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Abstract 

Previous studies found a relationship between performance on statistical learning (SL) 

tasks and reading ability and developmental dyslexia. Thus, it has been suggested that 

the ability to implicitly learn patterns may be important for reading acquisition. 

Causal mechanisms behind this relationship are unclear: though orthographic 

sensitivity to letter bigrams may emerge through SL and facilitate reading, there is no 

empirical support for this link. We test 84 adults on two SL tasks, reading tests, and a 

bigram sensitivity task. We test for correlations using Bayes Factors. This serves to 

test the prediction that SL and reading ability are correlated, and to explore sensitivity 

to bigram legality as a potential mediator. We find no correlations between SL tasks 

and reading ability, SL and bigram sensitivity, or between the SL tasks. We conclude 

that correlating SL with reading ability may not yield replicable results, partly due to 

low correlations between SL tasks.  

 

Keywords: Artificial Grammar Learning; Serial Reaction Time Task; letter bigram 

legality; word reading; nonword reading 
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Is statistical learning related to reading ability, and if so, why? 

 Learning to read involves developing sensitivity to orthographic regularities. 

For example, during reading acquisition, children have been shown to learn which 

letter combinations occur frequently, and which do not occur in their orthography 

(Cassar & Treiman, 1997; Pacton, Perruchet, Fayol, & Cleeremans, 2001; Rothe, 

Cornell, Ise, & Schulte-Körne, 2015; Rothe, Schulte-Körne, & Ise, 2014). Readers 

also learn context-dependent pronunciations of letters and graphemes: For a nonword 

such as “wamp”, English-speaking readers pronounce the grapheme a as in “wasp” 

because it is preceded by a w, even though the rule [w]a à /ɔ/ is not taught at schools 

(Schmalz et al., 2014; Treiman, Kessler, & Bick, 2003; Treiman, Kessler, Zevin, 

Bick, & Davis, 2006).  

Children’s sensitivity to such orthographic regularities has led to the 

proposition that reading acquisition, in part, relies on a domain-general statistical 

learning ability (hereafter: SL; Arciuli & Simpson, 2012). SL refers to the ability to 

detect and learn regularities in the environment. It is generally measured by non-

linguistic tasks, which contain hidden regularities: for example, in a Serial Reaction 

Time Task, participants respond to a series of simple stimuli which follow a pre-

determined sequence. Without becoming explicitly aware of this sequence, 

participants’ performance improves with practice, and drops when the stimuli are 

presented in a different sequence.  

If SL is important for learning to read, one might predict a correlation between 

reading ability and performance on SL tasks. Two studies to date have tested this 

prediction. Using a sample of non-selected participants, Arciuli and Simpson (2012) 

showed a significant partial correlation (after taking into account age) between 

performance on a SL task and a reading task, both in English-speaking children and 
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adults. These results were taken to suggest an important role of SL ability during 

reading acquisition. Furthermore, the correlation of SL with reading ability in adults 

suggests that the effect of SL explains variance in reading ability even when the 

participants have achieved a high level of competence. A second study, which 

examined the correlation between reading ability and SL (Frost, Siegelman, Narkiss, 

& Afek, 2013), tested English native speakers who were learning Hebrew as a second 

language. Here, performance on a visual SL task, akin to the task used by Arciuli and 

Simpson (2012), was correlated with reading ability: participants who performed well 

on this task also made faster progress in both unpointed nonword and pointed word 

reading ability. However, as this study tested adult second-language learners of a new 

script, it is not clear whether it reflects a similar relationship as the correlation 

between SL and learning to read one’s first language as a child.  

