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Abstract— This work has been conducted in the context of
pattern-recognition-based control for electromyographic pros-
theses. It presents a k-nearest neighbour (kNN) classification
technique for gesture recognition, extended by a proportionality
scheme. The methods proposed are practically implemented and
validated. Datasets are captured by means of a state-of-the-
art 8-channel electromyography (EMG) armband positioned
on the forearm. Based on this data, the influence of kNN’s
parameters is analyzed in pilot experiments. Moreover, the
effect of proportionality scaling and rest thresholding schemes
is investigated. A randomized, double-blind user study is
conducted to compare the implemented method with the state-
of-research algorithm Ridge Regression with Random Fourier
Features (RR-RFF) for different levels of gesture exertion. The
results from these experiments show a statistically significant
improvement in favour of the kNN-based algorithm.

I. MOTIVATION AND RELATED WORK

The kNN learning scheme has been applied for myoelec-
tric control of prosthetic devices several times [1]–[4]. So
far, kNN was utilized for sole classification as an intention
detection method based on EMG signals. In preliminary
experiments, kNN showed promising results in gesture detec-
tion referring to success rate (SR) as well as generalizability.
It is considered as robust (i. a., against electrode shift [5] and
sampling frequency variation [6]). Further benefits are the
algorithm’s incrementality and low level of implementation
complexity. As kNN is an instance-based machine learning
algorithm, training of an explicit model is not necessary.

Since proportionality is a key feature in myocontrol,
regression algorithms gain more popularity [7], [8]; moreover
several attempts were made to combine classification con-
cepts with proportional scaling in EMG-based intention
detection: LDA [9], [10], neural networks [11], [12] and
common spatial patterns [13] have been used to control the
velocity based on the signal intensity. To the authors’ know-
ledge, kNN was not adapted as a proportional scheme so
far. In this study, we developed such a scheme investigating
several modalities to include proportionality.

II. CONCEPTUAL APPROACH

It is assumed that the intensity of an exerted gesture is
approximately proportional to the amplitude of the signal
(mean of all channels of the 8-channel EMG signal). We
intend to use this property for proportional scaling of gestures
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classified by kNN. The rectified sensor reading is divided into
a normalized signal and the signal strength (normalization
factor), while the former is used for gesture prediction,
and the latter for scaling under the assumption of linear
correlation of signal strength and proportional intent for the
particular gesture. The rest gesture is treated independently.
The mean magnitude of the rest samples gathered during
training (t0) is taken as baseline for rest. If the threshold
t = g · t0 (gain g) is exceeded, a gesture is not classified as
rest anymore. An increase in t reduces unwanted activations.

However, a higher level of t requires the user to exert
higher forces to activate a gesture and therefore also leads
to a lower resolution of proportionality. There is a trade-
off between suppressing unwanted activations and providing
a high level of resolution (maintaining the maximum). We
therefore introduce a divisor d which scales the proportion-
ality function offset m0 = t

d ; but not the threshold for rest
t itself. Different configurations are tested in pilot tests.

III. CONTROL METHOD ADAPTATION

The training process comprises: 1) capturing training data,
2) calculating class magnitude means for proportionality
scaling, 3) normalization of this data, 4) block-wise cross-
validation for obtaining the optimal k in terms of accuracy.

The prediction process is structured as follows: 1) rest
thresholding, 2) normalization of new sample, 3) calculating
k nearest neighbours of the new sample, 4) applying distance
weighting on the k selected neighbouring samples, 5) ex-
ecuting kNN classification by majority voting, and 6) signal
magnitude analysis and scaling the prediction proportionally.

For the preparation of the user study, we conducted a two-
step method adaptation (analyzing seven actions: rest, power
grasp, point, wrist flexion/extension, pronation/supination).
First, we performed offline cross-validation to determine
the most suited kNN parameters (k, distance metric and
weighting factor). This was followed by a single-subject pilot
to evaluate different ways of introducing proportionality.

A. Cross-Validation

The accuracy of kNN with varying parameter sets in
block-wise cross-validation was determined in an offline
study on different datasets from a single subject. In the
case of low k (k relative to the total numbers of training
samples until 5–10%), neither the metric nor the weighting
was of high importance as long as applying a Minkowski-
based distance, yielding 98–100% correct classifications.
Results were consistently worse with Mahalanobis distance.
For higher ks the Euclidean norm turned out to be the best



choice, together with a weighting of 1
d2 . This configuration

is chosen in the subsequent sections, with k = 1.

B. Pilot Tests on One Subject

Rest thresholding (introduction of t) increased the SR for
non-overlapping classes, as misclassifications with rest could
be reduced. Maxima were achieved for g = 2.5.

For by trend overlapping classes applying a divisor d
enabled low-intensity gestures to be more easily exerted
and increased the performance. Together with normalization,
higher ds guaranteed that the necessary force effort to exert a
full gesture does not noticeably exceed the particular training
magnitudes. The originally discovered problem that with a
higher d low-intensity gestures got less reachable was effaced
with normalization. Averaged over all datasets, the maximum
SR (93%± 6%) was achieved for d = 5.

C. User Study

A user study with 12 subjects was conducted for evaluating
the suitability in practical scenarios (using t = 2.5 · t0 and
d = 5). After signing consent forms, the participants sat in
front of a screen in a standardized pose. For the training
process they followed a visual stimulus, performing a repet-
itive series of actions, comprising the four gestures power
grasp, point, wrist flexion/extension. In the prediction/test
phase they were asked to follow the stimulus again, viewing
a visual feedback. The goals were not only at full activation
(as during training), but at levels of 33% and 67% as well.
They were also randomized between subjects. We compared
the performance in terms of SR for kNN with a regression
algorithm, namely RR-RFF [8], followed up by a statistical
analysis using a one-way ANOVA on SR.

IV. RESULTS

ANOVA (level of significance 5%) reveals a stochastic
significant difference in favor of kNN compared to RR-RFF,
see Fig. 1a. The achieved SRs for different intensity levels
of gesture exertion in Fig. 1b shows no level where RR-RFF
would have outperformed kNN in median or mean of SR.
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Fig. 1. User study SR results, comparing kNN and RR-RFF.

RR-RFF seems to perform well only on the intensity level
it was trained with. At lower levels the performance drops
drastically. This drop is less severe for kNN, where it is
potentially due to training on full intensity level, and a high

rest threshold causing movements with low signal amplitudes
being classified as rest. The effect might be curtailed by user-
specific parameter adjustments, and a learning process with
subjects getting used to the algorithm’s specific behaviour.

V. CONCLUSIONS AND OUTLOOK

This paper evaluated the extension of kNN classification
by proportionality scaling for intent detection by using a
state-of-the-art 8-channel myocontrol armband. kNN can be
a means towards better generalization capabilities to improve
user satisfaction in prosthetics. In comparison to state-of-
the-art RR-RFF, the algorithm does not involve complex
numeric operations, particularly during training, and has few
parameters to be tuned. An appropriate parameterization was
validated in a user study. Besides higher SR, the overall
result of kNN showed a lower standard deviation than in RR-
RFF, which leads to the assumption that kNN performs more
stable and robust with less nondeterminism in the algorithm’s
behaviour. Other classification techniques may also benefit
from the presented proportionality scheme. In contrast to
kNN, RR-RFF allows the simultaneous detection of mixed
gestures, though. The low complexity of kNN can be of high
importance for embedded system implementations. In this
context, special attention must be paid to the prediction phase
of standard kNN where each sample has to be related to each
single other sample. This will be treated in further work.
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