0

V
=

1

2
gn2 +

1

2

∑′

k

(
εk −

~2k2

2m
− gn

)
(A.13)

where now

εk =

√
~2k2

2m

[
~2k2

2m
+ 2gn

]
(A.14)

The second term in A.13 is ultraviolet divergent, and needs to be regularized. The
typical procedure is to consider the expression of the scattering length beyond the
first Born approximation, which reads [2, 116]

4πa~2

m
= V0 −

m

~2

∫
dq

(2π)3

V (q)V (−q)

q2
(A.15)

Plugging this into A.13 one finally finds the famous Lee-Huang-Yang (LHY) ex-
pression for the ground state energy of a system of weakly interacting, hard-sphere
bosons [117]

E0

V
=

1

2
gn2

[
1 +

128

15
√
π

√
na3

]
(A.16)

The same procedure has been applied in [43, 44] to a homogeneous dipolar Bose
gas, in which atoms interact via the pseudo-potential 2.6. Using the Fourier trans-
form of the dipole-dipole interaction potential 2.2, given by [35]

Vdd(k) =
Cdd
3

(3 cos2 α− 1) (A.17)

where α is the angle between k and the polarization direction, one finds that the
Bogolyubov spectrum of the elementary excitations is given by

εk =

√
~2k2

2m

{
~2k2

2m
+ 2gn[1 + εdd(3 cos2 α− 1)]

}
(A.18)
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where εdd = add/a is a parameter measuring the relative strength of the contact
and dipole-dipole interaction. The dependency of the excitation energy A.18 on
the angle α implies that, for εdd > 1, phononic excitations (k → 0) may acquire
imaginary frequencies, in particular when travelling orthogonally to the polariza-
tion direction (α = π/2). A three-dimensional homogeneous dipolar BEC is thus
unstable for εdd > 1. Moreover, the first-order beyond mean-filed result for the
ground state energy becomes

E0

V
=

1

2
gn2

[
1 +

128

15
√
π

√
na3F (εdd)

]
(A.19)

where

F (εdd) =
1

2

∫ π

0

dθ sin θ[1 + εdd(3 cos2 θ − 1)]
5
2 (A.20)

The function F (εdd) is real and positive for 0 < εdd < 1, and in particular increases
monotonically from 1 to ' 2.6. For εdd > 1, this correction acquires a small
imaginary part, indicating the presence of an energetic instability in the system.
Notice also that, for εdd = 0, expression 2.19 reduces exactly to A.16.
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Appendix B

Fourier transform of the dipolar
potential

A very useful result we used thoroughly in the numerical simulations in this thesis
is that the Fourier transform of the dipole-dipole interaction 2.2 reads

Ṽk = εdd(3cos
2α− 1) (B.1)

where α is the angle between the vector k and the z-axis. Here, we sketch the
calculation that leads to this result.
Consider the form of the dipole-dipole potential

Vdd(r) =
Cdd
4π

1− 3cos2θ

r3
(B.2)

where θ is the angle between r and the z-axis. Let us define the Fourier transform
as

Ṽdd(k) =

∫
drVdd(r)e−ik·r (B.3)

and use spherical coordinates, with the z-axis axis along k, the dipole moment d
in the y = 0 plane, and let α be the angle between k and the polarization direction
We clearly have

d = d(sinα, cosα) (B.4)

so that

Ṽdd(k) =

∫
drVdd(r)e−ik·r∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ ∞
b

drr2Cdd
4π

1− cos2β

r3
e−ikrcosθ (B.5)
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where b is a small radius cut-off, introduced temporarily to avoid any divergence.
We can also write

cos β =
d · r
dr

=
x sinα + z cosα

r
= sin θ cosφ sinα + cosα cos θ (B.6)

so that the integral over the angle φ gives∫ 2π

0

dφ
[
1− 3(sin θ cosφ sinα + cosα cos θ)2

]
= 2π−3π sin2 θ sin2 α−6π cos2 α cos2 θ

(B.7)
We plug this expression into B.5 and integrate over θ. Fixing x = cos θ and u = kr
we obtain ∫ π

0

dθ sin θe−ikr cos θ
[
2π − 3π sin2 θ sin2 α− 6π cos2 α cos2 θ

]
=∫ 1

−1

dxe−iux[2π − 3π(1− x2) sin2 α− 6π cos2 αx2]

π(3 cos2 α− 1)

∫ 1

−1

dxe−iux(1− 3x2)

4π(1− 3 cos2 θ)

[
sinu

u
+ 3

cosu

u2
− 3

sinu

u3

]
(B.8)

Final integration over u = kr then gives

Ṽdd(k) = Cdd(1− 3 cos2 α)

[
cos(kb)

(kb)2
− sin(kb)

(kb)3

]
(B.9)
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and taking the final limit kb→ 0 we obtain

Ṽdd(k) =
Cdd
3

(3 cos2 α− 1) (B.10)
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[31] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C. Gabbanini, R. N.
Bisset, L. Santos, and G. Modugno. Observation of a dipolar quantum gas
with metastable supersolid properties. Phys. Rev. Lett., 122:130405, Apr
2019.
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