While only two studies assessed the relationship between SL and reading 

ability in an unselected sample, more than a dozen studies compared the performance 

on SL tasks in a group of participants with developmental dyslexia (hereafter: 

dyslexia) to a control group. If SL is correlated with reading ability, one should 

predict such studies to find group differences, as choosing a set of participants with 

dyslexia increases the range of reading ability among the participants. The results of 

the studies on SL and dyslexia are mixed: a recent review (Schmalz, Altoè, & Mulatti, 

2017) and a meta-analysis (van Witteloostuijn, Boersma, Wijnen, & Rispens, 2017) 

suggest that there is publication bias. Publication bias refers to the preferential 

publication of positive results, which consequently become over-represented in the 

published literature, leading to an increased Type-I error rate and inflated effect sizes 

(Rosenthal, 1979; Van Elk et al., 2015). With the presence of publication bias, it 

becomes difficult to determine whether an effect is different from zero, as different 
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statistical correction methods for meta-analyses often yield conflicting results (Van 

Elk et al., 2015). Therefore, we do not discuss whether or not there is sufficient 

evidence for a group difference in SL (but for a critical review, see Schmalz et al., 

2017). For our purposes, it is worth describing the tasks which were used by these 

previous studies. The two studies on SL in an unselected population used a visual SL 

task: Here, participants see a series of shapes, presented one at a time (Arciuli & 

Simpson, 2012; Frost et al., 2013). This sequence of shapes includes embedded 

triplets: Three of the stimuli always follow one another. This means that the first and 

the second of the three stimuli can be used to predict the next stimuli, once the 

participant has (implicitly) learnt the sequence. In a subsequent recognition test, 

participants perceive stimulus pairs which occurred together within this triplet as 

more familiar than stimulus pairs that did not frequently occur together, suggesting 

that they learned these transitional statistics.  

In contrast, the studies on SL and dyslexia used either Artificial Grammar 

learning (AGL) (Reber, 1967) or Serial Reaction Time Tasks (SRTT) (Nissen & 

Bullemer, 1987). In the AGL task, participants first see a set of symbol sequences in a 

learning phase. These are created according to a set of rules (see Figure 1). The rules 

specify the positions and sequences in which the symbols can occur. In a subsequent 

test phase, participants are presented with symbol strings that did not occur during the 

learning phase, and need to guess, for each string, whether it corresponds to the 

grammar that constrained the learning strings.  

FIGURE 1 ABOUT HERE 

In the SRTT, participants see a stimulus which can occur in different positions 

on the screen (e.g., top, bottom, left, right). The task of the participants is to press a 

key corresponding to the stimulus’ location. Unknown to the participants, the 
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sequence of the locations repeats. With increased exposure to the repeated sequence, 

the participants’ performance improves across blocks. Critically, towards the end, a 

block is inserted where the location sequence is randomised. If participants implicitly 

learned the sequence, their performance on this random block drops, compared to the 

preceding block.  

A commonality between the three tasks is that the participants need to learn to 

use the available input to predict a future event. In the triplet task and SRTT, these are 

the identity and location, respectively, of an upcoming stimulus. In the AGL task, 

participants appear to learn symbol chunks (Pothos, 2007): in their decision about 

whether a given string is grammatical, participants rely on their knowledge of whether 

a given symbol can occur next to the other within a letter string. This also involves a 

prediction based on conditional probabilities: Given the first symbol of the sequence, 

what is the probability of the observed second symbol?    

If SL, as a hypothetical single construct which is measured by all three tasks, 

is related to reading ability, it is likely that it does so through their shared component: 

observing regularities in the environment, and using this knowledge to predict an 

upcoming event. An alternative explanation for any correlations between SL tasks and 

reading ability is that they reflect participant-level confounds, such as the general 

level of attention or motivation (Staels & Van den Broeck, 2017; Waber et al., 2003).  

Assuming that SL is correlated with reading ability, after partialling out the 

shared variance with a control task to account for differences in attention and 

motivation, the next question is about the causal pathways that lead from SL 

performance to reading ability. Orthographies contain regularities on many levels, and 

studies have shown that readers develop sensitivities to them. Children learn very 

quickly which letter sequences do or do not occur in their orthography (Cassar & 
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Treiman, 1997; Pacton, Fayol, & Perruchet, 2005; Pacton et al., 2001; but see also 

Deacon, Benere, & Castles, 2012; Rothe et al., 2014, for a failure to find evidence for 

a causal link between orthographic sensitivity and reading ability, using longitudinal 

designs). Bigram sensitivity could affect reading ability through a mediating link, 

namely spelling ability: knowing frequent letter patterns in one’s orthography 

constrains possible spelling patterns of a word, which would improve a child’s 

spelling ability. When writing the word “quick”, a child who does not know how to 

spell it may rely on their knowledge of legal letter patterns of the English orthography 

to decide against spelling it as ckwik, although this spelling is phonologically 

plausible (for a review, see Chetail, 2015). 

A second possible causal pathway between SL and reading ability could be via 

learning of complex grapheme-phoneme correspondences (GPCs). In alphabetic 

orthographies, graphemes sometimes have multiple sound associations, which depend 

on their context (Schmalz, Marinus, Coltheart, & Castles, 2015). In English, the 

grapheme a is generally pronounced as in “cat”, but its pronunciation changes when it 

is preceded by a w or qu, as in “wasp” (Venezky, 1970). In German, vowel length can 

often be predicted based on the number of subsequent consonants (Perry, Ziegler, 

Braun, & Zorzi, 2010). These rules are not taught explicitly at school. However, with 

reading experience, German speakers become sensitive to such context-dependent 

regularities, as the number of consonants after a vowel affects the probability of 

participants reading a vowel as long or short: the nonword BLAF, with only one 

consonant in the coda, is more likely to be pronounced with a long vowel than the 

nonword BAMT, where the vowel is followed by two consonants (Schmalz et al., 

2014). SL may be important for learning these complex GPCs through exposure to 

real words in one’s orthography (Apfelbaum, Hazeltine, & McMurray, 2013). This 
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would enhance nonword reading skills, as readers of even a shallow orthography such 

as German would compute the correct pronunciation more quickly. The ability to 

decode unfamiliar words is, in turn, a well-established predictor of orthographic 

learning and reading ability (Share, 1995, 2008).  

Other possible links between SL and reading ability include learning to use 

probabilistic cues to assign lexical stress in languages without a regular stress pattern 

(Arciuli, Monaghan, & Seva, 2010; Jouravlev & Lupker, 2015; Mousikou, Sadat, 

Lucas, & Rastle, 2017; Seva, Monaghan, & Arciuli, 2009; Sulpizio & Colombo, 

2013), facilitating written word learning by learning fully-specified links between 

phonology, orthography, and semantics (Steacy, Elleman, & Compton, 2017), or 

indirectly, via oral language skills (Saffran, Newport, & Aslin, 1996; Seidenberg & 

Gonnerman, 2000; Spencer, Kaschak, Jones, & Lonigan, 2015). It is worth noting 

that, while there are abundant theories on the relation between SL and reading ability, 

there is less empirical work which would establish (1) the link between the 

performance on non-linguistic SL tasks and the learning of orthography-specific 

regularities, and (2) the link between sensitivity to a given orthography-specific 

regularity and reading ability.  

Here, our aim is two-fold. First, we test the proposal that SL is important for 

reading. In line with previous findings of Arciuli and Simpson (2012), we expect to 

find a correlation between non-linguistic SL tasks and reading ability. Second, we test 

the plausibility of two possible mediators in the relationship: sensitivity to bigram 

legality and nonword reading ability. We use Bayesian correlation analyses, which 

allows us to draw conclusions about the absence of a correlation rather than only 

about significant correlations (Dienes, 2014; Rouder, Speckman, Sun, Morey, & 

Iverson, 2009).  
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As Arciuli and Simpson (2012), we tested a sample of unselected adults on 

two reading tests (word and nonword reading fluency) and two SL tasks (serial 

reaction time and artificial grammar learning). As these two SL tasks have been 

frequently used in the literature on SL and dyslexia, it is worth establishing whether 

they correlate with each other and thus measure the same SL construct. In addition, 

we use a correlational approach to test whether orthographic sensitivity may mediate 

the relationship between SL and reading. Participants performed an orthographic 

choice task which measured bigram sensitivity, and a task to control for individual 

differences in attention or motivation (choice reaction time).  

Methods 

Participants 

 Participants were 84 adult German native speakers, recruited at two 

universities and a research institute in southern Germany. Participant characteristics 

are summarised in Table 1. Reading percentiles show a wide range of reading ability 

compared to a normative sample of university students, apprentices, and high school 

graduates (Moll & Landerl, 2010). Participants were tested individually in sessions 

lasting about 30 minutes.  

TABLE 1 ABOUT HERE 

Tasks  

Reading tasks 

 We used a standardised reading task to assess word and nonword reading 

fluency (Salzburger Lese- und Rechtschreibtest II; Moll & Landerl, 2010). The tests 

consist of lists of words and nonwords, respectively, arranged in columns and 
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increasing in difficulty. Participants are instructed to read as many items as possible 

within 60 seconds.  

 Dependent variables for the reading tests are the number of words or 

nonwords, respectively, read correctly within 60 seconds. Though performance on 

these two reading subtests is correlated, they reflect different cognitive processes, 

which are dissociated in some readers (Castles & Coltheart, 1993). If SL specifically 

affects the learning of GPCs, we might expect that readers with poor SL skills may 

show relatively poor nonword reading skills compared to word reading skills. To test 

this possibility, we calculated a difference score, by subtracting each participant’s z-

score of their nonword reading performance (compared to the rest of the sample) from 

the z-score of their word reading performance. Negative numbers reflect relatively 

good nonword reading skills compared to participants’ word reading skills; positive 

numbers reflect relatively good word reading skills.  

SL tasks 

Serial reaction time task (SRTT). We implemented the SRTT in OpenSesame 

(Mathôt, Schreij, & Theeuwes, 2012). The stimulus, which occurred sequentially in 

one of four positions on the screen, was a cartoon-like drawing of a cow. Participants 

were instructed to indicate the cow’s position on the numerical keyboard (8 for up, 4 

for left, 6 for right, and 2 for down). The instructions were to respond to each stimulus 

as fast as possible, but to avoid making too many mistakes. Each trial was presented 

for two seconds or until a button press occurred. The location sequence repeated after 

each sixteen trials. There were twelve blocks of sixteen trials each. The eleventh 

block consisted of a different, pseudo-randomised sequence of sixteen trials.  

 There are numerous ways to calculate an outcome variable for this task, 

including improvement across repeated blocks, difference between the random block 



Running head: STATISTICAL LEARNING AND READING ABILITY 

Page 11 of 28 

and the preceding repeated block, difference between the random block and the 

succeeding repeated block, or difference between the random block and an average of 

the preceding and succeeding repeated blocks. Such flexibility is problematic, 

because multiple comparisons associated with different variables increase the Type I 

error rate (Elson, 2016). We therefore decided on the outcome variable a priori. For 

improvement across repeated blocks, it is unclear whether it reflects a practice effect 

or implicit learning. For the repeated block which succeeds the random block, implicit 

knowledge is likely to be already diluted by the random block. We therefore 

calculated the difference between the random block and the preceding repeated block. 

As accuracy rates are close to ceiling (in our task, average = 98.0%), RTs are better 

suited to assess individual differences. With RT measures, one needs to be weary of 

over-additivity: when relying on raw RTs, differences between conditions are 

numerically larger for participants with longer overall RTs (Faust, Balota, Spieler, & 

Ferraro, 1999). Thus, we z-transformed RTs for each participant. For the analysis, we 

excluded incorrect trials (2% of the data), and item points which deviated more than 3 

SDs from each participant’s mean (a further 1.5% of the data). The outcome variable 

was the z-score difference between the random block (Block 11) and the preceding 

repeated block (Block 10), where larger positive values reflect stronger implicit 

sequence learning. 

 Artificial grammar learning. This task consists of a learning phase and a test 

phase. In the learning phase, participants were exposed to symbol strings, which 

followed the set of rules summarised in Figure 1. As a cover task for the first phase, 

we presented participants with two grammatical symbol strings on the screen 

simultaneously, separated by 25 blank spaces. In half of the trials, the two symbol 

strings were identical, and in the other half of the trials, they were different. The 
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number of symbols contained in each string was identical for each pair. Participants 

were instructed to decide whether the strings of each pair were identical or different, 

by pressing the right or left shift key. Each trial stayed on the screen until a response 

occurred. There were 86 trials in total. Throughout the task, participants saw four 

repetitions of 43 legal symbol strings. The participants completed the cover task from 

the first phase with very high accuracy (mean: 97.8%, by-participant SD: 2.2%, 

minimum accuracy: 90.7%), which shows that they attended to the exposure strings. 

This data is not analysed further. 

After the first phase, participants were told that the strings they just saw 

followed a set of complex rules. For the second phase, participants were presented 

with symbol strings which had not occurred in the learning phase. They were told that 

half of the symbol strings were created using the same rules as the strings in the 

previous part, and that they would need to guess whether each new string was created 

by the same rules. If the string seemed familiar to them, they were instructed to press 

the right shift key, and if the string looked less familiar, they were asked to press the 

left shift key. There were 44 trials altogether. Each symbol string stayed on the screen 

until a response occurred.  

 We programmed both phases in DMDX (Forster & Forster, 2003). We used 

the grammar in Figure 1, based on Knowlton and Squire (1994). In order to remove 

the potential confound of automatized letter knowledge, we used non-alphanumeric 

symbols instead of letters (Ziegler, Pech�Georgel, Dufau, & Grainger, 2010).   

Typically, for the critical second phase of the task, accuracy is too low for an 

RT analysis, therefore only accuracy rates are analysed. We calculated overall 

accuracy and the sensitivity index (d’). The latter measure is a z-score difference 

between the hit rate and the false alarm rate, and accounts for participants’ response 
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bias (Stanislaw & Todorov, 1999). To calculate the d’ score, hit or false alarm rates of 

0 or 1 were changed to 0.00001 and 0.99999, respectively, as 0 or 1 yield z-scores of 

±�. Higher values of d’ indicate better learning, and d’ = 0 indicates chance 

performance.1 

Sensitivity to frequent letter patterns 

Participants were presented with nonwords either containing a letter bigram 

which never occurs in the German orthography, or nonwords with legal letter bigrams 

only. The task was to decide, for each item, if the nonwords follow the orthographic 

principles of German. Participants were instructed to respond as quickly as possible, 

and to guess if they were unsure. The items were presented in random order, for 5 

seconds or until a response occurred, with DMDX (Forster & Forster, 2003). The 

items were 80 legal and 80 illegal nonwords, taken from Bakos, Landerl, Bartling, 

Schulte-Körne, and Moll (2018). All items were pronounceable in German. Illegal 

letter clusters were illegal letter doublets (e.g., ovv, Tüü) or consonant clusters (e.g., 

Lutd and Alßt, where the bigrams td and ßt do not occur in German). The nonwords 

were matched across the two conditions on length and syllabic structure. The test was 

preceded by 10 practice trials. 

                                                
1 Originally, we had also included a visual SL (triplet) task, akin to Arciuli and 
Simpson (2012) and Frost et al. (2013), with cartoon-like pictures of animals instead 
of aliens or shapes. However, after the first 30 participants completed this task, it 
became clear that there was not sufficient variability in the learning performance to 
yield meaningful correlations. This is in line with recent observations about the rather 
poor psychometric properties of this task (Siegelman, Bogaerts, & Frost, 2016). To 
save time, we therefore decided to discontinue using this task. The mean accuracy on 
the test phase was 54.4% (chance level: 50%), SD = 9.4, minimum = 40.0%, 
maximum = 75.0%. Pearson’s correlations with this variable were r(28) = 0.06 for 
word reading, r(28) = -0.14 for nonword reading, and r(28) = -0.07 for SRTT 
learning, all BF < 1/3.  
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 We calculated the overall accuracy and sensitivity index (d’) for this task. As 

accuracy was relatively high, we also calculated the overall RTs, after excluding 

incorrect trials (10.5% of the data).  

Control task 

 To control for overall differences in processing speed which may reflect 

attention or motivation, participants saw different cartoon animals on the screen, 

presented in random order, and were instructed to press a key on the right-hand side 

of the keyboard if the animal was a cat, and a key on the left-hand side if the animal 

was not a cat. The instructions were to respond as fast as possible, but without making 

too many mistakes. The task was programmed with OpenSesame (Mathôt et al., 

2012). For each trial, the stimulus was presented for 1500 ms or until a response 

occurred. The stimuli were three different-coloured pictures each of cats, cows, 

rabbits, and sheep. There were 120 trials, 30 of which required a “yes”-response. 

Here, we calculated both the accuracy and the average RTs for each subject.   

Results 

 Table 1 shows the overall descriptive statistics. For the analysis, we generated 

a correlation matrix containing Pearson’s correlations, and Bayes Factors (BFs) for 

the presence of each correlation (Table 2).2 The scatterplots showing the relationship 

between the SL tasks and reading, between the two SL tasks, and between bigram 

sensitivity and reading and SL, are shown in Figure 2. Figure 3 shows the average 

performance of participants across blocks. A figure with all scatterplots, as well as the 

data used for the analyses, can be accessed at osf.io/fqdnh. We did not exclude any 

                                                
2 We do not report p-values, because the multiple comparisons would yield them 
uninterpretable, but for the readers’ reference, given our sample size of 84, 
correlations exceeding r ≈ ±0.22 reach the traditional significance threshold of p = 
0.05. 
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outliers. The figures with scatterplots show that, while there were some outlier points 

for several tasks, these do not seem to distort any meaningful patterns. 

TABLE 2 ABOUT HERE 

FIGURES 2 AND 3 ABOUT HERE 

The correlation coefficients and BFs were calculated with JASP (Love et al., 

2015). BFs compare the extent to which the data is compatible with a pre-specified 

alternative hypothesis over a null hypothesis (r = 0). In JASP, the pre-specified 

alternative is a beta-distribution centred around r = 0. The width of the distribution 

determines the probability density, under the alternative model, of the occurrence of 

different correlation coefficients. The default parameter assumes a flat prior 

distribution, such that the probability density of r values between -1 and 1 is evenly 

distributed. As we expect the correlation between reading and SL to be small 

(Schmalz et al., 2017), we changed the default parameter to 0.5, which changes the 

distribution to one where extreme values become less likely.  

BFs > 1 provide relative support for the alternative hypothesis, and BFs < 1 

provide relative support for the null hypothesis. In line with guidelines summarised by 

Rouder et al. (2009), we interpret values between 1/3 and 3 as inconclusive evidence, 

and values <1/3 or >3 as evidence for the null and alternative hypotheses, 

respectively.  

 Critically, neither of the SL tasks show any strong correlations, neither with 

the reading tasks (all BFs < 0.7), nor did the SRTT outcome variable correlate with 

either of the AGL measures (BF < 1/3).  
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Discussion  

In a sample of 84 adult readers, we found no correlation between any of SL 

tasks and reading ability, and no correlation between the two SL tasks. Thus, we did 

not find support for the proposal that SL ability has an effect on reading ability. 

The current findings are not in line with previous results of Arciuli and 

Simpson (2012), who found a correlation between visual SL and reading ability in 

children and adults. As our study was not a close replication of the original 

experiment, it is possible that the methodological differences across the studies are 

responsible for the different outcomes. Thus, a future, pre-registered study is needed 

in order to determine whether the presence of a correlation can be confirmed, when 

the protocol closely follows the methods of Arciuli and Simpson (2012). If this is the 

case, future empirical work is needed to isolate moderating factors which could have 

led to the outcomes of the current study. 

There are several methodological differences which could explain the different 

outcomes. In the final sample, we used different tasks compared to Arciuli and 

Simpson (2012) and Frost et al. (2013). Thus, there may be task-specific processes 

associated with the visual SL task which are correlated with reading ability. 

Furthermore, as the visual SL task requires participants to focus on a stimulus 

sequence, which lasts for several minutes, attention may be a confounding factor 

(Staels & Van den Broeck, 2017; Waber et al., 2003). However, we did not find a 

correlation between the visual SL task, either with reading ability or with statistical 

learning in the SRTT, in a subset of our sample which had a comparable size as the 

study of Arciuli and Simpson (2012) (see Footnote 1).  

The two tasks which we used in the final analyses (AGL and SRTT) have 

been used by numerous studies on SL and dyslexia. As previous studies have linked 
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our SL tasks to dyslexia, the current results are interpretable within the literature on 

SL and reading ability. The lack of a correlation between the two tasks raises issues 

about their psychometric properties. It is possible that the tasks show insufficient 

variability to allow us to study individual differences (Hedge, Powell, & Sumner, 

2017; Siegelman & Frost, 2015): In the AGL task, average performance was 

significantly above chance-level. On the individual level, however, all but 6 

participants were numerically above chance (i.e., at >50% accuracy), but most of 

these were only slightly above chance level, such that their accuracy level was not 

significantly better than chance at the 5%-level (see Table 1; see Siegelman et al., 

2016, for a discussion of this problem in SL tasks). This methodological issue 

prevents us from interpreting the absence of a correlation as evidence against the view 

that SL is important for reading. However, given the popularity of these tasks, our 

finding of no correlation is still important for future research.  

We also did not find a correlation between SL and bigram sensitivity, or 

between bigram sensitivity and reading ability. Previous studies have been unable to 

find evidence for a causal relationship between bigram sensitivity and reading ability 

(Deacon et al., 2012; Rothe et al., 2014). Furthermore, the role of bigram frequency 

during reading processes is unclear (Schmalz & Mulatti, 2017). Our results are in line 

with these studies and may suggest that sensitivity to letter bigrams does not act as a 

mediating link between SL and reading ability. However, our adult participants were 

clearly already very sensitive to bigram legality, as shown by the high accuracy on the 

bigram sensitivity task. Bigram sensitivity may be related to reading ability during the 

early stages of reading acquisition; for adults, this influence may be masked by other 

variables which influence reading performance.  
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Finally, it is worth pointing out that our study was conducted with German 

speakers, while the participants of Arciuli and Simpson (2012) were English speakers. 

German and English are different in terms of orthographic depth: the English 

orthography contains more complex (multi-letter and context-sensitive) GPCs than 

German, as well as more words where the pronunciation is unpredictable based on 

print-speech regularities (Schmalz et al., 2015). It is possible that SL is more 

important for learning to read in English, which could be necessary for extracting the 

orthographic regularities relating to complex rules. However, we consider this an 

unlikely explanation for our results: Frost et al. (2013) reported that, in learners of 

Hebrew, SL predicted both the learning efficiency of pointed nonword reading ability 

(a very shallow script) and unpointed word reading ability (a very deep script). Thus, 

the influence of SL ability on reading acquisition does not seem to be moderated by 

orthographic depth. 

In summary, we found that SL tasks which are typically used in the literature 

on SL and dyslexia do not correlate with reading. We cannot distinguish between the 

possibility that there is no link between SL and reading from the possibility that the 

tasks that are generally used are inadequate to show it. Future research may want to 

address issues of publication bias and poor psychometric properties of SL tasks. 

Researchers will need design a child-friendly SL task with good psychometric 

properties (for a SL task for adults, designed to have good psychometric properties, 

see Siegelman et al., 2016), and test a large sample of children to establish the 

presence or absence of a correlation between reading and SL.  
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Figure 1 

 

 

 
Figure 1: Artificial grammar used in the current task (taken from Knowlton & Squire, 
1994). 
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Figure 2 
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C 
 
Figure 2: Scatterplots showing the relationships between the critical variables: (A) Between reading 
ability and statistical learning, (B) between the two statistical learning tasks, and (C) between bigram 
sensitivity and reading ability. For SRTT, values >0 reflect that learning occurred, for AGL and bigram 
legality accuracy, 0.5 reflects chance level, and for AGL and bigram legality d’, 0 reflects chance level. 
For word and nonword reading, the axis reflects the number of words read correctly within 1 minute, 
and for bigram legality, the average number of ms before response. 
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Figure 3 

Response times across blocks 

 

Figure 3: Participants’ average performance (trimmed RT) on the SRTT across blocks. Error 
bars = SEM. The eleventh block contained the random sequence. 
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Table 1  

Table 1: Descriptive Statist ics for the obtained variables 

   

  

Age  
Word 

reading 
(SLRT 

percentile)  

Nonword 
reading 
(SLRT 

percentile)  

Word 
reading 
(correct 

i tems 
per 

minute) 

Nonword 
reading 
(correct 

i tems per 
minute) 

Reading 
difference 

(z-score 
difference)  

SRTT 
difference 

(z-score 
difference)  

AGL 
accuracy 

(proportion 
correct)   

AGL 
d’  

Bigram 
legality 

accuracy 
(proportion 

correct)  

Bigram 
legality 

d’  

Bigram 
legality 

RT 
(ms)  

Choice 
Reaction 

Time Task 
accuracy 

(percentage 
correct)    

Choice 
Reaction 

Time 
Task RT 

(ms)  

Mean   
  
27.7  52.4  52.7 122.1 76.9 -0.03  0.23  0.64  0.78  0.89  3.02  996.6  94.2  439.3  

Std.  
Deviation   

  
8.7  28.3  27.9 16.1 15.7 0.71  0.36  0.08  0.51  0.08  1.18  253.5  4.5  62.16  

Minimum   

  
19  2  8 78 49 -1.68  -0.94  0.45  0.23  0.48  -0.15  692.3  70.0  319.0  

Maximum   
  

62  99  98 156 119 1.27  0.94  0.81  2.38  1.00  8.53  1965  100.0  640.0  

Chance level   
  

         0  0.5    0.5          

Average 
deviation 
from chance 
level  

 
  

         t(83) = 6.0, 
p < 0.0001  t(83) = 15.3, 

p < 0.0001    t(83) = 46.4, 
p < 0.0001          

Number of 
participants 
(out of 84) 
significantly 
above chance 
(p < 0.05) 

 

  

         65  40    83          

Note: For age, there are 6 missing values. Average deviation from chance level was calculated with a one-sample t-test. For scripts to calculate the number of participants significantly 
above chance, see osf.io/fqdnh  
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Table 2: Correlation coefficients with Bayes Factors 

	
		 2 3 4 5 6 7 8 9 10 11 12 

1. Word reading  
Coefficient r 0.75 0.4 -0.02 0.1 0.14 0.001 0.02 -0.23 -0.25 -0.31 -0.003 
Bayes Factor >1,000 200 0.21 0.31 0.43 0.2 0.21 1.64 2.33 10.14 0.2 

2. Pseudoword 
reading  

Coefficient r — -0.312 0.02 0.16 0.17 0.13 0.03 -0.22 -0.29 -0.26 0.19 
Bayes Factor — 11 0.21 0.53 0.63 0.39 0.21 1.32 5.23 3.22 0.86 

3. Reading 
difference  

Coefficient r 
 

— -0.06 -0.07 -0.03 -0.17 -0.009 -0.03 0.03 -0.08 -0.27 
Bayes Factor 

 
— 0.23 0.24 0.21 0.68 0.2 0.21 0.22 0.26 3.51 

4. SRTT 
difference 

Coefficient r 
  

— -0.001 0.01 0.1 0.12 -0.02 -0.17 -0.15 0.02 
Bayes Factor 

  
— 0.2 0.2 0.3 0.35 0.21 0.59 0.5 0.21 

5. AGL accuracy  
Coefficient r 

   
— 0.88 0.003 0.01 -0.07 -0.008 -0.002 0.18 

Bayes Factor 
   

— >1,000 0.2 0.2 0.25 0.21 0.2 0.78 

6. AGL d’  
Coefficient r 

    
— -0.03 -0.008 -0.02 0.02 -0.01 0.19 

Bayes Factor 
    

— 0.21 0.2 0.21 0.21 0.2 0.8 

7. Bigram legality 
d’  

Coefficient r 
     

— 0.73 -0.13 -0.09 -0.13 0.1 
Bayes Factor 

     
— >1000 0.41 0.28 0.38 0.3 

8. Bigram legality 
accuracy  

Coefficient r 
      

— -0.24 -0.24 -0.27 0.07 
Bayes Factor 

      
— 2 1.8 4 0.24 

9. Bigram legality 
RT  

Coefficient r 
       

— 0.35 0.23 -0.02 
Bayes Factor 

       
— 22.1 1.54 0.21 

10. Age  
Coefficient r 

        
— 0.52 0.02 

Bayes Factor 
        

— >1,000 0.21 
11. Choice 
Reaction Time 
Task RT  

Coefficient r 
         

— 0.31 
Bayes Factor 

         
— 11 

12. Choice 
reaction time task 
accuracy  

Coefficient r 
          

— 

Bayes Factor                     — 

Note: The Coefficient r is the standard zero-order correlation coefficient. BF values > 3 are marked in bold green font and provide 
evidence for the presence of a correlation. BF values < 1/3 are marked in italic red font and provide evidence against the presence of a 
correlation. Values in-between provide insufficient evidence for a conclusion. Word and nonword reading scores are the raw values rather 
than z-scores. 


